1 Features

- AEC Q100 (Grade 1) Qualified for automotive applications
- Meets the requirements of ISO 11898-2:2016
- Functional Safety-Capable
 - Documentation available to aid in functional safety system design
- Wide input operational voltage range
- Integrated LDO for CAN transceiver supply
 - 5-V LDO with 100 mA output current capability - TCAN11625
 - 3.3-V LDO with 70 mA output current capability - TCAN11623
- Classic CAN and CAN FD up to 8 Mbps
- V\textsubscript{IO} level shifting supports: 1.7 V to 5.5 V
- Operating modes
 - Normal mode
 - Standby mode
 - Low-power sleep mode
- High-voltage INH output for system power control
- Local wake-up support via the WAKE pin
- Defined behavior when unpowered
 - Bus and IO terminals are high impedance (no load to operating bus or application)
- Protection features:
 - ±58-V CAN bus fault tolerant
 - Load dump support on V\textsubscript{SUP}
 - IEC ESD protection
 - Under-voltage and over-voltage protection
 - Thermal shutdown protection
 - TXD dominant state timeout (TXD DTO)
- Extra wide junction temperature support
- Available in the leadless VSON (14) package with wettable flank for improved automated optical inspection (AOI) capability

2 Applications

- Advanced driver assistance system (ADAS)
- Body electronics and lighting
- Automotive infotainment and cluster
- Hybrid, electric and powertrain systems

3 Description

The TCAN1162x-Q1 are high-speed controller area network (CAN) system basis chips (SBC) that meet the physical layer requirements of the ISO 11898-2:2016 high-speed CAN specification. The TCAN1162x-Q1 supports both classical CAN and CAN FD networks up to 8 megabits per second (Mbps).

Both the TCAN11623-Q1 and TCAN11625-Q1 support a wide input supply range and integrates some form of an LDO output. The TCAN11625-Q1 has a 5-V LDO output (V\textsubscript{CCOUT}) which supplies the CAN transceiver voltage internally as well as additional current externally. The TCAN11623-Q1 has a 3.3-V LDO output (V\textsubscript{LDO3}), supplied from the 5-V LDO, supporting external loads.

The TCAN1162x-Q1 allows for system-level reductions in battery current consumption by selectively enabling the various power supplies that may be present on a system via the INH output pin. This allows an ultra-low-current sleep state where power is gated to all system components except for the TCAN1162x-Q1, while monitoring the CAN bus. When a wake-up event is detected, the TCAN1162x-Q1 initiates system start-up by driving INH high.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE(1)</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN11623-Q1</td>
<td>VSON (14)</td>
<td>4.5 mm x 3.00 mm</td>
</tr>
<tr>
<td>TCAN11625-Q1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

TCAN1162x-Q1 Automotive CAN FD System Basis Chip with Sleep Mode and LDO Output

Simplified Schematic
Table of Contents

<table>
<thead>
<tr>
<th>Section Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Features</td>
<td>1</td>
</tr>
<tr>
<td>2 Applications</td>
<td>1</td>
</tr>
<tr>
<td>3 Description</td>
<td>1</td>
</tr>
<tr>
<td>4 Revision History</td>
<td>2</td>
</tr>
<tr>
<td>5 Description (continued)</td>
<td>3</td>
</tr>
<tr>
<td>6 Pin Configurations and Functions (TCAN11625)</td>
<td>4</td>
</tr>
<tr>
<td>7 Pin Configurations and Functions (TCAN11623)</td>
<td>5</td>
</tr>
<tr>
<td>8 Specifications</td>
<td>6</td>
</tr>
<tr>
<td>8.1 Absolute Maximum Ratings</td>
<td>6</td>
</tr>
<tr>
<td>8.2 ESD Ratings</td>
<td>6</td>
</tr>
<tr>
<td>8.3 ESD Ratings IEC Specification</td>
<td>6</td>
</tr>
<tr>
<td>8.4 Recommended Operating Conditions</td>
<td>7</td>
</tr>
<tr>
<td>8.5 Thermal Information</td>
<td>7</td>
</tr>
<tr>
<td>8.6 Power Supply Characteristics</td>
<td>7</td>
</tr>
<tr>
<td>8.7 Electrical Characteristics</td>
<td>9</td>
</tr>
<tr>
<td>8.8 Switching Characteristics</td>
<td>11</td>
</tr>
<tr>
<td>8.9 Typical Characteristics</td>
<td>13</td>
</tr>
<tr>
<td>9 Parameter Measurement Information</td>
<td>14</td>
</tr>
<tr>
<td>10 Detailed Description</td>
<td>18</td>
</tr>
<tr>
<td>10.1 Overview</td>
<td>18</td>
</tr>
<tr>
<td>10.2 Functional Block Diagram</td>
<td>18</td>
</tr>
<tr>
<td>10.3 Feature Description</td>
<td>20</td>
</tr>
<tr>
<td>10.4 Device Functional Modes</td>
<td>25</td>
</tr>
<tr>
<td>11 Application Information</td>
<td>36</td>
</tr>
<tr>
<td>11.1 Application Information Disclaimer</td>
<td>36</td>
</tr>
<tr>
<td>11.2 Typical Application</td>
<td>36</td>
</tr>
<tr>
<td>11.3 Application Curves</td>
<td>38</td>
</tr>
<tr>
<td>12 Power Supply Requirements</td>
<td>39</td>
</tr>
<tr>
<td>13 Layout</td>
<td>40</td>
</tr>
<tr>
<td>13.1 Layout Guidelines</td>
<td>40</td>
</tr>
<tr>
<td>13.2 Layout Example</td>
<td>40</td>
</tr>
<tr>
<td>14 Device and Documentation Support</td>
<td>42</td>
</tr>
<tr>
<td>14.1 Documentation Support</td>
<td>42</td>
</tr>
<tr>
<td>14.2 Receiving Notification of Documentation Updates</td>
<td>42</td>
</tr>
<tr>
<td>14.3 Support Resources</td>
<td>42</td>
</tr>
<tr>
<td>14.4 Trademarks</td>
<td>42</td>
</tr>
<tr>
<td>14.5 Electrostatic Discharge Caution</td>
<td>42</td>
</tr>
<tr>
<td>14.6 Glossary</td>
<td>42</td>
</tr>
<tr>
<td>15 Mechanical, Packaging, and Orderable Information</td>
<td>42</td>
</tr>
</tbody>
</table>

4 Revision History

Changes from Revision * (May 2021) to Revision A (November 2021)

- Changed the document status from *Advanced Information* to *Production data*.
5 Description (continued)

This allows an ultra-low-current sleep state in which power is gated to all system components except for the TCAN1162x-Q1, which remains in a low-power state while monitoring the CAN bus. When a wake-up event is detected, the TCAN1162x-Q1 initiates node start-up by driving INH high.

The TCAN1162x-Q1 supports an ultra low-power standby mode where the high-speed transmitter and normal receiver are switched off and a low-power wake-up receiver enables remote wake-up via the ISO 11898-2:2016 defined wake-up pattern (WUP).

The TCAN1162x-Q1 includes internal logic level translation via the V_{IO} terminal to allow for interfacing directly to 1.8-V, 2.5-V, 3.3-V, or 5-V controllers. The transceiver includes many protection and diagnostic features including undervoltage detection, over voltage detection, thermal shutdown (TSD), driver dominant timeout (TXD DTO), and bus fault protection up to ±58-V.

The TCAN1162x-Q1 allows for system-level reductions in battery current consumption by selectively enabling the various power supplies that may be present on a node via the INH output pin. This allows an ultra-low-current sleep state in which power is gated to all system components except for the TCAN1162x-Q1, which remains in a low-power state while monitoring the CAN bus. When a wake-up pattern is detected on the bus or when a local wake-up is requested via the WAKE input, the TCAN1162x-Q1 initiates node start-up by driving INH high.
6 Pin Configurations and Functions (TCAN11625)

![Pin Configuration Diagram]

Figure 6-1. DMT Package, 14 Pin (VSON), Top View

<table>
<thead>
<tr>
<th>PINS</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXD</td>
<td>Digital</td>
<td>CAN transmit data input, integrated pull-up</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>Ground connection</td>
</tr>
<tr>
<td>V_{CCOUT}</td>
<td>Supply</td>
<td>5-V LDO regulated output voltage pin and transceiver supply</td>
</tr>
<tr>
<td>RXD</td>
<td>Digital</td>
<td>CAN receive data output, tri-state when V_{IO} < UV_{VIO}</td>
</tr>
<tr>
<td>V_{IO}</td>
<td>Supply</td>
<td>IO supply voltage</td>
</tr>
<tr>
<td>TS</td>
<td>Digital</td>
<td>Transceiver status</td>
</tr>
<tr>
<td>INH</td>
<td>High Voltage</td>
<td>Inhibit pin to control system voltage regulators and supplies, high voltage</td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td>Internally connected, leave floating or connect to GND</td>
</tr>
<tr>
<td>WAKE</td>
<td>High Voltage</td>
<td>Local WAKE input terminal, high voltage</td>
</tr>
<tr>
<td>V_{SUP}</td>
<td>Supply</td>
<td>High voltage supply from the battery</td>
</tr>
<tr>
<td>nRST</td>
<td>Digital</td>
<td>Reset input/output</td>
</tr>
<tr>
<td>CANL</td>
<td>Bus IO</td>
<td>Low level CAN bus input/output line</td>
</tr>
<tr>
<td>CANH</td>
<td>Bus IO</td>
<td>High level CAN bus input/output line</td>
</tr>
<tr>
<td>nSLP</td>
<td>Digital</td>
<td>Sleep mode control input, integrated pull-down</td>
</tr>
<tr>
<td>Thermal Pad</td>
<td>—</td>
<td>Electrically connected to GND, connect the thermal pad to the printed circuit board (PCB) ground plane for thermal relief</td>
</tr>
</tbody>
</table>

Table 6-1. Pin Functions
7 Pin Configurations and Functions (TCAN11623)

![DMT Package, 14 Pin (VSON), Top View](image)

Table 7-1. Pin Functions

<table>
<thead>
<tr>
<th>PINS</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXD</td>
<td>Digital Input</td>
<td>CAN transmit data input, integrated pull-up</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>Ground connection</td>
</tr>
<tr>
<td>V_FLT</td>
<td>Supply</td>
<td>5-V LDO transceiver filter pin. Place a 10 µF capacitor on this pin to ground.</td>
</tr>
<tr>
<td>RXD</td>
<td>Digital Output</td>
<td>CAN receive data output, tri-state when V_IO < UV_VIO</td>
</tr>
<tr>
<td>V_IO</td>
<td>Supply</td>
<td>IO supply voltage</td>
</tr>
<tr>
<td>TS</td>
<td>Digital</td>
<td>Transceiver status</td>
</tr>
<tr>
<td>INH</td>
<td>High Voltage</td>
<td>Inhibit pin to control system voltage regulators and supplies, high voltage</td>
</tr>
<tr>
<td>V_LDO3</td>
<td>Supply</td>
<td>3.3-V LDO regulated output voltage pin</td>
</tr>
<tr>
<td>WAKE</td>
<td>High Voltage</td>
<td>Local WAKE input terminal, high voltage</td>
</tr>
<tr>
<td>V_SUP</td>
<td>Supply</td>
<td>High voltage supply from the battery</td>
</tr>
<tr>
<td>nRST</td>
<td>Digital</td>
<td>Reset input/output</td>
</tr>
<tr>
<td>CANL</td>
<td>Bus IO</td>
<td>Low level CAN bus input/output line</td>
</tr>
<tr>
<td>CANH</td>
<td>Bus IO</td>
<td>High level CAN bus input/output line</td>
</tr>
<tr>
<td>nSLP</td>
<td>Digital</td>
<td>Sleep mode control input, integrated pull-down</td>
</tr>
<tr>
<td>Thermal Pad</td>
<td>—</td>
<td>Electrically connected to GND, connect the thermal pad to the printed circuit board (PCB) ground plane for thermal relief</td>
</tr>
</tbody>
</table>
8 Specifications

8.1 Absolute Maximum Ratings

over operating virtual junction temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{SUP}})</td>
<td>Supply voltage range</td>
<td>-0.3</td>
<td>42</td>
</tr>
<tr>
<td>(V_{\text{FLT}})</td>
<td>Transceiver supply voltage</td>
<td>-0.3</td>
<td>6</td>
</tr>
<tr>
<td>(V_{\text{CCOUT}})</td>
<td>5 V regulated output</td>
<td>-0.3</td>
<td>6</td>
</tr>
<tr>
<td>(V_{\text{DD3}})</td>
<td>3.3 V regulated output</td>
<td>-0.3</td>
<td>4.5</td>
</tr>
<tr>
<td>(V_{\text{IO}})</td>
<td>IO level shifting voltage range</td>
<td>-0.3</td>
<td>6</td>
</tr>
<tr>
<td>(V_{\text{BUS}})</td>
<td>CAN bus IO voltage range (CANH, CANL)</td>
<td>-58</td>
<td>58</td>
</tr>
<tr>
<td>(V_{\text{WAKE}})</td>
<td>WAKE input pin voltage range</td>
<td>-18 and (V_i \leq V_{\text{SUP}} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{INH}})</td>
<td>INH output pin voltage range</td>
<td>-0.3</td>
<td>42 and (V_D \leq V_{\text{SUP}} + 0.3)</td>
</tr>
<tr>
<td>(V_{\text{LogiC _Inp}})</td>
<td>Logic input terminal voltage range</td>
<td>-0.3</td>
<td>6</td>
</tr>
<tr>
<td>(I_{\text{LogiC _Out}})</td>
<td>Logic output terminal voltage range</td>
<td>-0.3</td>
<td>6</td>
</tr>
<tr>
<td>(I_{\text{O (\logiC)}})</td>
<td>Logic output current</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{O_INH}})</td>
<td>INH output current</td>
<td>6</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{O_WAKE}})</td>
<td>Wake current if due to ground shifts (V_{\text{(WAKE)}} \leq V_{\text{(GND)}} \leq -0.3) V, thus the current into WAKE must be limited via an external serial resistor</td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td>(T_J)</td>
<td>Operating virtual junction temperature range</td>
<td>65</td>
<td>165</td>
</tr>
<tr>
<td>(T_{\text{STG}})</td>
<td>Storage temperature</td>
<td>65</td>
<td>165</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

8.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{\text{ESD}})</th>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human body model (HBM), per AEC Q100-002(^{(1)})</td>
<td></td>
<td>HBM classification level 3A for all pin</td>
<td>±4000</td>
</tr>
<tr>
<td>HBM classification level 3A for (V_{\text{SUP}}, \text{WAKE}, \text{INH})</td>
<td></td>
<td>±8000</td>
<td></td>
</tr>
<tr>
<td>HBM classification level 3B for global pins CANH & CANL</td>
<td></td>
<td>±10000</td>
<td></td>
</tr>
<tr>
<td>Charged-device model (CDM), per AEC Q100-011</td>
<td></td>
<td>CDM classification level C5 for all pins</td>
<td>±750</td>
</tr>
</tbody>
</table>

\(^{(1)}\) AEC-Q100-002 indicates that HBM stresses shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

8.3 ESD Ratings IEC Specification

<table>
<thead>
<tr>
<th>(V_{\text{ESD}})</th>
<th>System level electro-static discharge (ESD)(^{(1)})</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN bus terminals (CANH & CANL) to GND</td>
<td>IEC 61000-4-2 (150pF, 330Ω) unpowered contact discharge</td>
<td>±8000</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{SUP}}) and \text{WAKE})</td>
<td></td>
<td>±8000</td>
<td></td>
</tr>
<tr>
<td>ISO 7637 ISO pulse transients(^{(2)})</td>
<td>Pulse 1</td>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>Pulse 2</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse 3a</td>
<td>-150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse 3b</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 7637-3 transient(^{(3)})</td>
<td>DCC slow transient pulse</td>
<td>±30</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Tested according to IEC 62228-3 CAN Transceiver, Section 6.4; DIN EN 61000-4-2
\(^{(2)}\) Tested according to IEC 62228-3 CAN Transceiver, Section 6.3; standard pulse parameters defined in ISO 7637-2
\(^{(3)}\) Tested according to ISO 7637-3; electrical transient transmission by capacitive and inductive coupling via lines other than supply line
8.4 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{SUP} Supply voltage range</td>
<td>5.5</td>
<td>28</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IO} IO supply voltage</td>
<td>1.7</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$I_{OH(DO)}$ Digital output terminal high level output current</td>
<td>–2</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>$I_{OL(DO)}$ Digital output terminal low level output current</td>
<td>2</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>$I_{OH(INH)}$ INH output current</td>
<td>1</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>C_{SUP} V_{SUP} pin capacitance</td>
<td>0.1</td>
<td></td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>C_{VCCOUT} V_{VCCOUT} pin capacitance TCAN11625</td>
<td>10</td>
<td></td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>C_{FLT} Filter pin capacitance TCAN11623</td>
<td>10</td>
<td></td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>C_{LDOD} V_{LDOD} pin capacitance TCAN11623</td>
<td>1</td>
<td>4.7</td>
<td>10</td>
<td>µF</td>
</tr>
<tr>
<td>T_{SDR} Thermal shutdown rising</td>
<td>175</td>
<td>180</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{SDF} Thermal shutdown falling</td>
<td>165</td>
<td>170</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{HYS} Thermal shutdown hysteresis</td>
<td>15</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

8.5 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>DMT (VSON)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUA} Junction-to-ambient thermal resistance</td>
<td>37.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{JUC(TOP)}$ Junction-to-case (top) thermal resistance</td>
<td>37.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUB} Junction-to-board thermal resistance</td>
<td>14.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>Ψ_{JT} Junction-to-top characterization parameter</td>
<td>0.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>Ψ_{JB} Junction-to-board characterization parameter</td>
<td>14.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{JUC(BOT)}$ Junction-to-case (bottom) thermal resistance</td>
<td>4.9</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

8.6 Power Supply Characteristics

Over recommended operating conditions with $T_J = -40°C$ to 150°C, unless otherwise noted. All typical values are taken at 25°C, $V_{SUP} = 12$ V, $V_{IO} = 3.3$ V and $R_L = 60$ Ω.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage and Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SUP} Supply current</td>
<td>TXD = 0 V, $R_L = 60$ Ω, $C_L =$ open See Figure 9-2</td>
<td>60</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TXD = 0 V, $R_L = 50$ Ω, $C_L =$ open See Figure 9-2</td>
<td>70</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TXD = V_{IO}, $R_L = 50$ Ω, $C_L =$ open See Figure 9-2</td>
<td>3</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SUP(STB)}$ Supply current TCAN11623 Standby mode Bus bias autonomous: inactive</td>
<td>5.5 V < V_{SUP} ≤ 19 V See Figure 9-2</td>
<td>255</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SUP(1STB)}$ Supply current TCAN11625 Standby mode Bus bias autonomous: inactive</td>
<td>5.5 V < V_{SUP} ≤ 19 V See Figure 9-2</td>
<td>150</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SUP(SLP)}$ Supply current Sleep mode Bus bias autonomous: inactive</td>
<td>nSLP = 0 V, 5.5 V < V_{SUP} ≤ 19 V $T_A > 85°C$ See Figure 9-2</td>
<td>50</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SUP(SLP)}$ Supply current Sleep mode Bus bias autonomous: inactive</td>
<td>nSLP = 0 V, 5.5 V < V_{SUP} ≤ 19 V $T_A ≤ 85°C$ See Figure 9-2</td>
<td>40</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SUP(BIAS)}$ Supply current Bus bias autonomous: active(1)</td>
<td>5.5 V < V_{SUP} ≤ 28 V See Figure 9-2</td>
<td>60</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{SUPR} Under voltage V_{SUP} threshold rising</td>
<td>Ramp Up</td>
<td>4.05</td>
<td></td>
<td>4.42</td>
<td>V</td>
</tr>
</tbody>
</table>
8.6 Power Supply Characteristics (continued)

Over recommended operating conditions with $T_J = -40°C$ to 150°C, unless otherwise noted. All typical values are taken at 25°C, $V_{SUP} = 12$ V, $V_O = 3.3$ V and $R_L = 60$ Ω.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{SUP}</td>
<td>Under voltage V_{SUP} threshold falling</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_O</td>
<td>IO Supply Current</td>
<td>$V_{SUP} = 5.5$ to 28 V</td>
<td>3.9</td>
<td>4.25</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCOUT}</td>
<td>Normal mode</td>
<td>$I_L = 0$ to 100 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RXD floating, TXD = 0 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$LDO3$</td>
<td>$V_{SUP} = 5.5$ to 18 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{CCOUT}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CCOUT}</td>
<td>5 V regulated output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV_{IO}</td>
<td>Under voltage V_O threshold rising</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IO}</td>
<td>Hysteresis voltage on UV_{IO}</td>
<td>Ramp Down</td>
<td>1</td>
<td>1.25</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCOUT}</td>
<td>Dropout voltage</td>
<td>5 V LDO, $V_{SUP} = V_{CCOUT}$, $I_L = 125$ mA</td>
<td>300</td>
<td>650</td>
<td>mV</td>
</tr>
<tr>
<td>$LDO3$</td>
<td>5 V regulated output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ΔV_{LDO3}$</td>
<td>Line regulation</td>
<td>$V_{SUP} = 5.5$ to 28 V, $ΔV_{LDO3}$</td>
<td>4.9</td>
<td>5.1</td>
<td>V</td>
</tr>
<tr>
<td>$ΔV_{LDO3}$</td>
<td>$I_{LDO} = 10$ mA, $ΔV_{LDO}$</td>
<td>50</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>$ΔV_{LDO3}$</td>
<td>Load regulation</td>
<td>$I_{LDO} = 1$ to 70 mA, $V_{SUP} = 14$ V, $ΔV_{LDO}$</td>
<td>50</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>$ΔV_{LDO3}$</td>
<td>$V_{SUP} = 5.5$ to 28 V, $I_L = 0$ to 175 mA, $V_{CCOUT} = 0$ V</td>
<td>4.9</td>
<td>5.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>UV_{FLTR}</td>
<td>Under voltage V_{FLTR} threshold rising</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV_{CCOUT}</td>
<td>Under voltage V_{CCOUT} threshold falling</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CCOUT}</td>
<td>Under voltage V_{CCOUT} threshold falling</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LCCOUT}</td>
<td>Under voltage V_{LCCOUT} threshold falling</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LDO}</td>
<td>Over voltage V_{FLTR} threshold rising</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LDO}</td>
<td>Over voltage V_{CCOUT} threshold rising</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LDO}</td>
<td>Over voltage V_{LDO3} threshold rising</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LDO}</td>
<td>Over voltage V_{LDO3} threshold rising</td>
<td>Ramp Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LDO}</td>
<td>Output current limit</td>
<td>V_{CCOUT} short to ground</td>
<td>175</td>
<td>275</td>
<td>mA</td>
</tr>
<tr>
<td>I_{LDO}</td>
<td>Output current limit</td>
<td>V_{LDO3} short to ground</td>
<td>90</td>
<td>160</td>
<td>mA</td>
</tr>
<tr>
<td>$PSRR_{VCCOUT}$</td>
<td>Power supply rejection ripple rejection</td>
<td></td>
<td>60</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>$PSRR_{LDO3}$</td>
<td>Power supply rejection ripple rejection</td>
<td></td>
<td>37</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

(1) After a valid wake-up the total I_{SUP} current is the sum of $I_{SUP(STB)}$ and $I_{SUP(BIAS)}$ ($I_{SUP} = I_{SUP(STB)} + I_{SUP(BIAS)}$)
8.7 Electrical Characteristics

Over recommended operating conditions with \(T_J = -40°C \) to 150°C, unless otherwise noted. All typical values are taken at 25°C, \(V_{SUP} = 12 \, V \), \(V_{IO} = 3.3 \, V \) and \(R_L = 60 \, \Omega \).

CAN Driver Electrical Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OD})</td>
<td>Dominant output voltage Bus biasing active</td>
<td>CANH, TXD = 0 V, 50 ≤ R_L ≤ 65 , \Omega, C_L = open, R_{CM} = open</td>
<td>2.75</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recessive output voltage Bus biasing active</td>
<td>CANL, TXD = V_ID, R_L = (no load), R_{CM} = open</td>
<td>0.5</td>
<td>2.25</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OR})</td>
<td>Receiver dominant state input voltage range</td>
<td></td>
<td>2</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{SYM})</td>
<td>Driver symmetry Bus biasing active ((V_{OCANH} + V_{OCANL}) / V_{CCOUT})</td>
<td>nSLP = V_ID, R_L = 60 , \Omega, C_{SPLIT} = 4.7 , nF, C_L = open, R_{CM} = Open, TXD = 250 kHz, 1 MHz, 2.5 MHz</td>
<td>0.9</td>
<td>1.1</td>
<td>V/V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{SYM,DC})</td>
<td>DC Driver symmetry Bus biasing active (V_{CCOUT} - V_{OCANH} - V_{OCANL})</td>
<td>nSLP = V_ID, R_L = 60 , \Omega, C_L = open</td>
<td>-400</td>
<td>400</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OD}(DOM))</td>
<td>Differential output voltage Bus biasing active Dominant</td>
<td>CANH - CANL, nSLP = V_ID, TXD = V_ID, 50 ≤ R_L ≤ 65 , \Omega, C_L = open</td>
<td>1.5</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential output voltage Bus biasing active Dominant</td>
<td>CANH - CANL, nSLP = V_ID, TXD = V_ID, 45 ≤ R_L ≤ 70 , \Omega, C_L = open</td>
<td>1.4</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential output voltage Bus biasing active Dominant</td>
<td>CANH - CANL, nSLP = V_ID, TXD = V_ID, R_L = 2240 , \Omega, C_L = open</td>
<td>1.5</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OD}(REC))</td>
<td>Differential output voltage Bus biasing inactive Recessive</td>
<td>CANH - CANL, nSLP = V_ID, TXD = V_ID, R_L = open \Omega, C_L = open</td>
<td>-50</td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{O(INACT)})</td>
<td>Pin output voltage Bus biasing inactive</td>
<td>CANH, nSLP = 0 V, TXD = V_ID, R_L = open (no load), C_L = open</td>
<td>-0.1</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CANL, nSLP = 0 V, TXD = V_ID, R_L = open (no load), C_L = open</td>
<td>-0.1</td>
<td>0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OD}(STB))</td>
<td>Differential output voltage Bus biasing inactive</td>
<td>CANH - CANL, nSLP = 0 V, TXD = V_ID, R_L = open (no load), C_L = open</td>
<td>-0.2</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OD(DOM)})</td>
<td>Short-circuit steady-state output current Bus biasing active Dominant</td>
<td>nSLP = V_ID, TXD = 0 V, -15 V ≤ V_{OCANH} ≤ 40 V</td>
<td>-75</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2 and Figure 9-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short-circuit steady-state output current Bus biasing active Dominant</td>
<td>nSLP = V_ID, TXD = 0 V, -15 V ≤ V_{OCANL} ≤ 40 V</td>
<td>75</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2 and Figure 9-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OD(REC)})</td>
<td>Short-circuit steady-state output current Bus biasing active Recessive</td>
<td>nSLP = V_ID, V_{BUS} = CANH = CANL, -27 V ≤ V_{BUS} ≤ 42 V</td>
<td>-3</td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-2 and Figure 9-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAN Receiver Electrical Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IR(DOM)})</td>
<td>Receiver dominant state input voltage range Bus biasing active</td>
<td>nSLP = V_ID, -12 V ≤ V_{CM} ≤ 12 V</td>
<td>0.9</td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-3 and Table 10-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IR(REC)})</td>
<td>Receiver recessive state input voltage range Bus biasing active</td>
<td>nSLP = V_ID</td>
<td>-3</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-3 and Table 10-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IHYS})</td>
<td>Hysteresis voltage for input threshold Bus biasing active</td>
<td>nSLP = V_ID</td>
<td>80</td>
<td>140</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-3 and Table 10-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OFF(MAX)})</td>
<td>Maximum rating of (V_{DIFF})</td>
<td></td>
<td>-5</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DIFF(DOM)})</td>
<td>Receiver dominant state input voltage range Bus biasing inactive</td>
<td>nSLP = 0 V, -12 V ≤ V_{CM} ≤ 12 V</td>
<td>1.150</td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-3 and Table 10-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{DIFF(REC)})</td>
<td>Receiver recessive state input voltage range Bus biasing inactive</td>
<td>nSLP = 0 V, -12 V ≤ V_{CM} ≤ 12 V</td>
<td>-3</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-3 and Table 10-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Common mode range</td>
<td>nSLP = V_ID</td>
<td>-12</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 9-3 and Table 10-6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.7 Electrical Characteristics (continued)

Over recommended operating conditions with $T_J = -40°C$ to 150°C, unless otherwise noted. All typical values are taken at 25°C, $V_{SUP} = 12$ V, $V_{IO} = 3.3$ V and $R_L = 60$ Ω.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{OFF(LKG)}$</td>
<td>Power-off (unpowered) bus input leakage current</td>
<td>$V_{SUP} = 0$ V, CANH = CANL = 5 V</td>
<td>2.5</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>C_i</td>
<td>Input capacitance to ground (CANH or CANL)</td>
<td>$TXD = V_{IO}$</td>
<td>20</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>C_{ID}</td>
<td>Differential input capacitance</td>
<td>$TXD = V_{IO}$</td>
<td>10</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>R_{ID}</td>
<td>Differential input resistance</td>
<td>$TXD = V_{IO}$, nSLP = 5 V -12 V $\leq V_{CM} \leq 12$ V</td>
<td>50</td>
<td>100</td>
<td>kΩ</td>
</tr>
<tr>
<td>R_N</td>
<td>Input resistance (CANH or CANL)</td>
<td>-12 V $\leq V_{CM} \leq 12$ V</td>
<td>25</td>
<td>50</td>
<td>kΩ</td>
</tr>
<tr>
<td>$R_{IN(M)}$</td>
<td>Input resistance matching: $[1 - R_{IN(CANH)} / R_{IN(CANL)}] \times 100%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IO} (CANH) = V_{IO} (CANL) = 5 V</td>
<td>-1</td>
<td>1</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TXD Input Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>High level input voltage</td>
<td></td>
<td>0.7</td>
<td>V_{IO}</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low level input voltage</td>
<td></td>
<td>0.3</td>
<td>V_{IO}</td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>High level input leakage current</td>
<td>$TXD = V_{IO}$ = 5.5 V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Low level input leakage current</td>
<td>$TXD = 0$ V, V_{IO} = 5.5 V</td>
<td>-130</td>
<td>-15</td>
<td>µA</td>
</tr>
<tr>
<td>R_{PU}</td>
<td>Pull-up resistance</td>
<td></td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>$I_{LKG(OFF)}$</td>
<td>Unpowered leakage current</td>
<td>$TXD = 5.5$ V, $V_{SUP} = V_{IO} = 0$ V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C_i</td>
<td>Input Capacitance</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

RXD Output Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>High level output voltage</td>
<td></td>
<td>0.8</td>
<td>V_{IO}</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low level output voltage</td>
<td></td>
<td>0.2</td>
<td>V_{IO}</td>
<td></td>
</tr>
<tr>
<td>R_{PD}</td>
<td>Pull-down resistance</td>
<td></td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>$I_{LKG(OFF)}$</td>
<td>Unpowered leakage current</td>
<td>RXD = 5.5 V, $V_{SUP} = V_{IO} = 0$ V</td>
<td>-5</td>
<td>5</td>
<td>µA</td>
</tr>
</tbody>
</table>

nSLP Input Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>High level input voltage</td>
<td></td>
<td>0.7</td>
<td>V_{IO}</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low level input voltage</td>
<td></td>
<td>0.3</td>
<td>V_{IO}</td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>High level input leakage current</td>
<td>nSLP = V_{IO} = 5.5 V</td>
<td>50</td>
<td>130</td>
<td>µA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Low level input leakage current</td>
<td>nSLP = 0 V, V_{IO} = 5.5 V</td>
<td>-1</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>R_{PD}</td>
<td>Pull-down resistance</td>
<td></td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>$I_{LKG(OFF)}$</td>
<td>Unpowered leakage current</td>
<td>nSLP = 5.5 V, V_{IO} = 0 V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

INH Output Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔV_H</td>
<td>High level voltage drop INH with respect to V_{SUP}</td>
<td></td>
<td>0.5</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>$I_{INH(LKG)}$</td>
<td>Sleep mode leakage current</td>
<td>INH = 0 V</td>
<td>-0.5</td>
<td>0.5</td>
<td>µA</td>
</tr>
</tbody>
</table>

WAKE Input Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>High-level input voltage</td>
<td>Sleep mode</td>
<td>4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low-level input voltage</td>
<td></td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Low level input leakage current</td>
<td>WAKE = 1 V</td>
<td>3</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>V_{HYS}</td>
<td>Input hysteresis</td>
<td></td>
<td>800</td>
<td>1200</td>
<td>mV</td>
</tr>
</tbody>
</table>

nRST Bidirectional Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>High input voltage</td>
<td></td>
<td>0.8</td>
<td>V_{CCOUT}</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low input voltage</td>
<td></td>
<td>0.2</td>
<td>V_{CCOUT}</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>High input voltage</td>
<td></td>
<td>0.8</td>
<td>V_{LDO3}</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low input voltage</td>
<td></td>
<td>0.2</td>
<td>V_{LDO3}</td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>High input leakage current</td>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>R_{PU}</td>
<td>Pull-up resistance to V_{LDO}</td>
<td></td>
<td>160</td>
<td>240</td>
<td>320</td>
</tr>
</tbody>
</table>

TS Output Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>High-level output voltage</td>
<td>$I_O = -2$ mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.7 Electrical Characteristics (continued)

Over recommended operating conditions with $T_J = -40°C$ to 150°C, unless otherwise noted. All typical values are taken at 25°C, $V_{SUP} = 12$ V, $V_{IO} = 3.3$ V and $R_L = 60$ Ω

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OL}, Low-level output voltage</td>
<td>$I_O = 2$ mA</td>
<td>0.2</td>
<td></td>
<td></td>
<td>V_{IO}</td>
</tr>
<tr>
<td>$I_{ Ung(OFF)}$, Unpowered leakage current</td>
<td>$TS = 5.5$ V, $V_{IO} = 0$ V</td>
<td>–1</td>
<td>0</td>
<td>1</td>
<td>µA</td>
</tr>
</tbody>
</table>

(1) Test according to ISO 11898-2:2003

8.8 Switching Characteristics

Over recommended operating conditions with $T_J = -40°C$ to 150°C, unless otherwise noted. All typical values are taken at 25°C, $V_{SUP} = 12$ V, $V_{IO} = 3.3$ V and $R_L = 60$ Ω

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Switching Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{POWER_UP}, CAN supply power up time</td>
<td>$C_{FLT} = 10$ µF, $C_{VCCOUT} = 10$ µF, $C_{LDO3} = 4.7$ µF</td>
<td>1.8</td>
<td>4</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>$t_{UV(SUP)}$, V_{SUP} filter time (rising and falling)</td>
<td>4</td>
<td>25</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{UV(FLT)}$, Undervoltage detection delay time CAN active to CAN autonomous: active or inactive</td>
<td>4</td>
<td>25</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{UV(LDO)}$, V_{LDO} filter time (rising and falling)</td>
<td>Time for device to enter sleep state reset state once UV_{LDO} is reached</td>
<td>30</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{UVIO}, V_{IO} filter time (rising and falling)</td>
<td>8</td>
<td>12</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device Switching Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{UVDSLP}, Undervoltage detection delay time standby mode to sleep mode</td>
<td>200</td>
<td>350</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{UV(RST)}$, Undervoltage detection delay time nRST low</td>
<td>10</td>
<td>50</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{WK_FILTER}, Bus time to meet filtered bus requirements for wakeup request</td>
<td>See Figure 10-7</td>
<td>0.5</td>
<td>1.8</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>$t_{WK_TIMEOUT}$, Bus wakeup timeout value</td>
<td>0.8</td>
<td>2</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{SILENCE}$, Time out for bus inactivity</td>
<td>0.9</td>
<td>1.2</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{INACTIVE}$, Hardware timer for failsafe and power up inactivity(1)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>t_{IAS}, Time from the start of a dominant-recessive-dominant sequence until $V_{sym} \geq 0.1$</td>
<td>Each phase: 6 µs</td>
<td>See Figure 9-12</td>
<td>250</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>$t_{CANACTIVE}$, Time from switching to CAN active mode to TS pin transitioning high</td>
<td>$V_{LDO} > V_{LDO(R)}$, $V_{IO} > V_{IO(R)}$, $nSLP = V_{IO}$</td>
<td>25</td>
<td>us</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{TROPLoop1}$, Total loop delay, driver input (TXD) to receiver output (RXD) Recessive to dominant</td>
<td>$R_L = 60$ Ω, $C_L = 100$ pF, $C_{L(RXD)} = 15$ pF</td>
<td>100</td>
<td>160</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{TROPLoop2}$, Total loop delay, driver input (TXD) to receiver output (RXD) Dominant to recessive</td>
<td>See Figure 9-6</td>
<td>120</td>
<td>175</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{nSLP(RR)}$, nSLP pin filter time</td>
<td>Sleep pin filter time</td>
<td>2.5</td>
<td>7.5</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>t_{LP}, Mode change time</td>
<td>Low time required on nSLP to enter sleep mode</td>
<td>20</td>
<td>35</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>$t_{node_slp_reset}$, WUP or LWU event to INH asserted high, see</td>
<td>50</td>
<td>µs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Driver Switching Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{pHR}, Propagation delay time, high TXD to driver recessive</td>
<td>$R_L = 60$ Ω, $C_L = 100$ pF, $R_{CM} = open$</td>
<td>20</td>
<td>35</td>
<td>70</td>
<td>ns</td>
</tr>
<tr>
<td>t_{pLD}, Propagation delay time, low TXD to driver dominant</td>
<td>$R_L = 60$ Ω, $C_L = 100$ pF, $R_{CM} = open$</td>
<td>15</td>
<td>40</td>
<td>70</td>
<td>ns</td>
</tr>
<tr>
<td>t_{pSK}, Pulse skew ($t_{pHR} - t_{pLD}$)</td>
<td>See Figure 9-2</td>
<td>10</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{D}, Differential output signal rise time</td>
<td>40</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{F}, Differential output signal fall time</td>
<td>45</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{TXD, DTO}$, Dominant timeout</td>
<td>$R_L = 60$ Ω, $C_L = open$</td>
<td>1.2</td>
<td>3.8</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

Receiver Switching Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{pHR}, Propagation delay time, high TXD to driver recessive</td>
<td>$R_L = 60$ Ω, $C_L = 100$ pF, $R_{CM} = open$</td>
<td>20</td>
<td>35</td>
<td>70</td>
<td>ns</td>
</tr>
<tr>
<td>t_{pLD}, Propagation delay time, low TXD to driver dominant</td>
<td>$R_L = 60$ Ω, $C_L = 100$ pF, $R_{CM} = open$</td>
<td>15</td>
<td>40</td>
<td>70</td>
<td>ns</td>
</tr>
<tr>
<td>t_{pSK}, Pulse skew ($t_{pHR} - t_{pLD}$)</td>
<td>See Figure 9-2</td>
<td>10</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{D}, Differential output signal rise time</td>
<td>40</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{F}, Differential output signal fall time</td>
<td>45</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{TXD, DTO}$, Dominant timeout</td>
<td>$R_L = 60$ Ω, $C_L = open$</td>
<td>1.2</td>
<td>3.8</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>
8.8 Switching Characteristics (continued)

Over recommended operating conditions with $T_J = -40^\circ\text{C}$ to 150°C, unless otherwise noted. All typical values are taken at 25°C, $V_{SUP} = 12\text{ V}$, $V_{IO} = 3.3\text{ V}$ and $R_L = 60\ \Omega$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PH}</td>
<td>Propagation delay time, bus recessive input to high RXD</td>
<td>$\begin{array}{l} C_{(RXD)} = 15\ \text{pF} \ \text{See Figure 9-3} \end{array}$</td>
<td>25</td>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>t_{PL}</td>
<td>Propagation delay time, bus dominant input to RXD low output</td>
<td></td>
<td>20</td>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td>t_R</td>
<td>Output signal rise time (RXD)</td>
<td></td>
<td>8</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_F</td>
<td>Output signal fall time (RXD)</td>
<td></td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

WAKE Characteristics

| t_{WAKE} | Time required for INH pin to go high after an local wake event occurs on the WAKE pin | 40 | | | µs |

nRST Characteristics

t_{nRST}	Minimum low time for reset	Input pulse width	15			µs
$t_{nRST\text{(cold)}}$	Output pulse width	Cold crank	20	27		ms
$t_{nRST\text{(warm)}}$	Output pulse width	Warm crank	1	1.5		ms

CAN FD Timing Characteristics

$t_{BIT\text{(BUS)}}$	Bit time on CAN bus output pins with $t_{BIT\text{(TXD)}} = 500\ ns$	$V_{IO} > 1.8\text{V}$	$R_L = 60\ \Omega$, $C_L = 100\ \text{pF}$	435	530	ns
	Bit time on CAN bus output pins with $t_{BIT\text{(TXD)}} = 200\ ns$	$R_L = 60\ \Omega$, $C_L = 15\ \text{pF}$	155	210		ns
	Bit time on CAN bus output pins with $t_{BIT\text{(TXD)}} = 125\ ns$	$\Delta t_{REC} = (t_{BIT\text{(TXD)}} - t_{BIT\text{(BUS)}})$	80	140		ns

$t_{BIT\text{(BUS)}}$	Bit time on CAN bus output pins with $t_{BIT\text{(TXD)}} = 500\ ns$	$V_{IO} \leq 1.8\text{V}$	$R_L = 60\ \Omega$, $C_L = 100\ \text{pF}$	435	530	ns
	Bit time on CAN bus output pins with $t_{BIT\text{(TXD)}} = 200\ ns$	$R_L = 60\ \Omega$, $C_L = 15\ \text{pF}$	155	215		ns
	Bit time on CAN bus output pins with $t_{BIT\text{(TXD)}} = 125\ ns$	$\Delta t_{REC} = (t_{BIT\text{(TXD)}} - t_{BIT\text{(BUS)}})$	80	140		ns

$t_{BIT\text{(RXD)}}$	Bit time on RXD output pins with $t_{BIT\text{(TXD)}} = 500\ ns$	$R_L = 60\ \Omega$, $C_L = 100\ \text{pF}$	400	550		ns
	Bit time on RXD output pins with $t_{BIT\text{(TXD)}} = 200\ ns$	$\Delta t_{REC} = (t_{BIT\text{(TXD)}} - t_{BIT\text{(BUS)}})$	120	220		ns
	Bit time on RXD output pins with $t_{BIT\text{(TXD)}} = 125\ ns$	$\Delta t_{REC} = (t_{BIT\text{(TXD)}} - t_{BIT\text{(BUS)}})$	80	135		ns

Δt_{REC}	Receiver timing symmetry with $t_{BIT\text{(TXD)}} = 500\ ns$	$R_L = 60\ \Omega$, $C_L = 100\ \text{pF}$	-65	40		ns
	Receiver timing symmetry with $t_{BIT\text{(TXD)}} = 200\ ns$	$C_{(RXD)} = 15\ \text{pF}$	-45	15		ns
	Receiver timing symmetry with $t_{BIT\text{(TXD)}} = 125\ ns$	$\Delta t_{REC} = (t_{BIT\text{(TXD)}} - t_{BIT\text{(BUS)}})$	-40	10		ns

(1) Timer is reset when the CAN bus changes states.
8.9 Typical Characteristics

Figure 8-1. $t_{\text{PROP(LOOP1)}}$ over V_{SUP}

Figure 8-2. $I_{\text{SUP(SLP)}}$ over V_{SUP} Sleep Mode

Figure 8-3. $V_{OD(DOM)}$ over V_{SUP}

$R_L = 60 \, \Omega$ \quad $C_L = 100 \, \text{pF}$ \quad $C_{LRXD} = 15 \, \text{pF}$
9 Parameter Measurement Information

![Figure 9-1. I_{SUP} Test Circuit](image1)

![Figure 9-2. Driver Test Circuit and Measurement](image2)

![Figure 9-3. Receiver Test Circuit and Measurement](image3)
Figure 9-4. t\textsubscript{nRST} Cold Start

Figure 9-5. t\textsubscript{nRST} Warm Start

Figure 9-6. Transmitter and Receiver Timing Behavior Test Circuit and Measurement

Figure 9-7. TXD Dominant Timeout Test Circuit and Measurement
Figure 9-8. Driver Short-Circuit Current Test and Measurement

Figure 9-9. TCAN11623 \(t_{\text{POWER_UP}} \) Timing Measurement
Figure 9-10. TCAN11625 t_{POWER_UP} Timing Measurement

Figure 9-11. t_{WAKE} While Monitoring INH Output

Figure 9-12. Test Signal Definition for Bias Reaction Time Measurement
10 Detailed Description

10.1 Overview

The TCAN1162x-Q1 are high speed controller area network (CAN) system basis chips (SBC) that meet the physical layer requirements of the ISO 11898-2:2016 high speed CAN specification. The TCAN1162x-Q1 supports both classical CAN and CAN FD networks up to 8 megabits per second (Mbps).

Both the TCAN11623-Q1 and TCAN11625-Q1 support a wide input supply range and integrates some form of an LDO output. The TCAN11625-Q1 has a 5-V LDO output (V_{CCOUT}) which supplies the CAN transceiver voltage internally as well as additional current externally. The TCAN11623-Q1 has a 3.3-V LDO output (V_{LDO3}), supplied from the 5-V LDO, supporting external loads.

The TCAN1162x-Q1 allows for system-level reductions in battery current consumption by selectively enabling the various power supplies that may be present on a system via the INH output pin. This allows an ultra-low-current sleep state where power is gated to all system components except for the TCAN1162x-Q1, while monitoring the CAN bus. When a wake-up event is detected, the TCAN1162x-Q1 initiates system start-up by driving INH high.

10.2 Functional Block Diagram

![Figure 10-1. TCAN11625-Q1](image-url)
Figure 10-2. TCAN11623-Q1
10.3 Feature Description

10.3.1 VSUP Pin

This pin is connected to the battery supply. It provides the supply to the internal regulators that support the digital core, the CAN transceiver, the output regulator, and the low power CAN receiver.

10.3.2 VCCOUT Pin

An internal LDO provides power for the integrated CAN transceiver and the VCCOUT output pin. The amount of current that can be delivered externally is dependent upon the CAN transceiver requirements during normal operation as well as the ambient operating temperature. When a CAN bus fault takes place that requires additional current from the LDO, the total available current to external load components may be degraded. During sleep mode the LDO is disabled and no current can be delivered. Once the device leaves sleep mode and enters other active modes the LDO is enabled for normal operation. This pin requires a 10 μF external capacitor as close to the pin as possible.

10.3.3 VFLT Pin

An internal LDO provides power for the integrated CAN transceiver. While in sleep mode the LDO is disabled. Once the device leaves sleep mode and enters other active modes the LDO is enabled for normal operation. This pin requires a 10 μF external capacitor as close to the pin as possible.

10.3.4 VLDO3 Pin

An internal LDO provides a 3.3 V output for supplying power to external devices. During sleep mode the LDO is disabled and no current can be delivered. Once the device leaves sleep mode and enters other active modes the LDO is enabled for normal operation. This pin requires a 4.7 μF external capacitor as close to the pin as possible.

10.3.5 Digital Inputs and Outputs

The TCAN1162x-Q1 has a VIO supply that is used to set the digital input thresholds. The input thresholds are ratio metric to the VIO supply using CMOS input levels, making them scalable for CAN controllers with digital IOs from 1.7 V to 5.5 V. The TXD input is biased to the VIO level to force a recessive input in case the pin floats. The high level output voltage for the RXD and TS output pins is driven to the VIO level as logic-high outputs.

10.3.5.1 TXD Pin

TXD is a digital signal, referenced to VIO, from a CAN controller to the TCAN1162x-Q1.

10.3.5.2 RXD Pin

RXD is a digital signal, referenced to VIO, from the TCAN1162x-Q1 to a CAN controller. This pin is only driven once VIO is present.

10.3.5.3 TS Pin

The transceiver status, TS, output pin is used to indicate to the status of the CAN transceiver to the controller. When the TCAN1162x-Q1 is in normal mode with no TXD DTO fault the TS pin is driven high. The TS pin is driven low signaling to the controller that the TCAN1162x-Q1 is not ready for normal operation.

The TS output will be driven low if the following conditions exist:
- TXD driven dominant for $t \geq t_{TXD_DTO}$
- $T_J \geq T_{SDR}$

The TS output is tri-stated if the following conditions exist:
- $V_{IO} < U_{VIOF}$

The TCAN11625 TS output will be driven low if the following conditions exist:
- $V_{LDO5} < U_{VLDOSF}$
- $V_{LDO5} > O_{VLDOSR}$

The TCAN11623 TS output will be driven low if the following conditions exist:
10.3.6 Digital Control and Timing

This device is a 14 pin CAN FD transceiver/SBC. Timings are all mixed signal and are covered at the device electrical specification level including the small amounts of control logic for this device. All device mode control is done via one digital input, nSTB or nSLP and through the use of timers and fault conditions internal to the device.

10.3.7 V_{IO} Pin

The V_{IO} pin provides the digital IO voltage to match the controller’s IO voltage thus avoiding the requirements for an external level shifter. The integrated level shifter supports voltages from 1.7 V to 5.5 V providing the widest range of controller support.

10.3.8 GND

GND is the ground pin and it must be connected to the PCB ground.

10.3.9 INH Pin

The TCAN1162x-Q1 inhibit (INH) output pin can be used to control the enable of system power management devices allowing for a significant reduction in battery quiescent current consumption while the application is in sleep mode. The INH pin has two states: driven high and high impedance. When the INH pin is driven high the terminal shows V_{SUP} minus a diode voltage drop. In the high impedance state the output will be left floating. The INH pin is high in the normal and standby modes and is low when in sleep mode. A 100 kΩ load can be added to the INH output to ensure a fast transition time from the driven high state to the low state and to also force the pin low when left floating.

This terminal should be considered a high-voltage logic terminal, not a power output thus should be used to drive the EN terminal of the system’s power management device and not used as a switch for the power management supply itself. This terminal is not reverse battery protected and thus should not be connected outside the system module.

10.3.10 WAKE Pin

The WAKE pin is a high-voltage reverse-blocked input used for the local wake-up (LWU) function. This function is explained further in Local Wake-Up (LWU) via WAKE Input Terminal section. The pin is defaulted to bi-directional edge trigger, meaning a local wake-up (LWU) is recognize on either a rising or falling edge of WAKE pin transition.

10.3.11 nRST Pin

The nRST is an bidirectional open drain low side driver with an integrated pull-up resistor to VCCOUT (TCAN11625-Q1) or V_{LDO3} (TCAN11623-Q1). It can be pulled low by the device when placed in fail-safe mode.

During initial power-up of the device, a sleep mode to reset transition, a fail-safe mode to reset transition, or an undervoltage event will be recognized as a cold crank reset condition. The nRST pin will be held low for $t_{nRST(cold)}$ allowing the MCU and peripheral devices to power-up correctly before data transmission begins.

To enter reset mode from normal mode, or standby mode the nRST must be pulled low for a minimum of time of t_{nRST}. The TCAN1162x-Q1 recognizes this as a warm crank reset condition and holds the nRST pin low for $t_{nRST(warm)}$.
10.3.12 CAN Bus Pins
These are the CAN high and CAN low, CANH and CANL, differential bus pins. These pins are connected to the CAN transceiver and the low-voltage wake receiver.

10.3.13 Local Faults

10.3.13.1 TXD Dominant Timeout (TXD DTO)
While the CAN driver is in active mode a TXD DTO circuit prevents the local node from blocking network communication in event of a hardware or software failure where TXD is held dominant longer than the time out period t_{TXD_DTO}. The TXD DTO circuit is triggered by a falling edge on TXD. If no rising edge is seen before the time out constant of the circuit, t_{TXD_DTO}, expires the CAN driver is disabled releasing the bus lines to the recessive level. This keeps the bus free for communication between other nodes on the network. The CAN driver is re-activated on the next dominant to recessive transition on the TXD terminal, thus clearing the dominant time out. The high-speed receiver and RXD terminal will reflect what is on the CAN bus during a TXD DTO fault. The TS terminal in driven low during a TXD DTO fault.

![Figure 10-4. Timing Diagram for TXD DTO](image-url)
The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. The minimum transmitted data rate may be calculated using the minimum t_{TXD_DTO} time and the maximum number of successive dominant bits (11 bits).

\[
\text{Minimum Data Rate} = \frac{11 \text{ bits}}{t_{TXD_DTO}} = \frac{11 \text{ bits}}{1.2 \text{ ms}} = 9.2 \text{ kbps}
\]

(1)

10.3.13.2 Thermal Shutdown (TSD)

If the junction temperature of the TCAN1162x-Q1 exceeds the thermal shutdown threshold, $T_J > T_{SDR}$, the device transitions into fail-safe mode and disables the transceiver's transmitter and receiver blocking transmission to and from the CAN bus. The TSD fault condition is cleared when the device junction temperature falls below the thermal shutdown temperature threshold, $T_J < T_{SDF}$. If the fault condition that caused the TSD fault is still present, the temperature may rise again and the device will enter thermal shutdown again. Prolonged operation with a TSD fault conditions may affect device reliability.

10.3.13.3 Under/Over Voltage Lockout

The supply terminals implement undervoltage and over voltage detection circuitry. If an undervoltage is detected the TCAN1162x-Q1 transitions into either reset or sleep mode depending on the undervoltage fault. An undervoltage fault on V_{IO} causes the SBC to transition into sleep mode while an undervoltage fault on the integrated regulator causes the SBC to transition to reset mode. The SBC will remain in reset mode until the fault condition on the regulator is cleared.

If the over voltage fault is detected the TCAN1162x-Q1 transitions into fail-safe mode. These mode changes place the device in a known state which protect the system from unintended behavior. See Table 10-1

<table>
<thead>
<tr>
<th>Fault</th>
<th>TCAN11625</th>
<th>TCAN11623</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV_{IO}</td>
<td>Sleep mode</td>
<td>Sleep mode</td>
</tr>
<tr>
<td>UV_{CCOUT}</td>
<td>Reset mode</td>
<td>—</td>
</tr>
<tr>
<td>UV_{FLT}</td>
<td>—</td>
<td>Reset mode</td>
</tr>
<tr>
<td>UV_{LDO3}</td>
<td>—</td>
<td>Reset mode</td>
</tr>
<tr>
<td>OV_{CCOUT}</td>
<td>Fail-safe mode</td>
<td>—</td>
</tr>
<tr>
<td>OV_{FLT}</td>
<td>—</td>
<td>Fail-safe mode</td>
</tr>
<tr>
<td>OV_{LDO3}</td>
<td>—</td>
<td>Fail-safe mode</td>
</tr>
</tbody>
</table>

10.3.13.4 Unpowered Devices

The device is designed to be an ideal passive or no load to the CAN bus if it is unpowered. The CANH and CANL pins have low leakage currents when the device is un-powered so they present no load to the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains in operation.

The logic terminals also have low leakage currents when the device is un-powered so they do not load down other circuits which may remain powered.

10.3.13.5 Floating Terminals

The TCAN1162x-Q1 has internal pull-ups and pull-downs on critical pins to ensure a known operating behavior if the pins are left floating.

The TXD pin is pulled up to V_{IO} which forces a recessive level if the pin floats. This internal bias should not be relied upon by design but rather a fall-safe option. Special care needs to be taken when the device is used with a CAN controller that has open drain outputs. The device implements a weak internal pull-up resistor on the TXD pin. The CAN bit timing for CAN FD data rates will require special consideration and the pull-up strength should be considered carefully when using open drain outputs. An adequate external pull-up resistor must be used to ensure that the TXD output of the CAN controller maintains adequate bit timing input to the CAN device.
The nSLP pin is weakly pulled down which forces the device into the low-power sleep mode if the terminal is left floating. See Table 10-2.

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>PULL-UP or PULL-DOWN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXD</td>
<td>Pull-up</td>
<td>Weakly biases TXD toward recessive to prevent bus blockage or TXD DTO triggering</td>
</tr>
<tr>
<td>nSLP</td>
<td>Pull-down</td>
<td>Weakly biases the nSLP terminal towards low power sleep mode to prevent excessive system power</td>
</tr>
</tbody>
</table>

10.3.13.6 CAN Bus Short Circuit Current Limiting

The TCAN1162x-Q1 has several protection features that limit the short circuit current during dominant and recessive when a CAN bus line is shorted. The device has TXD dominant state timeout which prevents permanently having a higher short circuit current during a dominant state fault.

During CAN communication the bus switches between the dominant and recessive states, thus the short circuit current may be viewed either as the current during each bus state or as a DC average current. The average short circuit current should be used when considering system power for the termination resistors and common mode choke. The percentage dominant is limited by the TXD dominant state timeout and CAN protocol which has forced state changes and recessive bits such as bit stuffing, control fields, and interframe space. These ensure that there is a minimum recessive time on the bus even if the data field contains a high percentage of dominant bits.

The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short circuit currents. The average short circuit current may be calculated using Equation 2.

\[
I_{OS(AVG)} = \%\text{Transmit} \times \left(\%\text{REC}_\text{Bits} \times I_{OS(SS)_\text{REC}} + \%\text{DOM}_\text{Bits} \times I_{OS(SS)_\text{DOM}}\right) + \%\text{Receive} \times I_{OS(SS)_\text{REC}} \\
\text{(2)}
\]

Where:
- \(I_{OS(AVG)}\) is the average short circuit current
- \(\%\text{Transmit}\) is the percentage the node is transmitting CAN messages
- \(\%\text{Receive}\) is the percentage the node is receiving CAN messages
- \(\%\text{REC}_\text{Bits}\) is the percentage of recessive bits in the transmitted CAN messages
- \(\%\text{DOM}_\text{Bits}\) is the percentage of dominant bits in the transmitted CAN messages
- \(I_{OS(SS)_\text{REC}}\) is the recessive steady state short circuit current
- \(I_{OS(SS)_\text{DOM}}\) is the dominant steady state short circuit current

The short circuit current and possible fault cases of the network should be taken into consideration when sizing the power ratings of the termination resistance and other network components.

10.3.13.7 Sleep Wake Error Timer

The sleep wake error (SWE) timer, \(t_{INACTIVE}\), is a timer used to determine if specific external and internal functions are working. The SWE timer starts when the device enters standby mode and only runs in standby mode. A mode transition stops the timer. If the timer times out while the device is in standby mode the RXD pin will be pulled low to indicate an interrupt. The TCAN1162x-Q1 will transition to sleep mode.
10.4 Device Functional Modes

The TCAN1162x-Q1 has six modes: normal, standby, sleep, reset, fail-safe, and off mode. Operating mode selection is made via the nSLP input terminal in conjunction with supply conditions, temperature conditions, and wake events.

Figure 10-5. TCAN11623 State Machine

<table>
<thead>
<tr>
<th>BLOCK</th>
<th>NORMAL</th>
<th>STANDBY</th>
<th>RESET</th>
<th>SLEEP</th>
<th>FAIL-SAFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFLT</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>VLDO3</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>INH</td>
<td>Off</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Active(1)</td>
</tr>
<tr>
<td>Low Power CAN RX</td>
<td>Off</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Active(1)</td>
</tr>
<tr>
<td>nRST</td>
<td>VLDO3</td>
<td>VLDO3</td>
<td>Low</td>
<td>Off</td>
<td>VLDO3</td>
</tr>
</tbody>
</table>

(1) In fail-safe mode wake-up events are ignored until all pending faults are cleared
10.4.1 Operating Mode Description

10.4.1.1 Normal Mode

This is the normal operating mode of the device. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The driver is translating a digital input on TXD to a differential output on CANH and CANL. The receiver is translating the differential signal from CANH and CANL to a digital output on RXD. The t_{INACTIVE} timer is not active in normal mode.

10.4.1.2 Standby Mode

Standby mode is a low power mode of the TCAN1162x-Q1 where the CAN transceiver is placed in the CAN autonomous inactive state by asserting the nSLP pin low. In this mode the TS pin is driven low, the CAN transmitter and receiver are switched off, the bus pins are biased to ground, and the transceiver cannot send or receive data. While in standby mode the low power receiver actively monitors the CAN bus for a valid wake-up pattern. If a valid wake-up pattern is received the CAN bus pins transition to the CAN autonomous active state where CANH and CANL are internally biased to 2.5 V from the V_{SUP} power rail. The reception of a valid wake-up pattern generates a wake-up request by the CAN transceiver by latching the RXD output pin low. The WAKE pin circuitry is active in standby mode and monitors the WAKE pin for either a high-to-low or low-to-high transition. The INH pin is active in order to supply an enable to the system power supply.

The RXD output pin is asserted low while in standby mode if the a wake event or a fault is detected. Note that a POR counts as a wake event and will also cause RXD to latch low.

In standby mode a fail-safe timer, t_{INACTIVE}, is enabled. The t_{INACTIVE} timer add an additional layer of protection by requiring the system controller to configure the TCAN1162x-Q1 to normal mode before it expires. This feature forces the TCAN1162x-Q1 to transition to its lowest power mode, sleep mode, if the processor does not come up properly.

Figure 10-6. TCAN11625 State Machine

Table 10-4. TCAN11625 Mode Overview

<table>
<thead>
<tr>
<th>BLOCK</th>
<th>NORMAL</th>
<th>STANDBY</th>
<th>RESET</th>
<th>SLEEP</th>
<th>FAIL-SAFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CCOUT}</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>INH</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Low Power CAN RX</td>
<td>Off</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Active(1)</td>
</tr>
<tr>
<td>nRST</td>
<td>V_{CCOUT}</td>
<td>V_{CCOUT}</td>
<td>Low</td>
<td>Off</td>
<td>V_{CCOUT}</td>
</tr>
</tbody>
</table>

(1) In fail-safe mode wake-up events are ignored until all pending faults are cleared.

TCAN11623-Q1, TCAN11625-Q1

SLLSF83A – MAY 2021 – REVISED NOVEMBER 2021

www.ti.com

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TCAN11623-Q1 TCAN11625-Q1
The TCAN11625 internal regulator, V_{CCOUT}, is active in standby mode.

The TCAN11623 internal regulators, V_{FLT} and V_{LDO3}, are active in standby mode.

Standby mode is not the lowest power mode of the device since the INH terminal and internal regulators are active. This allows the rest of the system to operate normally.

10.4.1.3 Sleep Mode

Sleep mode is the lowest power mode of the TCAN1162x-Q1 where the CAN transceiver is placed in the CAN autonomous inactive state by asserting the nSLP pin low for $t > t_{SLP}$. In sleep mode, the CAN transmitter and receiver are switched off, the bus pins are biased to ground after $t_{SILENCE}$ expires, and the transceiver cannot send or receive data. The INH pin is switched off in sleep mode causing any system power elements controlled by INH to be switched off thus reducing system power consumption. While in sleep mode, the low power receiver actively monitors the CAN bus for a valid wake-up pattern and the I_{SUP} current is reduced to its minimum level.

Sleep mode is entered if:

- The nSLP pin is asserted low for $t > t_{SLP}$, there are no pending wake-up events, and $V_{IO} > UV_{VIOR}$
- $V_{IO} < UV_{VIOR}$ for $t > t_{UV(SLP)}$
- SWE timer expires (see Sleep Wake Error Timer)

Sleep mode is exited if:

- If a valid wake-up pattern (WUP) is received via the CAN bus pins
- A local WAKE (LWU) event
- A reset event occurs (goes to reset mode)

10.4.1.3.1 Remote Wake Request via Wake-Up Pattern (WUP)

The TCAN1162x-Q1 implements a low-power wake receiver in the standby and sleep mode that uses the multiple filtered dominant wake-up pattern (WUP) defined in the ISO11898-2:2016 standard.

The wake-up pattern (WUP) consists of a filtered dominant bus, then a filtered recessive bus time followed by a second filtered bus time. The first filtered dominant initiates the WUP and the bus monitor is now waiting on a filtered recessive, other bus traffic do not reset the bus monitor. Once a filtered recessive is received, the bus monitor is now waiting on a filtered dominant. The other bus traffic do not reset the bus monitor. Immediately upon receiving of the second filtered dominant, the bus monitor recognizes the WUP and drives the RXD terminal low

The WUP consists of:

- A filtered dominant bus of at least t_{WK_FILTER} followed by
- A filtered recessive bus time of at least t_{WK_FILTER} followed by
- A second filtered dominant bus time of at least t_{WK_FILTER}

For a dominant or recessive to be considered “filtered”, the bus must be in that state for more than t_{WK_FILTER} time. Due to variability in the t_{WK_FILTER} the following scenarios are applicable. Bus state times less than $t_{WK_FILTER(MIN)}$ are never detected as part of a WUP, and thus no wake request is generated. Bus state times between $t_{WK_FILTER(MIN)}$ and $t_{WK_FILTER(MAX)}$ may be detected as part of a WUP, and a wake request may be generated. Bus state times more than $t_{WK_FILTER(MAX)}$ are always detected as part of a WUP, and thus a wake request is generated. See Figure 10-7 for the timing diagram of the WUP.

The pattern and t_{WK_FILTER} time used for the WUP and wake request prevents noise and bus stuck dominant faults from causing false wake requests while allowing any CAN or CAN FD message to initiate a wake request.

ISO11898-2:2016 has two sets of times for a short and long wake-up filter times. The t_{WK_FILTER} timing for the TCAN1162x-Q1 has been picked to be within the min and max values of both filter ranges. This timing has been chosen such that a single bit time at 500 kbps, or two back to back bit times at 1 Mbps triggers the filter in either bus state.
For an additional layer of robustness and to prevent false wake-ups, the device implements the \(t_{WK_TIMEOUT} \) timer. For a remote wake-up event to successfully occur, the entire wake-up pattern must be received within the timeout value. If the full wake-up pattern is not received before the \(t_{WK_TIMEOUT} \) expires, then the internal logic is reset and the device remains in sleep mode without waking up. The full pattern must then be transmitted again within the \(t_{WK_TIMEOUT} \) window. See Figure 10-7.

Figure 10-7. Wake-Up Pattern (WUP) From Sleep Mode To Standby Mode

10.4.1.3.2 Local Wake-Up (LWU) via WAKE Input Terminal

The WAKE terminal is a bi-directional high-voltage reverse battery protected input which can be used for local wake-up (LWU) requests via a voltage transition. A LWU event is triggered on either a low-to-high or high-to-low transition since it has bi-directional input thresholds. The WAKE pin could be used with a switch to \(V_{SUP} \) or to ground. If the terminal is unused, it should be pulled to \(V_{SUP} \) or ground to avoid unwanted parasitic wake-up events.

Figure 10-8. WAKE Circuit Example

The RXD pin is only driven once \(V_{IO} \) is present.
calculated using the maximum supply voltage, \(V_{\text{SUPMAX}} \), and the maximum allowable current of the WAKE pin, \(I_{\text{IO(WAKE)}} \). \(R_{\text{SERIES}} \) is calculated using:

\[
R_{\text{SERIES}} = \frac{V_{\text{SUPMAX}}}{I_{\text{IO(WAKE)}}}
\]

(3)

If the battery voltage never exceeds 42 V\(_{\text{DC}}\), then the \(R_{\text{SERIES}} \) value is approximately 10 k\(\Omega \).

The \(R_{\text{BIAS}} \) resistor is used to set the static voltage level of the WAKE input when the switch is not in use. When the switch is in use in a high-side switch configuration, the \(R_{\text{BIAS}} \) resistor in combination with the \(R_{\text{SERIES}} \) resistor sets the WAKE pin voltage above the \(V_{\text{IH}} \) threshold. The maximum value of \(R_{\text{BIAS}} \) can be calculated using the maximum supply voltage, \(V_{\text{SUPMAX}} \), the maximum WAKE threshold voltage \(V_{\text{IH}} \), the maximum WAKE input current \(I_{\text{IH}} \) and the series resistor value \(R_{\text{SERIES}} \). \(R_{\text{BIAS}} \) is calculated using:

\[
R_{\text{BIAS}} < \left(\frac{V_{\text{SUPMAX}} - V_{\text{IH}}}{I_{\text{IH}}} \right) \cdot R_{\text{SERIES}}
\]

(4)

If the battery voltage never exceed 42 V\(_{\text{DC}}\), then the \(R_{\text{BIAS}} \) resistor value must be less than 650-k\(\Omega \).

The LWU circuitry is active in sleep mode and fail-safe mode. If a valid LWU event occurs while the TCAN1162x-Q1 is in sleep mode the device transitions to reset mode. If a valid LWU event occurs while the TCAN1162x-Q1 is in fail-safe mode the device transitions to reset mode given the other exit criteria from fail-safe mode have been met. See the CAN Transceiver Modes section.

The WAKE circuitry is switched off normal mode.

The RXD pin is only driven once \(V_{\text{IO}} \) is present.

Figure 10-9. LWU Request Rising Edge
10.4.1.4 Reset Mode

Reset mode is a low power mode of the TCAN1162x-Q1 where the nRST pin is asserted low allowing the controller to power up correctly. In this state the CAN transmitter and receiver are off, the bus pins are biased to ground, and the transceiver cannot send or receive data.

While in reset mode the low power receiver actively monitors the CAN bus for a valid wake-up pattern. If a valid wake-up pattern is received the CAN bus pins transition to the CAN autonomous active state where CANH and CANL are internally biased to 2.5 V from the VSUP power rail. The reception of a valid wake-up pattern generates a wake-up request by the CAN transceiver that is output to the RXD pin.

The TCAN1162x-Q1 will enter reset mode due to following conditions:
- Power-on
- nRST pulled low externally

The TCAN11625 will enter reset mode due to following conditions:
- \(V_{CCOUT} < UV_{CCOUT}\)

The TCAN11623 will enter reset mode due to following conditions:
- \(V_{FLT} < UV_{FLT}\)

The TCAN1162x-Q1 will enter reset mode upon clearing any of the following fault conditions and leaving fail-safe mode:
- \(T_J < T_{SDF}\)
- Over voltage event
10.4.1.5 Fail-safe Mode

Fail-safe mode is a low power mode in which the TCAN1162x-Q1 is in a protected state. While in fail-safe mode the internal regulator (V_{FLT} V_{CCOUT}) is off, the INH pin is off, the reset pin is low, and the CAN transmitter and receiver are off.

Fail-safe mode is entered if:
- $T_J > T_{SDR}$
- $V_{VCCOUT} > OV_{CCOUTR}$ - TCAN11625
- $V_{VFLT} > OV_{FLTR}$ - TCAN11623
- $V_{LDO3} > OV_{LDO3R}$ - TCAN11623

Fail-safe mode is exited if all of the following criteria are met:
- $T_J < T_{SDF}$
- $V_{VCCOUT} < OV_{CCOUTF}$ - TCAN11625
- $V_{VFLT} < OV_{FLTF}$
- $V_{LDO3} > OV_{LDO3F}$ - TCAN11623
- A valid wake-up event exists

If the fault condition is not cleared within $t_{INACTIVE}$ then the device will transition into its lowest power mode, sleep mode.
10.4.2 CAN Transceiver

10.4.2.1 CAN Transceiver Operation

The TCAN1162x-Q1 CAN transceiver has three modes of operation: CAN active, CAN autonomous active, and CAN autonomous inactive.

10.4.2.2 CAN Transceiver Modes

The TCAN1162x-Q1 supports the ISO 11898-2:2016 CAN physical layer standard autonomous bus biasing scheme. Autonomous bus biasing enables the transceiver to switch between CAN active, CAN autonomous active, and CAN autonomous inactive which helps to reduce RF emissions.

Figure 10-11. TCAN11623 CAN Transceiver State Machine

Figure 10-12. TCAN11625 CAN Transceiver State Machine
10.4.2.2.1 CAN Off Mode

In CAN off mode the CAN transceiver is switched off and the CAN bus lines are truly floating. In this mode the device presents no load to the CAN bus while preventing reverse currents from flowing into the device if the battery or ground connection is lost.

The CAN off state is entered if:

- \(T_J > T_{SDR} \)
- \(V_{SUP} < UV_{SUPF} \)

The CAN transceiver switches between the CAN off state and CAN autonomous inactive mode if:

- \(V_{SUP} > UV_{SUPR} \)
- \(T_J < T_{SDF} \)

10.4.2.2.2 CAN Autonomous: Inactive and Active

When the CAN transceiver is in standby mode or sleep mode the CAN bias circuit is switched off and the transceiver moves to the autonomous inactive state. In the autonomous inactive state the CAN pins are biased to GND. When a valid wake-up event occurs the CAN bus is biased to 2.5 V. If the controller does not transition the TCAN1162x-Q1 into normal mode before the \(t_{SILENCE} \) timer expires, then the CAN biasing circuit is again switched off and the CAN pins are biased to ground.

The CAN transceiver switches to the CAN autonomous mode if any of the following conditions are met:

- The TCAN1162x-Q1 transitions from CAN off mode to CAN autonomous inactive
- The TCAN1162x-Q1 transitions from normal mode to standby mode or fail-safe mode or sleep mode and \(t < t_{SILENCE} \)
- \(t > t_{SILENCE} \) and the TCAN1162x-Q1 transitions from normal mode to standby mode or fail-safe mode or sleep mode
- The TCAN1162x-Q1 transitions to reset mode

The CAN transceiver switches between the CAN autonomous inactive mode and CAN autonomous active mode if:

- A valid wake-up event
- The TCAN1162x-Q1 transitions to normal mode and no undervoltage faults exist.

The CAN transceiver switches between the CAN autonomous active mode and CAN autonomous inactive mode if:

- \(t > t_{SILENCE} \) and the TCAN1162x-Q1 transitions to standby mode, sleep mode, or fail-safe mode.

10.4.2.2.3 CAN Active

When the TCAN1162x-Q1 is in normal mode the CAN transceiver is in active mode. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The CAN bias voltage in CAN active mode is derived from:

- \(V_{CCOUT} - TCAN11625 \)
- \(V_{FLT} - TCAN11623 \)

The CAN transceiver switches between the CAN autonomous inactive or active mode and CAN active mode if:

- The TCAN1162x-Q1 transitions to normal mode and no undervoltage faults exist.

The CAN transceiver blocks its transmitter and receiver after entering CAN active mode if the TXD pin is asserted low before leaving standby mode. This prevents disruptions to CAN bus in the event that the TXD pin has a TXD DTO fault.
10.4.2.3 Driver and Receiver Function Tables

Table 10-5. Driver Function Table

<table>
<thead>
<tr>
<th>DEVICE MODE</th>
<th>TXD INPUTS(1)</th>
<th>CANH</th>
<th>CANL</th>
<th>DRIVEN BUS STATE(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>High or Open</td>
<td>High impedance</td>
<td>High impedance</td>
<td>Biased to VCCOUT/2 (TCAN11625)</td>
</tr>
<tr>
<td>Standby</td>
<td>x</td>
<td>High impedance</td>
<td>High impedance</td>
<td>Biased to GND</td>
</tr>
<tr>
<td>Sleep</td>
<td>x</td>
<td>High impedance</td>
<td>High impedance</td>
<td>Biased to GND</td>
</tr>
</tbody>
</table>

(1) x = irrelevant
(2) For bus states and typical bus voltages see Figure 10-13

Table 10-6. Receiver Function Table

<table>
<thead>
<tr>
<th>DEVICE MODE</th>
<th>CAN DIFFERENTIAL INPUTS $V_{ID} = V_{CANH} - V_{CANL}$</th>
<th>BUS STATE</th>
<th>RXD TERMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>$V_{ID} \geq 0.9 , V$</td>
<td>Dominant</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>$0.5 , V < V_{ID} < 0.9 , V$</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
</tr>
<tr>
<td></td>
<td>$V_{ID} \leq 0.5 , V$</td>
<td>Recessive</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Open ($V_{ID} \approx 0 , V$)</td>
<td>Open</td>
<td>High</td>
</tr>
<tr>
<td>Standby</td>
<td>$V_{ID} \geq 1.15 , V$</td>
<td>Dominant</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>$0.5 , V < V_{ID} < 1.15 , V$</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
</tr>
<tr>
<td></td>
<td>$V_{ID} \leq 0.4 , V$</td>
<td>Recessive</td>
<td>Low if wake-up event persists</td>
</tr>
<tr>
<td></td>
<td>Open ($V_{ID} \approx 0 , V$)</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Sleep</td>
<td>$V_{ID} \geq 1.15 , V$</td>
<td>Dominant</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>$0.4 , V < V_{ID} < 1.15 , V$</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
</tr>
<tr>
<td></td>
<td>$V_{ID} \leq 0.4 , V$</td>
<td>Recessive</td>
<td>Low if wake-up event persists and V_{IO} is present. Tri-state if V_{IO} or V_{SUP} are not present</td>
</tr>
<tr>
<td></td>
<td>Open ($V_{ID} \approx 0 , V$)</td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

10.4.2.4 CAN Bus States

The CAN bus has two logical states during operation: recessive and dominant. See Figure 10-13.

A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the TXD and RXD pins. A recessive bus state occurs when the bus is biased to one half of the CAN transceiver supply voltage via the high resistance internal input resistors (R_{IN}) of the receiver and corresponds to a logic high on the TXD and RXD pins.

A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a dominant bit at the same time during arbitration, and in this case the differential voltage of the CAN bus will be greater than the differential voltage of a single CAN driver. The TCAN1162x-Q1 CAN transceiver implements low-power standby and sleep modes which enables a third bus state where the bus pins are biased to ground via the high resistance internal resistors of the receiver.
Figure 10-13. Bus States
11 Application Information

11.1 Application Information Disclaimer

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

11.2 Typical Application

![Typical Application Diagram](image-url)

Figure 11-1. Typical Application
11.2.1 Design Requirements

11.2.1.1 Bus Loading, Length and Number of Nodes

A typical CAN application may have a maximum bus length of 40 meters and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A high number of nodes requires a transceiver with high input impedance such as the TCAN1162x-Q1.

Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2 standard. They made system level trade off decisions for data rate, cable length, and parasitic loading of the bus. Examples of these CAN systems level specifications are ARINC 825, CANopen, DeviceNet, SAE J2284, SAE J1939, and NMEA 2000.

A CAN network system design is a series of tradeoffs. In the ISO 11898-2:2016 specification the driver differential output is specified with a bus load that can range from 50 Ω to 65 Ω where the differential output must be greater than 1.5 V. The TCAN1162x-Q1 is specified to meet the 1.5-V requirement down to 50 Ω and is specified to meet 1.4-V differential output at 45 Ω bus load. The differential input resistance of the TCAN1162x-Q1 is a minimum of 40 kΩ. If 100 TCAN1162x-Q1 devices are in parallel on a bus, this is equivalent to a 400-Ω differential load in parallel with the nominal 60 Ω bus termination which gives a total bus load of approximately 52 Ω. Therefore, the TCAN1162x-Q1 theoretically supports over 100 devices on a single bus segment. However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is often lower. Bus length may also be extended beyond 40 meters by careful system design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.

This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. However, when using this flexibility the CAN network system designer must take the responsibility of good network design to ensure robust network operation.
11.2.2 Detailed Design Procedures

11.2.2.1 CAN Termination

Termination may be a single 120-Ω resistor at the end of the bus on either the cable or in a terminating node. If filtering and stabilization of the common mode voltage of the bus is desired then split termination may used, see Figure 11-3. Split termination improves the electromagnetic emissions behavior of the network by filtering higher-frequency common-mode noise that may be present on the differential signal lines.

![Figure 11-3. CAN Bus Termination Concepts](image)

11.3 Application Curves

![Figure 11-4. V_{OD(D)} over V_{SUP}](image)
12 Power Supply Requirements

The TCAN1162x-Q1 is designed to operate from a V_{SUP} input supply voltage range between 5.5 V and 28 V. The TCAN1162x-Q1 also has an output level shifting supply input, V_{IO}, designed for a range between 1.7 V and 5.5 V. Input supplies must be well regulated. A bypass capacitance, typically 100 nF, should be placed close to the device V_{SUP} and V_{IO} supply pins. This helps to reduce supply voltage ripple present on the outputs of the switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB power planes and traces.

The TCAN11625 integrates a 5-V LDO to supply the CAN transceiver as well as additional external loads. The V_{CCOUT} pin requires a 10 µF capacitance.

The TCAN11623 integrates a 5-V LDO to supply the CAN transceiver and a 3.3-V LDO for additional external loads. The V_{FLT} pin requires a 10 µF capacitance and the V_{LDO3} pin typically uses a capacitance value of 4.7µF.
13 Layout

13.1 Layout Guidelines

Place the protection and filtering circuitry as close to the bus connector to prevent transients, ESD and noise from propagating onto the board. The layout example provides information on components around the device itself. Transient voltage suppression (TVS) device can be added for extra protection. The production solution can be either bi-directional TVS diode or varistor with ratings matching the application requirements. This example also shows optional bus filter capacitors.

Design the bus protection components in the direction of the signal path. Do not force the transient current to divert from the signal path to reach the protection device. Use supply and ground planes to provide low inductance.

Note

A high-frequency current follows the path of least impedance and not the path of least resistance.

Use at least two vias for supply and ground connections of bypass capacitors and protection devices to minimize trace and via inductance.

- Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver.
- Bus termination: this layout example shows split termination. This is where the termination is split into two resistors with the center or split tap of the termination connected to ground via capacitor. Split termination provides common mode filtering for the bus. When bus termination is placed on the board instead of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the bus thus also removing the termination.

13.2 Layout Example

![Figure 13-1. TCAN11623 Example Layout](image)

Figure 13-1. TCAN11623 Example Layout
Figure 13-2. TCAN11625 Example Layout
14 Device and Documentation Support
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

14.1 Documentation Support

14.1.1 Related Documentation

14.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

14.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

14.4 Trademarks

TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

14.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

14.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN11623DMTRQ1</td>
<td>ACTIVE</td>
<td>VSON</td>
<td>DMT</td>
<td>14</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 150</td>
<td>11623</td>
<td></td>
</tr>
<tr>
<td>TCAN11625DMTRQ1</td>
<td>ACTIVE</td>
<td>VSON</td>
<td>DMT</td>
<td>14</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 150</td>
<td>11625</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBsolete: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

Reel Diameter
Reel Width (W1)

TAPE DIMENSIONS

A0 | Dimension designed to accommodate the component width
B0 | Dimension designed to accommodate the component thickness
K0 | Dimension designed to accommodate the component length
W | Overall width of the carrier tape
P1 | Pitch between successive cavity centers

TAPE DIMENSIONS

Pocket Quadrants
Sprocket Holes
User Direction of Feed

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN11623DMTRQ1</td>
<td>VSON</td>
<td>DMT</td>
<td>14</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>4.8</td>
<td>1.2</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TCAN11625DMTRQ1</td>
<td>VSON</td>
<td>DMT</td>
<td>14</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>4.8</td>
<td>1.2</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

*All dimensions are nominal
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN11623DMTRQ1</td>
<td>VSON</td>
<td>DMT</td>
<td>14</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TCAN11625DMTRQ1</td>
<td>VSON</td>
<td>DMT</td>
<td>14</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVISE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated