1 Features

- **Wide supply range:**
 - Dual supply: ±5 V to ±22 V
 - Single supply: 8 V to 44 V
- **Integrated fault protection:**
 - Overvoltage protection, source to supplies or source to drain: ±85 V
 - Overvoltage protection: ±60 V
 - Power-off protection: ±60 V
 - Adjustable overvoltage triggering thresholds
 - \(V_{FP} \): 3 V to \(V_{DD} \)
 - \(V_{FN} \): 0 V to \(V_{SS} \)
 - Interrupt flags to indicate overall and specific fault channel information
 - Non-fault channels continue to operate with low leakage currents
 - Output clamped to the fault supply in overvoltage condition
- **Latch-up immunity by device construction**
- **1.8-V Logic capable**
- **Fail-safe logic: up to 44 V independent of supply**
- **Break-before-make switching**
- **Industry-standard TSSOP and smaller WQFN package**

2 Applications

- Factory automation and control
- Programmable logic controllers (PLC)
- Analog input modules
- Semiconductor test equipment
- Battery test equipment
- Servo drive control module
- Data acquisition systems (DAQ)

<table>
<thead>
<tr>
<th>DEVICE NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMUX7348F</td>
<td>TSSOP (20)</td>
<td>6.50 mm × 4.40 mm</td>
</tr>
<tr>
<td>TMUX7349F</td>
<td>WQFN (20)</td>
<td>4.00 mm × 4.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.
(2) Preview package.
(3) Preview package for TMUX7349F.

3 Description

The TMUX7348F and TMUX7349F are modern complementary metal-oxide semiconductor (CMOS) analog multiplexers in 8:1 (single ended) and 4:1 (differential) configurations. The devices work well with dual supplies (±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as \(V_{DD} = 12 \) V, \(V_{SS} = –5 \) V). The overvoltage protection is available in powered and powered-off conditions, making the TMUX7348F and TMUX7349F devices suitable for applications where power supply sequencing cannot be precisely controlled.

The device blocks fault voltages up to +60 V and –60 V relative to ground in both powered and powered-off conditions. When no power supplies are present, the switch channels remain in the OFF state regardless of switch input conditions and logic control status. Under normal operation conditions, if the analog input signal level on any \(S_x \) pin exceeds positive fault supply (\(V_{FP} \)) or negative fault supply (\(V_{FN} \)) by a threshold voltage (\(V_T \)), the channel turns OFF and the \(S_x \) pin becomes high impedance. When the fault channel is selected, the drain pin (D or Dx) is pulled to the fault supply voltage (\(V_{FF} \) or \(V_{FN} \)) that was exceeded. The devices provide two active-low interrupt flags (FF and SF) to provide details of the fault. The FF flag indicates if any of the source inputs are experiencing a fault condition, while the SF flag is used to decode which specific inputs are experiencing a fault condition.

The low capacitance, low charge injection, and integrated fault protection enables the TMUX7348F and TMUX7349F devices to be used in front end data acquisition applications where high performance and high robustness are both critical. The devices are available in standard TSSOP package and smaller WQFN package (ideal if PCB space is limited).
Table of Contents

1 Features .. 1
2 Applications .. 1
3 Description ... 1
4 Revision History 2
5 Device Comparison Table 3
6 Pin Configuration and Functions 3
7 Specifications ... 6
 7.1 Absolute Maximum Ratings........................ 6
 7.2 ESD Ratings .. 6
 7.3 Thermal Information 7
 7.4 Recommended Operating Conditions 7
 7.5 Electrical Characteristics (Global) 8
 7.6 ±15 V Dual Supply: Electrical Characteristics 9
 7.7 ±20 V Dual Supply: Electrical Characteristics ... 12
 7.8 12 V Single Supply: Electrical Characteristics ... 15
 7.9 36 V Single Supply: Electrical Characteristics ... 18
 7.10 Typical Characteristics 21
8 Parameter Measurement Information 28
 8.1 On-Resistance 28
 8.2 Off-Leakage Current 28
 8.3 On-Leakage Current 29
 8.4 Input and Output Leakage Current Under
 Overvoltage Fault 29
 8.5 Break-Before-Make Delay 30
 8.6 Enable Delay Time 31
 8.7 Transition Time 31
 8.8 Fault Response Time 32
 8.9 Fault Recovery Time 32
8.10 Fault Flag Response Time 33
8.11 Fault Flag Recovery Time 33
8.12 Charge Injection 34
8.13 Off Isolation 34
8.14 Crosstalk .. 35
8.15 Bandwidth ... 36
8.16 THD + Noise 36
9 Detailed Description 37
 9.1 Overview .. 37
 9.2 Functional Block Diagram 37
 9.3 Feature Description 38
 9.4 Device Functional Modes 41
10 Application and Implementation 44
 10.1 Application Information 44
 10.2 Typical Application 44
11 Power Supply Recommendations 46
12 Layout .. 46
 12.1 Layout Guidelines 46
 12.2 Layout Example 46
13 Device and Documentation Support 49
 13.1 Documentation Support 49
 13.2 Receiving Notification of Documentation Updates.. 49
 13.3 Support Resources 49
 13.4 Trademarks 49
 13.5 Electrostatic Discharge Caution 49
 13.6 Glossary ... 49
14 Mechanical, Packaging, and Orderable
 Information ... 49

4 Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2022</td>
<td>*</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
5 Device Comparison Table

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMUX7348F</td>
<td>+60 V/–60 V Tolerant, Fault-protected, Latch-up Immune, Single-Ended 8:1 Multiplexers with Adjustable Fault Threshold</td>
</tr>
<tr>
<td>TMUX7349F</td>
<td>+60 V/–60 V Tolerant, Fault-protected, Latch-up Immune, Dual 4:1 Multiplexers with Adjustable Fault Threshold</td>
</tr>
</tbody>
</table>

6 Pin Configuration and Functions

Table 6-1. Pin Functions: TMUX7348F

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>TYPE (1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>1</td>
<td>I</td>
<td>Logic control input address 0 (A0). The pin has a 4 MΩ internal pull-down resistor. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 9.4.3 for more details.</td>
</tr>
<tr>
<td>A1</td>
<td>20</td>
<td>I</td>
<td>Logic control input address 1 (A1). The pin has a 4 MΩ internal pull-down resistor. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 9.4.3 for more details.</td>
</tr>
<tr>
<td>A2</td>
<td>19</td>
<td>I</td>
<td>Logic control input address 2 (A2). The pin has a 4 MΩ internal pull-down resistor. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 9.4.3 for more details.</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>I/O</td>
<td>Drain pin. Can be an input or output. The drain pin is not overvoltage protected and shall remain within the recommended operating range.</td>
</tr>
<tr>
<td>EN</td>
<td>2</td>
<td>I</td>
<td>Active high logic enable (EN) pin. The pin has a 4 MΩ internal pull-down resistor. The device is disabled and all switches become high impedance when the pin is low. When the pin is high, the Ax logic inputs determine individual switch states. See Section 9.4.3 for more details.</td>
</tr>
<tr>
<td>FF</td>
<td>11</td>
<td>O</td>
<td>General fault flag. This pin is an open drain output and is asserted low when overvoltage condition is detected on any of the source (Sx) input pins. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 kΩ pull-up resistor.</td>
</tr>
<tr>
<td>GND</td>
<td>18</td>
<td>P</td>
<td>Ground (0 V) reference</td>
</tr>
<tr>
<td>S1</td>
<td>4</td>
<td>I/O</td>
<td>Overvoltage protected source pin 1. Can be an input or output.</td>
</tr>
<tr>
<td>S2</td>
<td>5</td>
<td>I/O</td>
<td>Overvoltage protected source pin 2. Can be an input or output.</td>
</tr>
<tr>
<td>S3</td>
<td>6</td>
<td>I/O</td>
<td>Overvoltage protected source pin 3. Can be an input or output.</td>
</tr>
<tr>
<td>S4</td>
<td>7</td>
<td>I/O</td>
<td>Overvoltage protected source pin 4. Can be an input or output.</td>
</tr>
<tr>
<td>S5</td>
<td>16</td>
<td>I/O</td>
<td>Overvoltage protected source pin 5. Can be an input or output.</td>
</tr>
<tr>
<td>S6</td>
<td>15</td>
<td>I/O</td>
<td>Overvoltage protected source pin 6. Can be an input or output.</td>
</tr>
<tr>
<td>S7</td>
<td>14</td>
<td>I/O</td>
<td>Overvoltage protected source pin 7. Can be an input or output.</td>
</tr>
<tr>
<td>S8</td>
<td>13</td>
<td>I/O</td>
<td>Overvoltage protected source pin 8. Can be an input or output.</td>
</tr>
<tr>
<td>SF</td>
<td>10</td>
<td>O</td>
<td>Specific fault flag. This pin is an open drain output and is asserted low when overvoltage condition is detected on a specific pin, depending on the state of A0, A1, and A2, as shown in Table 9-1. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 kΩ pull-up resistor.</td>
</tr>
</tbody>
</table>

(1) Logic inputs must be asserted high before enabling control inputs.
Table 6-1. Pin Functions: TMUX7348F (continued)

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>P</td>
<td>Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.</td>
</tr>
<tr>
<td>VFN</td>
<td>P</td>
<td>Negative fault voltage supply that determines the overvoltage protection triggering threshold on the negative side. Connect to VSS if the triggering threshold is to be the same as the device's negative supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VFN and GND.</td>
</tr>
<tr>
<td>VFP</td>
<td>P</td>
<td>Positive fault voltage supply that determines the overvoltage protection triggering threshold on the positive side. Connect to VDD if the triggering threshold is to be the same as the device's positive supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VFP and GND.</td>
</tr>
<tr>
<td>VSS</td>
<td>P</td>
<td>Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.</td>
</tr>
<tr>
<td>Thermal Pad</td>
<td>—</td>
<td>Thermal pad. The thermal pad is not connected internally. It is recommended that the pad be tied to GND or VSS for best performance.</td>
</tr>
</tbody>
</table>

(1) I = input, O = output, I/O = input and output, P = power
(2) Preview package

![Figure 6-3. (Preview) PW Package, 20-Pin TSSOP (Top View)](Not to scale)

![Figure 6-4. (Preview) RTJ Package, 20-Pin WQFN (Top View)](Not to scale)

Table 6-2. Pin Functions: TMUX7349F

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>I</td>
<td>Logic control input address 0 (A0). The pin has a 4 MΩ internal pull-down resistor. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 9.4.3 for more details.</td>
</tr>
<tr>
<td>A1</td>
<td>I</td>
<td>Logic control input address 1 (A1). The pin has a 4 MΩ internal pull-down resistor. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 9.4.3 for more details.</td>
</tr>
<tr>
<td>DA</td>
<td>I/O</td>
<td>Drain terminal A. Can be an input or output. The drain pin is not overvoltage protected and shall remain within the recommended operating range.</td>
</tr>
<tr>
<td>DB</td>
<td>I/O</td>
<td>Drain terminal B. Can be an input or output. The drain pin is not overvoltage protected and shall remain within the recommended operating range.</td>
</tr>
<tr>
<td>EN</td>
<td>I</td>
<td>Active high logic enable (EN) pin. The pin has a 4 MΩ internal pull-down resistor. The device is disabled and all switches become high impedance when the pin is low. When the pin is high, the Ax logic inputs determine individual switch states. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 9.4.3 for more details.</td>
</tr>
<tr>
<td>FF</td>
<td>O</td>
<td>General fault flag. This pin is an open drain output and is asserted low when overvoltage condition is detected on any of the source (Sx) input pins. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 kΩ pull-up resistor.</td>
</tr>
<tr>
<td>GND</td>
<td>P</td>
<td>Ground (0 V) reference</td>
</tr>
<tr>
<td>PIN</td>
<td>TYPE(1)</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>S1A</td>
<td>I/O</td>
<td>Overvoltage protected source pin 1A. Can be an input or output.</td>
</tr>
<tr>
<td>S1B</td>
<td>I/O</td>
<td>Overvoltage protected source pin 1B. Can be an input or output.</td>
</tr>
<tr>
<td>S2A</td>
<td>I/O</td>
<td>Overvoltage protected source pin 2A. Can be an input or output.</td>
</tr>
<tr>
<td>S2B</td>
<td>I/O</td>
<td>Overvoltage protected source pin 2B. Can be an input or output.</td>
</tr>
<tr>
<td>S3A</td>
<td>I/O</td>
<td>Overvoltage protected source pin 3A. Can be an input or output.</td>
</tr>
<tr>
<td>S3B</td>
<td>I/O</td>
<td>Overvoltage protected source pin 3B. Can be an input or output.</td>
</tr>
<tr>
<td>S4A</td>
<td>I/O</td>
<td>Overvoltage protected source pin 4A. Can be an input or output.</td>
</tr>
<tr>
<td>S4B</td>
<td>I/O</td>
<td>Overvoltage protected source pin 4B. Can be an input or output.</td>
</tr>
<tr>
<td>SF</td>
<td>O</td>
<td>Specific fault flag. This pin is an open drain output and is asserted low when an overvoltage condition is detected on a specific pin, depending on the state of A0, A1, and EN, as shown in Table 9-2. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 kΩ pull-up resistor.</td>
</tr>
<tr>
<td>VDD</td>
<td>P</td>
<td>Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.</td>
</tr>
<tr>
<td>VFN</td>
<td>P</td>
<td>Negative fault voltage supply that determines the overvoltage protection triggering threshold on the negative side. Connect to VSS if the triggering threshold is to be the same as the device's negative supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VFN and GND.</td>
</tr>
<tr>
<td>VFP</td>
<td>P</td>
<td>Positive fault voltage supply that determines the overvoltage protection triggering threshold on the positive side. Connect to VDD if the triggering threshold is to be the same as the device's positive supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VFP and GND.</td>
</tr>
<tr>
<td>VSS</td>
<td>P</td>
<td>Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.</td>
</tr>
<tr>
<td>Thermal Pad</td>
<td>—</td>
<td>Thermal pad. The thermal pad is not connected internally. It is recommended that the pad be tied to GND or VSS for best performance.</td>
</tr>
</tbody>
</table>

(1) I = input, O = output, I/O = input and output, P = power
(2) Preview package
7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{DD}}) to (V_{\text{SS}})</td>
<td>-0.3</td>
<td>48</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{DD}}) to GND</td>
<td>-48</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{SS}}) to GND</td>
<td>-48</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{FP}}) to GND</td>
<td>-0.3</td>
<td>(V_{\text{DD}} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{FN}}) to GND</td>
<td>(V_{\text{SS}} - 0.3)</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{S}}) to GND</td>
<td>-65</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{S}}) to (V_{\text{DD}})</td>
<td>-90</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{S}}) to (V_{\text{SS}})</td>
<td>90</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{D}})</td>
<td>(V_{\text{FN}} - 0.7)</td>
<td>(V_{\text{FP}} + 0.7)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{EN}}) or (V_{\text{Ax}}) Logic control input pin voltage ((\text{EN}, \text{A}0, \text{A}1, \text{A}2))(^{(2)})</td>
<td>GND</td>
<td>-0.7</td>
<td>48 V</td>
</tr>
<tr>
<td>(V_{\text{OF}}) Logic output pin ((\text{SF}, \text{FF})) voltage(^{(2)})</td>
<td>GND</td>
<td>-0.7</td>
<td>6 V</td>
</tr>
<tr>
<td>(I_{\text{EN}}) or (I_{\text{Ax}}) Logic control input pin current ((\text{EN}, \text{A}0, \text{A}1, \text{A}2))(^{(2)})</td>
<td>-30</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{OF}}) Logic output pin ((\text{SF}, \text{FF})) current(^{(2)})</td>
<td>-10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{S}}) or (I_{\text{D}}) (CONT) Source or drain continuous current ((\text{Sx}) or (\text{D}))</td>
<td>(I_{\text{DC}} \pm 10%)(^{(3)})</td>
<td>(I_{\text{DC}} \pm 10%)(^{(3)})</td>
<td>mA</td>
</tr>
<tr>
<td>(T_{\text{stg}}) Storage temperature</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{\text{A}}) Ambient temperature</td>
<td>-55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{\text{J}}) Junction temperature</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(P_{\text{tot}}) Total power dissipation (QFN)</td>
<td>1900</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>(P_{\text{tot}}) Total power dissipation (TSSOP)</td>
<td>800</td>
<td></td>
<td>mW</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.

\(^{(2)}\) Stresses have to be kept at or below both voltage and current ratings at all time.

\(^{(3)}\) Refer to Recommended Operating Conditions for \(I_{\text{DC}}\) ratings.

\(^{(4)}\) For QFN package: \(P_{\text{tot}}\) derates linearly above \(T_{\text{A}} = 70\)°C by 28.5 mW/°C

\(^{(5)}\) For TSSOP package: \(P_{\text{tot}}\) derates linearly above \(T_{\text{A}} = 70\)°C by 12.0 mW/°C

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{ESD}}) Electrostatic discharge</td>
<td>±3500</td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002(^{(2)})</td>
<td>±750</td>
<td>V</td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

\(^{(2)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.
7.3 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC (1)</th>
<th>TMUX7348F/ TMUX7349F</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PW (TSSOP)</td>
<td>RTJ (WQFN)</td>
</tr>
<tr>
<td></td>
<td>20 PIN S</td>
<td>20 PIN S</td>
</tr>
<tr>
<td>(R_{\theta JA})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>84.3</td>
</tr>
<tr>
<td>(R_{\theta JC(top)})</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>22.7</td>
</tr>
<tr>
<td>(R_{\theta JB})</td>
<td>Junction-to-board thermal resistance</td>
<td>37.3</td>
</tr>
<tr>
<td>(\Psi_{JT})</td>
<td>Junction-to-top characterization parameter</td>
<td>1.0</td>
</tr>
<tr>
<td>(\Psi_{JB})</td>
<td>Junction-to-board characterization parameter</td>
<td>36.7</td>
</tr>
<tr>
<td>(R_{\theta JC(bot)})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD} - V_{SS}) (1)</td>
<td>Power supply voltage differential</td>
<td>8</td>
<td>44</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DD})</td>
<td>Positive power supply voltage</td>
<td>5</td>
<td>44</td>
<td>V</td>
</tr>
<tr>
<td>(V_{FP})</td>
<td>Positive fault clamping voltage</td>
<td>3</td>
<td>(V_{DD})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{FN})</td>
<td>Negative fault clamping voltage</td>
<td>(V_{SS})</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>(V_S)</td>
<td>Source pin (Sx) voltage (non-fault condition)</td>
<td>(V_{FN})</td>
<td>(V_{FP})</td>
<td>V</td>
</tr>
<tr>
<td>(V_S) to GND</td>
<td>Source pin (Sx) voltage (fault condition)</td>
<td>–60</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>(V_S) to (V_{DD}) (2)</td>
<td>Source pin (Sx) voltage to (V_{DD}) or (V_D) (fault condition)</td>
<td>−85</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_S) to (V_{SS}) (2)</td>
<td>Source pin (Sx) voltage to (V_{SS}) or (V_D) (fault condition)</td>
<td>85</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_D)</td>
<td>Drain pin (D, Dx) voltage</td>
<td>(V_{FN})</td>
<td>(V_{FP})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EN}) or (V_{Ax})</td>
<td>Logic control input pin voltage (EN, A0, A1, A2)</td>
<td>0</td>
<td>44</td>
<td>V</td>
</tr>
<tr>
<td>(V_{AF})</td>
<td>Logic output pin (SF, FF) voltage</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(T_A)</td>
<td>Ambient temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>(I_{DC}) (3)</td>
<td>Continuous current through switch</td>
<td>(T_A = 25^\circ C)</td>
<td>9</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(T_A = 85^\circ C)</td>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T_A = 125^\circ C)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) \(V_{DD} \) and \(V_{SS} \) can be any value as long as \(8 \text{ V} \leq (V_{DD} - V_{SS}) \leq 44 \text{ V} \).
(2) Under a fault condition, the potential difference between source pin (Sx) and supply pins (\(V_{DD} \) and \(V_{SS} \)) or source pin (Sx) and drain pins (D, Dx) may not exceed 85 V.
(3) Fault supplies are tied to the primary supplies (\(V_{FP} = V_{DD}, V_{FN} = V_{SS} \)).
7.5 Electrical Characteristics (Global)

at $T_A = 25^\circ C$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_T</td>
<td>Threshold voltage for fault detector</td>
<td>25°C</td>
<td>0.7</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IH}</td>
<td>High-level input voltage</td>
<td>EN, Ax pins</td>
<td>–40°C to +125°C</td>
<td>1.3</td>
<td>44</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low-level input voltage</td>
<td>EN, Ax pins</td>
<td>–40°C to +125°C</td>
<td>0</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>$V_{OL(FLAG)}$</td>
<td>Low-level output voltage</td>
<td>FF and SF pins, $I_O = 5 \text{ mA}$</td>
<td>–40°C to +125°C</td>
<td>0.35</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{UVLO}</td>
<td>Undervoltage lockout (UVLO) threshold voltage ($V_{DD} - V_{SS}$)</td>
<td>Rising edge, single supply</td>
<td>–40°C to +125°C</td>
<td>5.1</td>
<td>6</td>
<td>6.4</td>
</tr>
<tr>
<td>V_{HYS}</td>
<td>Undervoltage lockout (UVLO) hysteresis</td>
<td>Single supply</td>
<td>–40°C to +125°C</td>
<td>5</td>
<td>5.8</td>
<td>6.3</td>
</tr>
<tr>
<td>$R_{D(OVP)}$</td>
<td>Drain resistance to supply rail during overvoltage event on selected source pin</td>
<td>25°C</td>
<td>40</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.6 ±15 V Dual Supply: Electrical Characteristics

$V_{DD} = +15\, \text{V} \pm 10\%$, $V_{SS} = -15\, \text{V} \pm 10\%$, GND = 0 V (unless otherwise noted)

Typical at $V_{DD} = +15\, \text{V}$, $V_{SS} = -15\, \text{V}$, $T_A = +25^\circ\text{C}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ON}</td>
<td>On-resistance</td>
<td>$V_S = -10, \text{V}$ to $+10, \text{V}$, $I_S = -1, \text{mA}$</td>
<td>25°C</td>
<td>180</td>
<td>250</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+85^\circ\text{C}$</td>
<td>330</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+125^\circ\text{C}$</td>
<td>390</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>ΔR_{ON}</td>
<td>On-resistance mismatch between channels</td>
<td>$V_S = -10, \text{V}$ to $+10, \text{V}$, $I_S = -1, \text{mA}$</td>
<td>25°C</td>
<td>2 5</td>
<td>8</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+85^\circ\text{C}$</td>
<td>12</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+125^\circ\text{C}$</td>
<td>13</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>R_{FLAT}</td>
<td>On-resistance flatness</td>
<td>$V_S = -10, \text{V}$ to $+10, \text{V}$, $I_S = -1, \text{mA}$</td>
<td>25°C</td>
<td>1.5</td>
<td>3.5</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+85^\circ\text{C}$</td>
<td>4</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+125^\circ\text{C}$</td>
<td>4</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>$R_{ON, DRIFT}$</td>
<td>On-resistance drift</td>
<td>$V_S = 0, \text{V}$, $I_S = -1, \text{mA}$</td>
<td>-40°C to $+125^\circ\text{C}$</td>
<td>1</td>
<td></td>
<td>nA/C</td>
</tr>
<tr>
<td>FAULT CONDITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{S(OFF)}$</td>
<td>Source off leakage current$^{(1)}$</td>
<td>$V_{DD} = 16.5, \text{V}$, $V_{SS} = -16.5, \text{V}$</td>
<td>25°C</td>
<td>-1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+85^\circ\text{C}$</td>
<td>-1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+125^\circ\text{C}$</td>
<td>-4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>$I_{D(OFF)}$</td>
<td>Drain off leakage current$^{(1)}$</td>
<td>$V_{DD} = 16.5, \text{V}$, $V_{SS} = -16.5, \text{V}$</td>
<td>25°C</td>
<td>-1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+85^\circ\text{C}$</td>
<td>-3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+125^\circ\text{C}$</td>
<td>-14</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>$I_{S(ON)}$</td>
<td>Output on leakage current$^{(2)}$</td>
<td>$V_{DD} = 16.5, \text{V}$, $V_{SS} = -16.5, \text{V}$</td>
<td>25°C</td>
<td>-1.5</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+85^\circ\text{C}$</td>
<td>-6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to $+125^\circ\text{C}$</td>
<td>-22</td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

LOGIC INPUT/OUTPUT							
I_H	High-level input current	$V_{EN} = V_{AA} = V_{DD}$	25°C	-2	±0.6	2	μA
			-40°C to $+125^\circ\text{C}$	-2		2	μA
I_L	Low-level input current	$V_{EN} = V_{AA} = 0\, \text{V}$	25°C	-1.1	±0.6	1.1	μA
			-40°C to $+125^\circ\text{C}$	-1.2		1.2	μA

SWITCHING CHARACTERISTICS						
$I_{ON\ (EN)}$	Enable turn-on time	$V_S = 10\, \text{V}$, $R_L = 4\, \text{k}\Omega$, $C_L = 12\, \text{pF}$	25°C	165	265	ns
			-40°C to $+85^\circ\text{C}$	285		ns
			-40°C to $+125^\circ\text{C}$	300		ns
7.6 ±15 V Dual Supply: Electrical Characteristics (continued)

V\text{DD} = +15\ V ± 10\%, \ V\text{SS} = -15\ V ± 10\%, \ \text{GND} = 0\ V \text{ (unless otherwise noted)}

Typical at V\text{DD} = +15\ V, \ V\text{SS} = -15\ V, \ T\text{A} = 25°C \text{ (unless otherwise noted)}

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>\text{T\text{A}}</th>
<th>\text{MIN}</th>
<th>\text{TYP}</th>
<th>\text{MAX}</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t\text{OFF (EN)}</td>
<td>Enable turn-off time</td>
<td>V\text{S} = 10\ V, \ R\text{L} = 4\ \text{kΩ}, \ C\text{L} = 12\ \text{pF}</td>
<td>25°C</td>
<td>350</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>t\text{T\text{RAN}}</td>
<td>Transition time</td>
<td>V\text{S} = 10\ V, \ R\text{L} = 4\ \text{kΩ}, \ C\text{L} = 12\ \text{pF}</td>
<td>25°C</td>
<td>170</td>
<td>225</td>
<td>ns</td>
</tr>
<tr>
<td>t\text{RESPONSE}</td>
<td>Fault response time</td>
<td>V\text{FP} = 15\ V, \ V\text{FN} = -15\ V, \ R\text{L} = 4\ \text{kΩ}, \ C\text{L} = 12\ \text{pF}</td>
<td>25°C</td>
<td>300</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>t\text{RECOVERY}</td>
<td>Fault recovery time</td>
<td>V\text{FP} = 15\ V, \ V\text{FN} = -15\ V, \ R\text{L} = 4\ \text{kΩ}, \ C\text{L} = 12\ \text{pF}</td>
<td>25°C</td>
<td>1.4</td>
<td>2 µs</td>
<td></td>
</tr>
<tr>
<td>t\text{RESPONSE(FLAG)}</td>
<td>Fault flag response time</td>
<td>V\text{FP} = 15\ V, \ V\text{FN} = -15\ V, \ V\text{PU} = 5\ V, \ R\text{PU} = 1\ \text{kΩ}, \ C\text{L} = 12\ \text{pF}</td>
<td>25°C</td>
<td>110</td>
<td>125</td>
<td>ns</td>
</tr>
<tr>
<td>t\text{RECOVERY(FLAG)}</td>
<td>Fault flag recovery time</td>
<td>V\text{FP} = 15\ V, \ V\text{FN} = -15\ V, \ V\text{PU} = 5\ V, \ R\text{PU} = 1\ \text{kΩ}, \ C\text{L} = 12\ \text{pF}</td>
<td>25°C</td>
<td>0.9</td>
<td>1 µs</td>
<td></td>
</tr>
<tr>
<td>t\text{BBM}</td>
<td>Break-before-make time delay</td>
<td>V\text{S} = 10\ V, \ R\text{L} = 4\ \text{kΩ}, \ C\text{L} = 12\ \text{pF}</td>
<td>–40°C to +125°C</td>
<td>50</td>
<td>120</td>
<td>ns</td>
</tr>
<tr>
<td>Q\text{INJ}</td>
<td>Charge injection</td>
<td>V\text{S} = 0\ V, \ C\text{L} = 1\ \text{nF}</td>
<td>25°C</td>
<td>–15</td>
<td>20</td>
<td>pC</td>
</tr>
<tr>
<td>O\text{ISO}</td>
<td>Off-isolation</td>
<td>R\text{S} = 50\ \text{Ω}, \ R\text{L} = 50\ \text{Ω}, \ C\text{L} = 5\ \text{pF}, \ V\text{S} = 200\ \text{mV}_{\text{RMS}}, \ V\text{BIAS} = 0\ \text{V}, \ f = 1\ \text{MHz}</td>
<td>25°C</td>
<td>–82</td>
<td>–85</td>
<td>dB</td>
</tr>
<tr>
<td>X\text{TALK}</td>
<td>Intra-channel crosstalk</td>
<td>R\text{S} = 50\ \text{Ω}, \ R\text{L} = 50\ \text{Ω}, \ C\text{L} = 5\ \text{pF}, \ V\text{S} = 200\ \text{mV}_{\text{RMS}}, \ V\text{BIAS} = 0\ \text{V}, \ f = 1\ \text{MHz}</td>
<td>25°C</td>
<td>–95</td>
<td>–98</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>Inter-channel crosstalk (TMUX7349F)</td>
<td>R\text{S} = 50\ \text{Ω}, \ R\text{L} = 50\ \text{Ω}, \ C\text{L} = 5\ \text{pF}, \ V\text{S} = 200\ \text{mV}_{\text{RMS}}, \ V\text{BIAS} = 0\ \text{V}, \ f = 1\ \text{MHz}</td>
<td>25°C</td>
<td>–103</td>
<td>–98</td>
<td>dB</td>
</tr>
<tr>
<td>BW</td>
<td>–3 dB bandwidth (TMUX7348F)</td>
<td>R\text{S} = 50\ \text{Ω}, \ R\text{L} = 50\ \text{Ω}, \ C\text{L} = 5\ \text{pF}, \ V\text{S} = 200\ \text{mV}_{\text{RMS}}, \ V\text{BIAS} = 0\ \text{V}, \ f = 1\ \text{MHz}</td>
<td>25°C</td>
<td>150</td>
<td>175</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>–3 dB bandwidth (TMUX7349F)</td>
<td>R\text{S} = 50\ \text{Ω}, \ R\text{L} = 50\ \text{Ω}, \ C\text{L} = 5\ \text{pF}, \ V\text{S} = 200\ \text{mV}_{\text{RMS}}, \ V\text{BIAS} = 0\ \text{V}, \ f = 1\ \text{MHz}</td>
<td>25°C</td>
<td>280</td>
<td>300</td>
<td>MHz</td>
</tr>
<tr>
<td>I\text{LOSS}</td>
<td>Insertion loss</td>
<td>R\text{S} = 50\ \text{Ω}, \ R\text{L} = 50\ \text{Ω}, \ C\text{L} = 5\ \text{pF}, \ V\text{S} = 200\ \text{mV}_{\text{RMS}}, \ V\text{BIAS} = 0\ \text{V}, \ f = 1\ \text{MHz}</td>
<td>25°C</td>
<td>–9</td>
<td>–12</td>
<td>dB</td>
</tr>
<tr>
<td>THD+N</td>
<td>Total harmonic distortion plus noise</td>
<td>R\text{S} = 40\ \text{Ω}, \ R\text{L} = 10\ \text{kΩ}, \ V\text{S} = 15\ \text{V}_{\text{PP}}, \ V\text{BIAS} = 0\ \text{V}, \ f = 20\ \text{Hz} to 20\ \text{kHz}</td>
<td>25°C</td>
<td>0.0014</td>
<td>0.002</td>
<td>%</td>
</tr>
<tr>
<td>C\text{S(OFF)}</td>
<td>Input off-capacitance</td>
<td>f = 1\ \text{MHz}, \ V\text{S} = 0\ \text{V}</td>
<td>25°C</td>
<td>3.5</td>
<td>5</td>
<td>pF</td>
</tr>
<tr>
<td>C\text{D(OFF)}</td>
<td>Output off-capacitance (TMUX7348F)</td>
<td>f = 1\ \text{MHz}, \ V\text{S} = 0\ \text{V}</td>
<td>25°C</td>
<td>28</td>
<td>30</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>Output off-capacitance (TMUX7349F)</td>
<td>f = 1\ \text{MHz}, \ V\text{S} = 0\ \text{V}</td>
<td>25°C</td>
<td>15</td>
<td>17</td>
<td>pF</td>
</tr>
<tr>
<td>C\text{S(ON)}</td>
<td>Input/Output on-capacitance (TMUX7348F)</td>
<td>f = 1\ \text{MHz}, \ V\text{S} = 0\ \text{V}</td>
<td>25°C</td>
<td>30</td>
<td>32</td>
<td>pF</td>
</tr>
<tr>
<td>C\text{D(ON)}</td>
<td>Input/Output on-capacitance (TMUX7349F)</td>
<td>f = 1\ \text{MHz}, \ V\text{S} = 0\ \text{V}</td>
<td>25°C</td>
<td>17</td>
<td>19</td>
<td>pF</td>
</tr>
</tbody>
</table>
7.6 ±15 V Dual Supply: Electrical Characteristics (continued)

$V_{DD} = +15 \, \text{V} \pm 10\%$, $V_{SS} = -15 \, \text{V} \pm 10\%$, $GND = 0 \, \text{V}$ (unless otherwise noted)
Typical at $V_{DD} = +15 \, \text{V}$, $V_{SS} = -15 \, \text{V}$, $T_A = 25^\circ\text{C}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>V_{DD} supply current</td>
<td>$V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>0.24</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>I_{SS}</td>
<td>V_{SS} supply current</td>
<td>$V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>0.14</td>
<td>0.4</td>
<td>mA</td>
</tr>
<tr>
<td>I_{GND}</td>
<td>GND current</td>
<td>$V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>0.075</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{FP}</td>
<td>V_{FP} supply current</td>
<td>$V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{FN}</td>
<td>V_{FN} supply current</td>
<td>$V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{DD(FA)}$</td>
<td>V_{DD} supply current under fault</td>
<td>$V_{S} = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>0.25</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{SS(FA)}$</td>
<td>V_{SS} supply current under fault</td>
<td>$V_{S} = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>0.15</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{GND(FA)}$</td>
<td>GND current under fault</td>
<td>$V_{S} = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>0.15</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{FP(FA)}$</td>
<td>V_{FP} supply current under fault</td>
<td>$V_{S} = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>9</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{FN(FA)}$</td>
<td>V_{FN} supply current under fault</td>
<td>$V_{S} = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td>25°C</td>
<td>9</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{DD(DISABLE)}$</td>
<td>V_{DD} supply current (disable mode)</td>
<td>$V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 0 , \text{V}$</td>
<td>25°C</td>
<td>0.15</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{SS(DISABLE)}$</td>
<td>V_{SS} supply current (disable mode)</td>
<td>$V_{DD} = V_{FP} = 16.5 , \text{V}$, $V_{SS} = V_{FN} = -16.5 , \text{V}$, $V_{Ax} = 0 , \text{V}$, $5 , \text{V}$, or V_{DD}, $V_{EN} = 0 , \text{V}$</td>
<td>25°C</td>
<td>0.1</td>
<td>0.4</td>
<td>mA</td>
</tr>
</tbody>
</table>

1. When V_{S} is positive, V_{D} is negative. And when V_{S} is negative, V_{D} is positive.
2. When V_{S} is at a voltage potential, V_{D} is floating. And when V_{D} is at a voltage potential, V_{S} is floating.
7.7 ±20 V Dual Supply: Electrical Characteristics

Nomenclature

- **V_{DD}**: +20 V ± 10%, **V_{SS}**: −20 V ±10%, **GND**: 0 V (unless otherwise noted)
- Typical at **V_{DD}** = +20 V, **V_{SS}** = −20 V, **T_A** = 25°C (unless otherwise noted)

Electrical Characteristics

Analog Switch

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{ON}</td>
<td>On-resistance</td>
<td>25°C</td>
<td>180</td>
<td>250</td>
<td>330</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td>390</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔR_{ON}</td>
<td>On-resistance mismatch between channels</td>
<td>25°C</td>
<td>10</td>
<td>2.5</td>
<td>8</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{FLAT}</td>
<td>On-resistance flatness</td>
<td>25°C</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{FLAT}</td>
<td>On-resistance flatness</td>
<td>25°C</td>
<td>4</td>
<td>1.5</td>
<td>3.5</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ON, DRIFT}</td>
<td>On-resistance drift</td>
<td>25°C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Ω/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{S(OFF)}</td>
<td>Source off leakage current(1)</td>
<td>V_{DD} = 22 V, V_{SS} = −22 V</td>
<td>25°C</td>
<td>−1</td>
<td>0.1</td>
<td>1 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch state is off</td>
<td>−40°C to +85°C</td>
<td>−1</td>
<td>1</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>−4</td>
<td>4</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>I_{D(OFF)}</td>
<td>Drain off leakage current(1)</td>
<td>V_{DD} = 22 V, V_{SS} = −22 V</td>
<td>25°C</td>
<td>−1</td>
<td>0.1</td>
<td>1 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch state is off</td>
<td>−40°C to +85°C</td>
<td>−1</td>
<td>1</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>−4</td>
<td>4</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>I_{S(ON)}</td>
<td>Output on leakage current(2)</td>
<td>V_{DD} = 22 V, V_{SS} = −22 V</td>
<td>25°C</td>
<td>−1.5</td>
<td>0.3</td>
<td>1.5 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch state is on</td>
<td>−40°C to +85°C</td>
<td>−5</td>
<td>5</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>−22</td>
<td>22</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

Fault Condition

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{S(FA)}</td>
<td>Input leakage current during overvoltage</td>
<td>V_S = ±60 V, GND = 0 V</td>
<td>−40°C to +125°C</td>
<td>±95</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DD} = V_{PP} = 22 V, V_{SS} = V_{PN} = −22 V</td>
<td>−40°C to +125°C</td>
<td>±1</td>
<td>5</td>
<td>nA</td>
</tr>
<tr>
<td>I_{S(FA), Grounded}</td>
<td>Input leakage current during overvoltage with grounded supply voltages</td>
<td>V_S = ±60 V, GND = 0 V</td>
<td>−40°C to +125°C</td>
<td>±135</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DD} = V_{SS} = V_{FP} = 0 V</td>
<td>−40°C to +125°C</td>
<td>±135</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td>I_{S(FA), Floating}</td>
<td>Input leakage current during overvoltage with floating supply voltages</td>
<td>V_S = ±60 V, GND = 0 V</td>
<td>−40°C to +125°C</td>
<td>±135</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DD} = V_{SS} = V_{FP} = floating</td>
<td>−40°C to +125°C</td>
<td>±135</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td>I_{D(FA)}</td>
<td>Output leakage current during overvoltage</td>
<td>V_S = ±60 V, GND = 0 V</td>
<td>−40°C to +125°C</td>
<td>±10</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DD} = V_{PP} = 22 V, V_{SS} = V_{PN} = −22 V</td>
<td>−40°C to +125°C</td>
<td>±10</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−21 V ≤ V_{DD} ≤ 22 V</td>
<td>−40°C to +125°C</td>
<td>±10</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td>I_{D(FA), Grounded}</td>
<td>Output leakage current during overvoltage with grounded supply voltages</td>
<td>V_S = ±60 V, GND = 0 V</td>
<td>−40°C to +125°C</td>
<td>±5</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DD} = V_{SS} = V_{FP} = 0 V</td>
<td>−40°C to +125°C</td>
<td>±5</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−600 ≤ V_{DD} ≤ 600</td>
<td>−40°C to +125°C</td>
<td>±5</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>I_{D(FA), Floating}</td>
<td>Output leakage current during overvoltage with floating supply voltages</td>
<td>V_S = ±60 V, GND = 0 V</td>
<td>−40°C to +125°C</td>
<td>±5</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DD} = V_{SS} = V_{FP} = floating</td>
<td>−40°C to +125°C</td>
<td>±5</td>
<td>100</td>
<td>nA</td>
</tr>
</tbody>
</table>

Logic Input/Output

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{H}</td>
<td>High-level input current</td>
<td>V_{EN} = V_{AA} = V_{CD}</td>
<td>25°C</td>
<td>−2.2</td>
<td>±0.6</td>
<td>2.2 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>−2.2</td>
<td>±0.6</td>
<td>2.2</td>
<td>μA</td>
</tr>
<tr>
<td>I_{L}</td>
<td>Low-level input current</td>
<td>V_{EN} = V_{AA} = 0 V</td>
<td>25°C</td>
<td>−1.1</td>
<td>±0.6</td>
<td>1.1 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>−1.2</td>
<td>±0.6</td>
<td>1.2</td>
<td>μA</td>
</tr>
</tbody>
</table>
7.7 ±20 V Dual Supply: Electrical Characteristics (continued)

$V_{DD} = +20\, \text{V} \pm 10\%$, $V_{SS} = –20\, \text{V} \pm 10\%$, GND = 0 V (unless otherwise noted)

Typical at $V_{DD} = +20\, \text{V}$, $V_{SS} = –20\, \text{V}$, $T_A = 25\, ^\circ\text{C}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{ON} (EN)</td>
<td>Enable turn-on time</td>
<td>$V_S = 10, \text{V}$, $R_L = 4, \text{k\Omega}$, $C_L = 12, \text{pF}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>175</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>I_{OFF} (EN)</td>
<td>Enable turn-off time</td>
<td>$V_S = 10, \text{V}$, $R_L = 4, \text{k\Omega}$, $C_L = 12, \text{pF}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>350</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>I_{TRAN}</td>
<td>Transition time</td>
<td>$V_S = 10, \text{V}$, $R_L = 4, \text{k\Omega}$, $C_L = 12, \text{pF}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>170</td>
<td>245</td>
<td>ns</td>
</tr>
<tr>
<td>$I_{RESPONSE}$</td>
<td>Fault response time</td>
<td>$V_{FP} = 20, \text{V}$, $V_{FN} = –20, \text{V}$, $R_L = 4, \text{k\Omega}$, $C_L = 12, \text{pF}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>300</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>$I_{RECOVERY}$</td>
<td>Fault recovery time</td>
<td>$V_{FP} = 20, \text{V}$, $V_{FN} = –20, \text{V}$, $R_L = 4, \text{k\Omega}$, $C_L = 12, \text{pF}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>1.3</td>
<td>110</td>
<td>µs</td>
</tr>
<tr>
<td>$I_{RESPONSE(FLAG)}$</td>
<td>Fault flag response time</td>
<td>$V_{FP} = 20, \text{V}$, $V_{FN} = –20, \text{V}$, $V_{PU} = 5, \text{V}$, $R_{PU} = 1, \text{k\Omega}$, $C_L = 12, \text{pF}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>0.9</td>
<td>110</td>
<td>ns</td>
</tr>
<tr>
<td>$I_{RECOVERY(FLAG)}$</td>
<td>Fault flag recovery time</td>
<td>$V_{FP} = 20, \text{V}$, $V_{FN} = –20, \text{V}$, $V_{PU} = 5, \text{V}$, $R_{PU} = 1, \text{k\Omega}$, $C_L = 12, \text{pF}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>0.9</td>
<td>110</td>
<td>µs</td>
</tr>
<tr>
<td>I_{SMM}</td>
<td>Break-before-make time delay</td>
<td>$V_S = 10, \text{V}$, $R_L = 4, \text{k\Omega}$, $C_L = 12, \text{pF}$</td>
<td>$–40, ^\circ\text{C}$ to $+125, ^\circ\text{C}$</td>
<td>50</td>
<td>120</td>
<td>ns</td>
</tr>
<tr>
<td>$C_{Q(NJ)}$</td>
<td>Charge injection</td>
<td>$V_S = 0, \text{V}$, $C_L = 1, \text{nF}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>–17</td>
<td></td>
<td>pC</td>
</tr>
<tr>
<td>O_{ISS}</td>
<td>Off-isolation</td>
<td>$R_S = 50, \text{Ω}$, $R_L = 50, \text{Ω}$, $C_L = 5, \text{pF}$, $V_{SS} = 200, \text{mV RMS}, V_{BIAV} = 0, \text{V}, f = 1, \text{MHz}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>–85</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>X_{TALK}</td>
<td>Intra-channel crosstalk</td>
<td>$R_S = 50, \text{Ω}$, $R_L = 50, \text{Ω}$, $C_L = 5, \text{pF}$, $V_{SS} = 200, \text{mV RMS}, V_{BIAV} = 0, \text{V}, f = 1, \text{MHz}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>–95</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>$C_{Q(ON)}$</td>
<td>Input off-capacitance</td>
<td>$f = 1, \text{MHz}$, $V_S = 0, \text{V}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>3.5</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>$C_{Q(OF)}$</td>
<td>Output off-capacitance (TMUX7348F)</td>
<td>$f = 1, \text{MHz}$, $V_S = 0, \text{V}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>14</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>$C_{Q(ON)}$</td>
<td>Input/Output on-capacitance (TMUX7348F)</td>
<td>$f = 1, \text{MHz}$, $V_S = 0, \text{V}$</td>
<td>$25, ^\circ\text{C}$</td>
<td>30</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>V_{DD} supply current</td>
<td>$V_{DD} = V_{FP} = 22, \text{V}$, $V_{SS} = V_{FN} = –22, \text{V}$, $V_{AX} = 0, \text{V}$, $5, \text{V}$, or $V_{DD} – V_{EN} = 5, \text{V}$ or V_{DD}</td>
<td>$25, ^\circ\text{C}$</td>
<td>0.24</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>I_{SS}</td>
<td>V_{SS} supply current</td>
<td>$V_{DD} = V_{FP} = 22, \text{V}$, $V_{SS} = V_{FN} = –22, \text{V}$, $V_{AX} = 0, \text{V}$, $5, \text{V}$, or $V_{DD} – V_{EN} = 5, \text{V}$ or V_{DD}</td>
<td>$25, ^\circ\text{C}$</td>
<td>0.14</td>
<td>0.4</td>
<td>mA</td>
</tr>
<tr>
<td>I_{GND}</td>
<td>GND current</td>
<td>$V_{DD} = V_{FP} = 22, \text{V}$, $V_{SS} = V_{FN} = –22, \text{V}$, $V_{AX} = 0, \text{V}$, $5, \text{V}$, or $V_{DD} – V_{EN} = 5, \text{V}$ or V_{DD}</td>
<td>$25, ^\circ\text{C}$</td>
<td>0.075</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
7.7 ±20 V Dual Supply: Electrical Characteristics (continued)

$V_{DD} = +20 \text{ V} \pm 10\%, \ V_{SS} = -20 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ (\text{unless otherwise noted})$

Typical at $V_{DD} = +20 \text{ V}, \ V_{SS} = -20 \text{ V}, \ T_A = 25^\circ \text{C} \ (\text{unless otherwise noted})$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{FP}</td>
<td>V_{FP} supply current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 5 \text{ V} \ or \ V_{DD}$</td>
<td>25°C</td>
<td>10</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{FN}</td>
<td>V_{FN} supply current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 5 \text{ V} \ or \ V_{DD}$</td>
<td>25°C</td>
<td>10</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{DD(FA)}$</td>
<td>V_{DD} supply current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 \text{ V}, \ V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 5 \text{ V} \ or \ V_{DD}$</td>
<td>25°C</td>
<td>0.25</td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SS(FA)}$</td>
<td>V_{SS} supply current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 \text{ V}, \ V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 5 \text{ V} \ or \ V_{DD}$</td>
<td>25°C</td>
<td>0.15</td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{GND(FA)}$</td>
<td>GND current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 \text{ V}, \ V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 5 \text{ V} \ or \ V_{DD}$</td>
<td>25°C</td>
<td>0.15</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{FP(FA)}$</td>
<td>V_{FP} supply current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 \text{ V}, \ V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 5 \text{ V} \ or \ V_{DD}$</td>
<td>25°C</td>
<td>9</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{FN(FA)}$</td>
<td>V_{FN} supply current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 \text{ V}, \ V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 5 \text{ V} \ or \ V_{DD}$</td>
<td>25°C</td>
<td>9</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{DD(DISABLE)}$</td>
<td>V_{DD} supply current (disable mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 0 \text{ V}$</td>
<td>25°C</td>
<td>0.15</td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SS(DISABLE)}$</td>
<td>V_{SS} supply current (disable mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{FP} = 22 \text{ V}, \ V_{SS} = V_{FN} = -22 \text{ V}, \ V_{Ax} = 0 \text{ V}, 5 \text{ V}, \ or \ V_{DD}, \ V_{EN} = 0 \text{ V}$</td>
<td>25°C</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) When V_S is positive, V_D is negative. And when V_S is negative, V_D is positive.

(2) When V_S is at a voltage potential, V_D is floating. And when V_D is at a voltage potential, V_S is floating.
7.8 12 V Single Supply: Electrical Characteristics

Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ON}</td>
<td>On-resistance $V_S = 0$ V to 7.8 V, $I_S = -1$ mA</td>
<td>25°C</td>
<td>180</td>
<td>250</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔR_{ON}</td>
<td>On-resistance mismatch between channels $V_S = 0$ V to 7.8 V, $I_S = -1$ mA</td>
<td>25°C</td>
<td>2.5</td>
<td>8</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{FLAT}</td>
<td>On-resistance flatness $V_S = 0$ V to 7.8 V, $I_S = -1$ mA</td>
<td>25°C</td>
<td>7</td>
<td>30</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{FLAT}</td>
<td>On-resistance flatness $V_S = 1$ V to 7.8 V, $I_S = -1$ mA</td>
<td>25°C</td>
<td>1.5</td>
<td>7</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{ON, DRIFT}$</td>
<td>On-resistance drift $V_S = 0$ V, $I_S = -1$ mA</td>
<td>-40°C to +125°C</td>
<td>1</td>
<td></td>
<td>Ω/°C</td>
</tr>
<tr>
<td>$I_{S(OFF)}$</td>
<td>Source off leakage current1 $V_D = 13.2$ V, $V_{SS} = 0$ V</td>
<td>25°C</td>
<td>-1</td>
<td>0.1</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Switch state is off $V_S = 10$ V / 1 V</td>
<td>-40°C to +85°C</td>
<td>-1</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>-4</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>$I_{D(OFF)}$</td>
<td>Drain off leakage current1 $V_D = 13.2$ V, $V_{SS} = 0$ V</td>
<td>25°C</td>
<td>-1</td>
<td>0.1</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Switch state is off $V_S = 10$ V / 1 V</td>
<td>-40°C to +85°C</td>
<td>-3</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>-14</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>$I_{S(ON)}$</td>
<td>Output on leakage current2 $V_D = 13.2$ V, $V_{SS} = 0$ V</td>
<td>25°C</td>
<td>-1.5</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>$I_{D(ON)}$</td>
<td></td>
<td>-40°C to +85°C</td>
<td>-5</td>
<td></td>
<td>5 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>-22</td>
<td></td>
<td>22 nA</td>
</tr>
<tr>
<td>FAULT CONDITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{S(FA)}$</td>
<td>Input leakage current during overvoltage $V_S = 60$ V, $GND = 0$ V</td>
<td>-40°C to +125°C</td>
<td>±145</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{S(FA)}$ Grounded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input leakage current during overvoltage with grounded supply voltages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 60$ V, $GND = 0$ V, $V_{DD} = V_{DD} = V_{SS} = V_{FF} = 0$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>±135</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{S(FA)}$ Floating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input leakage current during overvoltage with floating supply voltages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 60$ V, $GND = 0$ V, $V_{DD} = V_{SS} = V_{FF} = V_{FF} = 0$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>±135</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{D(FA)}$</td>
<td>Output leakage current during overvoltage $V_S = 60$ V, $GND = 0$ V</td>
<td>25°C</td>
<td>-50</td>
<td>±10</td>
<td>50 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>-70</td>
<td></td>
<td>70 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>-90</td>
<td></td>
<td>90 nA</td>
</tr>
<tr>
<td>$I_{D(FA)}$ Grounded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output leakage current during overvoltage with grounded supply voltages</td>
<td>25°C</td>
<td>-50</td>
<td>±1</td>
<td>50 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>-100</td>
<td></td>
<td>100 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>-500</td>
<td></td>
<td>500 nA</td>
</tr>
<tr>
<td>$I_{D(FA)}$ Floating</td>
<td></td>
<td>25°C</td>
<td>±3</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +85°C</td>
<td>±5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>±8</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>LOGIC INPUT/OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{H}</td>
<td>High-level input current $V_{EN} = V_{A} = V_{DD}$</td>
<td>25°C</td>
<td>-2</td>
<td>±0.6</td>
<td>2 µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>-2</td>
<td></td>
<td>2 µA</td>
</tr>
<tr>
<td>I_{L}</td>
<td>Low-level input current $V_{EN} = V_{A} = 0$ V</td>
<td>25°C</td>
<td>-1.1</td>
<td>±0.6</td>
<td>1.1 µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
<td>-1.2</td>
<td></td>
<td>1.2 µA</td>
</tr>
</tbody>
</table>
7.8 12 V Single Supply: Electrical Characteristics (continued)

V\textsubscript{DD} = +12 V ± 10%, V\textsubscript{SS} = 0 V, GND = 0 V (unless otherwise noted)

Typical at V\textsubscript{DD} = +12 V, V\textsubscript{SS} = 0 V, T\textsubscript{A} = 25°C (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T\textsubscript{A}</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{ON (EN)}</td>
<td>Enable turn-on time</td>
<td>V\textsubscript{G} = 8 V, R\textsubscript{L} = 4 kΩ, C\textsubscript{L} = 12 pF</td>
<td>25°C</td>
<td>160</td>
<td>265</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{OFF (EN)}</td>
<td>Enable turn-off time</td>
<td>V\textsubscript{G} = 8 V, R\textsubscript{L} = 4 kΩ, C\textsubscript{L} = 12 pF</td>
<td>25°C</td>
<td>420</td>
<td>485</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td>485</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{TRANS}</td>
<td>Transition time</td>
<td>V\textsubscript{G} = 8 V, R\textsubscript{L} = 4 kΩ, C\textsubscript{L} = 12 pF</td>
<td>25°C</td>
<td>160</td>
<td>215</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{RESPONSE}</td>
<td>Fault response time</td>
<td>V\textsubscript{PP} = 12 V, V\textsubscript{PP} = 0 V, R\textsubscript{L} = 4 kΩ, C\textsubscript{L} = 12 pF</td>
<td>25°C</td>
<td>220</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T\textsubscript{REC}OVERY</td>
<td>Fault recovery time</td>
<td>V\textsubscript{PP} = 12 V, V\textsubscript{PP} = 0 V, R\textsubscript{L} = 4 kΩ, C\textsubscript{L} = 12 pF</td>
<td>25°C</td>
<td>0.69</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>T\textsubscript{RESPONSE (FLAG)}</td>
<td>Fault flag response time</td>
<td>V\textsubscript{PP} = 12 V, V\textsubscript{PP} = 0 V, R\textsubscript{PU} = 5 kΩ, C\textsubscript{L} = 12 pF</td>
<td>25°C</td>
<td>110</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T\textsubscript{REC}OVERY (FLAG)</td>
<td>Fault flag recovery time</td>
<td>V\textsubscript{PP} = 12 V, V\textsubscript{PP} = 0 V, R\textsubscript{PU} = 5 kΩ, C\textsubscript{L} = 12 pF</td>
<td>25°C</td>
<td>0.65</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t\textsubscript{SMM}</td>
<td>Break-before-make time delay</td>
<td>V\textsubscript{G} = 8 V, R\textsubscript{L} = 4 kΩ, C\textsubscript{L} = 12 pF</td>
<td>−40°C to +125°C</td>
<td>30</td>
<td>90</td>
<td>ns</td>
</tr>
<tr>
<td>Q\textsubscript{ONJ}</td>
<td>Charge injection</td>
<td>V\textsubscript{G} = 6 V, C\textsubscript{L} = 1 nF</td>
<td>25°C</td>
<td>–11</td>
<td></td>
<td>pC</td>
</tr>
<tr>
<td>V\textsubscript{O iso}</td>
<td>Off-isolation</td>
<td>Rs = 50 Ω, R\textsubscript{L} = 50 Ω, C\textsubscript{L} = 5 pF, V\textsubscript{G} = 200 m\textsubscript{VRMS}, V\textsubscript{BIAS} = 6 V, f = 1 MHz</td>
<td>25°C</td>
<td>–76</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>X\textsubscript{TALK}</td>
<td>Intra-channel crosstalk</td>
<td>Rs = 50 Ω, R\textsubscript{L} = 50 Ω, C\textsubscript{L} = 5 pF, V\textsubscript{G} = 200 m\textsubscript{VRMS}, V\textsubscript{BIAS} = 6 V</td>
<td>25°C</td>
<td>–93</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>X\textsubscript{TALK (TMUX7349F)}</td>
<td>Inter-channel crosstalk</td>
<td>Rs = 50 Ω, R\textsubscript{L} = 50 Ω, C\textsubscript{L} = 5 pF, V\textsubscript{G} = 200 m\textsubscript{VRMS}, V\textsubscript{BIAS} = 6 V</td>
<td>25°C</td>
<td>–103</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>B\textsubscript{W}</td>
<td>−3 dB bandwidth (TMUX7348F)</td>
<td>Rs = 50 Ω, R\textsubscript{L} = 50 Ω, C\textsubscript{L} = 5 pF, V\textsubscript{G} = 200 m\textsubscript{VRMS}, V\textsubscript{BIAS} = 6 V</td>
<td>25°C</td>
<td>130</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>−3 dB bandwidth (TMUX7349F)</td>
<td>Rs = 50 Ω, R\textsubscript{L} = 50 Ω, C\textsubscript{L} = 5 pF, V\textsubscript{G} = 200 m\textsubscript{VRMS}, V\textsubscript{BIAS} = 6 V</td>
<td>25°C</td>
<td>250</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>I\textsubscript{LOSS}</td>
<td>Insertion loss</td>
<td>Rs = 50 Ω, R\textsubscript{L} = 50 Ω, C\textsubscript{L} = 5 pF, V\textsubscript{G} = 200 m\textsubscript{VRMS}, V\textsubscript{BIAS} = 6 V</td>
<td>25°C</td>
<td>–9</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>THD+N</td>
<td>Total harmonic distortion plus noise</td>
<td>Rs = 40 Ω, R\textsubscript{L} = 10 kΩ, V\textsubscript{G} = 6 V, f\textsubscript{P}R, V\textsubscript{BIAS} = 6 V, f = 20 Hz to 20 kHz</td>
<td>25°C</td>
<td>0.0022</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>C\textsubscript{S (OFF)}</td>
<td>Input-off capacitance</td>
<td>f = 1 MHz, V\textsubscript{G} = 6 V</td>
<td>25°C</td>
<td>4</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C\textsubscript{D (OFF)}</td>
<td>Output-off capacitance (TMUX7348F)</td>
<td>f = 1 MHz, V\textsubscript{G} = 6 V</td>
<td>25°C</td>
<td>31</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>Output-off capacitance (TMUX7349F)</td>
<td>f = 1 MHz, V\textsubscript{G} = 6 V</td>
<td>25°C</td>
<td>16</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C\textsubscript{S (ON)}</td>
<td>Input(on) capacitance (TMUX7348F)</td>
<td>f = 1 MHz, V\textsubscript{G} = 6 V</td>
<td>25°C</td>
<td>34</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C\textsubscript{D (ON)}</td>
<td>Input(on) capacitance (TMUX7349F)</td>
<td>f = 1 MHz, V\textsubscript{G} = 6 V</td>
<td>25°C</td>
<td>20</td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

POWER SUPPLY

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T\textsubscript{A}</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I\textsubscript{DD}</td>
<td>V\textsubscript{DD} supply current</td>
<td>V\textsubscript{DD} = V\textsubscript{PP} = 13.2 V, V\textsubscript{DD} = V\textsubscript{EN} = 0 V, V\textsubscript{AX} = 0 V, 5 V, or V\textsubscript{DD}; V\textsubscript{EN} = 5 V or V\textsubscript{DD}</td>
<td>25°C</td>
<td>0.24</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{SS}</td>
<td>V\textsubscript{SS} supply current</td>
<td>V\textsubscript{DD} = V\textsubscript{PP} = 13.2 V, V\textsubscript{SS} = V\textsubscript{FN} = 0 V, V\textsubscript{AX} = 0 V, 5 V, or V\textsubscript{DD}; V\textsubscript{EN} = 5 V or V\textsubscript{DD}</td>
<td>25°C</td>
<td>0.14</td>
<td>0.4</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +85°C</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−40°C to +125°C</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{GND}</td>
<td>GND current</td>
<td>V\textsubscript{DD} = V\textsubscript{PP} = 13.2 V, V\textsubscript{PP} = V\textsubscript{FN} = 0 V, V\textsubscript{AX} = 0 V, 5 V, or V\textsubscript{DD}; V\textsubscript{EN} = 5 V or V\textsubscript{DD}</td>
<td>25°C</td>
<td>0.075</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I\textsubscript{FP}</td>
<td>V\textsubscript{FP} supply current</td>
<td>V\textsubscript{DD} = V\textsubscript{PP} = 13.2 V, V\textsubscript{SS} = V\textsubscript{FN} = 0 V, V\textsubscript{AX} = 0 V, 5 V, or V\textsubscript{DD}; V\textsubscript{EN} = 5 V or V\textsubscript{DD}</td>
<td>25°C</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I\textsubscript{FN}</td>
<td>V\textsubscript{FN} supply current</td>
<td>V\textsubscript{DD} = V\textsubscript{PP} = 13.2 V, V\textsubscript{SS} = V\textsubscript{FN} = 0 V, V\textsubscript{AX} = 0 V, 5 V, or V\textsubscript{DD}; V\textsubscript{EN} = 5 V or V\textsubscript{DD}</td>
<td>25°C</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

Product Folder Links: [TMUX7348F](www.ti.com)
7.8 12 V Single Supply: Electrical Characteristics (continued)

$V_{DD} = +12 \, \text{V} \pm 10\%$, $V_{SS} = 0 \, \text{V}$, GND = 0 V (unless otherwise noted)

Typical at $V_{DD} = +12 \, \text{V}$, $V_{SS} = 0 \, \text{V}$, $T_A = 25^\circ \text{C}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{DD(FA)}$</td>
<td>V_{DD} supply current under fault</td>
<td></td>
<td>0.25</td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 13.2 , \text{V}$, $V_{SS} = V_{FN} = 0 , \text{V}$, $V_{Ax} = 0 , \text{V}, 5 , \text{V}$, or $V_{DD}, V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td></td>
<td>–40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SS(FA)}$</td>
<td>V_{SS} supply current under fault</td>
<td></td>
<td>0.15</td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 13.2 , \text{V}$, $V_{SS} = V_{FN} = 0 , \text{V}$, $V_{Ax} = 0 , \text{V}, 5 , \text{V}$, or $V_{DD}, V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td></td>
<td>–40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{GND(FA)}$</td>
<td>GND current under fault</td>
<td></td>
<td>0.17</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 13.2 , \text{V}$, $V_{SS} = V_{FN} = 0 , \text{V}$, $V_{Ax} = 0 , \text{V}, 5 , \text{V}$, or $V_{DD}, V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td></td>
<td>25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{FP(FA)}$</td>
<td>V_{FP} supply current under fault</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 13.2 , \text{V}$, $V_{SS} = V_{FN} = 0 , \text{V}$, $V_{Ax} = 0 , \text{V}, 5 , \text{V}$, or $V_{DD}, V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td></td>
<td>25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{FN(FA)}$</td>
<td>V_{FN} supply current under fault</td>
<td></td>
<td>7.5</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 60 , \text{V}$, $V_{DD} = V_{FP} = 13.2 , \text{V}$, $V_{SS} = V_{FN} = 0 , \text{V}$, $V_{Ax} = 0 , \text{V}, 5 , \text{V}$, or $V_{DD}, V_{EN} = 5 , \text{V}$ or V_{DD}</td>
<td></td>
<td>25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{DD(DISABLE)}$</td>
<td>V_{DD} supply current (disable mode)</td>
<td></td>
<td>0.15</td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{FP} = 13.2 , \text{V}$, $V_{SS} = V_{FN} = 0 , \text{V}$, $V_{Ax} = 0 , \text{V}, 5 , \text{V}$, or $V_{DD}, V_{EN} = 0 , \text{V}$</td>
<td></td>
<td>–40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SS(DISABLE)}$</td>
<td>V_{SS} supply current (disable mode)</td>
<td></td>
<td>0.1</td>
<td>0.4</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{FP} = 13.2 , \text{V}$, $V_{SS} = V_{FN} = 0 , \text{V}$, $V_{Ax} = 0 , \text{V}, 5 , \text{V}$, or $V_{DD}, V_{EN} = 0 , \text{V}$</td>
<td></td>
<td>–40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) When V_S is 10 V, V_D is 1 V. Or when V_S is 1 V, V_D is 10 V.

(2) When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.
7.9 36 V Single Supply: Electrical Characteristics

$V_{DD} = +36 \pm 10\%$, $V_{SS} = 0\ V$, GND = 0\ V (unless otherwise noted)

Typical at $V_{DD} = +36\ V$, $V_{SS} = 0\ V$, $T_A = 25\ ^\circ\ C$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ON}</td>
<td>On-resistance $V_S = 0\ V$ to 28\ V, $I_S = -1\ mA$</td>
<td>25$^\circ\ C$</td>
<td>180</td>
<td>250</td>
<td>330</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 0\ V$ to 28\ V, $I_S = -1\ mA$</td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td>390</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔR_{ON}</td>
<td>On-resistance mismatch between channels $V_S = 0\ V$ to 28\ V, $I_S = -1\ mA$</td>
<td>25$^\circ\ C$</td>
<td>2.5</td>
<td>8</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 0\ V$ to 28\ V, $I_S = -1\ mA$</td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td>12</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{FLAT}</td>
<td>On-resistance flatness $V_S = 0\ V$ to 30\ V, $I_S = -1\ mA$</td>
<td>25$^\circ\ C$</td>
<td>8</td>
<td>65</td>
<td>75</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 0\ V$ to 30\ V, $I_S = -1\ mA$</td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td>90</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 0\ V$ to 30\ V, $I_S = -1\ mA$</td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td>4</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{ON\ DRIFT}$</td>
<td>On-resistance drift $V_S = 0\ V$, $I_S = -1\ mA$</td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td>1</td>
<td></td>
<td></td>
<td>$\Omega/^{\circ}\ C$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{S(FA)}$</td>
<td>Source off leakage current $V_{DD} = 36.6\ V$, $V_{SS} = 0\ V$ Switch state is off $V_S = 30\ V$ / 1\ V $V_D = 1\ V$ / 30\ V</td>
<td>25$^\circ\ C$</td>
<td>–1</td>
<td>0.1</td>
<td>1</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 30\ V$ / 1\ V $V_D = 1\ V$ / 30\ V</td>
<td>$-40^\circ\ C$ to $+85^\circ\ C$</td>
<td>–4</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{D(FA)}$</td>
<td>Output on leakage current $V_{DD} = 36.6\ V$, $V_{SS} = 0\ V$ Switch state is off $V_S = 30\ V$ / 1\ V $V_D = 1\ V$ / 30\ V</td>
<td>25$^\circ\ C$</td>
<td>–1</td>
<td>0.1</td>
<td>1</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 30\ V$ / 1\ V $V_D = 1\ V$ / 30\ V</td>
<td>$-40^\circ\ C$ to $+85^\circ\ C$</td>
<td>–3</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 30\ V$ / 1\ V $V_D = 1\ V$ / 30\ V</td>
<td>$-40^\circ\ C$ to $+85^\circ\ C$</td>
<td>–14</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{S(ON)}$</td>
<td>Output on leakage current $V_{DD} = 36.6\ V$, $V_{SS} = 0\ V$ Switch state is on $V_S = V_D = 0\ V$</td>
<td>25$^\circ\ C$</td>
<td>–1.5</td>
<td>0.3</td>
<td>1.5</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = V_D = 30\ V$ or 1\ V</td>
<td>$-40^\circ\ C$ to $+85^\circ\ C$</td>
<td>–5</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = V_D = 30\ V$ or 1\ V</td>
<td>$-40^\circ\ C$ to $+85^\circ\ C$</td>
<td>–22</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAULT CONDITION</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{S(FA)}$</td>
<td>Input leakage current during overvoltage $V_S = 60\ / -40\ V$, GND = 0\ V</td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td>±110</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{PP} = 36.6\ V$, $V_{SS} = V_{FN} = 0\ V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{S(FA)}$</td>
<td>Input leakage current during overvoltage with grounded supply voltages $V_S = \pm 60\ V$, GND = 0\ V</td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td>±135</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0\ V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{S(FA)}$</td>
<td>Input leakage current during overvoltage with floating supply voltages $V_S = \pm 60\ V$, GND = 0\ V</td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td>±135</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = V_{SS} = V_{FP} = V_{FN} = \text{floating}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{D(FA)}$</td>
<td>Output leakage current during overvoltage $V_S = 60\ / -40\ V$, GND = 0\ V,</td>
<td>25$^\circ\ C$</td>
<td>–50</td>
<td>±10</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = V_{PP} = 36.6\ V$, $V_{SS} = V_{FN} = 0\ V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1\ V \leq V_D \leq 36.6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{D(FA)}$</td>
<td>Output leakage current during overvoltage with grounded supply voltages $V_S = \pm 60\ V$, GND = 0\ V,</td>
<td>25$^\circ\ C$</td>
<td>–50</td>
<td>±1</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0\ V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40^\circ\ C$ to $+85^\circ\ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{D(FA)}$</td>
<td>Output leakage current during overvoltage with floating supply voltages $V_S = \pm 60\ V$, GND = 0\ V,</td>
<td>25$^\circ\ C$</td>
<td>±3</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = V_{SS} = V_{FP} = V_{FN} = \text{floating}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40^\circ\ C$ to $+85^\circ\ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOGIC INPUT/OUTPUT</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{H}</td>
<td>High-level input current $V_{EN} = V_{AA} = V_{CC}$</td>
<td>25$^\circ\ C$</td>
<td>–3.2</td>
<td>±0.6</td>
<td>3.2</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{L}</td>
<td>Low-level input current $V_{EN} = V_{AA} = 0\ V$</td>
<td>25$^\circ\ C$</td>
<td>–1.1</td>
<td>±0.6</td>
<td>1.1</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40^\circ\ C$ to $+125^\circ\ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.9 36 V Single Supply: Electrical Characteristics (continued)

V\text{DD} = +36 V ± 10\%, **V\text{SS} = 0 V**, **GND = 0 V** (unless otherwise noted)

Typical at **V\text{DD} = +36 V**, **V\text{SS} = 0 V**, **T\text{A} = 25°C** (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T\text{A}</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{ON (EN)}</td>
<td>Enable turn-on time</td>
<td></td>
<td>25°C</td>
<td>185</td>
<td>390</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>V\text{gs} = 18 V, R\text{L} = 4 kΩ, C\text{L} = 12 pF</td>
<td></td>
<td>–40°C to +85°C</td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td>530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{OFF (EN)}</td>
<td>Enable turn-off time</td>
<td></td>
<td>25°C</td>
<td>380</td>
<td>450</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>V\text{gs} = 18 V, R\text{L} = 4 kΩ, C\text{L} = 12 pF</td>
<td></td>
<td>–40°C to +85°C</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\text{TRAN}</td>
<td>Transition time</td>
<td></td>
<td>25°C</td>
<td>185</td>
<td>230</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>V\text{gs} = 18 V, R\text{L} = 4 kΩ, C\text{L} = 12 pF</td>
<td></td>
<td>–40°C to +85°C</td>
<td>245</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\text{RESPONSE}</td>
<td>Fault response time</td>
<td></td>
<td>25°C</td>
<td>210</td>
<td>0.67</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V\text{PP} = 36 V, V\text{PN} = 0 V, R\text{L} = 4 kΩ, C\text{L} = 12 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\text{RECOVERY}</td>
<td>Fault recovery time</td>
<td></td>
<td>25°C</td>
<td>0.67</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V\text{PP} = 36 V, V\text{PN} = 0 V, R\text{L} = 4 kΩ, C\text{L} = 12 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\text{RESPONSE(FLAG)}</td>
<td>Fault flag response time</td>
<td></td>
<td>25°C</td>
<td>110</td>
<td>0.65</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V\text{PP} = 36 V, V\text{PN} = 0 V, R\text{PU} = 5 kΩ, R\text{L} = 1 kΩ, C\text{L} = 12 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\text{RECOVERY(FLAG)}</td>
<td>Fault flag recovery time</td>
<td></td>
<td>25°C</td>
<td>110</td>
<td>0.65</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V\text{PP} = 36 V, V\text{PN} = 0 V, R\text{PU} = 5 kΩ, R\text{L} = 1 kΩ, C\text{L} = 12 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{OFF}</td>
<td>Break-before-make time delay</td>
<td></td>
<td>–40°C to +125°C</td>
<td>50</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>V\text{gs} = 18 V, R\text{L} = 4 kΩ, C\text{L} = 12 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C\text{ON}</td>
<td>Charge injection</td>
<td></td>
<td>25°C</td>
<td>–16</td>
<td>0.4</td>
<td>pC</td>
</tr>
<tr>
<td></td>
<td>V\text{gs} = 18 V, C\text{L} = 1 nF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O\text{ISO}</td>
<td>Off-isolation</td>
<td></td>
<td>25°C</td>
<td>–78</td>
<td>0.5</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>R\text{S} = 50 Ω, R\text{L} = 50 Ω, C\text{L} = 5 pF, V\text{gs} = 200 mVR\text{MS}, \text{VBIAS} = 6 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X\text{TALK}</td>
<td>Intra-channel crosstalk</td>
<td></td>
<td>25°C</td>
<td>–95</td>
<td>0.5</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>R\text{S} = 50 Ω, R\text{L} = 50 Ω, C\text{L} = 5 pF, V\text{gs} = 200 mVR\text{MS}, \text{VBIAS} = 6 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inter-channel crosstalk (TMUX7348F)</td>
<td></td>
<td>25°C</td>
<td>–103</td>
<td>0.5</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>R\text{S} = 50 Ω, R\text{L} = 50 Ω, C\text{L} = 5 pF, V\text{gs} = 200 mVR\text{MS}, \text{VBIAS} = 6 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>–3 dB bandwidth (TMUX7348F)</td>
<td></td>
<td>25°C</td>
<td>130</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>R\text{S} = 50 Ω, R\text{L} = 50 Ω, C\text{L} = 5 pF, V\text{gs} = 200 mVR\text{MS}, \text{VBIAS} = 6 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>–3 dB bandwidth (TMUX7349F)</td>
<td></td>
<td>25°C</td>
<td>255</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>R\text{S} = 50 Ω, R\text{L} = 50 Ω, C\text{L} = 5 pF, V\text{gs} = 200 mVR\text{MS}, \text{VBIAS} = 6 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L\text{SS}</td>
<td>Insertion loss</td>
<td></td>
<td>25°C</td>
<td>–7</td>
<td>0.0014</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>R\text{S} = 40 Ω, R\text{L} = 10 kΩ, V\text{gs} = 18 V\text{PP}, \text{VBIAS} = 18 V, f = 20 Hz to 20 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THD+N</td>
<td>Total harmonic distortion plus noise</td>
<td></td>
<td>25°C</td>
<td>0.0014</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>C\text{O(ON)}</td>
<td>Input off-capacitance</td>
<td></td>
<td>25°C</td>
<td>4</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>f = 1 MHz, V\text{gs} = 18 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C\text{O(OFF)}</td>
<td>Output off-capacitance</td>
<td></td>
<td>25°C</td>
<td>31</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>f = 1 MHz, V\text{gs} = 18 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C\text{H(ON)}</td>
<td>Input/Output on-capacitance</td>
<td></td>
<td>25°C</td>
<td>34</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>f = 1 MHz, V\text{gs} = 18 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C\text{H(OFF)}</td>
<td>Output/Output off-capacitance</td>
<td></td>
<td>25°C</td>
<td>16</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>f = 1 MHz, V\text{gs} = 18 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{DD}</td>
<td>V\text{DD} supply current</td>
<td></td>
<td>25°C</td>
<td>0.24</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>V\text{DD} = V\text{FP} = 39.6 V, V\text{SS} = V\text{FN} = 0 V, V\text{AX} = 0 V, V\text{DD} = 5 V or V\text{DD}</td>
<td></td>
<td>–40°C to +85°C</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{SS}</td>
<td>V\text{SS} supply current</td>
<td></td>
<td>25°C</td>
<td>0.14</td>
<td>0.4</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>V\text{DD} = V\text{FP} = 39.6 V, V\text{SS} = V\text{FN} = 0 V, V\text{AX} = 0 V, V\text{DD} = 5 V or V\text{DD}</td>
<td></td>
<td>–40°C to +85°C</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–40°C to +125°C</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{GND}</td>
<td>GND current</td>
<td></td>
<td>25°C</td>
<td>0.075</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>V\text{DD} = V\text{FP} = 39.6 V, V\text{SS} = V\text{FN} = 0 V, V\text{AX} = 0 V, V\text{DD} = 5 V or V\text{DD}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2022 Texas Instruments Incorporated
7.9 36 V Single Supply: Electrical Characteristics (continued)

$V_{\text{DD}} = +36 \, \text{V} \pm 10\%$, $V_{\text{SS}} = 0 \, \text{V}$, $\text{GND} = 0 \, \text{V}$ (unless otherwise noted)

Typical at $V_{\text{DD}} = +36 \, \text{V}$, $V_{\text{SS}} = 0 \, \text{V}$, $T_A = 25°C$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{FP}</td>
<td>V_{FP} supply current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{FN}</td>
<td>V_{FN} supply current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{D\text{D}(FA)}$</td>
<td>V_{DD} supply current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{S\text{S}(FA)}$</td>
<td>V_{SS} supply current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{G\text{ND}(FA)}$</td>
<td>GND current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{F\text{P}(FA)}$</td>
<td>V_{FP} supply current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{F\text{N}(FA)}$</td>
<td>V_{FN} supply current under fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{D\text{D}(DISABLE)}$</td>
<td>V_{DD} supply current (disable mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{S\text{S}(DISABLE)}$</td>
<td>V_{SS} supply current (disable mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

(1) When V_S is 30 V, V_D is 1 V. Or when V_S is 1 V, V_D is 30 V.
(2) When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.
7.10 Typical Characteristics

at $T_A = 25^\circ$C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

- **Dual Supply Voltages**
 - $V_{DD} = 13.5$ V, $V_{SS} = -13.5$ V
 - $V_{DD} = 15$ V, $V_{SS} = -15$ V
 - $V_{DD} = 16.5$ V, $V_{SS} = -16.5$ V
 - $V_{DD} = 18$ V, $V_{SS} = -18$ V
 - $V_{DD} = 20$ V, $V_{SS} = -20$ V
 - $V_{DD} = 22$ V, $V_{SS} = -22$ V

- **Single Supply Voltages**
 - $V_{DD} = 7.2$ V, $V_{SS} = 0$ V
 - $V_{DD} = 8$ V, $V_{SS} = 0$ V
 - $V_{DD} = 10.8$ V, $V_{SS} = 0$ V
 - $V_{DD} = 12$ V, $V_{SS} = 0$ V
 - $V_{DD} = 13.2$ V, $V_{SS} = 0$ V

- **Dual Supply Flat R_{ON} Region**
- $T_A = 25^\circ$C
- $T_A = 85^\circ$C
- $T_A = 125^\circ$C

- **±15 V Supply Flattest R_{ON} Region**
- $T_A = -40^\circ$C
- $T_A = 25^\circ$C
- $T_A = 85^\circ$C
- $T_A = 125^\circ$C

- **±20 V Supply Flattest R_{ON} Region**
7.10 Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_{DD} = 15 \text{ V}$, and $V_{SS} = -15 \text{ V}$ (unless otherwise noted)

Figure 7-7. On-Resistance vs Source or Drain Voltage

Figure 7-8. On-Resistance vs Source or Drain Voltage

Figure 7-9. On-Resistance vs Source or Drain Voltage

Figure 7-10. On-Resistance vs Source or Drain Voltage

Figure 7-11. On-Resistance vs Source or Drain Voltage

Figure 7-12. On-Resistance vs Source or Drain Voltage
7.10 Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_{DD} = 15\, \text{V}$, and $V_{SS} = -15\, \text{V}$ (unless otherwise noted)

- **Figure 7-13.** Leakage Current vs Temperature
 - $V_{DD} = 12\, \text{V}$, $V_{SS} = 0\, \text{V}$

- **Figure 7-14.** Leakage Current vs Temperature
 - $V_{DD} = 15\, \text{V}$, $V_{SS} = -15\, \text{V}$

- **Figure 7-15.** Leakage Current vs Temperature
 - $V_{DD} = 36\, \text{V}$, $V_{SS} = 0\, \text{V}$

- **Figure 7-16.** Leakage Current vs Temperature
 - $V_{DD} = 20\, \text{V}$, $V_{SS} = -20\, \text{V}$

- **Figure 7-17.** Leakage Current vs Temperature
 - $V_{DD} = 36\, \text{V}$, $V_{SS} = 0\, \text{V}$

- **Figure 7-18.** Leakage Current vs Temperature
 - $V_{DD} = 20\, \text{V}$, $V_{SS} = -20\, \text{V}$
7.10 Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

![Figure 7-19. $I_{D(FA)}$ Overvoltage Leakage Current vs Temperature](image1)

![Figure 7-20. $I_{D(FA)}$ Overvoltage Leakage Current vs Temperature](image2)

![Figure 7-21. $I_{D(FA)}$ Overvoltage Leakage Current vs Temperature](image3)

![Figure 7-22. $I_{D(FA)}$ Overvoltage Leakage Current vs Temperature](image4)

![Figure 7-23. $I_{S(FA)}$ Overvoltage Leakage Current vs Temperature](image5)

![Figure 7-24. THD+N vs Frequency](image6)
7.10 Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

<table>
<thead>
<tr>
<th>V_{DD}</th>
<th>V_{SS}</th>
<th>Charge Injection (pC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 V</td>
<td>-15 V</td>
<td>-20</td>
</tr>
<tr>
<td>20 V</td>
<td>-20 V</td>
<td>-16</td>
</tr>
<tr>
<td>8 V</td>
<td>0 V</td>
<td>-12</td>
</tr>
<tr>
<td>12 V</td>
<td>0 V</td>
<td>-8</td>
</tr>
<tr>
<td>36 V</td>
<td>0 V</td>
<td>-4</td>
</tr>
<tr>
<td>44 V</td>
<td>0 V</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 7-25. Charge Injection vs Source Voltage – Dual Supply

Figure 7-26. Charge Injection vs Source Voltage – Single Supply

<table>
<thead>
<tr>
<th>V_{DD}</th>
<th>V_{SS}</th>
<th>Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 V</td>
<td>0 V</td>
<td>210</td>
</tr>
<tr>
<td>12 V</td>
<td>0 V</td>
<td>200</td>
</tr>
<tr>
<td>36 V</td>
<td>0 V</td>
<td>190</td>
</tr>
<tr>
<td>44 V</td>
<td>0 V</td>
<td>180</td>
</tr>
</tbody>
</table>

Figure 7-27. Transition Times vs Temperature

Figure 7-28. Transition Times vs Temperature

<table>
<thead>
<tr>
<th>V_{DD}</th>
<th>V_{SS}</th>
<th>Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+8$ V</td>
<td>0 V</td>
<td>350</td>
</tr>
<tr>
<td>$+12$ V</td>
<td>0 V</td>
<td>340</td>
</tr>
<tr>
<td>$+36$ V</td>
<td>0 V</td>
<td>330</td>
</tr>
</tbody>
</table>

Figure 7-29. Turn-On and Turn-Off Times vs Temperature

Figure 7-30. Turn-On and Turn-Off Times vs Temperature
7.10 Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_{DD} = 15\, V$, and $V_{SS} = –15\, V$ (unless otherwise noted)

Figure 7-31. Off Isolation and Crosstalk vs Frequency

Figure 7-32. On Response vs Frequency

Figure 7-33. Capacitance vs Source or Drain Voltage

Figure 7-34. Capacitance vs Source or Drain Voltage

Figure 7-35. Threshold Voltage vs Temperature

Figure 7-36. Large Signal Voltage Off Isolation vs Frequency
7.10 Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

![Graph](image1)

Figure 7-37. Drain Output Response – Positive Overvoltage

![Graph](image2)

Figure 7-38. Drain Output Response – Negative Overvoltage

![Graph](image3)

Figure 7-39. Drain Output Recovery – Positive Overvoltage

![Graph](image4)

Figure 7-40. Drain Output Recovery – Negative Overvoltage
8 Parameter Measurement Information

8.1 On-Resistance

The on-resistance of the TMUX7348F and TMUX7349F is the ohmic resistance across the source (Sx) and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. The measurement setup used to measure R_{ON} is shown in Figure 8-1. ΔR_{ON} represents the difference between the R_{ON} of any two channels, while R_{ON_FLAT} denotes the flatness that is defined as the difference between the maximum and minimum value of on-resistance measured over the specified analog signal range.

![Figure 8-1. On-Resistance Measurement Setup](image)

8.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

1. Source off-leakage current I_{S_OFF}: the leakage current flowing into or out of the source pin when the switch is off.
2. Drain off-leakage current I_{D_OFF}: the leakage current flowing into or out of the drain pin when the switch is off.

Figure 8-2 shows the setup used to measure both off-leakage currents.

![Figure 8-2. Off-Leakage Measurement Setup](image)
8.3 On-Leakage Current

Source on-leakage current ($I_{S(ON)}$) and drain on-leakage current ($I_{D(ON)}$) denote the channel leakage currents when the switch is in the on state. $I_{S(ON)}$ is measured with the drain floating, while $I_{D(ON)}$ is measured with the source floating. Figure 8-3 shows the circuit used for measuring the on-leakage currents.

![Figure 8-3. On-Leakage Measurement Setup](image_url)

8.4 Input and Output Leakage Current Under Overvoltage Fault

If any of the source pin voltage goes above the fault supplies (V_{FP} or V_{FN}), the overvoltage protection feature of the TMUX7348F and TMUX7349F is triggered to turn off the switch under fault, keeping the fault channel in high-impedance state. $I_{S(FA)}$ and $I_{D(FA)}$ denotes the input and output leakage current under overvoltage fault conditions, respectively. For $I_{D(FA)}$, the device is disabled to measure leakage current on the drain pin without being impacted by the 40 kΩ impedance to the fault supply. When the overvoltage fault occurs, the supply (or supplies) can either be in normal operating condition (Figure 8-4) or abnormal operating condition (Figure 8-5). During abnormal operating condition, the supply (or supplies) can either be unpowered ($V_{DD} = V_{SS} = V_{FN} = V_{FP} = 0$ V) or floating ($V_{DD} = V_{SS} = V_{FN} = V_{FP} = $ No Connection), and remains within the leakage performance specifications.

![Figure 8-4. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault with Normal Supplies](image_url)
Figure 8-5. Measurement Setup for Input and Output Leakage Current Under Overvoltage Fault with Unpowered or Floating Supplies

8.5 Break-Before-Make Delay

The break-before-make delay is a safety feature of the TMUX7348F and TMUX7349F. The ON switches first break the connection before the OFF switches make connection. The time delay between the break and the make is known as break-before-make delay. Figure 8-6 shows the setup used to measure break-before-make delay, denoted by the symbol t_{BBM}.

![Diagram showing the measurement setup for break-before-make delay](image)

Figure 8-6. Break-Before-Make Delay Measurement Setup
8.6 Enable Delay Time

$t_{ON(EN)}$ time is defined as the time taken by the output of the TMUX7348F and TMUX7349F to rise to a 90% final value after the EN signal has risen to a 50% final value. $t_{OFF(EN)}$ is defined as the time taken by the output of the TMUX7348F and TMUX7349F to fall to a 10% initial value after the EN signal has fallen to a 50% initial value. Figure 8-7 shows the setup used to measure the enable delay time.

![Figure 8-7. Enable Delay Measurement Setup](image)

8.7 Transition Time

Transition time is defined as the time taken by the output of the device to rise (to 90% of the transition) or fall (to 10% of the transition) after the address signal (Ax) has fallen or risen to 50% of the transition. Figure 8-8 shows the setup used to measure transition time, denoted by the symbol t_{TRAN}.

![Figure 8-8. Transition Time Measurement Setup](image)
8.8 Fault Response Time

Fault response time (t_{RESPONSE}) measures the delay between the source voltage exceeding the fault supply voltage (V_{FP} or V_{FN}) by 0.5 V and the drain voltage failing to 50% of the maximum output voltage. Figure 8-9 shows the setup used to measure t_{RESPONSE}.

8.9 Fault Recovery Time

Fault recovery time (t_{RECOVERY}) measures the delay between the source voltage falling from overvoltage condition to below fault supply voltage (V_{FP} or V_{FN}) plus 0.5 V and the drain voltage rising from 0 V to 50% of the final output voltage. Figure 8-10 shows the setup used to measure t_{RECOVERY}.
8.10 Fault Flag Response Time

Fault flag response time ($t_{\text{RESPONSE(FLAG)}}$) measures the delay between the source voltage exceeding the fault supply voltage (V_{FP} or V_{FN}) by 0.5 V and the general fault flag (FF) pin or specific fault flag (SF) pin to go below 10% of its original value. Figure 8-11 shows the setup used to measure $t_{\text{RESPONSE(FLAG)}}$.

![Figure 8-11. Fault Flag Response Time Measurement Setup](image)

8.11 Fault Flag Recovery Time

Fault flag recovery time ($t_{\text{RECOVERY(FLAG)}}$) measures the delay between the source voltage falling from overvoltage condition to below fault supply voltage (V_{FP} or V_{FN}) plus 0.5 V and the general fault flag (FF) pin or the specific fault flag (SF) pin to rise above 3 V with 5 V external pull-up. Figure 8-12 shows the setup used to measure $t_{\text{RECOVERY(FLAG)}}$.

![Figure 8-12. Fault Flag Recovery Time Measurement Setup](image)
8.12 Charge Injection

Charge injection is a measure of the glitch impulse transferred from the logic input to the analog output during switching, and is denoted by the symbol Q_{INJ}. Figure 8-13 shows the setup used to measure charge injection from the source to drain.

Figure 8-13. Charge-Injection Measurement Setup

8.13 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (D_x) of the device when a signal is applied to the source pin (S_x) of an off-channel. Figure 8-14 shows the setup used to measure, and the equation used to calculate off isolation.

Figure 8-14. Off Isolation Measurement Setup
8.14 Crosstalk

There are two types of crosstalk that can be defined for the devices:

1. Intra-channel crosstalk ($X_{\text{TALK(INTRA)}}$): the voltage at the source pin (S_x) of an off-switch input, when a signal is applied at the source pin of an on-switch input in the same channel, as shown in Figure 8-15.

2. Inter-channel crosstalk ($X_{\text{TALK(INTER)}}$): the voltage at the source pin (S_x) of an on-switch input, when a signal is applied at the source pin of an on-switch input in a different channel, as shown in Figure 8-16. Inter-channel crosstalk applies only to the TMUX7349F device.

\[
\text{Intra-channel Crosstalk} = 20 \times \log \left(\frac{V_{\text{OUT}}}{V_S} \right)
\]

\[
\text{Inter-channel Crosstalk} = 20 \times \log \left(\frac{V_{\text{OUT}}}{V_S} \right)
\]

Figure 8-15. Intra-Channel Crosstalk Measurement Setup

Figure 8-16. Inter-Channel Crosstalk Measurement Setup
8.15 Bandwidth

Bandwidth (BW) is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D or Dx) of the TMUX7348F and TMUX7349F. Figure 8-17 shows the setup used to measure bandwidth of the switch.

\[
\text{Bandwidth} = 20 \times \log_{10} \frac{V_{\text{OUT}}}{V_S}
\]

Figure 8-17. Bandwidth Measurement Setup

8.16 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the multiplexer output. The on-resistance of the TMUX7348F and TMUX7349F varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD+N. Figure 8-18 shows the setup used to measure THD+N of the devices.

Figure 8-18. THD+N Measurement Setup
9 Detailed Description

9.1 Overview

The TMUX7348F and TMUX7349F are a modern complementary metal-oxide semiconductor (CMOS) analog multiplexers in 8:1 (single ended) and 4:1 (differential) configurations. The devices work well with dual supplies (±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as $V_{DD} = 15$ V, $V_{SS} = -5$ V). The devices have an overvoltage protection feature on the source pins under powered and powered-off conditions, allowing them to be used in harsh industrial environments.

9.2 Functional Block Diagram
9.3 Feature Description

9.3.1 Flat ON-Resistance

The TMUX7348F and TMUX7349F are designed with a special switch architecture to produce ultra-flat on-resistance (R_{ON}) across most of the switch input operation region. The flat R_{ON} response allows the device to be used in precision sensor applications since the R_{ON} is controlled regardless of the signals sampled. The architecture is implemented without a charge pump so no unwanted noise is produced from the device to affect sampling accuracy.

9.3.2 Protection Features

The TMUX7348F and TMUX7349F offer a number of protection features to enable robust system implementations.

9.3.2.1 Input Voltage Tolerance

The maximum voltage that can be applied to any source input pin is +60 V or -60 V, regardless of supply voltage. This allows the device to handle typical voltage fault condition in industrial applications. It shall be cautioned that the device is rated to handle a maximum stress of 85 V across different pins, such as the following:

1. **Between source pins and supply rails:**

 For example, if the device is powered by V_{DD} supply of 20 V, then the maximum negative signal level on any source pin is –60 V to maintain the 60 V maximum rating on any source pin. If the device is powered by V_{DD} supply of 40 V, then the maximum negative signal level on any source pin is reduced to –45 V to maintain the 85 V maximum rating across the source pin and the supply.

2. **Between source pins and one or more of the drain pins:**

 For example, if channel S1(A) is ON and the voltage on S1(A) pin is 40 V. In this case, the drain voltage is also 40 V. The maximum negative voltage on any of the other source pins is –45 V to maintain the 85 V maximum rating across the source pin and the drain pin.

9.3.2.2 Powered-Off Protection

When the supplies of TMUX7348F and TMUX7349F are removed (V_{DD}/ V_{SS} = 0 V or floating), the source (Sx) pins of the device remain in the high impedance (Hi-Z) state, and the source (Sx) and drain (Dx) pins of the device remain within the leakage performance mentioned in the Electrical Characteristics. Powered-off protection minimizes system complexity by removing the need to control the power supply sequencing of the system. The feature prevents errant voltages on the input source pins from reaching the rest of the system and maintains isolation when the system is powering up. Without powered-off protection, the signal on the input source pins can back-power the supply rails through the internal ESD diodes and potentially cause damage to the system. For more information on powered-off protection refer to the *Eliminate Power Sequencing with Powered-Off Protection Signal Switches* application brief.

The switch remains OFF regardless of whether the V_{DD} and V_{SS} supplies are 0 V or floating. A GND reference must always be present to ensure proper operation. Source and drain voltage levels of up to ±60 V are blocked in the powered-off condition.

9.3.2.3 Fail-Safe Logic

Fail-safe logic circuitry allows voltages on the logic control pins to be applied before the supply pins, protecting the device from potential damage. The switch is specified to be in the OFF state, regardless of the state of the logic signals. The logic inputs are protected against positive faults of up to +44 V in the powered-off condition, but do not offer protection against the negative overvoltage condition.

Fail-safe logic also allows the TMUX7348F and TMUX7349F devices to interface with a voltage greater than V_{DD} during normal operation to add maximum flexibility in system design. For example, with a V_{DD} of = 15 V, the logic control pins could be connected to +24 V for a logic high signal which allows different types of signals, such as analog feedback voltages, to be used when controlling the logic inputs. Regardless of the supply voltage, the logic inputs can be interfaced as high as 44 V.
9.3.2.4 Overvoltage Protection and Detection

The TMUX7348F and TMUX7349F detect overvoltage inputs by comparing the voltage on a source pin (Sx) with the fault supplies (V\textsubscript{FP} and V\textsubscript{FN}). A signal is considered overvoltage if it exceeds the fault supply voltages by the threshold voltage (V\textsubscript{T}).

When an overvoltage is detected, the switch automatically turns OFF regardless of the logic controls. The source pin becomes high impedance and ensures only small leakage current flows through the switch and the overvoltage does not appear on the drain. When the overvoltage channel is selected by the logic control, the drain pin (D or Dx) is pulled to the supply that was exceeded. For example, if the source voltage exceeds V\textsubscript{FP}, then the drain output is pulled to V\textsubscript{FP}. If the source voltage exceeds V\textsubscript{FN}, then the drain output is pulled to V\textsubscript{FN}. The pull-up impedance is approximately 40 k\ohm, and as a result, the drain current is limited to roughly 1 mA during a shorted load (to GND) condition.

Figure 9-1 shows a detailed view of how the pullup or down controls the output state of the drain pin under a fault scenario.

V\textsubscript{FP} and V\textsubscript{FN} are required fault supplies that set the level at which the overvoltage protection is engaged. V\textsubscript{FP} can be supplied from 3 V to V\textsubscript{DD}, while the V\textsubscript{FN} can be supplied from V\textsubscript{SS} to 0 V. If the fault supplies are not available in the system, the V\textsubscript{FP} pin must be connected to V\textsubscript{DD}, while the V\textsubscript{FN} pin must be connected to V\textsubscript{SS}. In this case, overvoltage protection then engages at the primary supply voltages V\textsubscript{DD} and V\textsubscript{SS}.

9.3.2.5 Adjacent Channel Operation During Fault

When the logic pins are set to a channel under a fault, the overvoltage detection will trigger, the switch will open, and the drain pin will be pulled up or down as described in Section 9.3.2.4. During such an event, all other channels not under a fault can continue to operate as normal. For example, if S1 voltage exceeds V\textsubscript{FP}, and the logic pins are set to S1, the drain output is pulled to V\textsubscript{FP}. Then if the logic pins are changed to set S4, which is not in overvoltage or undervoltage, the drain will disconnect from the pullup to V\textsubscript{FP} and the S4 switch will be enabled and connected to the drain, operating as normal. If the logic pins are switched back to S1, the S4 switch will be disabled, the drain pin will be pulled up to V\textsubscript{FP} again, and the switch from S1 to drain will not be enabled until the overvoltage fault is removed.

9.3.2.6 ESD Protection

All pins on the TMUX7348F and TMUX7349F support HBM ESD protection level up to ±3.5 kV, which helps the device from getting ESD damages during the manufacturing process.

The drain pins (D or Dx) have internal ESD protection diodes to the fault supplies V\textsubscript{FP} and V\textsubscript{FN}. Therefore, the voltage at the drain pins must not exceed the fault supply voltages to prevent excessive diode current. The source pins have specialized ESD protection that allows the signal voltage to reach ±60 V regardless of the supply voltage level. Exceeding ±60 V on any source input may damage the ESD protection circuitry on the device and cause the device to malfunction if the damage is excessive.
9.3.2.7 Latch-Up Immunity

Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX7348F and TMUX7349F devices are constructed on silicon on insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX7348F and TMUX7349F to be used in harsh environments. For more information on latch-up immunity refer to the Using Latch-Up Immune Multiplexers to Help Improve System Reliability application report.

9.3.2.8 EMC Protection

The TMUX7348F and TMUX7349F are not intended for standalone electromagnetic compatibility (EMC) protection in industrial applications. There are three common high voltage transient specifications that govern industrial high voltage transient specification: IEC61000-4-2 (ESD), IEC61000-4-4 (EFT), and IEC61000-4-5 (surge immunity). A transient voltage suppressor (TVS), along with some low-value series current limiting resistors, are required to prevent source input voltages from going above the rated ±60 V limits.

When selecting a TVS protection device, it is critical to ensure that the maximum working voltage is greater than both the normal operating range of the input source pins to be protected and any known system common-mode overvoltage that may be present due to incorrect wiring, loss of power, or short circuit. Figure 9-2 shows an example of the proper design window when selecting a TVS device.

Region 1 denotes normal operation region of TMUX7348F and TMUX7349F where the input source voltages stay below the fault supplies V_{FP} and V_{FN}. Region 2 represents the range of possible persistent DC (or long duration AC overvoltage fault) presented on the source input pins. Region 3 represents the margin between any known DC overvoltage level and the absolute maximum rating of the TMUX7348F and TMUX7349F. The TVS breakdown voltage must be selected to be less than the absolute maximum rating of the TMUX7348F and TMUX7349F, but greater than any known possible persistent DC or long duration AC overvoltage fault to avoid triggering the TVS inadvertently. Region 4 represents the margin system designers must impose when selecting the TVS protection device to prevent accidental triggering of ESD cells of the TMUX7348F and TMUX7349F devices.

Figure 9-2. System Operation Regions and Proper Region of Selecting a TVS Protection Device
9.3.3 Overvoltage Fault Flags

The voltages on the source input pins of the TMUX7348F and TMUX7349F are continuously monitored, and the status of whether an overvoltage condition occurs is indicated by an active low general fault flag (FF). The voltage on the FF pin indicates if any of the source input pins are experiencing an overvoltage condition. If any source pin voltage exceeds the fault supply voltages by a V_T, the FF output is pulled-down to below V_{OL}.

The specific fault (SF) output pins, on the other hand, can be used to decode which inputs are experiencing an overvoltage condition. The SF pin is pulled-down to below V_{OL} when an overvoltage condition is detected on a specific source input pin, depending on the state of the A0, A1, A2, and EN logic pins (see Table 9-1 and Table 9-2).

Both the FF pin and SF pin are open-drain output and external pull-up resistors of 1 kΩ are recommended. The pull-up voltage can be in the range of 1.8 V to 5.5 V, depending on the controller voltage the device interfaces with.

9.3.4 Bidirectional and Rail-to-Rail Operation

The TMUX7348F and TMUX7349F conducts equally well from source (Sx) to drain (D or Dx) or from drain (D or Dx) to source (Sx). Each signal path has very similar characteristics in both directions. It is important to note, however, that the overvoltage protection is implemented only on the source (Sx) side. The voltage on the drain is only allowed to swing between V_{FP} and V_{FN} and no overvoltage protection is available on the drain side.

The primary supplies (V_{DD} and V_{SS}) define the on-resistance profile of the switch channel, whereas the fault voltage supplies (V_{FP} and V_{FN}) define the signal range that can be passed through from source to drain of the device. It is good practice to use voltages on V_{FP} and V_{FN} that are lower than V_{DD} and V_{SS} to take advantage of the flat on-resistance region of the device for better input-to-output linearity. The flatest on-resistance region extends from V_{SS} to roughly 3 V below V_{DD}. Once the signal is within 3 V of V_{DD} the on-resistance will exponentially increase and may impact desired signal transmission.

9.3.5 1.8 V Logic Compatible Inputs

The TMUX7348F and TMUX7349F devices have 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the TMUX7348F and TMUX7349F to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V Logic Muxes and Switches.

9.3.6 Integrated Pull-Down Resistor on Logic Pins

The TMUX7348F and TMUX7349F have internal weak pull-down resistors to GND to ensure the logic pins are not left floating. The value of this pull-down resistor is approximately 4 MΩ, but is clamped to about 1 μA at higher voltages. This feature integrates up to four external components and reduces system size and cost.

9.4 Device Functional Modes

The TMUX7348F and TMUX7349F offer two modes of operation (Normal Mode and Fault Mode) depending on whether any of the input pins experience an overvoltage condition.

9.4.1 Normal Mode

In Normal mode operation, signals of up to V_{FP} and V_{FN} can be passed through the switch from source (Sx) to drain (D or Dx) or from drain (D or Dx) to source (Sx). According to Table 9-1 and Table 9-2, the address (Ax) pins and the enable (EN) pin determine which switch path to turn on. The following conditions must be satisfied for the switch to stay in the ON condition:

- The difference between the primary supplies ($V_{DD} - V_{SS}$) must be higher or equal to 8 V. With a minimum V_{DD} of 5 V.
- V_{FP} must be between 3 V and V_{DD}, and V_{FN} must be between V_{SS} and 0 V.
- The input signals on the source (Sx) or the drain (D or Dx) must be be between $V_{FP} + V_{T}$ and $V_{FN} - V_{T}$.
- The logic control (Ax and EN) must have selected the switch.
9.4.2 Fault Mode

The TMUX7348F and TMUX7349F enters into Fault mode when any of the input signals on the source (Sx) pins exceed V_{FP} or V_{FN} by a threshold voltage V_T. Under the overvoltage condition, the switch input experiencing the fault automatically turns OFF regardless of the logic status, and the source pin becomes high impedance with a negligible amount of leakage current flowing through the switch. When the fault channel is selected by the logic control, the drain pin (D or Dx) is pulled to the fault supply that was exceeded through a 40 kΩ internal resistor.

In the Fault mode, the general fault flag (FF) is asserted low. The specific flag (SF) is asserted low when a specific input path is selected, according to Table 9-1 and Table 9-2.

The overvoltage protection is provided only for the source (Sx) input pins. The drain (D or Dx) pin, if used as signal input, must stay in between V_{FP} and V_{FN} at all time since no overvoltage protection is implemented on the drain pin.
9.4.3 Truth Tables

Table 9-1 shows the truth tables for the TMUX7348F under normal and fault conditions.

<table>
<thead>
<tr>
<th>Table 9-1. TMUX7348F Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Table 9-2 shows the truth tables for the TMUX7349F under normal and fault conditions.

<table>
<thead>
<tr>
<th>Table 9-2. TMUX7349F Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
10 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

10.1 Application Information

The TMUX7348F and TMUX7349F are part of the fault protected switches and multiplexers family of devices. The ability to protect downstream components from overvoltage events up to ±60 V makes these switches and multiplexers suitable for harsh environments.

10.2 Typical Application

In analog input programmable logic controllers (PLC) a multiplexer is often used to switch multiple sensors to a single ADC. By using a multiplexer, the number of components in the system can be reduced to save system cost and size. In a PLC module a ±10 V input signal range is common for interfacing with external field transmitters and sensors; however, there are a number of fault cases that may occur that can be damaging to many of the integrated circuits. Such fault conditions may include, but are not limited to, human error from wiring connections incorrectly, component failure or wire shorts, electromagnetic interference (EMI) or transient disturbances, and so forth.

![Typical Application Diagram]

Figure 10-1. Typical Application
10.2.1 Design Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive supply (V_{DD}) mux</td>
<td>+15 V</td>
</tr>
<tr>
<td>Negative supply (V_{SS}) mux</td>
<td>-15 V</td>
</tr>
<tr>
<td>Positive fault voltage supply (V_{FP}) mux and ADC</td>
<td>+10 V</td>
</tr>
<tr>
<td>Negative fault voltage supply (V_{FN}) mux and ADC</td>
<td>-10 V</td>
</tr>
<tr>
<td>Power board supply voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Input / output signal range non-faulted</td>
<td>-10 V to 10 V</td>
</tr>
<tr>
<td>Overvoltage protection levels</td>
<td>-60 V to 60 V</td>
</tr>
<tr>
<td>Control logic thresholds</td>
<td>1.8 V compatible, up to 44 V</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40°C to +125°C</td>
</tr>
</tbody>
</table>

10.2.2 Detailed Design Procedure

The image shows the case where an incorrect wiring condition occurred and one of the input connectors has been shorted to the power board supply voltage. If the board supply voltage is higher than the fault voltage supply of the multiplexer, then the TMUX7348F or TMUX7349F will disconnect the source input from passing the signal to protect the downstream ADC. The drain pin of the mux will be pulled up to the fault voltage supply voltage V_{FP} through a 40 kΩ resistor to allow the ADC to determine a fault condition has occurred.

10.2.3 Application Curves

The example application utilizes the fault protection of the TMUX7348F or TMUX7349F to protect downstream components from potential miswiring conditions from the Power Module board. Figure 10-2 shows an example of positive overvoltage fault response with a fast fault ramp rate of 58 V/µs. Figure 10-3 shows the extremely flat on-resistance across source voltage while operating within a common signal range of ±10 V. These features make the TMUX7348F or TMUX7349F an ideal solution for factory automation applications that may face various fault conditions but also require excellent linearity and low distortion.

Figure 10-2. Positive Overvoltage Response

Figure 10-3. R\text{ON} Flatness in Non-Fault Region
11 Power Supply Recommendations

The TMUX7348F and TMUX7349F operate across a wide supply range of ±5 V to ±22 V (8 V to 44 V in single-supply mode). They also perform well with asymmetrical supplies such as $V_{DD} = 12$ V and $V_{SS} = -5$ V. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 µF to 10 µF at both the V_{DD} and V_{SS} pins to ground. Always ensure the ground (GND) connection is established before supplies are ramped.

The fault supplies (V_{FP} and V_{FN}) provide the current required to operate the fault protection, and thus, must be low impedance supplies. They can be derived from the primary supplies by using a resistor divider and buffer or be an independent supply rail. The fault supplies must not exceed the primary supplies as it might cause unexpected behavior of the switch. Use a supply decoupling capacitor ranging from 0.1 µF to 10 µF at both the V_{FP} and V_{FN} pins to ground for improved supply noise immunity.

The positive supply (V_{DD}) must be ramped before the positive fault rail (V_{FP}) for proper power sequencing of the TMUX7348F and TMUX7349F. Similarly, the negative supply (V_{SS}) must be ramped before the negative fault voltage rail (V_{FN}).

12 Layout

12.1 Layout Guidelines

The following images illustrate examples of a PCB layout with the TMUX7348F and TMUX7349F. Some key considerations are:

- For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between V_{DD} and V_{SS} to GND. We recommend a 0.1 µF and 1 µF capacitor, placing the lowest value capacitor as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the V_{DD} and V_{SS} supplies.
- Multiple decoupling capacitors can be used if there is a lot of noise in the system. For example, a 0.1-µF and 1-µF can be placed on the supply pins. If multiple capacitors are used, placing the lowest value capacitor closest to the supply pin is recommended.
- Keep the input lines as short as possible.
- Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

12.2 Layout Example

![Layout Example](image-url)

Figure 12-1. TMUX7348FPW Layout Example
Figure 12-2. TMUX7349FPW Layout Example

Figure 12-3. TMUX7348FQFN Layout Example
Figure 12-4. TMUX7349FQFN Layout Example
13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

- Texas Instruments, *Eliminate Power Sequencing with Powered-Off Protection Signal Switches application brief*
- Texas Instruments, *Implications of Slow or Floating CMOS Inputs application note*
- Texas Instruments, *Improving Analog Input Modules Reliability Using Fault Protected Multiplexers application report*
- Texas Instruments, *Multiplexers and Signal Switches Glossary application report*
- Texas Instruments, *Protection Against Overvoltage Events, Miswiring, and Common Mode Voltages application report*
- Texas Instruments, *Using Latch-Up Immune Multiplexers to Help Improve System Reliability application report*

13.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.4 Trademarks

TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated