Complete PWM Power Control
3.6-V to 40-V Operation
Internal Undervoltage-Lockout Circuit
Internal Short-Circuit Protection
Oscillator Frequency . . . 20 kHz to 500 kHz
Variable Dead Time Provides Control Over Total Range
±3% Tolerance on Reference Voltage (TL5001A)
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards

description

The TL5001 and TL5001A incorporate on a single monolithic chip all the functions required for a pulse-width-modulation (PWM) control circuit. Designed primarily for power-supply control, the TL5001/A contains an error amplifier, a regulator, an oscillator, a PWM comparator with a dead-time-control input, undervoltage lockout (UVLO), short-circuit protection (SCP), and an open-collector output transistor. The TL5001A has a typical reference voltage tolerance of ±3% compared to ±5% for the TL5001.

The error-amplifier common-mode voltage ranges from 0 V to 1.5 V. The noninverting input of the error amplifier is connected to a 1-V reference. Dead-time control (DTC) can be set to provide 0% to 100% dead time by connecting an external resistor between DTC and GND. The oscillator frequency is set by terminating RT with an external resistor to GND. During low VCC conditions, the UVLO circuit turns the output off until VCC recovers to its normal operating range.

The TL5001C and TL5001AC are characterized for operation from –20°C to 85°C. The TL5001I and TL5001AI are characterized for operation from –40°C to 85°C. The TL5001Q and TL5001AQ are characterized for operation from –40°C to 125°C. The TL5001M and TL5001AM are characterized for operation from –55°C to 125°C.

<table>
<thead>
<tr>
<th>TA</th>
<th>SMALL OUTLINE (D)</th>
<th>PLASTIC DIP (P)</th>
<th>CERAMIC DIP (JG)</th>
<th>CHIP CARRIER (FK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–20°C to 85°C</td>
<td>TL5001CD</td>
<td>TL5001CP</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>–20°C to 85°C</td>
<td>TL5001ACD</td>
<td>TL5001ACP</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>–40°C to 85°C</td>
<td>TL5001ID</td>
<td>TL5001IP</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>–40°C to 85°C</td>
<td>TL5001AID</td>
<td>TL5001AIP</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>–40°C to 125°C</td>
<td>TL5001QD</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>–40°C to 125°C</td>
<td>TL5001AQD</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>–55°C to 125°C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>TL5001MFK</td>
</tr>
<tr>
<td>–55°C to 125°C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>TL5001AMFK</td>
</tr>
</tbody>
</table>

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL5001CDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
schematic for typical application

functional block diagram
detailed description

voltage reference

A 2.5-V regulator operating from V_{CC} is used to power the internal circuitry of the TL5001 and TL5001A and as a reference for the error amplifier and SCP circuits. A resistive divider provides a 1-V reference for the error amplifier noninverting input which typically is within 2% of nominal over the operating temperature range.

error amplifier

The error amplifier compares a sample of the dc-to-dc converter output voltage to the 1-V reference and generates an error signal for the PWM comparator. The dc-to-dc converter output voltage is set by selecting the error-amplifier gain (see Figure 1), using the following expression:

\[V_O = (1 + R1/R2) \times 1 \text{ V} \]

![Figure 1. Error-Amplifier Gain Setting](image)

The error-amplifier output is brought out as COMP for use in compensating the dc-to-dc converter control loop for stability. Because the amplifier can only source 45 \mu A, the total dc load resistance should be 100 k\Omega or more.

oscillator/PWM

The oscillator frequency (f_{osc}) can be set between 20 kHz and 500 kHz by connecting a resistor between RT and GND. Acceptable resistor values range from 15 k\Omega to 250 k\Omega. The oscillator frequency can be determined by using the graph shown in Figure 5.

The oscillator output is a triangular wave with a minimum value of approximately 0.7 V and a maximum value of approximately 1.3 V. The PWM comparator compares the error-amplifier output voltage and the DTC input voltage to the triangular wave and turns the output transistor off whenever the triangular wave is greater than the lesser of the two inputs.

dead-time control (DTC)

DTC provides a means of limiting the output-switch duty cycle to a value less than 100%, which is critical for boost and flyback converters. A current source generates a reference current (I_{DT}) at DTC that is nominally equal to the current at the oscillator timing terminal, RT. Connecting a resistor between DTC and GND generates a dead-time reference voltage (V_{DT}), which the PWM/DTC comparator compares to the oscillator triangle wave as described in the previous section. Nominally, the maximum duty cycle is 0% when V_{DT} is 0.7 V or less and 100% when V_{DT} is 1.3 V or greater. Because the triangle wave amplitude is a function of frequency and the source impedance of RT is relatively high (1250 \Omega), choosing R_{DT} for a specific maximum duty cycle, D, is accomplished using the following equation and the voltage limits for the frequency in question as found in Figure 11 (V_{osc,max} and V_{osc,min} are the maximum and minimum oscillator levels):
dead-time control (DTC) (continued)

\[R_{DT} = \left(R_t + 1250\right) \left[D(V_{osc\ max} - V_{osc\ min}) + V_{osc\ min}\right] \]

Where

\[R_{DT} \text{ and } R_t \text{ are in ohms, } D \text{ in decimal} \]

Soft start can be implemented by paralleling the DTC resistor with a capacitor (C_{DT}) as shown in Figure 2. During soft start, the voltage at DTC is derived by the following equation:

\[V_{DT} \approx I_{DT} R_{DT} \left(1 - e^{-t/R_{DT} C_{DT}}\right) \]

Figure 2. Soft-Start Circuit

If the dc-to-dc converter must be in regulation within a specified period of time, the time constant, \(R_{DT} C_{DT} \), should be \(t_0/3 \) to \(t_0/5 \). The TL5001/A remains off until \(V_{DT} \approx 0.7 \text{ V}, \text{ the minimum ramp value. } C_{DT} \text{ is discharged every time UVLO or SCP becomes active.} \]

undervoltage-lockout (UVLO) protection

The undervoltage-lockout circuit turns the output transistor off and resets the SCP latch whenever the supply voltage drops too low (approximately 3 V at 25°C) for proper operation. A hysteresis voltage of 200 mV eliminates false triggering on noise and chattering.

short-circuit protection (SCP)

The TL5001/A includes short-circuit protection (see Figure 3), which turns the power switch off to prevent damage when the converter output is shorted. When activated, the SCP prevents the switch from being turned on until the internal latching circuit is reset. The circuit is reset by reducing the input voltage until UVLO becomes active or until the SCP terminal is pulled to ground externally.

When a short circuit occurs, the error-amplifier output at COMP rises to increase the power-switch duty cycle in an attempt to maintain the output voltage. SCP comparator 1 starts an RC timing circuit when COMP exceeds 1.5 V. If the short is removed and the error-amplifier output drops below 1.5 V before time out, normal converter operation continues. If the fault is still present at the end of the time-out period, the timer sets the latching circuit and turns off the TL5001/A output transistor.
short-circuit protection (SCP) (continued)

The timer operates by charging an external capacitor \(C_{SCP} \), connected between the SCP terminal and ground, towards 2.5 V through a 185-k\(\Omega \) resistor \(R_{SCP} \). The circuit begins charging from an initial voltage of approximately 185 mV and times out when the capacitor voltage reaches 1 V. The output of SCP comparator 2 then goes high, turns on Q2, and latches the timer circuit. The expression for setting the SCP time period is derived from the following equation:

\[
V_{SCP} = (2.5 - 0.185) \left(1 - e^{-t/\tau} \right) + 0.185
\]

Where

\[
\tau = R_{SCP} C_{SCP}
\]

The end of the time-out period, \(t_{SCP} \), occurs when \(V_{SCP} = 1 \) V. Solving for \(C_{SCP} \) yields:

\[
C_{SCP} = 12.46 \times t_{SCP}
\]

Where

\(t \) is in seconds, \(C \) in \(\mu F \).

\(t_{SCP} \) must be much longer (generally 10 to 15 times) than the converter start-up period or the converter will not start.

output transistor

The output of the TL5001/A is an open-collector transistor with a maximum collector current rating of 21 mA and a voltage rating of 51 V. The output is turned on under the following conditions: the oscillator triangle wave is lower than both the DTC voltage and the error-amplifier output voltage, the UVLO circuit is inactive, and the short-circuit protection circuit is inactive.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, \(V_{CC} \) (see Note 1) 41 V
Amplifier input voltage, \(V_{I(FB)} \) 20 V
Output voltage, \(V_{O, OUT} \) ... 51 V
Output current, \(I_{O, OUT} \) ... 21 mA
Output peak current, \(I_{O(peak), OUT} \) 100 mA
Continuous total power dissipation See Dissipation Rating Table
Operating ambient temperature range, \(T_A \): TL5001C, TL5001AC ... –20°C to 85°C
TL5001I, TL5001AI .. –40°C to 85°C
TL5001Q, TL5001AQ .. –40°C to 125°C
TL5001M, TL5001AM .. –55°C to 125°C
Storage temperature range, \(T_{stg} \) .. –65°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds .. 260°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>(T_A \leq 25°C) POWER RATING</th>
<th>DERATING FACTOR ABOVE (T_A = 25°C)</th>
<th>(T_A = 70°C) POWER RATING</th>
<th>(T_A = 85°C) POWER RATING</th>
<th>(T_A = 125°C) POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>725 mW</td>
<td>5.8 mW/°C</td>
<td>464 mW</td>
<td>377 mW</td>
<td>145 mW</td>
</tr>
<tr>
<td>FK</td>
<td>1375 mW</td>
<td>11.0 mW/°C</td>
<td>880 mW</td>
<td>715 mW</td>
<td>275 mW</td>
</tr>
<tr>
<td>JG</td>
<td>1050 mW</td>
<td>8.4 mW/°C</td>
<td>672 mW</td>
<td>546 mW</td>
<td>210 mW</td>
</tr>
<tr>
<td>P</td>
<td>1000 mW</td>
<td>8.0 mW/°C</td>
<td>640 mW</td>
<td>520 mW</td>
<td>200 mW</td>
</tr>
</tbody>
</table>

recommended operating conditions

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC})</td>
<td>3.6</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Amplifier input voltage, (V_{I(FB)})</td>
<td>0</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage, (V_{O, OUT})</td>
<td>50</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output current, (I_{O, OUT})</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>COMP source current</td>
<td>45</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>COMP dc load resistance</td>
<td>100</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Oscillator timing resistor, (R_t)</td>
<td>15</td>
<td>250</td>
<td>kΩ</td>
</tr>
<tr>
<td>Oscillator frequency, (f_{osc})</td>
<td>20</td>
<td>500</td>
<td>kHz</td>
</tr>
<tr>
<td>Operating ambient temperature, (T_A)</td>
<td>TL5001C, TL5001AC</td>
<td>–20</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>TL5001I, TL5001AI</td>
<td>–40</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>TL5001Q, TL5001AQ</td>
<td>–40</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>TL5001M, TL5001AM</td>
<td>–55</td>
<td>125</td>
</tr>
</tbody>
</table>
electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 6\, \text{V}$, $f_{osc} = 100\, \text{kHz}$ (unless otherwise noted)

reference

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001C, TL5001I</th>
<th>TL5001AC, TL5001AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>COMP connected to FB</td>
<td>0.95 1 1.05</td>
<td>0.97 1 1.03</td>
<td>V</td>
</tr>
<tr>
<td>Input regulation</td>
<td>$V_{CC} = 3.6, \text{V} \text{ to } 40, \text{V}$</td>
<td>2 12.5</td>
<td>2 12.5</td>
<td>mV</td>
</tr>
<tr>
<td>Output voltage change with temperature</td>
<td>$T_A = -20\degree \text{C} \text{ to } 25\degree \text{C}$ (C suffix)</td>
<td>-10 -1 10</td>
<td>-10 -1 10</td>
<td>mV/V</td>
</tr>
<tr>
<td></td>
<td>$T_A = -40\degree \text{C} \text{ to } 25\degree \text{C}$ (I suffix)</td>
<td>-10 -1 10</td>
<td>-10 -1 10</td>
<td>mV/V</td>
</tr>
<tr>
<td></td>
<td>$T_A = 25\degree \text{C} \text{ to } 85\degree \text{C}$</td>
<td>-10 -2 10</td>
<td>-10 -2 10</td>
<td>mV/V</td>
</tr>
</tbody>
</table>

† All typical values are at $T_A = 25\degree \text{C}$.

undervoltage lockout

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001C, TL5001I</th>
<th>TL5001AC, TL5001AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper threshold voltage</td>
<td>$T_A = 25\degree \text{C}$</td>
<td>3</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>Lower threshold voltage</td>
<td>$T_A = 25\degree \text{C}$</td>
<td>2.8</td>
<td>2.8</td>
<td>V</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>$T_A = 25\degree \text{C}$</td>
<td>100</td>
<td>200</td>
<td>mV</td>
</tr>
<tr>
<td>Reset threshold voltage</td>
<td>$T_A = 25\degree \text{C}$</td>
<td>2.1</td>
<td>2.55</td>
<td>V</td>
</tr>
</tbody>
</table>

† All typical values are at $T_A = 25\degree \text{C}$.

short-circuit protection

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001C, TL5001I</th>
<th>TL5001AC, TL5001AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCP threshold voltage</td>
<td>$T_A = 25\degree \text{C}$</td>
<td>0.95 1.00 1.05</td>
<td>0.97 1.00 1.03</td>
<td>V</td>
</tr>
<tr>
<td>SCP voltage, latched</td>
<td>No pullup</td>
<td>140 185 230</td>
<td>140 185 230</td>
<td>mV</td>
</tr>
<tr>
<td>SCP voltage, UVLO standby</td>
<td>No pullup</td>
<td>60 120</td>
<td>60 120</td>
<td>mV</td>
</tr>
<tr>
<td>Input source current</td>
<td>$T_A = 25\degree \text{C}$</td>
<td>-10 -15 -20</td>
<td>-10 -15 -20</td>
<td>µA</td>
</tr>
<tr>
<td>SCP comparator 1 threshold voltage</td>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>V</td>
</tr>
</tbody>
</table>

† All typical values are at $T_A = 25\degree \text{C}$.

oscillator

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001C, TL5001I</th>
<th>TL5001AC, TL5001AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>$R_I = 100, \text{k}\Omega$</td>
<td>100</td>
<td>100</td>
<td>kHz</td>
</tr>
<tr>
<td>Standard deviation of frequency</td>
<td></td>
<td>15</td>
<td>15</td>
<td>kHz</td>
</tr>
<tr>
<td>Frequency change with voltage</td>
<td>$V_{CC} = 3.6, \text{V} \text{ to } 40, \text{V}$</td>
<td>1 1</td>
<td>1 1</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>$T_A = -40\degree \text{C} \text{ to } 25\degree \text{C}$</td>
<td>-4 -0.4 4</td>
<td>-4 -0.4 4</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>$T_A = -20\degree \text{C} \text{ to } 25\degree \text{C}$</td>
<td>-4 -0.4 4</td>
<td>-4 -0.4 4</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>$T_A = 25\degree \text{C} \text{ to } 85\degree \text{C}$</td>
<td>-4 -0.2 4</td>
<td>-4 -0.2 4</td>
<td>kHz</td>
</tr>
<tr>
<td>Voltage at RT</td>
<td></td>
<td>1</td>
<td>1</td>
<td>V</td>
</tr>
</tbody>
</table>

† All typical values are at $T_A = 25\degree \text{C}$.
electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 6 \, V$, $f_{osc} = 100 \, kHz$ (unless otherwise noted) (continued)

dead-time control

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001C, TL5001I</th>
<th>TL5001AC, TL5001AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output (source) current</td>
<td>$V_{(DT)} = 1.5 , V$</td>
<td>0.9 I_{RT}</td>
<td>1.1 I_{RT}</td>
<td>I_{RT}, μA</td>
</tr>
<tr>
<td></td>
<td>$V_{(DT)} = 1.5 , V$</td>
<td>0.9 I_{RT}</td>
<td>1.2 I_{RT}</td>
<td>I_{RT}, μA</td>
</tr>
<tr>
<td>Input threshold voltage</td>
<td>Duty cycle = 0%</td>
<td>0.5</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Duty cycle = 100%</td>
<td>1.3</td>
<td>1.5</td>
<td>V</td>
</tr>
</tbody>
</table>

† All typical values are at $T_A = 25^\circ C$.
‡ Output source current at RT

error amplifier

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001C, TL5001I</th>
<th>TL5001AC, TL5001AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>$V_{CC} = 3.6 , V$ to $40 , V$</td>
<td>0</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td>-160</td>
<td>-500</td>
<td>nA</td>
</tr>
<tr>
<td>Output voltage swing</td>
<td>Positive</td>
<td>1.5</td>
<td>2.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>0.3</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Open-loop voltage amplification</td>
<td></td>
<td>80</td>
<td>80</td>
<td>dB</td>
</tr>
<tr>
<td>Unity-gain bandwidth</td>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>MHz</td>
</tr>
<tr>
<td>Output (sink) current</td>
<td>$V_{(FB)} = 1.2 , V$, $COMP = 1 , V$</td>
<td>100</td>
<td>600</td>
<td>μA</td>
</tr>
<tr>
<td>Output (source) current</td>
<td>$V_{(FB)} = 0.8 , V$, $COMP = 1 , V$</td>
<td>-45</td>
<td>-70</td>
<td>μA</td>
</tr>
</tbody>
</table>

† All typical values are at $T_A = 25^\circ C$.

output

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001C, TL5001I</th>
<th>TL5001AC, TL5001AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output saturation voltage</td>
<td>$I_O = 10 , mA$</td>
<td>1.5</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Off-state current</td>
<td>$V_O = 50 , V$, $V_{CC} = 0$</td>
<td>10</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_O = 50 , V$</td>
<td>10</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td>$V_O = 6 , V$</td>
<td>40</td>
<td>40</td>
<td>mA</td>
</tr>
</tbody>
</table>

† All typical values are at $T_A = 25^\circ C$.

total device

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001C, TL5001I</th>
<th>TL5001AC, TL5001AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby supply current</td>
<td>Off state</td>
<td>1</td>
<td>1.5</td>
<td>mA</td>
</tr>
<tr>
<td>Average supply current</td>
<td>$R_T = 100 , k\Omega$</td>
<td>1.4</td>
<td>2.1</td>
<td>mA</td>
</tr>
</tbody>
</table>

† All typical values are at $T_A = 25^\circ C$.

Texas Instruments

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range, \(V_{CC} = 6 \, \text{V} \), \(f_{\text{osc}} = 100 \, \text{kHz} \) (unless otherwise noted)

Reference

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001Q, TL5001M</th>
<th>TL5001AQ, TL5001AM</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>(T_A = 25^\circ \text{C}) COMP connected to FB</td>
<td>0.95 1.00 1.05 0.97</td>
<td>1.00 1.03</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(T_A = \text{MIN to MAX})</td>
<td>0.93 0.98 1.07 0.94</td>
<td>0.98 1.06</td>
<td>V</td>
</tr>
<tr>
<td>Input regulation</td>
<td>(T_A = \text{MIN to MAX}) (V_{CC} = 3.6 , \text{V to 40 , V})</td>
<td>2 12.5 2</td>
<td>12.5</td>
<td>mV</td>
</tr>
<tr>
<td>Output voltage change with temperature</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>*–6 2 *6</td>
<td>*–6 2 *6</td>
<td>%</td>
</tr>
</tbody>
</table>

† All typical values are at \(T_A = 25^\circ \text{C} \).
* Not production tested.

Undervoltage Lockout

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001Q, TL5001M</th>
<th>TL5001AQ, TL5001AM</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper threshold voltage</td>
<td>(T_A = \text{MIN, 25^\circ} \text{C})</td>
<td>3.00</td>
<td>3.00</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(T_A = \text{MAX})</td>
<td>2.55</td>
<td>2.55</td>
<td>V</td>
</tr>
<tr>
<td>Lower threshold voltage</td>
<td>(T_A = \text{MIN, 25^\circ} \text{C})</td>
<td>2.8</td>
<td>2.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(T_A = \text{MAX})</td>
<td>2.0</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(T_A = \text{MIN, 25^\circ} \text{C})</td>
<td>2.10</td>
<td>2.55</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>(T_A = \text{MAX})</td>
<td>0.35</td>
<td>0.63</td>
<td>0.35</td>
</tr>
</tbody>
</table>

† All typical values are at \(T_A = 25^\circ \text{C} \).

Short-Circuit Protection

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001Q, TL5001M</th>
<th>TL5001AQ, TL5001AM</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCP threshold voltage</td>
<td>(T_A = \text{MIN, 25^\circ} \text{C})</td>
<td>0.95 1.00 1.05 0.97</td>
<td>1.00 1.03</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(T_A = \text{MAX})</td>
<td>0.93 0.98 1.07 0.94</td>
<td>0.98 1.06</td>
<td>V</td>
</tr>
<tr>
<td>SCP voltage, latched</td>
<td>(T_A = \text{MIN to MAX}) No pullup</td>
<td>140 185 230</td>
<td>140 185 230</td>
<td>mV</td>
</tr>
<tr>
<td>SCP voltage, UVLO standby</td>
<td>(T_A = \text{MIN to MAX}) No pullup</td>
<td>60 120</td>
<td>60 120</td>
<td>mV</td>
</tr>
<tr>
<td>Equivalent timing resistance</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>185</td>
<td>185</td>
<td>k\Omega</td>
</tr>
<tr>
<td>SCP comparator 1 threshold voltage</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>1.5</td>
<td>1.5</td>
<td>V</td>
</tr>
</tbody>
</table>

† All typical values are at \(T_A = 25^\circ \text{C} \).
electrical characteristics over recommended operating free-air temperature range, \(V_{CC} = 6 \text{ V}, f_{osc} = 100 \text{ kHz} \) (unless otherwise noted) (continued)

oscillator

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001Q, TL5001M</th>
<th>TL5001AQ, TL5001AM</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>(T_A = \text{MIN to MAX}) (R_t = 100 \text{ k}\Omega)</td>
<td>(100)</td>
<td>(100)</td>
<td>kHz</td>
</tr>
<tr>
<td>Standard deviation of frequency</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>(2)</td>
<td>(2)</td>
<td>kHz</td>
</tr>
<tr>
<td>Frequency change with voltage</td>
<td>(T_A = \text{MIN to MAX}) (V_{CC} = 3.6 \text{ V to 40 V})</td>
<td>(-6)</td>
<td>(3)</td>
<td>(-6)</td>
</tr>
<tr>
<td>Frequency change with temperature</td>
<td>(T_A = \text{MIN to MAX}) (Q \text{ suffix})</td>
<td>(-9)</td>
<td>(5)</td>
<td>(-9)</td>
</tr>
<tr>
<td>Voltage at RT</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>(1)</td>
<td>(1)</td>
<td>V</td>
</tr>
</tbody>
</table>

† All typical values are at \(T_A = 25^\circ\text{C} \).
*Not production tested.

dead-time control

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001Q, TL5001M</th>
<th>TL5001AQ, TL5001AM</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output (source) current</td>
<td>(T_A = \text{MIN to MAX}) (V_{(DT)} = 1.5 \text{ V})</td>
<td>(0.9 \times I_{RT})‡</td>
<td>(1.1 \times I_{RT})</td>
<td>(0.9 \times I_{RT})‡</td>
</tr>
<tr>
<td>Input threshold voltage</td>
<td>(T_A = 25^\circ\text{C})</td>
<td>(0.5)</td>
<td>(0.7)</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Input threshold voltage</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>(0.4)</td>
<td>(0.7)</td>
<td>(0.4)</td>
</tr>
</tbody>
</table>

† All typical values are at \(T_A = 25^\circ\text{C} \).
‡ Output source current at RT

error amplifier

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001Q, TL5001M</th>
<th>TL5001AQ, TL5001AM</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bias current</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>(-160)</td>
<td>(-500)</td>
<td>(-160)</td>
</tr>
<tr>
<td>Output voltage swing</td>
<td>Positive (T_A = \text{MIN to MAX})</td>
<td>(1.5)</td>
<td>(2.3)</td>
<td>(1.5)</td>
</tr>
<tr>
<td></td>
<td>Negative (T_A = \text{MIN to MAX})</td>
<td>(0.3)</td>
<td>(0.4)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>Open-loop voltage amplification</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>(80)</td>
<td>(80)</td>
<td>dB</td>
</tr>
<tr>
<td>Unity-gain bandwidth</td>
<td>(T_A = \text{MIN to MAX})</td>
<td>(1.5)</td>
<td>(1.5)</td>
<td>MHz</td>
</tr>
<tr>
<td>Output (sink) current</td>
<td>(T_A = \text{MIN to MAX}) (V_{I(FB)} = 1.2 \text{ V}, \text{COMP} = 1 \text{ V})</td>
<td>(100)</td>
<td>(600)</td>
<td>(100)</td>
</tr>
<tr>
<td>Output (source) current</td>
<td>(T_A = \text{MIN}, \text{25}^\circ\text{C}) (V_{I(FB)} = 0.8 \text{ V}, \text{COMP} = 1 \text{ V})</td>
<td>(-45)</td>
<td>(-70)</td>
<td>(-45)</td>
</tr>
<tr>
<td></td>
<td>(T_A = \text{MAX})</td>
<td>(-30)</td>
<td>(-45)</td>
<td>(-30)</td>
</tr>
</tbody>
</table>

† All typical values are at \(T_A = 25^\circ\text{C} \).
electrical characteristics over recommended operating free-air temperature range, \(V_{CC} = 6 \, \text{V}, \, \)
\(f_{osc} = 100 \, \text{kHz} \) (unless otherwise noted) (continued)

output

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001Q, TL5001M</th>
<th>TL5001AQ, TL5001AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP†</td>
</tr>
<tr>
<td>Output saturation voltage</td>
<td>(T_A = \text{MIN to MAX}) (I_O = 10 , \text{mA})</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Off-state current</td>
<td>(T_A = \text{MIN to MAX}) (V_O = 50 , \text{V}, , V_{CC} = 0)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_O = 50 , \text{V})</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td>(T_A = \text{MIN to MAX}) (V_O = 6 , \text{V})</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

† All typical values are at \(T_A = 25^\circ \text{C} \).

total device

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TL5001Q, TL5001M</th>
<th>TL5001AQ, TL5001AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP†</td>
</tr>
<tr>
<td>Standby supply current</td>
<td>(T_A = \text{MIN to MAX}) (\text{Off state})</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Average supply current</td>
<td>(T_A = \text{MIN to MAX}) (R_t = 100 , \text{k}\Omega)</td>
<td>1.4</td>
<td>2.1</td>
</tr>
</tbody>
</table>

† All typical values are at \(T_A = 25^\circ \text{C} \).
NOTE A: The waveforms show timing characteristics for an intermittent short circuit and a longer short circuit that is sufficient to activate SCP.

Figure 4. PWM Timing Diagram
TYPICAL CHARACTERISTICS

Oscillator Frequency vs Timing Resistance

- $V_{CC} = 6\text{ V}$
- $R_T = 100\ \Omega$
- $T_A = 25^\circ\text{C}$

Figure 5

Oscillation Frequency vs Ambient Temperature

- $V_{CC} = 6\text{ V}$
- $R_T = 100\ \Omega$
- $DT\ Resistance = 100\ \Omega$

Figure 6

Reference Output Voltage vs Power-Supply Voltage

- $T_A = 25^\circ\text{C}$
- FB and COMP Connected Together

Figure 7

Reference Output Voltage Fluctuation vs Ambient Temperature

- $V_{CC} = 6\text{ V}$
- FB and COMP Connected Together

Figure 8
TYPICAL CHARACTERISTICS

AVERAGE SUPPLY CURRENT vs POWER-SUPPLY VOLTAGE

![Average Supply Current vs Power-Supply Voltage](image)

AVERAGE SUPPLY CURRENT vs AMBIENT TEMPERATURE

![Average Supply Current vs Ambient Temperature](image)

PWM TRIANGLE WAVE AMPLITUDE VOLTAGE vs OSCILLATOR FREQUENCY

![PWM Triangle Wave Amplitude Voltage vs Oscillator Frequency](image)

ERROR AMPLIFIER OUTPUT VOLTAGE vs OUTPUT (SINK) CURRENT

![Error Amplifier Output Voltage vs Output Current](image)
TYPICAL CHARACTERISTICS

ERROR AMPLIFIER OUTPUT VOLTAGE vs OUTPUT (SOURCE) CURRENT

- $V_{CC} = 6\, \text{V}$
- $V_{I(FB)} = 0.8\, \text{V}$
- $T_A = 25\, ^\circ\text{C}$

![Graph showing error amplifier output voltage vs output (source) current](image1)

Figure 13

ERROR AMPLIFIER OUTPUT VOLTAGE vs AMBIENT TEMPERATURE

- $V_{CC} = 6\, \text{V}$
- $V_{I(FB)} = 0.8\, \text{V}$
- No Load

![Graph showing error amplifier output voltage vs ambient temperature](image2)

Figure 14

ERROR AMPLIFIER OUTPUT VOLTAGE vs AMBIENT TEMPERATURE

- $V_{CC} = 6\, \text{V}$
- $V_{I(FB)} = 1.2\, \text{V}$
- No Load

![Graph showing error amplifier output voltage vs ambient temperature](image3)

Figure 15

ERROR AMPLIFIER OPEN-LOOP GAIN AND PHASE SHIFT vs FREQUENCY

- $V_{CC} = 6\, \text{V}$
- $T_A = 25\, ^\circ\text{C}$

![Graph showing error amplifier open-loop gain and phase shift vs frequency](image4)

Figure 16
TYPICAL CHARACTERISTICS

OUTPUT DUTY CYCLE vs DTC VOLTAGE

![Graph showing Output Duty Cycle vs DTC Voltage](image)

- $V_{CC} = 6\text{ V}$
- $R_t = 100\text{ k}\Omega$
- $T_A = 25^\circ\text{C}$

SCP TIME-OUT PERIOD vs SCP CAPACITANCE

![Graph showing SCP Time-Out Period vs SCP Capacitance](image)

- $V_{CC} = 6\text{ V}$
- $R_t = 200\text{ k}\Omega$
- $DT\ Resistance = 200\text{ k}\Omega$
- $T_A = 25^\circ\text{C}$

DTC OUTPUT CURRENT vs RT OUTPUT CURRENT

![Graph showing DTC Output Current vs RT Output Current](image)

- DT Voltage = 1.3 V
- $T_A = 25^\circ\text{C}$

OUTPUT SATURATION VOLTAGE vs OUTPUT (SINK) CURRENT

![Graph showing Output Saturation Voltage vs Output (Sink) Current](image)

- $V_{CC} = 6\text{ V}$
- $T_A = 25^\circ\text{C}$

Figure 17

Figure 18

Figure 19

Figure 20
APPLICATION INFORMATION

Partial Bill of Materials:
U1 TL5001/A Texas Instruments
Q1 TPS1101 Texas Instruments
LI CTX20-1 or Coiltronics
23 turns of #28 wire on
Micrometals No. T50-26B core
C1 TPSD107M010R0100 AVX
C2 TPSD107M010R0100 AVX
CR1 MBRS140T3 Motorola

NOTES:
A. Frequency = 200 kHz
B. Duty cycle = 90% max
C. Soft-start time constant (TC) = 5.6 ms
D. SCP TC = 70 msA

Figure 21. Step-Down Converter
MECHANICAL DATA

D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES:
B. All linear dimensions are in inches (millimeters).
C. This drawing is subject to change without notice.
D. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
E. Falls within JEDEC MS-012
MECHANICAL DATA

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINALS SHOWN

<table>
<thead>
<tr>
<th>NO. OF TERMINALS **</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>20</td>
<td>0.342</td>
<td>(8.69)</td>
</tr>
<tr>
<td></td>
<td>0.307</td>
<td>(7.80)</td>
</tr>
<tr>
<td>28</td>
<td>0.442</td>
<td>(11.23)</td>
</tr>
<tr>
<td></td>
<td>0.406</td>
<td>(10.31)</td>
</tr>
<tr>
<td>44</td>
<td>0.640</td>
<td>(16.26)</td>
</tr>
<tr>
<td></td>
<td>0.495</td>
<td>(12.58)</td>
</tr>
<tr>
<td>52</td>
<td>0.740</td>
<td>(18.78)</td>
</tr>
<tr>
<td></td>
<td>0.495</td>
<td>(12.58)</td>
</tr>
<tr>
<td>68</td>
<td>0.938</td>
<td>(23.83)</td>
</tr>
<tr>
<td></td>
<td>0.850</td>
<td>(21.6)</td>
</tr>
<tr>
<td>84</td>
<td>1.141</td>
<td>(28.99)</td>
</tr>
<tr>
<td></td>
<td>1.047</td>
<td>(26.6)</td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold-plated.
E. Falls within JEDEC MS-004
<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-9958301QPA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>JG</td>
<td>8</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>9958301QPA TL5001AM</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001ACD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-20 to 85</td>
<td>5001AC</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001ACDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-20 to 85</td>
<td>5001AC</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>5001AI</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AIDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>5001AI</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AIDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>5001AI</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AIDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>5001AI</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AIP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 85</td>
<td>TL5001AIP</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AMFKB</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>9958302Q2A TL5001AMF</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AMJGB</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>JG</td>
<td>8</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>9958302Q2A TL5001AMF</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AQD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5001AQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AQDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5001AQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AQDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5001AQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001AQDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-25 to 85</td>
<td>5001C</td>
<td>Samples</td>
</tr>
</tbody>
</table>

Notes:
- **Status:** ACTIVE
- **Package Type:** CDIP, LCCC, PDIP, SOIC
- **Lead finish/ Ball material:** Non-RoHS & Green, RoHS & Green
- **Eco Plan:** Non-RoHS & Green, RoHS & Green
- **MSL Peak Temp:** N / A for Pkg Type
- **Op Temp:** -55 to 125, -20 to 85, -40 to 85, -25 to 85
- **Device Marking:** TL5001M, TL5001AC, TL5001AM, TL5001AMFKB, TL5001AMJGB, TL5001AQD, TL5001AQDG4, TL5001AQDR, TL5001AQDRG4, TL5001CD

Samples:
- Samples available for each device.
<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL5001CDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-25 to 85</td>
<td>5001C</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001CDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-25 to 85</td>
<td>5001C</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001CDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-25 to 85</td>
<td>5001C</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001CP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-25 to 85</td>
<td>TL5001CP</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001CPS</td>
<td>ACTIVE</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>80</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
<td>T5001</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001CPSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-25 to 85</td>
<td>T5001</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>5001I</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>5001I</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001IDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>5001I</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001IP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 85</td>
<td>TL5001IP</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001IPE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 85</td>
<td>TL5001IPE4</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001IPSР</td>
<td>ACTIVE</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
<td>Z5001</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001MJG</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>JG</td>
<td>8</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>TL5001MJG</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001MJGB</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>JG</td>
<td>8</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>9958301QPA</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001QD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5001Q</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001QDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5001Q</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001QDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5001Q</td>
<td>Samples</td>
</tr>
<tr>
<td>TL5001QDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
<td>5001Q</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
OBSCOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". **RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL5001, TL5001A, TL5001AM, TL5001M :

- **Catalog:** TL5001A, TL5001
- **Automotive:** TL5001A-Q1, TL5001A-Q1
- **Military:** TL5001M, TL5001AM

NOTE: Qualified Version Definitions:

- **Catalog** - TI's standard catalog product
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

• Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

REEL DIMENSIONS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL5001ACDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001AIDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001AQDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001AQDRG4</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001CDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001CPSR</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.35</td>
<td>6.6</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001IPSR</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.35</td>
<td>6.6</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001QDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TL5001QDRG4</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL5001ACDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TL5001AIDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TL5001AQDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
<tr>
<td>TL5001AQDRG4</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
<tr>
<td>TL5001CDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TL5001CPSR</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TL5001IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TL5001IPSR</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TL5001QDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
<tr>
<td>TL5001QDRG4</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
</tbody>
</table>
LEADLESS CERAMIC CHIP CARRIER

Dimensional Data

<table>
<thead>
<tr>
<th>No. of Terminals **</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>20</td>
<td>0.342 (8.69)</td>
<td>0.358 (9.09)</td>
</tr>
<tr>
<td></td>
<td>0.307 (7.80)</td>
<td>0.358 (9.09)</td>
</tr>
<tr>
<td>28</td>
<td>0.442 (11.23)</td>
<td>0.458 (11.63)</td>
</tr>
<tr>
<td></td>
<td>0.406 (10.31)</td>
<td>0.458 (11.63)</td>
</tr>
<tr>
<td>44</td>
<td>0.640 (16.26)</td>
<td>0.660 (16.76)</td>
</tr>
<tr>
<td></td>
<td>0.495 (12.58)</td>
<td>0.560 (14.22)</td>
</tr>
<tr>
<td>52</td>
<td>0.740 (18.78)</td>
<td>0.761 (19.32)</td>
</tr>
<tr>
<td></td>
<td>0.495 (12.58)</td>
<td>0.560 (14.22)</td>
</tr>
<tr>
<td>68</td>
<td>0.938 (23.81)</td>
<td>0.962 (24.43)</td>
</tr>
<tr>
<td></td>
<td>0.850 (21.6)</td>
<td>0.858 (21.8)</td>
</tr>
<tr>
<td>84</td>
<td>1.141 (28.99)</td>
<td>1.165 (29.59)</td>
</tr>
<tr>
<td></td>
<td>1.047 (26.6)</td>
<td>1.063 (27.0)</td>
</tr>
</tbody>
</table>

Notes:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated