TLV181x and TLV182x Family of 40 V Rail-to-Rail Input Comparators with Push-Pull or Open-Drain Output Options

1 Features
- Wide 2.4 V to 40 V supply range
- Rail-to-rail input
- Power-On Reset (POR) for known start-up
- Low input offset voltage 500 μV
- 420ns typical propagation delay
- Low quiescent current 5 μA per channel
- Low input bias current 150 fA
- Open-drain output option (TLV182x)
- Push-pull output option (TLV181x)
- Full -40°C to +125°C temperature range
- 2 kV ESD protection
- Functional Safety-Capable
  - Documentation available to aid functional safety system design

2 Applications
- Appliances
- Factory automation and control
- Motor drives
- Infotainment and cluster

3 Description
The TLV181x and TLV182x are a family of 40 Volt single, dual and quad channel comparators with multiple output options. The family offers rail-to-rail inputs with push-pull or open-drain output options. The family has an excellent speed-to-power combination with a propagation delay of 420 ns with a full supply voltage range of 2.4 V to 40 V with a quiescent supply current of only 5 μA per channel.

All devices include a Power-On Reset (POR) feature. This ensures the output is in a known state until the minimum supply voltage has been reached before the output responds to the inputs, thus preventing false outputs during system power-up and power-down.

The TLV181x comparators have a push-pull output stage capable of sinking and sourcing milliamps of current when controlling an LED or driving a capacitive load such as a MOSFET gate.

The TLV182x comparators have an open-drain output stage that can be pulled up to 40 V independent of comparator supply voltage.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE(1)</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV1811L,</td>
<td>SC-70 (6)</td>
<td>1.25 mm x 2.00 mm</td>
</tr>
<tr>
<td>TLV1821L</td>
<td>SOT-23 (5)</td>
<td>1.60 mm x 2.90 mm</td>
</tr>
<tr>
<td>TLV1811,</td>
<td>SC-70 (5)</td>
<td>1.25 mm x 2.00 mm</td>
</tr>
<tr>
<td>TLV1821</td>
<td>SOT-23 (5)</td>
<td>1.60 mm x 2.90 mm</td>
</tr>
<tr>
<td>TLV1812,</td>
<td>SOIC (8)</td>
<td>3.91 mm x 4.90 mm</td>
</tr>
<tr>
<td>TLV1822</td>
<td>TSSOP (8)</td>
<td>3.00 mm x 4.40 mm</td>
</tr>
<tr>
<td></td>
<td>VSSOP (8)</td>
<td>3.00 mm x 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>WSON (8)</td>
<td>2.00 mm x 2.00 mm</td>
</tr>
<tr>
<td></td>
<td>SOT-23 (8)</td>
<td>1.60 mm x 2.90 mm</td>
</tr>
<tr>
<td>TLV1814,</td>
<td>SOIC (14)</td>
<td>3.91 mm x 8.65 mm</td>
</tr>
<tr>
<td>TLV1824</td>
<td>TSSOP (14)</td>
<td>4.40 mm x 5.00 mm</td>
</tr>
<tr>
<td></td>
<td>SOT-23 (14)</td>
<td>4.20 mm x 2.00 mm</td>
</tr>
<tr>
<td></td>
<td>WQFN (16)</td>
<td>3.00 mm x 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.
# Table of Contents

1 Features.................................................................1  
2 Applications..........................................................1  
3 Description................................................................1  
4 Revision History......................................................2  
5 Pin Configuration and Functions.................................3  
   Pin Functions: TLV18x1 and TLV18x1L........................3  
   Pin Functions: TLV1812 and TLV1822............................4  
   Pin Functions: TLV1814 and TLV1824............................5  
6 Specifications..........................................................6  
   6.1 Absolute Maximum Ratings.................................6  
   6.2 ESD Ratings......................................................6  
   6.3 Recommended Operating Conditions......................6  
   6.4 Thermal Information - Single...............................7  
   6.5 Thermal Information - Dual.................................7  
   6.6 Thermal Information - Quad.................................7  
   6.7 Electrical Characteristics.....................................8  
   6.8 Switching Characteristics.....................................9  
7 Typical Characteristics..............................................10  
8 Detailed Description...............................................13  
9 Application and Implementation................................16  
   9.1 Application Information......................................16  
   9.2 Typical Applications..........................................19  
   9.3 Power Supply Recommendations............................26  
10 Device and Documentation Support............................28  
   10.1 Documentation Support......................................28  
   10.2 Receiving Notification of Documentation Updates....28  
   10.3 Support Resources............................................28  
   10.4 Trademarks....................................................28  
   10.5 Electrostatic Discharge Caution..........................28  
   10.6 Glossary.......................................................28  
11 Mechanical, Packaging, and Orderable Information........28  

## 4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

### Changes from Revision * (September 2022) to Revision A (November 2022)

- Commercial TLV1812/22 Release.................................................................1
5 Pin Configuration and Functions
Pin Functions: TLV18x1 and TLV18x1L

<table>
<thead>
<tr>
<th>NAME</th>
<th>TLV1811, TLV1821</th>
<th>TLV1811L, TLV1821L</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/OUT (1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Output</td>
</tr>
<tr>
<td>V-/2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>Negative Supply Voltage</td>
</tr>
<tr>
<td>IN+ (3)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Non-Inverting (+) Input</td>
</tr>
<tr>
<td>IN- (4)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Inverting (-) Input</td>
</tr>
<tr>
<td>V+ (5)</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>Positive Supply Voltage</td>
</tr>
<tr>
<td>N/C 6</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

TLV1811 and TLV1821
Standard "North West" pinout
DBV, DCK Packages,
SOT-23-5, SC-70-5
Top View

TLV1811L and TLV1821L DBV Package,
"LMC72x1/TLV72x1 type" pinout with reversed supplies
SOT-23-5,
Top View

TLV1811L and TLV1821L DCK Package,
"TLV72x1 6-pin type" pinout with reversed supplies and shifted V-
SC-70-6,
Top View
Pin Functions: TLV1812 and TLV1822

Table 5-2. Pin Functions: TLV1812 and TLV1822

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>O</td>
<td>Output pin of the comparator 1</td>
</tr>
<tr>
<td>IN1–</td>
<td>I</td>
<td>Inverting input pin of comparator 1</td>
</tr>
<tr>
<td>IN1+</td>
<td>I</td>
<td>Noninverting input pin of comparator 1</td>
</tr>
<tr>
<td>V-</td>
<td>—</td>
<td>Negative (low) supply</td>
</tr>
<tr>
<td>IN2+</td>
<td>I</td>
<td>Noninverting input pin of comparator 2</td>
</tr>
<tr>
<td>IN2–</td>
<td>I</td>
<td>Inverting input pin of comparator 2</td>
</tr>
<tr>
<td>OUT2</td>
<td>O</td>
<td>Output pin of the comparator 2</td>
</tr>
<tr>
<td>V+</td>
<td>—</td>
<td>Positive supply</td>
</tr>
<tr>
<td>Thermal Pad</td>
<td>—</td>
<td>Connect directly to V- pin</td>
</tr>
</tbody>
</table>
Table 5-3. Pin Functions: TLV1814 and TLV1824

<table>
<thead>
<tr>
<th>PIN</th>
<th>SOIC</th>
<th>WQFN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT2</td>
<td>1</td>
<td>15</td>
<td>O</td>
<td>Output pin of the comparator 2</td>
</tr>
<tr>
<td>OUT1</td>
<td>2</td>
<td>16</td>
<td>O</td>
<td>Output pin of the comparator 1</td>
</tr>
<tr>
<td>V+</td>
<td>3</td>
<td>1</td>
<td>—</td>
<td>Positive supply</td>
</tr>
<tr>
<td>IN1–</td>
<td>4</td>
<td>2</td>
<td>I</td>
<td>Negative input pin of the comparator 1</td>
</tr>
<tr>
<td>IN1+</td>
<td>5</td>
<td>4</td>
<td>I</td>
<td>Positive input pin of the comparator 1</td>
</tr>
<tr>
<td>IN2–</td>
<td>6</td>
<td>5</td>
<td>I</td>
<td>Negative input pin of the comparator 2</td>
</tr>
<tr>
<td>IN2+</td>
<td>7</td>
<td>6</td>
<td>I</td>
<td>Positive input pin of the comparator 2</td>
</tr>
<tr>
<td>IN3–</td>
<td>8</td>
<td>7</td>
<td>I</td>
<td>Negative input pin of the comparator 3</td>
</tr>
<tr>
<td>IN3+</td>
<td>9</td>
<td>8</td>
<td>I</td>
<td>Positive input pin of the comparator 3</td>
</tr>
<tr>
<td>IN4–</td>
<td>10</td>
<td>9</td>
<td>I</td>
<td>Negative input pin of the comparator 4</td>
</tr>
<tr>
<td>IN4+</td>
<td>11</td>
<td>11</td>
<td>I</td>
<td>Positive input pin of the comparator 4</td>
</tr>
<tr>
<td>V–</td>
<td>12</td>
<td>12</td>
<td>—</td>
<td>Negative supply</td>
</tr>
<tr>
<td>OUT4</td>
<td>13</td>
<td>13</td>
<td>O</td>
<td>Output pin of the comparator 4</td>
</tr>
<tr>
<td>OUT3</td>
<td>14</td>
<td>14</td>
<td>O</td>
<td>Output pin of the comparator 3</td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>No Internal Connection - Leave floating or GND</td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>No Internal Connection - Leave floating or GND</td>
</tr>
<tr>
<td>Thermal Pad</td>
<td>—</td>
<td>PAD</td>
<td>—</td>
<td>Connect directly to V- pin.</td>
</tr>
</tbody>
</table>

(1) Some manufacturers transpose the names of channels 1 and 2. Electrically the pinouts are identical, just a difference in channel naming convention.
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage: ( V_S = (V^+) - (V^-) )</td>
<td>−0.3</td>
<td>42</td>
<td>V</td>
</tr>
<tr>
<td>Input pins (IN+, IN−) from (V−), Rail-to-Rail Input(2)</td>
<td>−0.3</td>
<td>((V^+) + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Current into input pins (IN+, IN−)</td>
<td>−10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Output (OUT) voltage (Open-Drain) from (V−)(3)</td>
<td>−0.3</td>
<td>42</td>
<td>V</td>
</tr>
<tr>
<td>Output (OUT) voltage (Push-Pull) from (V−)</td>
<td>−0.3</td>
<td>((V^+) + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Output (OUT) current(4)(5)(6)</td>
<td>−10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Junction temperature, ( T_J )</td>
<td>−65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, ( T_{stg} )</td>
<td>−65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Input terminals are diode-clamped to (V−). Inputs (IN+, IN−) can be greater than (V+) and OUT as long as it is within the −0.3 V to 42 V range.

(3) Output (OUT) for open drain can be greater than (V+) and inputs (IN+, IN−) as long as it is within the −0.3 V to 42 V range.

(4) The output is diode-clamped to (V−) for both output options, and diode clamped to (V+) for the push-pull output option. The open drain version does not have a clamp to V+. Please see the Outputs and ESD Protection section of the Application Information Section for more information.

(5) Output sinking and sourcing current is internally limited to <35mA when operating within the Absolute Maximum output voltage limits. The Absolute Maximum Output Current limit specified here is the maximum current through the clamp structure when exceeding the supply voltage below (V−) for both output options, or above (V+) for the push-pull option.

(6) Short-circuit from output to (V−) or (V+). Continuous output short circuits at elevated supply voltages can result in excessive heating and exceeding the maximum allowed junction temperature, leading to eventual device destruction.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>( V_{(ESD)} )</th>
<th>Electrostatic discharge type</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{(ESD)} )</td>
<td>Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±500</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage: ( V_S = (V^+) - (V^-) )</td>
<td>2.4</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage range from (V−)</td>
<td>−0.2</td>
<td>((V^+) + 0.2)</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage range from (V−)</td>
<td>Open Drain</td>
<td>−0.2</td>
<td>((V^+) + 0.2)</td>
</tr>
<tr>
<td></td>
<td>Push Pull</td>
<td>−0.2</td>
<td>((V^+) + 0.2)</td>
</tr>
<tr>
<td>Ambient temperature, ( T_A )</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>
### 6.4 Thermal Information - Single

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TLV18x1 and TLV18x1L</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCK (SC-70)</td>
<td>DCK (SC-70)</td>
</tr>
<tr>
<td></td>
<td>5 PINS</td>
<td>6 PINS</td>
</tr>
<tr>
<td>(R_{\theta JA})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>226.6</td>
</tr>
<tr>
<td>(R_{\theta JC(top)})</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>129.5</td>
</tr>
<tr>
<td>(R_{\theta JB})</td>
<td>Junction-to-board thermal resistance</td>
<td>78.6</td>
</tr>
<tr>
<td>(\psi_{JT})</td>
<td>Junction-to-top characterization parameter</td>
<td>51.5</td>
</tr>
<tr>
<td>(\psi_{JB})</td>
<td>Junction-to-board characterization parameter</td>
<td>78.3</td>
</tr>
<tr>
<td>(R_{\theta JC(bot)})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](https://www.ti.com) report.

### 6.5 Thermal Information - Dual

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TLV18x2</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
<td>PW (TSSOP)</td>
</tr>
<tr>
<td></td>
<td>8 PINS</td>
<td>8 PINS</td>
</tr>
<tr>
<td>(R_{\theta JA})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>136.1</td>
</tr>
<tr>
<td>(R_{\theta JC(top)})</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>76.8</td>
</tr>
<tr>
<td>(R_{\theta JB})</td>
<td>Junction-to-board thermal resistance</td>
<td>79.7</td>
</tr>
<tr>
<td>(\psi_{JT})</td>
<td>Junction-to-top characterization parameter</td>
<td>26.8</td>
</tr>
<tr>
<td>(\psi_{JB})</td>
<td>Junction-to-board characterization parameter</td>
<td>78.9</td>
</tr>
<tr>
<td>(R_{\theta JC(bot)})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](https://www.ti.com) report.

### 6.6 Thermal Information - Quad

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TLV18x4</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
<td>PW (TSSOP)</td>
</tr>
<tr>
<td></td>
<td>14 PINS</td>
<td>14 PINS</td>
</tr>
<tr>
<td>(R_{\theta JA})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>104.2</td>
</tr>
<tr>
<td>(R_{\theta JC(top)})</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>60.3</td>
</tr>
<tr>
<td>(R_{\theta JB})</td>
<td>Junction-to-board thermal resistance</td>
<td>60.2</td>
</tr>
<tr>
<td>(\psi_{JT})</td>
<td>Junction-to-top characterization parameter</td>
<td>20.7</td>
</tr>
<tr>
<td>(\psi_{JB})</td>
<td>Junction-to-board characterization parameter</td>
<td>59.8</td>
</tr>
<tr>
<td>(R_{\theta JC(bot)})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](https://www.ti.com) report.
### 6.7 Electrical Characteristics

For $V_S$ (Total Supply Voltage) = $(V+) – (V–) = 12$ V, $V_{CM} = V_S / 2$ at $T_A = 25^\circ C$ (Unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OFFSET VOLTAGE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OS}$</td>
<td>Input offset voltage</td>
<td>$-3$</td>
<td>$\pm 0.5$</td>
<td>$3$</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$dV_{IO}/dT$</td>
<td>Input offset voltage drift</td>
<td>$-4$</td>
<td></td>
<td>$4$</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>POWER SUPPLY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_Q$</td>
<td>Quiescent current per comparator</td>
<td>$5.5$</td>
<td>$7.5$</td>
<td>$\mu A$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quiescent current per comparator, No Load</td>
<td>$5$</td>
<td>$6.5$</td>
<td>$\mu A$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$7$</td>
<td>$9$</td>
<td>$\mu A$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{POR}$</td>
<td>Power On Reset Voltage</td>
<td>$1.7$</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td><strong>INPUT BIAS CURRENT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_B$</td>
<td>Input bias current (1)</td>
<td>$150$</td>
<td></td>
<td></td>
<td>fA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{OS}$</td>
<td>Input offset current (1)</td>
<td>$10$</td>
<td></td>
<td></td>
<td>fA</td>
</tr>
<tr>
<td><strong>INPUT CAPACITANCE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_{ID}$</td>
<td>Input Capacitance, Differential</td>
<td>$2$</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>$C_{IC}$</td>
<td>Input Capacitance, Common Mode</td>
<td>$8$</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td><strong>INPUT COMMON MODE RANGE</strong></td>
<td>Common-mode Voltage range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CM}$</td>
<td>$V_S = 2.4$ V to $40$ V</td>
<td>$(V–) – 0.2$</td>
<td></td>
<td>$(V+) + 0.2$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$, Rail to Rail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OUTPUT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OL}$</td>
<td>Voltage swing from $(V–)$</td>
<td>$I_{SINK} = 4$ mA</td>
<td></td>
<td>$250$</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OH}$</td>
<td>Voltage swing from $(V+)$(for Push-Pull only)</td>
<td>$I_{SOURCE} = 4$ mA</td>
<td></td>
<td>$250$</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{LKG}$</td>
<td>Open-drain output leakage current</td>
<td>$V_{ID} = +0.1$ V, $V_{PULLUP} = (V+)$</td>
<td></td>
<td>$0.1$</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{OL}$</td>
<td>Short-circuit current</td>
<td>$15$</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Sinking</td>
<td>$30$</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{OH}$</td>
<td>Short-circuit current</td>
<td>$15$</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Sourcing (for Push-Pull only)</td>
<td>$30$</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

(1) This parameter is ensured by design and/or characterization and is not tested in production.
6.8 Switching Characteristics
For $V_S$ (Total Supply Voltage) = $(V^+) - (V^-) = 12$ V, $V_{CM} = V_S / 2$ at $T_A = 25^\circ$C (Unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{PD-HL}$</td>
<td>Propagation delay time, high-to-low</td>
<td>$V_{OD} = 10$ mV, $C_L = 50$ pF</td>
<td>900</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$T_{PD-HL}$</td>
<td>Propagation delay time, high-to-low</td>
<td>$V_{OD} = 100$ mV, $C_L = 50$ pF</td>
<td>450</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$T_{PD-LH}$</td>
<td>Propagation delay time, low-to-high, push-pull output</td>
<td>$V_{OD} = 10$ mV, $C_L = 50$ pF</td>
<td>900</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$T_{PD-LH}$</td>
<td>Propagation delay time, low-to-high, push-pull output</td>
<td>$V_{OD} = 100$ mV, $C_L = 50$ pF</td>
<td>420</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$T_{RISE}$</td>
<td>Output Rise Time, 20% to 80%, push-pull output</td>
<td>$C_L = 50$ pF</td>
<td>15</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$T_{FALL}$</td>
<td>Output Fall Time, 80% to 20%</td>
<td>$C_L = 50$ pF</td>
<td>15</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$F_{TOGGLE}$</td>
<td>Toggle Frequency</td>
<td>$V_{ID} = 100$ mV, $C_L = 50$ pF</td>
<td>500</td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>

POWER ON TIME

| $P_{ON}$           | Power on-time                     |     |     | 200 | µs   |
7 Typical Characteristics

\[ T_A = 25^\circ C, V_S = 12 \text{ V}, R_{PULLUP} = 2.5k, C_L = 20\text{pF}, V_{CM} = 0 \text{ V}, V_{UNDERDRIVE} = 100 \text{ mV}, V_{OVERDRIVE} = 100 \text{ mV} \] unless otherwise noted.

---

**Figure 7-1. Supply Current per Channel vs. Supply Voltage, Output Low**

**Figure 7-2. Supply Current per Channel vs. Supply Voltage, Output High**

**Figure 7-3. Output Voltage vs. Output Sinking Current, 2.4 V**

**Figure 7-4. Output Voltage vs. Output Sourcing Current, 2.4 V**

**Figure 7-5. Output Voltage vs. Output Sinking Current, 5 V**

**Figure 7-6. Output Voltage vs. Output Sourcing Current, 5 V**
7 Typical Characteristics (continued)

$T_A = 25^\circ C, V_S = 12 \text{ V}, R_{PULLUP} = 2.5\text{k}, C_L = 20\text{pF}, V_{CM} = 0 \text{ V}, V_{UNDERDRIVE} = 100 \text{ mV}, V_{OVERDRIVE} = 100 \text{ mV}$ unless otherwise noted.

---

**Figure 7-7.** Output Voltage vs. Output Sinking Current, 12 V

**Figure 7-8.** Output Voltage vs. Output Sourcing Current, 12 V

**Figure 7-9.** Output Voltage vs. Output Sinking Current, 40 V

**Figure 7-10.** Output Voltage vs. Output Sourcing Current, 40 V

**Figure 7-11.** Propagation Delay, High to Low, 2.4V

**Figure 7-12.** Propagation Delay, Low to High, 2.4V
7 Typical Characteristics (continued)

\[ T_A = 25^\circ C, \ V_S = 12 \ V, \ R_{PULLUP} = 2.5k, \ C_L = 20pF, \ V_{CM} = 0 \ V, \ V_{UNDERDRIVE} = 100 \ mV, \ V_{OVERDRIVE} = 100 \ mV \] unless otherwise noted.

Figure 7-13. Propagation Delay, High to Low, 5V

Figure 7-14. Propagation Delay, Low to High, 5V

Figure 7-15. Propagation Delay, High to Low, 12V

Figure 7-16. Propagation Delay, Low to High, 12V

Figure 7-17. Propagation Delay, High to Low, 40V

Figure 7-18. Propagation Delay, Low to High, 40V
8 Detailed Description

8.1 Overview

The TLV181x and TLV182x devices are micro-power comparators with push-pull and open-drain output options. Operating down to 2.4 V while only consuming only 5 µA per channel, the TLV181x and TLV182x are well suited for portable, automotive and industrial applications. An internal power-on reset circuit ensures that the output remains in a known state during power-up and power-down.

8.2 Functional Block Diagrams

![Block Diagram](image)

**Figure 8-1. TLV18xx Block Diagram**

8.3 Feature Description

**TLV18xx Family Options**

The TLV18xx family consists of several output and pinout options, all featuring 40 V operation, micro-power 5 µA supply currents, 420 ns propagation delay, and a Power-On Reset (POR) function.

The TLV18xx family has two output options:

- The TLV181x has a push-pull (sink-source) output.
- The TLV182x has a open-drain (sink only) output, capable of being pulled-up to any voltage up to 40 V, independent of comparator supply voltage.

The TLV1811L and TLV1821L are alternate pinouts of the TLV1811 and TLV1821 that allow upgrading older devices such as the TLV7211, TLV7221, LMC7211 and LMC7221 family.

8.4 Device Functional Modes

8.4.1 Inputs

**8.4.1.1 TLV18xx Rail-to-Rail Input**

The TLV18xx input voltage range extends from 200 mV below V- to 200 mV above V+. The differential input voltage (V_{ID}) may be any voltage within these limits. No phase-inversion of the comparator output will occur when the input voltages stay within the specified range.
The Rail-to-Rail input does have an ESD clamp to the V+supply line and therefore the input voltage must not exceed the supply voltages by more than 200mV. It is not recommended to apply signals to the rail to rail inputs with no supply voltage.

8.4.1.2 ESD Protection

The TLV181x open-drain output ESD protection consists of a snapback ESD clamp between the output and V- to allow the output to be pulled above V+ to a maximum of 40 V. There is no "upper" ESD clamp diode between the output and V+ on the open-drain output. There is a "lower" clamp between V- and the output.

The TLV182x push-pull output ESD protection contains a conventional diode-type "upper" ESD clamp between the output and V+, and a "lower" ESD clamp between the output and V-. The output must not exceed the supply rails by more than 200mV.

If the inputs are to be connected to a low impedance source, such as a power supply or buffered reference line, TI recommends adding a current-limiting resistor in series with the input to limit any currents when the clamps conduct. The current must be limited 10 mA or less, though TI recommends limiting the current to 1mA or less. This series resistance may be part of any resistive input dividers or networks.

8.4.1.3 Unused Inputs

If a channel is not to be used, DO NOT tie the inputs together. Due to the high equivalent bandwidth and low offset voltage, tying the inputs directly together may cause high frequency chatter as the device triggers on its own internal wideband noise. Instead, the inputs must be tied to any available voltage that resides within the specified input voltage range and provides a minimum of 50 mV differential voltage. For example, one input can be grounded and the other input connected to a reference voltage, or even V+ (as long as the input is directly connected to the V+ pin to avoid transients).

8.4.2 Outputs

8.4.2.1 TLV181x Push-Pull Output

The TLV181x features a push-pull output stage capable of both sinking and sourcing current. This allows driving loads such as LED's and MOSFET gates, as well as eliminating the need for a power-wasting external pull-up resistor. The push-pull output must never be connected to another output.

Directly shorting the output to the opposite supply rail (V+ when output "low" or V- when output "High") can result in thermal runaway and eventual device destruction at high (>12 V) supply voltages. If output shorts are possible, a series current limiting resistor is recommended to limit the power dissipation.

Unused push-pull outputs must be left floating, and never tied to a supply, ground, or another output.

8.4.2.2 TLV182x Open-Drain Output

The TLV182x features an open-drain (also commonly called open collector) sinking-only output stage enabling the output logic levels to be pulled up to an external voltage from 0 V up to 40 V, independent of the comparator supply voltage (V+). The open-drain output allows logical OR'ing of multiple open drain outputs and logic level translation. TI recommends setting the pull-up resistor current to between 100uA and 1mA. Lower value pull-up resistor values will help increase the rising edge rise-time, but at the expense of increasing V<sub>OL</sub> and higher power dissipation. The rise-time is dependent on the time constant of the total pull-up resistance and total load capacitance. Large value pull-up resistors (>1 MΩ) will create an exponential rising edge due to the output RC time constant and increase the rise-time.

Directly shorting the output to V+ can result in thermal runaway and eventual device destruction at high (>12 V) pull-up voltages. If output shorts are possible, a series current limiting resistor is recommended to limit the power dissipation.

Unused open drain outputs may be left floating, or may be tied to the V- pin if floating pins are not desired.

8.4.3 Power-On Reset (POR)

The TLV18xx family has an internal Power-on-Reset (POR) circuit for known start-up or power-down conditions. While the power supply (V+) is ramping up or ramping down, the POR circuitry will be activated for up to 200µs after the minimum supply voltage threshold of 2.4 V is crossed, or immediately when the supply voltage drops...
below 2.4 V. When the supply voltage is equal to or greater than the minimum supply voltage, and after the delay period, the comparator output reflects the state of the differential input (V_{ID}).

For the TLV181x push-pull output devices, the output is held low during the POR period (t_{on}).

For the TLV182x open drain output option the POR circuit will keep the output high impedance (Hi-Z) during the POR period (t_{on}).

![Power-On Reset Timing Diagram](image)

**Figure 8-2. Power-On Reset Timing Diagram**

Note that it the nature of an open collector output that the output will rise with the pull-up voltage during the POR period.

### 8.4.4 Hysteresis

The TLV18xx family does not have internal hysteresis. Due to the wide effective bandwidth and low input offset voltage, it is possible for the output to "chatter" when the absolute differential voltage is near zero as the comparator triggers on it's own internal wideband noise. This is normal comparator behavior and is expected. TI recommends that the user add external hysteresis if slow moving signals are expected. See Section 9.1.2 in the following section.
9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Basic Comparator Definitions

9.1.1.1 Operation

The basic comparator compares the input voltage ($V_{IN}$) on one input to a reference voltage ($V_{REF}$) on the other input. In the Figure 9-1 example below, if $V_{IN}$ is less than $V_{REF}$, the output voltage ($V_{O}$) is logic low ($V_{OL}$). If $V_{IN}$ is greater than $V_{REF}$, the output voltage ($V_{O}$) is at logic high ($V_{OH}$). Table 9-1 summarizes the output conditions. The output logic can be inverted by simply swapping the input pins.

Table 9-1. Output Conditions

<table>
<thead>
<tr>
<th>Inputs Condition</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{IN+} &gt; V_{IN-}$</td>
<td>$V_{OH}$</td>
</tr>
<tr>
<td>$V_{IN+} = V_{IN-}$</td>
<td>Indeterminate (chatters - see Hysteresis)</td>
</tr>
<tr>
<td>$V_{IN+} &lt; V_{IN-}$</td>
<td>$V_{OL}$</td>
</tr>
</tbody>
</table>

9.1.1.2 Propagation Delay

There is a delay between from when the input crosses the reference voltage and the output responds. This is called the Propagation Delay. Propagation delay can be different between high-to low and low-to-high input transitions. This is shown as $t_{pLH}$ and $t_{pHL}$ in Figure 9-1 and is measured from the mid-point of the input to the midpoint of the output.

![Figure 9-1. Comparator Timing Diagram](image)
9.1.1.3 Overdrive Voltage

The overdrive voltage, \( V_{OD} \), is the amount of input voltage beyond the reference voltage (and not the total input peak-to-peak voltage). The overdrive voltage is 100 mV as shown in the Figure 9-1 example. The overdrive voltage can influence the propagation delay \( (t_p) \). The smaller the overdrive voltage, the longer the propagation delay, particularly when <100mV. If the fastest speeds are desired, it is recommended to apply the highest amount of overdrive possible.

The risetime \( (t_r) \) and falltime \( (t_f) \) is the time from the 20% and 80% points of the output waveform.

9.1.2 Hysteresis

The basic comparator configuration may oscillate or produce a noisy "chatter" output if the applied differential input voltage is near the comparator’s offset voltage. This usually occurs when the input signal is moving very slowly across the switching threshold of the comparator.

This problem can be prevented by the addition of hysteresis or positive feedback.

The hysteresis transfer curve is shown in Figure 9-2. This curve is a function of three components: \( V_{TH} \), \( V_{OS} \), and \( V_{HYST} \):

- \( V_{TH} \) is the actual set voltage or threshold trip voltage.
- \( V_{OS} \) is the internal offset voltage between \( V_{IN+} \) and \( V_{IN-} \). This voltage is added to \( V_{TH} \) to form the actual trip point at which the comparator must respond to change output states.
- \( V_{HYST} \) is the hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise.

![Figure 9-2. Hysteresis Transfer Curve](image)

For more information, please see Application Note SBOA219 "Comparator with and without hysteresis circuit".

9.1.2.1 Inverting Comparator With Hysteresis

The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply voltage \( (V_{CC}) \), as shown in Figure 9-3.

![Figure 9-3. TLV181xin an Inverting Configuration With Hysteresis](image)

The equivalent resistor networks when the output is high and low are shown in Figure 9-3.
Figure 9-4. Inverting Configuration Resistor Equivalent Networks

When $V_{IN}$ is less than $V_A$, the output voltage is high (for simplicity, assume $V_O$ switches as high as $V_{CC}$). The three network resistors can be represented as $R_1 \ || \ R_3$ in series with $R_2$, as shown in Figure 9-4.

Equation 1 below defines the high-to-low trip voltage ($V_{A1}$).

$$V_{A1} = \frac{V_{CC} \times R_2}{(R_1 \ || \ R_3) + R_2}$$  \hspace{1cm} (1)

When $V_{IN}$ is greater than $V_A$, the output voltage is low. In this case, the three network resistors can be presented as $R_2 \ || \ R_3$ in series with $R_1$, as shown in Equation 2.

Use Equation 2 to define the low to high trip voltage ($V_{A2}$).

$$V_{A2} = \frac{V_{CC} \times R_2 \ || \ R_3}{R_1 + (R_2 \ || \ R_3)}$$  \hspace{1cm} (2)

Equation 3 defines the total hysteresis provided by the network.

$$\Delta V_A = V_{A1} - V_{A2}$$  \hspace{1cm} (3)

9.1.2.2 Non-Inverting Comparator With Hysteresis

A non-inverting comparator with hysteresis requires a two-resistor network and a voltage reference ($V_{REF}$) at the inverting input, as shown in Figure 9-5.

Figure 9-5. TLV181x in a Non-Inverting Configuration With Hysteresis

The equivalent resistor networks when the output is high and low are shown in Figure 9-6.
When $V_{IN}$ is less than $V_{REF}$, the output is low. For the output to switch from low to high, $V_{IN}$ must rise above the $V_{IN1}$ threshold. Use Equation 4 to calculate $V_{IN1}$.

$$V_{IN1} = R_1 \times \frac{V_{REF}}{R_2} + V_{REF}$$  \hspace{1cm} (4)

When $V_{IN}$ is greater than $V_{REF}$, the output is high. For the comparator to switch back to a low state, $V_{IN}$ must drop below $V_{IN2}$. Use Equation 5 to calculate $V_{IN2}$.

$$V_{IN2} = \frac{V_{REF} (R_1 + R_2) - V_{CC} \times R_1}{R_2}$$  \hspace{1cm} (5)

The hysteresis of this circuit is the difference between $V_{IN1}$ and $V_{IN2}$, as shown in Equation 6.

$$\Delta V_{IN} = V_{CC} \times \frac{R_1}{R_2}$$  \hspace{1cm} (6)

For more information, please see Application Notes SNOA997 "Inverting comparator with hysteresis circuit" and SBOA313 "Non-Inverting Comparator With Hysteresis Circuit".

### 9.1.2.3 Inverting and Non-Inverting Hysteresis using Open-Drain Output

It is also possible to use an open drain output device, such as the TLV182x, but the output pull-up resistor must also be taken into account in the calculations. The pull-up resistor is seen in series with the feedback resistor when the output is high. Thus, the feedback resistor is actually seen as $R_2 + R_{PULLUP}$. TI recommends that the pull-up resistor be at least 10 times less than the feedback resistor value.

### 9.2 Typical Applications

#### 9.2.1 Window Comparator

Window comparators are commonly used to detect undervoltage and overvoltage conditions. Figure 9-7 shows a simple window comparator circuit. Window comparators require open drain outputs (TLV182x) if the outputs are directly connected together.
9.2.1.1 Design Requirements

For this design, follow these design requirements:
- Alert (logic low output) when an input signal is less than 1.1 V
- Alert (logic low output) when an input signal is greater than 2.2 V
- Alert signal is active low
- Operate from a 3.3-V power supply

9.2.1.2 Detailed Design Procedure

Configure the circuit as shown in Figure 9-7. Connect V_{CC} to a 3.3-V power supply and V_{EE} to ground. Make R1, R2 and R3 each 10-MΩ resistors. These three resistors are used to create the positive and negative thresholds for the window comparator (V_{TH+} and V_{TH-}).

With each resistor being equal, V_{TH+} is 2.2 V and V_{TH-} is 1.1 V. Large resistor values such as 10-MΩ are used to minimize power consumption. The resistor values may be recalculated to provide the desired trip point values.

The sensor output voltage is applied to the inverting and noninverting inputs of the two comparators. Using two open-drain output comparators allows the two comparator outputs to be Wire-OR’ed together.

The respective comparator outputs will be low when the sensor is less than 1.1 V or greater than 2.2 V. The respective comparator outputs will be high when the sensor is in the range of 1.1 V to 2.2 V (within the "window"), as shown in Figure 9-8.

9.2.1.3 Application Curve

For more information, please see Application note SBOA221 "Window comparator circuit".

Figure 9-7. Window Comparator

Figure 9-8. Window Comparator Results
9.2.2 Square-Wave Oscillator

Square-wave oscillator can be used as low cost timing reference or system supervisory clock source. A push-pull output (TLV181x) is recommended for best symmetry.

![Figure 9-9. Square-Wave Oscillator](image)

9.2.2.1 Design Requirements

The square-wave period is determined by the RC time constant of the capacitor $C_1$ and resistor $R_4$. The maximum frequency is limited by propagation delay of the device and the capacitance load at the output. The low input bias current allows a lower capacitor value and larger resistor value combination for a given oscillator frequency, which may help to reduce BOM cost and board space. TI recommends that $R_4$ be over several kilo-ohms to minimize loading of the output.

9.2.2.2 Detailed Design Procedure

The oscillation frequency is determined by the resistor and capacitor values. The following calculation provides details of the steps.

![Figure 9-10. Square-Wave Oscillator Timing Thresholds](image)

First consider the output of Figure Figure 9-9 as high, which indicates the inverted input $V_C$ is lower than the noninverting input ($V_A$). This causes the $C_1$ to be charged through $R_4$, and the voltage $V_C$ increases until it is equal to the noninverting input. The value of $V_A$ at the point is calculated by Equation 7.

$$V_{A1} = \frac{V_{CC} \times R_2}{R_2 + R_1 \times R_3}$$

(Equation 7)

if $R_1 = R_2 = R_3$, then $V_{A1} = 2 \frac{V_{CC}}{3}$

At this time the comparator output trips pulling down the output to the negative rail. The value of $V_A$ at this point is calculated by Equation 8.
\[ V_{A2} = \frac{V_{CC}(R_2 + R_3)}{R_1 + R_2 + R_3} \]  

(8)

if \( R_1 = R_2 = R_3 \), then \( V_{A2} = V_{CC}/3 \)

The \( C_1 \) now discharges through the \( R_4 \), and the voltage \( V_{CC} \) decreases until it reaches \( V_{A2} \). At this point, the output switches back to the starting state. The oscillation period equals to the time duration from for \( C_1 \) from \( 2V_{CC}/3 \) to \( V_{CC}/3 \) then back to \( 2V_{CC}/3 \), which is given by \( R_4C_1 \times \ln 2 \) for each trip. Therefore, the total time duration is calculated as \( 2R_4C_1 \times \ln 2 \).

The oscillation frequency can be obtained by Equation 9:

\[ f = \frac{1}{(2R_4 \times C_1 \times \ln 2)} \]  

(9)

### 9.2.2.3 Application Curve

Figure 9-11 shows the simulated results of an oscillator using the following component values:

- \( R_1 = R_2 = R_3 = R_4 = 100 \, \text{k\Omega} \)
- \( C_1 = 100 \, \text{pF}, C_L = 20 \, \text{pF} \)
- \( V+ = 5 \, \text{V}, V- = \text{GND} \)
- \( C_{\text{stray}} \) (not shown) from \( V_A \) TO GND = 10 pF

![Figure 9-11. Square-Wave Oscillator Output Waveform](image)

### 9.2.3 Adjustable Pulse Width Generator

Figure 9-12 is a variation on the square wave oscillator that allows adjusting the pulse widths.

\( R_4 \) and \( R_5 \) provide separate charge and discharge paths for the capacitor \( C \) depending on the output state.
The charge path is set through $R_5$ and $D_2$ when the output is high. Similarly, the discharge path for the capacitor is set by $R_4$ and $D_1$ when the output is low.

The pulse width $t_1$ is determined by the RC time constant of $R_5$ and $C$. Thus, the time $t_2$ between the pulses can be changed by varying $R_4$, and the pulse width can be altered by $R_5$. The frequency of the output can be changed by varying both $R_4$ and $R_5$. At low voltages, the effects of the diode forward drop (0.8 V, or 0.15 V for Shottky) must be taken into account by altering output high and low voltages in the calculations.

### 9.2.4 Time Delay Generator

The circuit shown in Figure 9-13 provides output signals at a prescribed time interval from a time reference and automatically resets the output low when the input returns to 0 V. This is useful for sequencing a "power on" signal to trigger a controlled start-up of power supplies.
Consider the case of \( V_{\text{IN}} = 0 \). The output of comparator 4 is also at ground, "shorting" the capacitor and holding it at 0V. When an input signal is applied, the output of open drain comparator 4 goes High-Z and C charges exponentially through R. This is indicated in the graph. The output voltages of comparators 1, 2, and 3 switch to the high state in sequence when \( V_C \) rises above the reference voltages \( V_1, V_2 \) and \( V_3 \). A small amount of hysteresis has been provided by the 10 k\( \Omega \) and 10 M\( \Omega \) resistors to insure fast switching when the RC time constant is chosen to give long delay times. A good starting point is \( R = 100 \text{k}\Omega \) and \( C = 0.01 \mu\text{F} \) to 1 \( \mu\text{F} \). All outputs will immediately go low when \( V_{\text{IN}} \) falls to 0V, due to the comparator output going low and immediately discharging the capacitor.

Comparator 4 must be a open-drain type output (TLV182x), whereas comparators 1 through 3 may be either open drain or push-pull output, depending on system requirements. \( R_{\text{PU}} \) is not required for push-pull output devices.

### 9.2.5 Logic Level Shifter

The output of the TLV182x is the uncommitted drain of the output transistor. Many open-drain outputs can be tied together to provide an output OR'ing function if desired.

![Universal Logic Level Shifter](image)

**Figure 9-14. Universal Logic Level Shifter**

The two 10 k\( \Omega \) resistors bias the input to half of the input logic supply level to set the threshold in the mid-point of the input logic levels. Only one shared output pull-up resistor is needed and may be connected to any pull-up voltage between 0 V and 5.5 V. The pullup voltage should match the driven logic input "high" level.

### 9.2.6 One-Shot Multivibrator

A monostable multivibrator has one stable state in which it can remain indefinitely. It can be triggered externally to another quasi-stable state. A monostable multivibrator can thus be used to generate a pulse of desired width. The desired pulse width is set by adjusting the values of \( C_2 \) and \( R_4 \). The resistor divider of \( R_1 \) and \( R_2 \) can be used to determine the magnitude of the input trigger pulse. The output will change state when \( V_1 < V_2 \). Diode \( D_2 \) provides a rapid discharge path for capacitor \( C_2 \) to reset at the end of the pulse. The diode also prevents the non-inverting input from being driven below ground.

![One-Shot Multivibrator](image)

**Figure 9-15. One-Shot Multivibrator**

A monostable multivibrator has one stable state in which it can remain indefinitely. It can be triggered externally to another quasi-stable state. A monostable multivibrator can thus be used to generate a pulse of desired width.

The desired pulse width is set by adjusting the values of \( C_2 \) and \( R_4 \). The resistor divider of \( R_1 \) and \( R_2 \) can be used to determine the magnitude of the input trigger pulse. The output will change state when \( V_1 < V_2 \). Diode \( D_2 \) provides a rapid discharge path for capacitor \( C_2 \) to reset at the end of the pulse. The diode also prevents the non-inverting input from being driven below ground.
9.2.7 Bi-Stable Multivibrator

A bi-stable multivibrator has two stable states. The reference voltage is set up by the voltage divider of $R_2$ and $R_3$. A pulse applied to the SET terminal will switch the output of the comparator high. The resistor divider of $R_1$ and $R_4$ now sets the non-inverting input to a voltage greater than the reference voltage. A pulse applied to RESET will now toggle the output low.

9.2.8 Zero Crossing Detector

A voltage divider of $R_4$ and $R_5$ establishes a reference voltage $V_1$ at the non-inverting input. By making the series resistance of $R_1$ and $R_2$ equal to $R_5$, the comparator will switch when $V_{IN} = 0$. Diode $D_1$ insures that $V_3$ clamps near ground. The voltage divider of $R_2$ and $R_3$ then prevents $V_2$ from going below ground. A small amount of hysteresis is setup to ensure rapid output voltage transitions.

9.2.9 Pulse Slicer

A Pulse Slicer is a variation of the Zero Crossing Detector and is used to detect the zero crossings on an input signal with a varying baseline level. This circuit works best with symmetrical waveforms. The RC network of $R_1$ and $C_1$ establishes an mean reference voltage $V_{REF}$, which tracks the mean amplitude of the $V_{IN}$ signal. The non-inverting input is directly connected to $V_{REF}$ through $R_2$. $R_2$ and $R_3$ are used to produce hysteresis to keep transitions free of spurious toggles. The time constant is a tradeoff between long-term symmetry and response time to changes in amplitude.

If the waveform is data, it is recommended that the data be encoded in NRZ (Non-Return to Zero) format to maintain proper average baseline. Asymmetrical inputs may suffer from timing distortions caused by the changing $V_{REF}$ average voltage.
For this design, follow these design requirements:

- The RC constant value (R2 and C1) must support the targeted data rate to maintain a valid tripping threshold.
- The hysteresis introduced with R2 and R43 helps to avoid spurious output toggles.

The TLV182x may also be used, but with the addition of a pull-up resistor on the output (not shown for clarity).

Figure 9-19 shows the results of a 9600 baud data signal riding on a varying baseline.

9.3 Power Supply Recommendations

Due to the fast output edges, it is critical to have bypass capacitors on the supply pin to prevent supply ringing and false triggers and oscillations. Bypass the supply directly at each device with a low ESR 0.1 µF ceramic bypass capacitor directly between VCC pin and ground pins. Narrow, peak currents will be drawn during the output transition time, particularly for the push-pull output device. These narrow pulses can cause un-bypassed supply lines and poor grounds to ring, possibly causing variation that can eat into the input voltage range and create an inaccurate comparison or even oscillations.

The device may be powered from both "split" supplies (V+ and V-), or "single" supplies (V+ and GND), with GND applied to the V- pin. Input signals must stay within the specified input range (between V+ and V-) for either type. Note that with a "split" supply the output will now swing "low" (VOL) to V- potential and not GND.

9.4 Layout

9.4.1 Layout Guidelines

For accurate comparator applications it is important maintain a stable power supply with minimized noise and glitches. Output rise and fall times are in the tens of nanoseconds, and should be treated as high speed logic devices. The bypass capacitor should be as close to the supply pin as possible and connected to a solid ground plane, and preferably directly between the VCC and GND pins.
Minimize coupling between outputs and inputs to prevent output oscillations. Do not run output and input traces in parallel unless there is a $V_{CC}$ or GND trace between output to reduce coupling. When series resistance is added to inputs, place resistor close to the device. A low value (<100 ohms) resistor may also be added in series with the output to dampen any ringing or reflections on long, non-impedance controlled traces. For best edge shapes, controlled impedance traces with back-terminations should be used when routing long distances.

9.4.2 Layout Example

![Dual Layout Example Diagram]

Figure 9-20. Dual Layout Example
10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

*Analog Engineers Circuit Cookbook: Amplifiers (See Comparators section)* - SLYY137
*Precision Design, Comparator with Hysteresis Reference Design*— TIDU020
*Window comparator circuit* - SBOA221
*Reference Design, Window Comparator Reference Design*— TIPD178
*Comparator with and without hysteresis circuit* - SBOA219
*Inverting comparator with hysteresis circuit* - SNOA997
*Non-Inverting Comparator With Hysteresis Circuit* - SBOA313
*Zero crossing detection using comparator circuit* - SNOA999
*PWM generator circuit* - SBOA212
*How to Implement Comparators for Improving Performance of Rotary Encoder in Industrial Drive Applications* - SNOAA41
*A Quad of Independently Func Comparators* - SNOA654

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](http://ti.com). Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

**TI E2E™ support forums** are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](http://www.ti.com).  

10.4 Trademarks

TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

**TI Glossary** This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
## PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV1812DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>3000</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>TL1812</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV1822DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>3000</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>TL1822</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBsolete:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead finish/Ball material** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLV1812, TLV1822:

- Automotive: TLV1812-Q1, TLV1822-Q1

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
### TAPE AND REEL INFORMATION

**REEL DIMENSIONS**

- **Reel Diameter**
- **Reel Width (W1)**

**TAPE DIMENSIONS**

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component thickness
- **P1**: Pitch between successive cavity centers

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**

- **Pocket Quadrants**
- **Sprocket Holes**
- **User Direction of Feed**

*All dimensions are nominal*

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV1812DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLV1822DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV1812DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>3000</td>
<td>356.0</td>
<td>356.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV1822DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>3000</td>
<td>356.0</td>
<td>356.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All dimensions are nominal*
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
   Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated