TPA2005D1 1.4-W MONO Filter-Free Class-D Audio Power Amplifier

1 Features

- 1.4 W Into 8 Ω From a 5 V Supply at THD = 10% (Typ)
- Maximum Battery Life and Minimum Heat
 - Efficiency With an 8-Ω Speaker:
 - 84% at 400 mW
 - 79% at 100 mW
 - 2.8-mA Quiescent Current
 - 0.5-μA Shutdown Current
- Capable of Driving an 8-Ω Speaker (2.5 V ≤ V_DD ≤ 5.5 V) and a 4-Ω Speaker (2.5 V ≤ V_DD ≤ 4.2 V)
- Only Three External Components
 - Optimized PWM Output Stage Eliminates LC Output Filter
 - Internally Generated 250-kHz Switching Frequency Eliminates Capacitor & Resistor
 - Improved PSRR (–71 dB at 217 Hz) and Wide Supply Voltage (2.5 V to 5.5 V) Eliminates Need for a Voltage Regulator
 - Fully Differential Design Reduces RF Rectification & Eliminates Bypass Capacitor
 - Improved CMRR Eliminates Two Input Coupling Capacitors
- Space Saving Package
 - 3 mm x 3 mm QFN package (DRB)
 - 2.5 mm x 2.5 mm MicroStar Junior™ BGA Package (ZQY)
 - 3 mm x 5 mm MSOP PowerPAD™ Package (DGN)
- Use TPA2006D1 for 1.8 V Logic Compatibility on Shutdown Pin

2 Applications

Ideal for Wireless or Cellular Handsets and PDAs

3 Description

The TPA2005D1 is a 1.4-W high efficiency filter-free class-D audio power amplifier in a MicroStar Junior™ BGA, QFN, or MSOP package that requires only three external components.

Features like 84% efficiency, –71-dB PSRR at 217 Hz, improved RF-rectification immunity, and 15 mm² total PCB area make the TPA2005D1 ideal for cellular handsets. A fast start-up time of 9 ms with minimal pop makes the TPA2005D1 ideal for PDA applications.

In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the TPA2005D1. The device allows independent gain control by summing the signals from each function while minimizing noise to only 48 μVRMS.

The TPA2005D1 has short-circuit and thermal protection.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA2005D1</td>
<td>HVSSOP (8)</td>
<td>3.00 mm x 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>VSON (8)</td>
<td>3.00 mm x 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>BGA MICROSTAR JUNIOR (15)</td>
<td>2.50 mm x 2.50 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Device Layout and Size

Actual Solution Size

Application Circuit

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (July 2008) to Revision G

- Added ESD Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. ... 1

Changes from Revision E (July 2008) to Revision F

- Added Capable of Driving an 8-Ω Speaker and a 4-Ω Speaker .. 1
- Added Use TPA2006D1 for 1.8 V Logic Compatibility on Shutdown Pin .. 1
- Added to Description: The TPA2005D1 has short-circuit and thermal protection ... 1
- Changed Storage temperature From: -40°C to 85°C To: -40°C to 150°C ... 4
- Added R_L Load resistance, to the Abs Max Ratings Table .. 4
- Added New graph, Figure 3 ... 6
- Changed graph, Figure 4 ... 6
- Added graph, Figure 10 ... 6
- Changed graph, Figure 11 ... 6
- Changed graph, Figure 12 ... 6
- Added graph, Figure 13 ... 7
- Added graph, Figure 20 ... 8
- Added graph, Figure 21 .. 8
- Added graph, Figure 22 .. 8
- Added Any capacitor in the audio path should have a rating of X7R or better ... 23
- Deleted Section: 8-Pin QFN 9DRB) Layout ... 26
5 Device Comparison Table

<table>
<thead>
<tr>
<th>DEVICE NUMBER</th>
<th>SPEAKER CHANNELS</th>
<th>SPEAKER AMP TYPE</th>
<th>OUTPUT POWER (W)</th>
<th>PSRR (dB)</th>
<th>SUPPLY MIN (V)</th>
<th>SUPPLY MAX (V)</th>
<th>PACKAGE FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA2005D1</td>
<td>Mono</td>
<td>Class D</td>
<td>1.4</td>
<td>75</td>
<td>2.5</td>
<td>5.5</td>
<td>BGA MICROSTAR JUNIOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HVSSOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VSON</td>
</tr>
<tr>
<td>TPA2006D1</td>
<td>Mono</td>
<td>Class D</td>
<td>1.45</td>
<td>75</td>
<td>2.5</td>
<td>5.5</td>
<td>VSON</td>
</tr>
</tbody>
</table>

6 Pin Configuration and Functions

A. The shaded terminals are used for electrical and thermal connections to the ground plane. All the shaded terminals need to be electrically connected to ground. No connect (NC) terminals still need a pad and trace.

B. The thermal pad of the DRB and DGN packages must be electrically and thermally connected to a ground plane.

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>GQY, ZQY</th>
<th>DRB, DGN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>A2, A3, B3, C2, C3, D2, D3</td>
<td>7</td>
<td>I</td>
<td>High-current ground</td>
</tr>
<tr>
<td>IN-</td>
<td>D1</td>
<td>4</td>
<td>I</td>
<td>Negative differential input</td>
</tr>
<tr>
<td>IN+</td>
<td>C1</td>
<td>3</td>
<td>I</td>
<td>Positive differential input</td>
</tr>
<tr>
<td>NC</td>
<td>B1</td>
<td>2</td>
<td></td>
<td>No internal connection</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>A1</td>
<td>1</td>
<td>I</td>
<td>Shutdown terminal (active low logic)</td>
</tr>
<tr>
<td>Thermal Pad</td>
<td></td>
<td></td>
<td></td>
<td>Must be soldered to a grounded pad on the PCB.</td>
</tr>
<tr>
<td>V_DD</td>
<td>B4, C4</td>
<td>6</td>
<td>I</td>
<td>Power supply</td>
</tr>
<tr>
<td>V_O-</td>
<td>A4</td>
<td>8</td>
<td>O</td>
<td>Negative BTL output</td>
</tr>
<tr>
<td>V_O+</td>
<td>D4</td>
<td>5</td>
<td>O</td>
<td>Positive BTL output</td>
</tr>
</tbody>
</table>
7 Specifications

7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)$^{(1)}$

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply voltage$^{(2)}$</td>
<td>In active mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In SHUTDOWN mode</td>
</tr>
<tr>
<td>Vt</td>
<td>Input voltage</td>
<td>–0.3</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating free-air temperature</td>
<td>–40</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating junction temperature</td>
<td>–40</td>
</tr>
<tr>
<td>T_stg</td>
<td>Storage temperature</td>
<td>–65</td>
</tr>
<tr>
<td>R_L</td>
<td>Load resistance</td>
<td>2.5 ≤ VDD ≤ 4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 < VDD ≤ 6</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) For the MSOP (DGN) package option, the maximum VDD should be limited to 5 V if short-circuit protection is desired.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_HBM</td>
<td>±3000</td>
</tr>
<tr>
<td>V_CDM</td>
<td>±1500</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply voltage</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>V_H</td>
<td>High-level input voltage</td>
<td>SHUTDOWN</td>
<td>2</td>
</tr>
<tr>
<td>V_L</td>
<td>Low-level input voltage</td>
<td>SHUTDOWN</td>
<td>0</td>
</tr>
<tr>
<td>R_i</td>
<td>Input resistor</td>
<td>Gain ≤ 20 V/V (26 dB)</td>
<td>15</td>
</tr>
<tr>
<td>V_CM</td>
<td>Common mode input voltage range</td>
<td>VDD = 2.5 V, 5.5 V, CMRR ≤ –49 dB</td>
<td>0.5</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating free-air temperature</td>
<td></td>
<td>−40</td>
</tr>
</tbody>
</table>

7.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC$^{(1)}$</th>
<th>TPA2005D1</th>
<th>ZQY (MicroStar Junior)</th>
<th>GQY (MicroStar Junior)</th>
<th>DRB (VSON)</th>
<th>DGN (MSOP PowerPAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JA}</td>
<td>Junction-to-ambient thermal resistance</td>
<td>92.7</td>
<td>92.7</td>
<td>50.9</td>
<td>57.2</td>
</tr>
<tr>
<td>R_{JCT(top)}</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>120.5</td>
<td>120.5</td>
<td>66.2</td>
<td>53.8</td>
</tr>
<tr>
<td>R_{JB}</td>
<td>Junction-to-board thermal resistance</td>
<td>104</td>
<td>104</td>
<td>25.9</td>
<td>33.7</td>
</tr>
<tr>
<td>ψ_{JT}</td>
<td>Junction-to-top characterization parameter</td>
<td>3.1</td>
<td>3.1</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>ψ_{JB}</td>
<td>Junction-to-board characterization parameter</td>
<td>44.8</td>
<td>44.8</td>
<td>26</td>
<td>33.47</td>
</tr>
<tr>
<td>R_{JCT(bot)}</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>n/a</td>
<td>n/a</td>
<td>7</td>
<td>6.4</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
7.5 Electrical Characteristics

$T_A = 25^\circ C$, over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{OS}</td>
<td>$</td>
<td>Output offset voltage (measured differentially)</td>
<td>$V_I = 0 \ \text{V}$, $A_V = 2 \ \text{V/V}$, $V_{DD} = 2.5 \ \text{V to 5.5 V}$</td>
<td>25</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power supply rejection ratio</td>
<td>$V_{DD} = 2.5 \ \text{V to 5.5 V}$</td>
<td>-75</td>
<td>-55</td>
<td>dB</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common mode rejection ratio</td>
<td>$V_{DD} = 2.5 \ \text{V to 5.5 V}$, $V_{IC} = V_{DD}/2$ to 0.5 V, $V_{IC} = 0.8 \ \text{V}$</td>
<td>-68</td>
<td>-49</td>
<td>dB</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>High-level input current</td>
<td>$V_{DD} = 5.5 \ \text{V}$, $V_I = 5.8 \ \text{V}$</td>
<td>50</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Low-level input current</td>
<td>$V_{DD} = 5.5 \ \text{V}$, $V_I = 0.3 \ \text{V}$</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{SD}</td>
<td>Shutdown current</td>
<td>$V_{DD} = 5.5 \ \text{V}$, no load</td>
<td>3.4</td>
<td>4.5</td>
<td>mA</td>
</tr>
<tr>
<td>$V_{DD} = 3.6 \ \text{V}$, no load</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 2.5 \ \text{V}$, no load</td>
<td>2.2</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{SHUTDOWN} = 0.8 \ \text{V}$</td>
<td>0.5</td>
<td>2</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>Static drain-source on-state resistance</td>
<td>$V_{DD} = 3.6 \ \text{V}$</td>
<td>590</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 5.5 \ \text{V}$</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output impedance in $V_{SHUTDOWN} = 0.8 \ \text{V}$ >1 kΩ

f_{sw} | Switching frequency | $V_{DD} = 2.5 \ \text{V to 5.5 V}$ | 200 | 250 | 300 | kHz |

Gain

$2 \times \frac{142 \ \text{kΩ}}{R_i}$, $2 \times \frac{150 \ \text{kΩ}}{R_i}$, $2 \times \frac{158 \ \text{kΩ}}{R_i}$

7.6 Operating Characteristics

$T_A = 25^\circ C$, $G_c = 2 \ \text{V/V}$, $R_L = 8 \ \Omega$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_O</td>
<td>Output power</td>
<td>$\text{THD + N} = 1%$, $f = 1 \ \text{kHz}$, $R_L = 8 \ \Omega$</td>
<td>$V_{DD} = 5 \ \text{V}$</td>
<td>1.18</td>
<td>W</td>
</tr>
<tr>
<td>$V_{DD} = 3.6 \ \text{V}$</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 2.5 \ \text{V}$</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{THD + N} = 10%$, $f = 1 \ \text{kHz}$, $R_L = 8 \ \Omega$</td>
<td>$V_{DD} = 5 \ \text{V}$</td>
<td>1.45</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 3.6 \ \text{V}$</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 2.5 \ \text{V}$</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P_O = 1 \ \text{W}$, $f = 1 \ \text{kHz}$, $R_L = 8 \ \Omega$

$V_{DD} = 5 \ \text{V}$ | 0.18% |

$V_{DD} = 3.6 \ \text{V}$ | 0.19% |

$P_O = 200 \ \text{mW}$, $f = 1 \ \text{kHz}$, $R_L = 8 \ \Omega$

$V_{DD} = 5 \ \text{V}$ | 0.20% |

k_{SVR} | Supply ripple rejection ratio | $f = 217 \ \text{Hz}$, $V_{RIPEPLE} = 200 \ \text{mV}_{pp}$, $\text{Inputs ac-grounded with } C_i = 2 \ \mu F$ | $V_{DD} = 3.6 \ \text{V}$ | -71 | dB |

SNR | Signal-to-noise ratio | $P_O = 1 \ \text{W}$, $R_L = 8 \ \Omega$ | $V_{DD} = 5 \ \text{V}$ | 97 | dB |

V_{TH} | Output voltage noise | $V_{DD} = 3.6 \ \text{V}$, $f = 20 \ \text{Hz to 20 kHz}$, $\text{Inputs ac-grounded with } C_i = 2 \ \mu F$ | No weighting | 48 | μV_{RMS} |

| A weighting | 36 |

CMRR | Common mode rejection ratio | $V_{IC} = 1 \ \text{V}_{pp}$, $f = 217 \ \text{Hz}$ | $V_{DD} = 3.6 \ \text{V}$ | -63 | dB |

Z_I | Input impedance | $V_{DD} = 3.6 \ \text{V}$ | 142 | 150 | 158 | kΩ |

Start-up time from shutdown | $V_{DD} = 3.6 \ \text{V}$ | 9 | ms |
7.7 Typical Characteristics

![Figure 1. Efficiency vs Output Power](image1)

![Figure 2. Efficiency vs Output Power](image2)

![Figure 3. Efficiency vs Output Power](image3)

![Figure 4. Power Dissipation vs Output Power](image4)

![Figure 5. Supply Current vs Output Power](image5)

![Figure 6. Supply Current vs Output Power](image6)
Typical Characteristics (continued)

Figure 7. Quiescent Current vs Supply Voltage

Figure 8. Shutdown Current vs Shutdown Voltage

Figure 9. Output Power vs Supply Voltage

Figure 10. Output Power vs Supply Voltage

Figure 11. Output Power vs Load Resistance

Figure 12. Output Power vs Load Resistance
Typical Characteristics (continued)

Figure 13. Total Harmonic Distortion + Noise vs Output Power

Figure 14. Total Harmonic Distortion + Noise vs Output Power

Figure 15. Total Harmonic Distortion + Noise vs Output Power

Figure 16. Total Harmonic Distortion + Noise vs Frequency

Figure 17. Total Harmonic Distortion + Noise vs Frequency

Figure 18. Total Harmonic Distortion + Noise vs Frequency
Typical Characteristics (continued)

Figure 19. Total Harmonic Distortion + Noise vs Frequency

Figure 20. Total Harmonic Distortion + Noise vs Frequency

Figure 21. Total Harmonic Distortion + Noise vs Frequency

Figure 22. Total Harmonic Distortion + Noise vs Frequency

Figure 23. Total Harmonic Distortion + Noise vs Common Mode Input Voltage

Figure 24. Supply Voltage Rejection Ratio vs Frequency
Typical Characteristics (continued)

Figure 25. Supply Voltage Rejection Ratio vs Frequency

Figure 26. Supply Voltage Rejection Ratio vs Frequency

Figure 27. Supply Voltage Rejection Ratio vs Common-mode Input Voltage

Figure 28. GSM Power Supply Rejection vs Time

Figure 29. GSM Power Supply Rejection vs Frequency

Figure 30. Common-mode Rejection Ratio vs Frequency
Typical Characteristics (continued)

Figure 31. Common-mode Rejection Ratio vs Common-mode Input Voltage

8 Parameter Measurement Information

Figure 32. Test Set-up for Graphs

(1) CI was shorted for any Common-Mode input voltage measurement.
(2) A 33-mH inductor was placed in series with the load resistor to emulate a small speaker for efficiency measurements.
(3) The 30-kHz low-pass filter is required even if the analyzer has a low-pass filter. An RC filter (100 W, 47 nF) is used on each output for the data sheet graphs.
9 Detailed Description

9.1 Overview

The TPA2005D1 is a high-efficiency filter-free Class-D audio amplifier capable of delivering up to 1.4 W into 8-Ω loads with 5-V power supply. The fully-differential design of this amplifier avoids the usage of bypass capacitors and the improved CMRR eliminates the usage of input-coupling capacitors. This makes the device size a perfect choice for small, portable applications as only three external components are required.

The advanced modulation used in the TPA2005D1 PWM output stage eliminates the need for an output filter.

9.2 Functional Block Diagram

![Functional Block Diagram](image)

9.3 Feature Description

9.3.1 Fully Differential Amplifier

The TPA2005D1 is a fully differential amplifier with differential inputs and outputs. The fully differential amplifier consists of a differential amplifier and a common-mode amplifier. The differential amplifier ensures that the amplifier outputs a differential voltage on the output that is equal to the differential input times the gain. The common-mode feedback ensures that the common-mode voltage at the output is biased around \(V_{DD}/2 \) regardless of the common-mode voltage at the input. The fully differential TPA2005D1 can still be used with a single-ended input; however, the TPA2005D1 should be used with differential inputs when in a noisy environment, like a wireless handset, to ensure maximum noise rejection.

† A2, A3, B3, C2, C3, D2, D3 (terminal labels for MicroStar Junior™ package)
Feature Description (continued)

9.3.1.1 Advantages of Fully Differential Amplifiers

- Input-coupling capacitors not required:
 - The fully differential amplifier allows the inputs to be biased at voltage other than mid-supply. For example, if a codec has a midsupply lower than the midsupply of the TPA2005D1, the common-mode feedback circuit will adjust, and the TPA2005D1 outputs will still be biased at midsupply of the TPA2005D1. The inputs of the TPA2005D1 can be biased from 0.5 V to $V_{DD} - 0.8$ V. If the inputs are biased outside of that range, input-coupling capacitors are required.
- Midsupply bypass capacitor, $C_{(BYPASS)}$, not required:
 - The fully differential amplifier does not require a bypass capacitor. This is because any shift in the midsupply affects both positive and negative channels equally and cancels at the differential output.
- Better RF-immunity:
 - GSM handsets save power by turning on and shutting off the RF transmitter at a rate of 217 Hz. The transmitted signal is picked-up on input and output traces. The fully differential amplifier cancels the signal much better than the typical audio amplifier.

9.3.2 Efficiency and Thermal Information

The maximum ambient temperature depends on the heat-sinking ability of the PCB system. The derating factor for the 2.5-mm x 2.5-mm MicroStar Junior package is shown in the dissipation rating table. Converting this to θ_{JA}:

$$\theta_{JA} = \frac{1}{\text{Derating Factor}} = \frac{1}{0.016} = 62.5^\circ \text{C/W}$$

Equation 1

Given θ_{JA} of 62.5°C/W, the maximum allowable junction temperature of 150°C, and the maximum internal dissipation of 0.2 W (worst case 5-V supply), the maximum ambient temperature can be calculated with equation Equation 2.

$$T_{A,\text{Max}} = T_{J,\text{Max}} - \theta_{JA}P_{D,\text{max}} = 150 - 62.5 \times (0.2) = 137.5^\circ \text{C}$$

Equation 2

Equation Equation 2 shows that the calculated maximum ambient temperature is 137.5°C at maximum power dissipation with a 5-V supply; however, the maximum ambient temperature of the package is limited to 85°C. Because of the efficiency of the TPA2005D1, it can be operated under all conditions to an ambient temperature of 85°C. The TPA2005D1 is designed with thermal protection that turns the device off when the junction temperature surpasses 150°C to prevent damage to the IC. Also, using speakers more resistive than 8-Ω dramatically increases the thermal performance by reducing the output current and increasing the efficiency of the amplifier.

9.3.3 Eliminating the Output Filter with the TPA2005D1

This section focuses on why the user can eliminate the output filter with the TPA2005D1.

9.3.3.1 Effect on Audio

The class-D amplifier outputs a pulse-width modulated (PWM) square wave, which is the sum of the switching waveform and the amplified input audio signal. The human ear acts as a band-pass filter such that only the frequencies between approximately 20 Hz and 20 kHz are passed. The switching frequency components are much greater than 20 kHz, so the only signal heard is the amplified input audio signal.

9.3.3.2 Traditional Class-D Modulation Scheme

The traditional class-D modulation scheme, which is used in the TPA005Dxx family, has a differential output where each output is 180 degrees out of phase and changes from ground to the supply voltage, V_{DD}. Therefore, the differential pre-filtered output varies between positive and negative V_{DD}, where filtered 50% duty cycle yields 0 volts across the load. The traditional class-D modulation scheme with voltage and current waveforms is shown in Figure 33. Note that even at an average of 0 volts across the load (50% duty cycle), the current to the load is high causing a high loss and thus causing a high supply current.
Feature Description (continued)

9.3.3.3 TPA2005D1 Modulation Scheme

The TPA2005D1 uses a modulation scheme that still has each output switching from 0 to the supply voltage. However, OUT+ and OUT- are now in phase with each other with no input. The duty cycle of OUT+ is greater than 50% and OUT- is less than 50% for positive voltages. The duty cycle of OUT+ is less than 50% and OUT- is greater than 50% for negative voltages. The voltage across the load sits at 0 volts throughout most of the switching period greatly reducing the switching current, which reduces any I^2R losses in the load.
Feature Description (continued)

9.3.3.4 Efficiency: Why You Must Use a Filter With the Traditional Class-D Modulation Scheme

The main reason that the traditional class-D amplifier needs an output filter is that the switching waveform results in maximum current flow. This causes more loss in the load, which causes lower efficiency. The ripple current is large for the traditional modulation scheme because the ripple current is proportional to voltage multiplied by the time at that voltage. The differential voltage swing is $2 \times V_{DD}$ and the time at each voltage is half the period for the traditional modulation scheme. An ideal LC filter is needed to store the ripple current from each half cycle for the next half cycle, while any resistance causes power dissipation. The speaker is both resistive and reactive, whereas an LC filter is almost purely reactive.

The TPA2005D1 modulation scheme has little loss in the load without a filter because the pulses are short and the change in voltage is V_{DD} instead of $2 \times V_{DD}$. As the output power increases, the pulses widen making the ripple current larger. Ripple current could be filtered with an LC filter for increased efficiency, but for most applications the filter is not needed.

An LC filter with a cutoff frequency less than the class-D switching frequency allows the switching current to flow through the filter instead of the load. The filter has less resistance than the speaker that results in less power dissipated, which increases efficiency.

9.3.3.5 Effects of Applying a Square Wave Into a Speaker

If the amplitude of a square wave is high enough and the frequency of the square wave is within the bandwidth of the speaker, a square wave could cause the voice coil to jump out of the air gap and/or scar the voice coil. A 250-kHz switching frequency, however, is not significant because the speaker cone movement is proportional to $1/f^2$ for frequencies beyond the audio band. Therefore, the amount of cone movement at the switching frequency is small. However, damage could occur to the speaker if the voice coil is not designed to handle the additional power. To size the speaker for added power, the ripple current dissipated in the load needs to be calculated by subtracting the theoretical supplied power, $P_{SUP _THEORETICAL}$, from the actual supply power, P_{SUP}, at maximum output power, P_{OUT}. The switching power dissipated in the speaker is the inverse of the measured efficiency, $\eta_{MEASURED}$, minus the theoretical efficiency, $\eta_{THEORETICAL}$.

$$P_{SPKR} = P_{SUP} - P_{SUP _THEORETICAL} \quad \text{(at max output power)}$$

$$P_{SPKR} = P_{SUP} - P_{OUT} \quad \text{(at max output power)}$$

$$P_{SPKR} = P_{OUT} \left(\frac{1}{\eta_{MEASURED}} - \frac{1}{\eta_{THEORETICAL}} \right) \quad \text{(at max output power)}$$

$$\eta_{THEORETICAL} = \frac{R_L}{R_L + 2r_{DS(on)}} \quad \text{(at max output power)}$$

The maximum efficiency of the TPA2005D1 with a 3.6 V supply and an 8-Ω load is 86% from equation Equation 6. Using equation Equation 5 with the efficiency at maximum power (84%), we see that there is an additional 17 mW dissipated in the speaker. The added power dissipated in the speaker is not an issue as long as it is taken into account when choosing the speaker.

9.3.3.6 When to Use an Output Filter

Design the TPA2005D1 without an output filter if the traces from amplifier to speaker are short. The TPA2005D1 passed FCC and CE radiated emissions with no shielding with speaker trace wires 100 mm long or less. Wireless handsets and PDAs are great applications for class-D without a filter.

A ferrite bead filter can often be used if the design is failing radiated emissions without an LC filter, and the frequency sensitive circuit is greater than 1 MHz. This is good for circuits that just have to pass FCC and CE because FCC and CE only test radiated emissions greater than 30 MHz. If choosing a ferrite bead, choose one with high impedance at high frequencies, but low impedance at low frequencies.

Use an LC output filter if there are low frequency (< 1 MHz) EMI sensitive circuits and/or there are long leads from amplifier to speaker. Figure 35 and Figure 36 show typical ferrite bead and LC output filters.
9.3.4 Thermal and Short-Circuit Protection

The TPA2005D1 features thermal and short-circuit protection. When the protection circuit is triggered, the device will enter in shutdown mode, setting the outputs of the device into high impedance. Thermal protection turns the device off when the junction temperature surpasses 150°C to prevent damage to the IC.

9.4 Device Functional Modes

9.4.1 Summing Input Signals with the TPA2005D1

Most wireless phones or PDAs need to sum signals at the audio power amplifier or just have two signal sources that need separate gain. The TPA2005D1 makes it easy to sum signals or use separate signal sources with different gains. Many phones now use the same speaker for the earpiece and ringer, where the wireless phone would require a much lower gain for the phone earpiece than for the ringer. PDAs and phones that have stereo headphones require summing of the right and left channels to output the stereo signal to the mono speaker.

9.4.1.1 Summing Two Differential Input Signals

Two extra resistors are needed for summing differential signals (a total of 5 components). The gain for each input source can be set independently (see equations Equation 7 and Equation 8, and Figure 37).

\[
\text{Gain 1} = \frac{V_O}{V_{I1}} = 2 \times \frac{150 \, \text{k}\Omega}{R_{I1}} \left(\frac{V}{V}\right)
\]

(7)

\[
\text{Gain 2} = \frac{V_O}{V_{I2}} = 2 \times \frac{150 \, \text{k}\Omega}{R_{I2}} \left(\frac{V}{V}\right)
\]

(8)

If summing left and right inputs with a gain of 1 V/V, use \(R_{I1} = R_{I2} = 300 \, \text{k}\Omega\).

This configuration will use resistor values of \(R_{I1} = 3 \, \text{M}\Omega\), and \(R_{I2} = 150 \, \text{k}\Omega\)
Device Functional Modes (continued)

Figure 37. Application Schematic With TPA2005D1 Summing Two Differential Inputs

9.4.1.2 Summing a Differential Input Signal and a Single-Ended Input Signal

Figure 38 shows how to sum a differential input signal and a single-ended input signal. Ground noise can couple in through IN+ with this method. It is better to use differential inputs. The corner frequency of the single-ended input is set by C_{I2}, shown in equation Equation 11. To assure that each input is balanced, the single-ended input must be driven by a low-impedance source even if the input is not in use.

\[
\text{Gain 1} = \frac{V_O}{V_{I1}} = 2 \times \frac{150 \text{k}}{R_{I1}} \left(\frac{V}{V} \right)
\]

\[
\text{Gain 2} = \frac{V_O}{V_{I2}} = 2 \times \frac{150 \text{k}}{R_{I2}} \left(\frac{V}{V} \right)
\]

\[
C_{I2} = \frac{1}{(2\pi \times R_{I2} \times f_{c2})}
\]
Device Functional Modes (continued)

If summing a ring tone and a phone signal, the phone signal should use a differential input signal while the ring tone might be limited to a single-ended signal. Phone gain is set at gain 1 = 0.1 V/V, and the ring-tone gain is set to gain 2 = 2 V/V. The resistor values are $R_{I1} = 3\ \text{M}\Omega$ and $R_{I2} = 150\ \text{k}\Omega$.

The high pass corner frequency of the single-ended input is set by C_{I2}. If the desired corner frequency is less than 20 Hz,

$$C_{I2} > \frac{1}{(2\pi \times 150\text{k}\Omega \times 20\text{Hz})}$$

(12)

$$C_{I2} > 53\text{nF}$$

(13)

The high pass corner frequency of the single-ended input is set by C_{I2}. If the desired corner frequency is less than 20 Hz.

$$C_{I2} > \frac{1}{(2\pi \times 150\text{k}\Omega \times 20\text{Hz})}$$

(12)

$$C_{I2} > 53\text{nF}$$

(13)

The high pass corner frequency of the single-ended input is set by C_{I2}. If the desired corner frequency is less than 20 Hz.

$$C_{I2} > \frac{1}{(2\pi \times 150\text{k}\Omega \times 20\text{Hz})}$$

(12)

$$C_{I2} > 53\text{nF}$$

(13)

9.4.1.3 Summing Two Single-Ended Input Signals

Four resistors and three capacitors are needed for summing single-ended input signals. The gain and corner frequencies (f_{c1} and f_{c2}) for each input source can be set independently (see equations through Equation 17, and Figure 39). Resistor, R_p, and capacitor, C_p, are needed on the IN+ terminal to match the impedance on the IN-terminal. The single-ended inputs must be driven by low impedance sources even if one of the inputs is not outputting an ac signal.

Gain 1 = \begin{equation}
\frac{V_O}{V_{I1}} = 2 \times \frac{150 \text{k}}{R_{I1}} \left(\frac{V}{V}\right)
\end{equation}

(14)

Gain 2 = \begin{equation}
\frac{V_O}{V_{I2}} = 2 \times \frac{150 \text{k}}{R_{I2}} \left(\frac{V}{V}\right)
\end{equation}

(15)

$$C_{I1} = \frac{1}{(2\pi \times R_{I1} \times f_{c1})}$$

(16)

$$C2 = \frac{1}{(2\pi \times R_{I2} \times f_{c2})}$$

(17)

$$C_p = C_{I1} + C_{I2}$$

(18)

$$R_p = \frac{R_{I1} \times R_{I2}}{(R_{I1} + R_{I2})}$$

(19)
9.4.2 Shutdown Mode

The TPA2005D1 can be put in shutdown mode when asserting SHUTDOWN pin to a logic LOW. While in shutdown mode, the device output stage is turned off and set into high impedance, making the current consumption very low. The device exits shutdown mode when a HIGH logic level is applied to SHUTDOWN pin.
10 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information
These typical connection diagrams highlight the required external components and system level connections for proper operation of the device in several popular use cases.

Each of these configurations can be realized using the Evaluation Modules (EVMs) for the device. These flexible modules allow full evaluation of the device in the most common modes of operation. Any design variation can be supported by TI through schematic and layout reviews. Visit http://e2e.ti.com for design assistance and join the audio amplifier discussion forum for additional information.

10.2 Typical Applications
These application circuits detail the recommended component selection and board configurations for the TPA2005D1 device.

10.2.1 TPA2005D1 with Differential Input

![Diagram of TPA2005D1 Differential Input](image)

Figure 40. Typical TPA2005D1 Differential Input for a Wireless Phone

10.2.1.1 Design Requirements
For this design example, use the parameters listed in Table 1.

Table 1. Design Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>5 V</td>
</tr>
<tr>
<td>Shutdown Input</td>
<td>High > 2 V</td>
</tr>
<tr>
<td></td>
<td>Low < 0.8 V</td>
</tr>
<tr>
<td>Speaker</td>
<td>8 Ω</td>
</tr>
</tbody>
</table>
10.2.1.2 Detailed Design Procedure

10.2.1.2.1 Component Selection

Figure 40 shows the TPA2005D1 typical schematic with differential inputs and Figure 42 shows the TPA2005D1 with differential inputs and input capacitors, and Figure 43 shows the TPA2005D1 with single-ended inputs. Differential inputs should be used whenever possible because the single-ended inputs are much more susceptible to noise.

Table 2. Typical Component Values

<table>
<thead>
<tr>
<th>REF DES</th>
<th>VALUE</th>
<th>EIA SIZE</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_I</td>
<td>150 kΩ (±0.5%)</td>
<td>0402</td>
<td>Panasonic</td>
<td>ERJ2RHD154V</td>
</tr>
<tr>
<td>C_S</td>
<td>1 μF (+22%, -80%)</td>
<td>0402</td>
<td>Murata</td>
<td>GRP155F50J105Z</td>
</tr>
<tr>
<td>C_I (1)</td>
<td>3.3 nF (±10%)</td>
<td>0201</td>
<td>Murata</td>
<td>GRP033B10J332K</td>
</tr>
</tbody>
</table>

(1) C_I is only needed for single-ended input or if \(V_{ICM} \) is not between 0.5 V and \(V_{DD} - 0.8 \) V. \(C_I = 3.3 \) nF (with \(R_I = 150 \) kΩ) gives a high-pass corner frequency of 321 Hz.

10.2.1.2.2 Input Resistors (\(R_I \))

The input resistors (\(R_I \)) set the gain of the amplifier according to equation Equation 20.

\[
\text{Gain} = 2 \times \frac{150 \text{ kΩ}}{R_I}
\]

(20)

Resistor matching is important in fully differential amplifiers. The balance of the output on the reference voltage depends on matched ratios of the resistors. CMRR, PSRR, and cancellation of the second harmonic distortion diminish if resistor mismatch occurs. Therefore, it is recommended to use 1% tolerance resistors or better to keep the performance optimized. Matching is more important than overall tolerance. Resistor arrays with 1% matching can be used with a tolerance greater than 1%.

Place the input resistors close to the TPA2005D1 to limit noise injection on the high-impedance nodes.

For optimal performance the gain should be set to 2 V/V or lower. Lower gain allows the TPA2005D1 to operate at its best, and keeps a high voltage at the input making the inputs less susceptible to noise.

10.2.1.2.3 Decoupling Capacitor (\(C_S \))

The TPA2005D1 is a high-performance class-D audio amplifier that requires adequate power supply decoupling to ensure the efficiency is high and total harmonic distortion (THD) is low. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 1 μF, placed as close as possible to the device \(V_{DD} \) lead works best. Placing this decoupling capacitor close to the TPA2005D1 is important for the efficiency of the class-D amplifier, because any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency. For filtering lower-frequency noise signals, a 10 μF or greater capacitor placed near the audio power amplifier would also help, but it is not required in most applications because of the high PSRR of this device.
10.2.1.3 Application Curves

![Output Power vs Supply Voltage](image)

Figure 41. Output Power vs Supply Voltage

10.2.2 TPA2005D1 with Differential Input and Input Capacitors

10.2.2.1 Design Requirements

Please see [Design Requirements](#).

10.2.2.2 Detailed Design Procedure

Please see [Detailed Design Procedure](#).

10.2.2.2.1 Input Capacitors (C_I)

The TPA2005D1 does not require input coupling capacitors if the design uses a differential source that is biased from 0.5 V to $V_{DD} - 0.8$ V (shown in Figure 40). If the input signal is not biased within the recommended common-mode input range, if needing to use the input as a high pass filter (shown in Figure 42), or if using a single-ended source (shown in Figure 43), input coupling capacitors are required.

The input capacitors and input resistors form a high-pass filter with the corner frequency, f_c, determined in equation Equation 21.

$$f_c = \frac{1}{2\pi R_i \times C_i}$$ \hspace{1cm} (21)

The value of the input capacitor is important to consider as it directly affects the bass (low frequency) performance of the circuit. Speakers in wireless phones cannot usually respond well to low frequencies, so the corner frequency can be set to block low frequencies in this application.
Equation Equation 22 is reconfigured to solve for the input coupling capacitance.

\[
C_\text{i} = \frac{1}{(2\pi R_\text{i} f_c)}
\]
(22)

If the corner frequency is within the audio band, the capacitors should have a tolerance of ±10% or better, because any mismatch in capacitance causes an impedance mismatch at the corner frequency and below, and causes pop. Any capacitor in the audio path should have a rating of X7R or better.

For a flat low-frequency response, use large input coupling capacitors (1 \(\mu\)F). However, in a GSM phone the ground signal is fluctuating at 217 Hz, but the signal from the codec does not have the same 217 Hz fluctuation. The difference between the two signals is amplified, sent to the speaker, and heard as a 217 Hz hum.

10.2.3 TPA2005D1 with Single-Ended Input

10.2.3.1 Design Requirements

Please see Design Requirements.

10.2.3.2 Detailed Design Procedure

Please see Detailed Design Procedure.
11 Power Supply Recommendations

The TPA2005D1 is designed to operate from an input voltage supply range between 2.5-V and 5.2-V. Therefore, the output voltage range of power supply should be within this range and well regulated. The current capability of upper power should not exceed the maximum current limit of the power switch.

11.1 Power Supply Decoupling Capacitors

The TPA2005D1 requires adequate power supply decoupling to ensure a high efficiency operation with low total harmonic distortion (THD). Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1 µF, within 2 mm of the V_DD pin. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. In addition to the 0.1 µF ceramic capacitor, it is recommended to place a 2.2 µF to 10 µF capacitor on the VDD supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage.
12 Layout

12.1 Layout Guidelines

12.1.1 Component Location

Place all the external components close to the TPA2005D1. The input resistors need to be close to the TPA2005D1 input pins so noise does not couple on the high impedance nodes between the input resistors and the input amplifier of the TPA2005D1. Placing the decoupling capacitor, C_s, close to the TPA2005D1 is important for the efficiency of the class-D amplifier. Any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency.

12.1.2 Trace Width

Make the high current traces going to pins VDD, GND, V_{O+}, and V_{O-} of the TPA2005D1 have a minimum width of 0.7 mm. If these traces are too thin, the TPA2005D1’s performance and output power will decrease. The input traces do not need to be wide, but do need to run side-by-side to enable common-mode noise cancellation.

12.1.3 MicroStar Junior™ BGA Specifications

Use the following MicroStar Junior BGA ball diameters:
- 0.25 mm diameter solder mask
- 0.28 mm diameter solder paste mask/stencil
- 0.38 mm diameter copper trace

Figure 44 shows how to lay out a board for the TPA2005D1 MicroStar Junior BGA.

![Figure 44. TPA2005D1 MicroStar Junior BGA Board Layout (Top View)](image-url)
12.2 Layout Examples

Figure 45. TPA2005D1 MicroStar Junior™ BGA Package Layout Example

Figure 46. TPA2005D1 DRB Package Layout Example
Layout Examples (continued)

Figure 47. TPA2005D1 DGN Package Layout Example
13 Device and Documentation Support

13.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.2 Trademarks

MicroStar Junior, PowerPAD, E2E are trademarks of Texas Instruments.
is a trademark of ~ Texas Instruments Incorporated.
All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.
14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (1)</th>
<th>Lead finish/ Ball material (2)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA2005D1DGN</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>80</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>BAL</td>
<td>Samples</td>
</tr>
<tr>
<td>TPA2005D1DNG4</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>80</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>BAL</td>
<td>Samples</td>
</tr>
<tr>
<td>TPA2005D1DGNR</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>BAL</td>
<td>Samples</td>
</tr>
<tr>
<td>TPA2005D1DRBR</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>BIQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TPA2005D1DRBRG4</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>BIQ</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPA2005D1:

- Automotive : TPA2005D1-Q1

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA2005D1DGNR</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPA2005D1DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TPA2005D1DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.

Package Materials Information

www.ti.com 26-May-2021
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA2005D1DGMR</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
</tr>
<tr>
<td>TPA2005D1DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPA2005D1DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187.
EXAMPLE BOARD LAYOUT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
9. Size of metal pad may vary due to creepage requirement.
NOTES: (continued)

10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.

11. Board assembly site may have different recommendations for stencil design.
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated