This device is a monolithic two-stage high-frequency amplifier with differential inputs and outputs. Internal feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Variable gain based on signal summation provides large AGC control over a wide bandwidth with low harmonic distortion. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios. The gain may be electronically attenuated by applying a control voltage to the AGC pin. No external compensation components are required.

This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and disk-file systems where AGC is needed. Other applications include video and pulse amplifiers where a large AGC range, wide bandwidth, low phase shift, and excellent gain stability are required.

The TL026C is characterized for operation from 0°C to 70°C.
## recommended operating conditions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, VCC+</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage, VCC−</td>
<td>−3</td>
<td>−6</td>
<td>−8</td>
<td>V</td>
</tr>
<tr>
<td>Operating free-air temperature range, TA</td>
<td>0</td>
<td>70</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

## electrical characteristics at 25°C operating free-air temperature, VCC+ = ±6 V, VAGC = 0, REF OUT pin open (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FIGURE</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A VD</td>
<td>1</td>
<td>VO(PP) = 3 V, RL = 2 kΩ</td>
<td>65</td>
<td>85</td>
<td>105</td>
<td>V/V</td>
</tr>
<tr>
<td>ΔAVD</td>
<td>1</td>
<td>VPP = 28.5 mV, RL = 2 kΩ, VAGC = Vref = ±180 mV</td>
<td>−50</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Vref</td>
<td>1</td>
<td>Iref = −1 mA to 100 μA</td>
<td>1.3</td>
<td>1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BW</td>
<td>2</td>
<td>VO(PP) = 1 V, VAGC = Vref = ±180 mV</td>
<td>50</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>IIO</td>
<td>0.4</td>
<td>5 μA</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IIB</td>
<td>10</td>
<td>30 μA</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>VICR</td>
<td>±1 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOCC</td>
<td>3.25</td>
<td>3.75 4.25 V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ΔVOC</td>
<td>1 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VO(PP)</td>
<td>1</td>
<td>VPP = 0 to 2 V, RL = ∞</td>
<td>300</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>r I</td>
<td>10</td>
<td>30 kΩ</td>
<td></td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>r i</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>CMRR</td>
<td>60</td>
<td>86 dB</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>kSVR</td>
<td>50</td>
<td>70 dB</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Vn</td>
<td>12</td>
<td>μV</td>
<td></td>
<td></td>
<td></td>
<td>μV</td>
</tr>
<tr>
<td>Tpd</td>
<td>6 10 ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tr</td>
<td>4.5 12 ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Isink(max)</td>
<td>3 4 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>ICC</td>
<td>22 27 mA</td>
<td>No load, No signal</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
## ELECTRICAL CHARACTERISTICS

Over the recommended operating free-air temperature range, $V_{CC} = \pm 6\,V$, $V_{AGC} = 0$, REF OUT pin open (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FIGURE</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{VD}$</td>
<td>Large-signal differential voltage amplification</td>
<td>V_{o(PP)} = 3,V, $R_L = 2,k\Omega$</td>
<td>55</td>
<td>66</td>
<td>115</td>
<td>V/V</td>
</tr>
<tr>
<td>$I_{IO}$</td>
<td>Input offset current</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>$\mu A$</td>
</tr>
<tr>
<td>$I_{IB}$</td>
<td>Input bias current</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>$\mu A$</td>
</tr>
<tr>
<td>$V_{ICR}$</td>
<td>Common-mode input voltage range</td>
<td>3</td>
<td>$\pm 1$</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OO}$</td>
<td>Output offset voltage</td>
<td>1</td>
<td>$V_{ID} = 0, \ R_L = \infty$</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{O(PP)}$</td>
<td>Maximum peak-to-peak output voltage swing</td>
<td>1</td>
<td>$R_L = 2,k\Omega$</td>
<td>2.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$r_i$</td>
<td>Input resistance at AGC, IN+, or IN–</td>
<td>8</td>
<td>k$\Omega$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>3</td>
<td>$V_{IC} = \pm 1,V, \ f = 100,kHz$</td>
<td>50</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>$k_{SVR}$</td>
<td>Supply voltage rejection ratio</td>
<td>4</td>
<td>$\Delta V_{CC} = \pm 0.5,V, \ \Delta V_{O} = \pm 0.5,V$</td>
<td>50</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>$I_{sink(max)}$</td>
<td>Maximum output sink current</td>
<td>$V_{ID} = 1,V, \ V_{O} = 3,V$</td>
<td>2.8</td>
<td>4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>$I_{CC}$</td>
<td>Supply current</td>
<td>1</td>
<td>No load, No signal</td>
<td>30</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

### PARAMETER MEASUREMENT INFORMATION

**Figure 1. Test Circuit**

**Figure 2. Test Circuit**

**Figure 3. Test Circuit**

**Figure 4. Test Circuit**
Figure 5

TYPICAL CHARACTERISTICS

DIFFERENTIAL VOLTAGE AMPLIFICATION
VS
DIFFERENTIAL GAIN-CONTROL VOLTAGE

Figure 5
APPLICATION INFORMATION

gain characteristics

Figure 5 shows the differential voltage amplification versus the differential gain-control voltage ($V_{AGC} - V_{ref}$). $V_{AGC}$ is the absolute voltage applied to the AGC input and $V_{ref}$ is the dc voltage at the REF OUT output. As $V_{AGC}$ increases with respect to $V_{ref}$, the TL026C gain changes from maximum to minimum. As shown in Figure 5 for example, $V_{AGC}$ would have to vary from approximately 180 mV less than $V_{ref}$ to approximately 180 mV greater than $V_{ref}$ to change the gain from maximum to minimum. The total signal change in $V_{AGC}$ is defined by the following equation.

\[
\Delta V_{AGC} = V_{ref} + 180 \text{ mV} - (V_{ref} - 180 \text{ mV})
\]

\[
\Delta V_{AGC} = 360 \text{ mV}
\] (1)

However, because $V_{AGC}$ varies as the ac AGC signal varies and also differentially around $V_{ref}$, then $V_{AGC}$ should have an ac signal component and a dc component. To preserve the dc and thermal tracking of the device, this dc voltage must be generated from $V_{ref}$. To apply proper bias to the AGC input, the external circuit used to generate $V_{AGC}$ must combine these two voltages. Figures 6 and 7 show two circuits that will perform this operation and are easy to implement. The circuits use a standard dual operational amplifier for AGC feedback. By providing rectification and the required feedback gain, these circuits are also complete AGC systems.

circuit operation

Amplifier A1 amplifies and inverts the rectified and filtered AGC signal voltage $V_{C}$ producing output voltage $V_{1}$. Amplifier A2 is a differential amplifier that inverts $V_{1}$ again and adds the scaled $V_{ref}$ voltage. This conditioning makes $V_{AGC}$ the sum of the signal plus the scaled $V_{ref}$. As the signal voltage increases, $V_{AGC}$ increases and the gain of the TL026C is reduced. This maintains a constant output level.

feedback circuit equations

Following the AGC input signal (Figures 6 and 7) from the OUT output through the feedback amplifiers to the AGC input produces the following equations:

1. AC output to diode D1, assuming sinusoidal signals

\[
V_{O} = V_{OP} \sin(\omega t)
\]

where:

\[
V_{OP} = \text{peak voltage of } V_{O}
\] (2)

2. Diode D1 and capacitor C1 output

\[
V_{C} = V_{OP} - V_{F}
\]

where:

\[
V_{F} = \text{forward voltage drop of D1}
\]

\[
V_{C} = \text{voltage across capacitor C1}
\] (3)

3. A1 output

\[
V_{1} = -\frac{R_{2}}{R_{1}} V_{C}
\] (4)

4. A2 output ($R_{3} = R_{4}$)

\[
V_{AGC} = \frac{R_{2}}{R_{1}} V_{C} + 2 \frac{R_{6}}{R_{5} + R_{6}} V_{ref}
\] (5)
APPLICATION INFORMATION

Amplifier A2 inverts V1 producing a positive AGC signal voltage. Therefore, the input voltage to the TL026C AGC pin consists of an AGC signal equal to:

\[
\frac{R2}{R1} V_C
\]  

(6)

and a dc voltage derived from \( V_{\text{ref}} \), defined as the quiescent value of \( V_{\text{AGC}} \):

\[
V_{\text{AGC(q)}} = 2 \frac{R6}{R5 + R6} V_{\text{ref}}
\]  

(7)

For the initial resistor calculations, \( V_{\text{ref}} \) is assumed to be typically 1.4 V making quiescent \( V_{\text{AGC}} \) approximately 1.22 V (\( V_{\text{AGC(q)}} = V_{\text{ref}} - 180 \text{ mV} \)). This voltage allows the TL026C to operate at maximum gain under no-signal and low-signal conditions. In addition, with \( V_{\text{ref}} \) used as both internal and external reference, its variation from device to device automatically adjusts the overall bias and makes AGC operation essentially independent of the absolute value of \( V_{\text{ref}} \). The resistor divider needs to be calculated only once and is valid for the full tolerance of \( V_{\text{ref}} \).

output voltage limits (see Figures 6 and 7)

The output voltage level desired must fall within the following limits:

1. Because the data sheet minimum output swing is 3 V peak-to-peak using a 2-kΩ load resistor, the user-selected design limit for the peak output swing should not exceed 1.5 V.

2. The voltage drop of the rectifying diode determines the lower voltage limit. When a silicon diode is used, this voltage is approximately 0.7 V. The output voltage \( V_O \) must have sufficient amplitude to exceed the rectifying diode drop. An Schottky diode can be used to reduce the \( V_O \) level required.

gain calculations for a peak output voltage of 1 V

A peak output voltage of 1 V was chosen for gain calculations because it is approximately midway between the limits of conditions 1 and 2 in the preceding paragraph.

Using equation 3 (\( V_C = V_{\text{OP}} - V_d \)), \( V_C \) is calculated as follows:

\[
V_C = 1 \text{ V} - 0.7 \text{ V} = 0.3 \text{ V}
\]

Therefore, the gain of A1 must produce a voltage V1 that is equal to or greater than the total change in \( V_{\text{AGC}} \) for maximum TL026C gain change.

With a total change in \( V_{\text{AGC}} \) of 360 mV and using equation 4, the calculation is as follows:

\[
- \frac{V_1}{V_C} = \frac{\Delta V_{\text{AGC}}}{V_C} = \frac{R2}{R1} = \frac{0.36}{0.3} = 1.2
\]

If \( R1 \) is 10 kΩ, \( R2 \) is 1.2 time \( R1 \) or 12 kΩ.

Since the output voltage for this circuit must be between 0.85 V and 1.3 V, the component values in Figures 6 and 7 provide a nominal 1-V peak output limit. This limit is the best choice to allow for temperature variations of the diode and minimum output voltage specification.
APPLICATION INFORMATION

The circuit values in Figures 6 and 7 will produce the best results in this general application. Because of rectification and device input constraints, the circuit in Figure 6 will not provide attenuation and has about 32 dB of control range. The circuit shown in Figure 7 will have approximately 25% variation in the peak output voltage limit due to the variation in gain of the TL592 device to device. In addition, if a lower output voltage is desired, the output of the TL026C can be used for approximately 40 mV of controlled signal.

Considerations for the use of the TL026C

To obtain the most reliable results, RF breadboarding techniques must be used. A groundplane board should be used and power supplies should be bypassed with 0.1-\( \mu \)F capacitors. Input leads and output leads should be as short as possible and separated from each other.

A peak input voltage greater than 200 mV will begin to saturate the input stages of the TL026C and, while the circuit is in the AGC mode, the output signal may become distorted.

To observe the output signal of TL026C or TL592, low-capacitance FET probes or the output voltage divider technique shown in Figure 6 should be used.

NOTE: \( V_{CC+} = 6 \) V and \( V_{CC-} = -6 \) V for TL026C and amplifiers A1 and A2.

Figure 6. Typical Application Circuit With No Attenuation
NOTE: $V_{CC+} = 6\, V$ and $V_{CC-} = -6\, V$ for TL026C and amplifiers A1 and A2.

Figure 7. Typical Application Circuit With Attenuation
# PACKAGE INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL026CD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>0 to 70</td>
<td>TL026C</td>
<td></td>
</tr>
<tr>
<td>TL026CDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>0 to 70</td>
<td>TL026C</td>
<td></td>
</tr>
<tr>
<td>TL026CP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>TL026CP</td>
<td></td>
</tr>
<tr>
<td>TL026CPE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>TL026CPE4</td>
<td></td>
</tr>
<tr>
<td>TL026CPSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>T026</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead finish/Ball material** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL026CDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.

A0: Dimension designed to accommodate the component width
B0: Dimension designed to accommodate the component length
K0: Dimension designed to accommodate the component thickness
W: Overall width of the carrier tape
P1: Pitch between successive cavity centers
### TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL026CDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
</tbody>
</table>

*All dimensions are nominal*
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
MECHANICAL DATA

PS (R-PDSO-G8)  PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.

4040063/C 01/03
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC–7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC–7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
P (R-PDIP-T8)  PLASTIC DUAL-IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated