

Technical documentation

Support & training

TPL1401 SNAS806 – SEPTEMBER 2020

TPL1401 256-Tap, High-Accuracy, Digital Potentiometer With Buffered Wiper

1 Features

- 256-position digital potentiometer for voltagedivider applications
- 1 LSB INL and DNL
- Wide operating range
 - Power supply: 1.8 V to 5.5 V
 - Temperature range: –40°C to +125°C
- Buffered wiper for improved load regulation
- FB pin for precision current sink applications
- Wiper lock function to protect from accidental writes to the digital potentiometer
- I²C interface
 - Standard, fast, and fast plus modes
 - 1.62-V V_{IH} with V_{DD} = 5.5 V
- User-programmable nonvolatile memory (NVM/EEPROM)
 - Save and recall all register settings
- Internal reference
- Very low power: 0.2 mA at 1.8 V
- Flexible startup: High impedance or 10K-GND
- Tiny package: 8-pin WSON (2 mm × 2 mm)

2 Applications

- Exit and emergency lighting
- Barcode scanner
- Barcode reader
- Smart speaker
- Video doorbell

A0

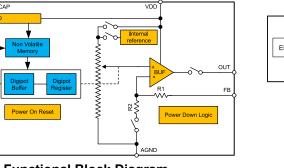
- Cordless vacuum cleaner
- Robotic lawn mower
- Laser distance meter

3 Description

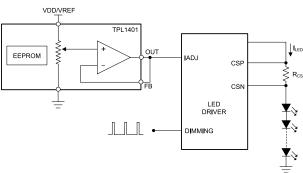
The TPL1401 is a digital potentiometer (digipot) with a buffered wiper. Unlike standard digipots, this device offers higher load regulation in voltage-divider applications as a result of the integrated buffered wiper.

The TPL1401 makes in-factory calibration and trimming easier with integrated nonvolatile memory (NVM), and a simple I^2C digital interface to communicate with the device. This device supports I^2C standard mode (100 kbps), fast mode (400 kbps), and fast mode plus (1 Mbps).

The TPL1401 operates with either the internal reference or with the power supply as the reference, and provides a full-scale output of 1.8 V to 5.5 V. This device also includes a wiper lock feature, a feedback (FB) pin for current-sink applications, and two bytes of user-programmable NVM space. The TPL1401 has a power-on-reset (POR) circuit that makes sure all the registers start with default or user-programmed settings using NVM. The digipot output powers on in high-impedance mode (default); this setting can be programmed to $10k\Omega$ -GND using NVM.


The TPL1401 is tiny, feature rich, and an easy-to-use building block device that can be integrated into many applications.

The TPL1401 operates within the temperature range of -40° C to $+125^{\circ}$ C.


Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPL1401	WSON (8)	2.00 mm × 2.00 mm

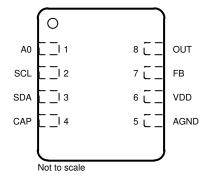
(1) For all available packages, refer to the package option addendum at the end of the data sheet.

Functional Block Diagram

Programmable Current Limit With TPL1401

Table of Contents

1 Features
2 Applications
4 Revision History
5 Pin Configuration and Functions
6 Specifications4
6.1 Absolute Maximum Ratings4
6.2 ESD Ratings4
6.3 Recommended Operating Conditions4
6.4 Thermal Information4
6.5 Electrical Characteristics5
6.6 Timing Requirements: I ² C Standard Mode7
6.7 Timing Requirements: I ² C Fast Mode7
6.8 Timing Requirements: I ² C Fast Mode Plus7
6.9 Typical Characteristics: V _{DD} = 1.8 V (Reference
= V _{DD}) or V _{DD} = 2 V (Internal Reference)8
6.10 Typical Characteristics: V _{DD} = 5.5 V (Reference
= V_{DD}) or V_{DD} = 5 V (Internal Reference)10
6.11 Typical Characteristics12
7 Detailed Description17
7.1 Overview17


7.2 Functional Block Diagram	. 17
7.3 Feature Description.	
7.4 Device Functional Modes	
7.5 Programming	22
7.6 Register Map	
8 Application and Implementation	
8.1 Application Information	
8.2 Typical Application	
9 Power Supply Recommendations	
10 Layout	
10.1 Layout Guidelines	32
10.2 Layout Example	
11 Device and Documentation Support	
11.1 Documentation Support	
11.2 Receiving Notification of Documentation Updates.	
11.3 Support Resources	
11.4 Trademarks	
11.5 Electrostatic Discharge Caution	
11.6 Glossary	
12 Mechanical, Packaging, and Orderable	
Information	33
	. 00

4 Revision History

DATE	REVISION	NOTES
September 2020	*	Initial release.

5 Pin Configuration and Functions

Figure 5-1. DSG Package, 8-Pin WSON, Top View

Pin Functions

PIN		TYPE	DESCRIPTION		
NAME	NO.	1175	DESCRIPTION		
A0	1	Input	Four-state address input		
AGND	5	Ground	Ground reference point for all circuitry on the device		
САР	4	Input	External capacitor for the internal LDO. Connect a capacitor (around 1.5 $\mu F)$ between CAP and AGND.		
FB	7	Input	oltage feedback pin		
OUT	8	Output	Analog output voltage from digipot buffer		
SCL	2	Input	Serial interface clock. This pin must be connected to the supply voltage with an external pullup resistor.		
SDA	3	Input/output	Data are clocked into or out of the input register. This pin is a bidirectional, and must be connected to the supply voltage with an external pullup resistor.		
VDD	6	Power or reference input	Analog supply voltage: 1.8 V to 5.5 V		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{DD}	Supply voltage / reference, V _{DD} to A _{GND}	-0.3	6	V
	Digital input(s) to A _{GND}	-0.3	V _{DD} + 0.3	V
	CAP to A _{GND}	-0.3	1.65	V
	V _{FB} to A _{GND}	-0.3	V _{DD} + 0.3	V
	V _{OUT} to A _{GND}	-0.3	V _{DD} + 0.3	V
	Current into any pin	-10	10	mA
TJ	Junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, pins 1, 4, 5, $8^{(2)}$	±750	v
		Charged device model (CDM), per JEDEC specification JESD22-C101, pins 2, 3, 6, $7^{(2)}$	±500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{DD}	Positive supply voltage to ground (A _{GND})	1.71		5.5	V
V _{IH}	Digital input high voltage, 1.7 V < $V_{DD} \le 5.5$ V	1.62			V
V _{IL}	Digital input low voltage			0.4	V
T _A	Ambient temperature	-40		125	°C

6.4 Thermal Information

		TPL1401	
	THERMAL METRIC ⁽¹⁾	DSG (WSON)	UNIT
		8 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	49	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	50	°C/W
R _{θJB}	Junction-to-board thermal resistance	24.1	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	1.1	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	24.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	8.7	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

all minimum/maximum specifications at $T_A = -40^{\circ}$ C to +125°C and typical specifications at $T_A = 25^{\circ}$ C, 1.8 V $\leq V_{DD} \leq 5.5$ V, reference tied to V_{DD} , gain = 1x, digipot output pin (OUT) loaded with resistive load ($R_L = 5 \text{ k}\Omega$ to AGND) and capacitive load ($C_L = 200 \text{ pF}$ to AGND), and digital inputs at V_{DD} or AGND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STAT						
	Resolution		8			Bits
INL	Relative accuracy ⁽¹⁾		-1		1	LSB
DNL	Differential nonlinearity ⁽¹⁾		-1		1	LSB
	Zero code error	Code 0d into digipot		6	12	mV
		Internal V_{REF} , gain = 4x, V_{DD} = 5.5 V		6	15	
	Zero code error temperature coefficient			±10		µV/°C
	Offset error	V_{REF} tied to $V_{\text{DD}},$ measured between end-point codes 2d and 254d, output unloaded	-0.5	0.25	0.5	%FSR
	Offset error temperature coefficient	V_{REF} tied to $V_{\text{DD}},$ measured between end-point codes 2d and 254d, output unloaded		±0.0003		%FSR/°0
	Gain error	V_{REF} tied to $V_{\text{DD}},$ measured between end-point codes 2d and 254d, output unloaded	-0.5	0.25	0.5	%FSR
	Gain error temperature coefficient	V_{REF} tied to $V_{\text{DD}},$ measured between end-point codes 2d and 254d, output unloaded		±0.0008		%FSR/°0
		1.8 V \leq V _{DD} $<$ 2.7 V, code 511d into digipot, no headroom	-1	0.5	1	0/ FOD
	Full scale error	2.7 V \leq V _{DD} \leq 5.5 V, code 511d into digipot, no headroom	-0.5	0.25	0.5	%FSR
	Full scale error temperature coefficient			±0.0008		%FSR/°
DUT	PUT CHARACTERISTICS					
	Output voltage	Reference tied to V _{DD}	0		5.5	V
<u>_</u>	Capacitive load ⁽²⁾	R_L = Infinite, phase margin = 30°			1	ъĘ
CL		$R_L = 5 k\Omega$, phase margin = 30°			2	nF
	Load regulation	Digipot at midscale, $-10 \text{ mA} \le I_{OUT} \le 10 \text{ mA}$, V _{DD} = 5.5 V		0.4		mV/mA
		V_{DD} = 1.8 V, full-scale output shorted to A_{GND} or zero-scale output shorted to V_{DD}		10		
	Short circuit current	V_{DD} = 2.7 V, full-scale output shorted to A_{GND} or zero-scale output shorted to V_{DD}		25		mA
		V_{DD} = 5.5 V, full-scale output shorted to A_{GND} or zero-scale output shorted to V_{DD}		50		
		To V_{DD} (digipot output unloaded, internal reference = 1.21 V), $V_{DD} \ge 1.21 \times \text{gain} + 0.2 \text{ V}$		0.2		V
	Output voltage headroom ⁽¹⁾	To V _{DD} (digipot output unloaded)		0.8		
		To V_{DD} (I_{LOAD} = 10 mA at V_{DD} = 5.5 V, I_{LOAD} = 3 mA at V_{DD} = 2.7 V, I_{LOAD} = 1 mA at V_{DD} = 1.8 V), digipot code = full scale	10			%FSR
		Digipot output enabled and digipot code = midscale		0.25		
	V _{OUT} dc output impedance	Digipot output enabled and digipot code = 2d		0.25		Ω
		Digipot output enabled and digipot code = 254d		0.26		
Zo	V _{FB} dc output impedance ⁽³⁾	Digipot output enabled	160	200	240	kΩ
	V _{OUT} + V _{FB} dc output leakage ⁽²⁾	At start up, measured when digipot output is disabled and held at V_{DD} / 2 for V_{DD} = 5.5 V			5	nA
	Power supply rejection ratio (dc)	Internal V _{REF} , gain = 2x, digipot at midscale; V _{DD} = 5 V ±10%		0.25		mV/V

5

6.5 Electrical Characteristics (continued)

all minimum/maximum specifications at $T_A = -40^{\circ}$ C to +125°C and typical specifications at $T_A = 25^{\circ}$ C, 1.8 V $\leq V_{DD} \leq 5.5$ V, reference tied to V_{DD} , gain = 1x, digipot output pin (OUT) loaded with resistive load ($R_L = 5 \text{ k}\Omega$ to AGND) and capacitive load ($C_L = 200 \text{ pF}$ to AGND), and digital inputs at V_{DD} or AGND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DYN	AMIC PERFORMANCE					
۰	Output voltage settling time	1/4 to 3/4 scale and 3/4 to 1/4 scale settling to 10%FSR, V_{DD} = 5.5 V		8		116
sett	Output voltage setting time	1/4 to 3/4 scale and 3/4 to 1/4 scale settling to 10%FSR, V_{DD} = 5.5 V, internal V_{REF} , gain = 4x		12		μs
	Slew rate	V _{DD} = 5.5 V		1		V/µs
	Power on glitch magnitude	At start up (buffer output disabled), R _L = 5 k Ω , C _L = 200 pF		75		mV
		At start up (buffer output disabled), R_L = 100 k Ω		200		
	Output enable glitch magnitude	Buffer output disabled to enabled (digipot registers at zero scale, R_L = 100 $k\Omega$		250		mV
	Output poice veltage (peak te	0.1 Hz to 10 Hz, digipot at midscale, V _{DD} = 5.5 V		34		
Vn	Output noise voltage (peak to peak)	Internal V _{REF} , gain = 4x, 0.1 Hz to 10 Hz, digipot at midscale, V _{DD} = 5.5 V		70		μV _{PP}
		Measured at 1 kHz, digipot at midscale, V_{DD} = 5.5 V		0.2		
	Output noise density	Internal VREF, gain = 4x, measured at 1 kHz, digipot at midscale, VDD = 5.5 V		0.7		µV/√Hz
	Power supply rejection ratio (ac) ⁽³⁾	Internal V _{REF} , gain = 4x, 200-mV 50 or 60 Hz sine wave superimposed on power supply voltage, digipot at midscale		-71		dB
	Code change glitch impulse	±1 LSB change around mid code (including feedthrough)		10		nV-s
	Code change glitch impulse magnitude	±1 LSB change around mid code (including feedthrough)		15		mV
VOL.	TAGE REFERENCE	· · · ·			I	
	Initial accuracy	T _A = 25°C		1.212		V
	Reference output temperature coefficient ⁽²⁾				50	ppm/°C
EEP	ROM					
	Endurance	$-40^{\circ}C \le T_A \le 85^{\circ}C$		20000		Cycles
		T _A > 85°C		1000		Cycles
	Data retention ⁽²⁾	T _A = 25°C		50		Years
	EEPROM programming write cycle time ⁽²⁾		10		20	ms
DIGI	TAL INPUTS					
	Digital feedthrough	Digipot output static at midscale, fast mode plus, SCL toggling		20		nV-s
	Pin capacitance	Per pin		10		pF
POW	VER					
	Load capacitor - CAP pin ⁽²⁾		0.5		15	μF
	Current flowing into VDD	Normal mode, digipot at full scale, digital pins static		0.5	0.8	mA
DD		Digipot power-down, internal reference power down		80		μA

(1) Measured with digipot output unloaded. For external reference between end-point codes 2d and 254d. For internal reference VDD ≥ 1.21 x gain + 0.2 V, between end-point codes 2d and 254d.

(2) Specified by design and characterization, not production tested.

(3) Specified with 200-mV headroom with respect to reference value when internal reference is used.

6.6 Timing Requirements: I²C Standard Mode

all input signals are timed from VIL to 70% of V_{DD}, 1.8 V \leq V_{DD} \leq 5.5 V, -40°C \leq T_A \leq +125°C, and 1.8 V \leq V_{pull-up} \leq V_{DD} (unless otherwise specified)

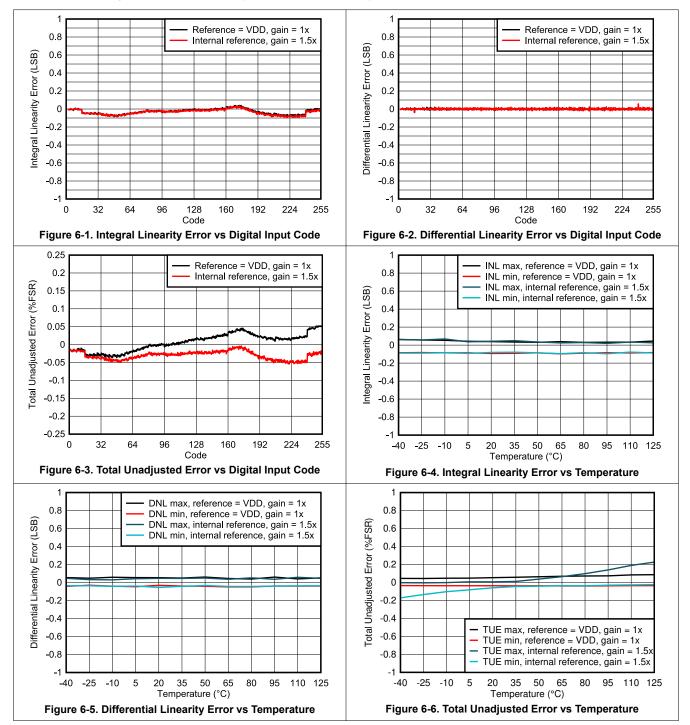
		MIN	NOM MAX	UNIT
f _{SCLK}	SCL frequency		0.1	MHz
t _{BUF}	Bus free time between stop and start conditions	4.7		μs
t _{HDSTA}	Hold time after repeated start	4		μs
t _{SUSTA}	Repeated start setup time	4.7		μs
t _{SUSTO}	Stop condition setup time	4		μs
t _{HDDAT}	Data hold time	0		ns
t _{SUDAT}	Data setup time	250		ns
t _{LOW}	SCL clock low period	4700		ns
t _{HIGH}	SCL clock high period	4000		ns
t _F	Clock and data fall time		300	ns
t _R	Clock and data rise time		1000	ns

6.7 Timing Requirements: I²C Fast Mode

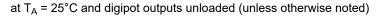
all input signals are timed from VIL to 70% of V_{DD}, 1.8 V \leq V_{DD} \leq 5.5 V, -40°C \leq T_A \leq +125°C, and 1.8 V \leq V_{pull-up} \leq V_{DD} (unless otherwise specified)

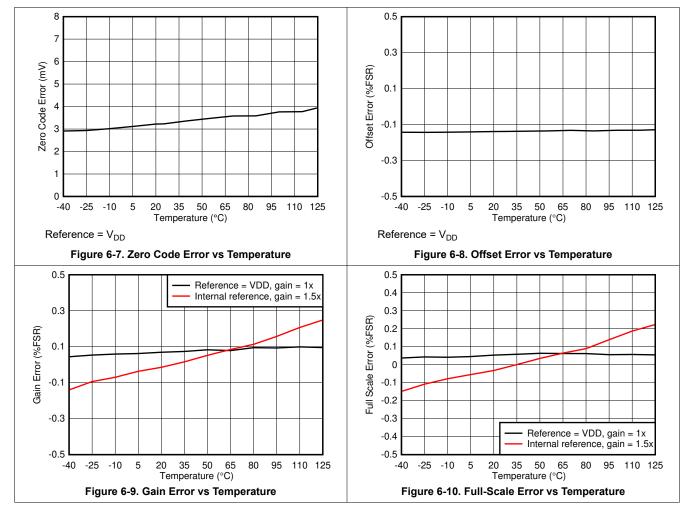
		MIN	NOM MAX	UNIT
f _{SCLK}	SCL frequency		0.4	MHz
t _{BUF}	Bus free time between stop and start conditions	1.3		μs
t _{HDSTA}	Hold time after repeated start	0.6		μs
t _{SUSTA}	Repeated start setup time	0.6		μs
t _{SUSTO}	Stop condition setup time	0.6		μs
t _{HDDAT}	Data hold time	0		ns
t _{SUDAT}	Data setup time	100		ns
t _{LOW}	SCL clock low period	1300		ns
t _{HIGH}	SCL clock high period	600		ns
t _F	Clock and data fall time		300	ns
t _R	Clock and data rise time		300	ns

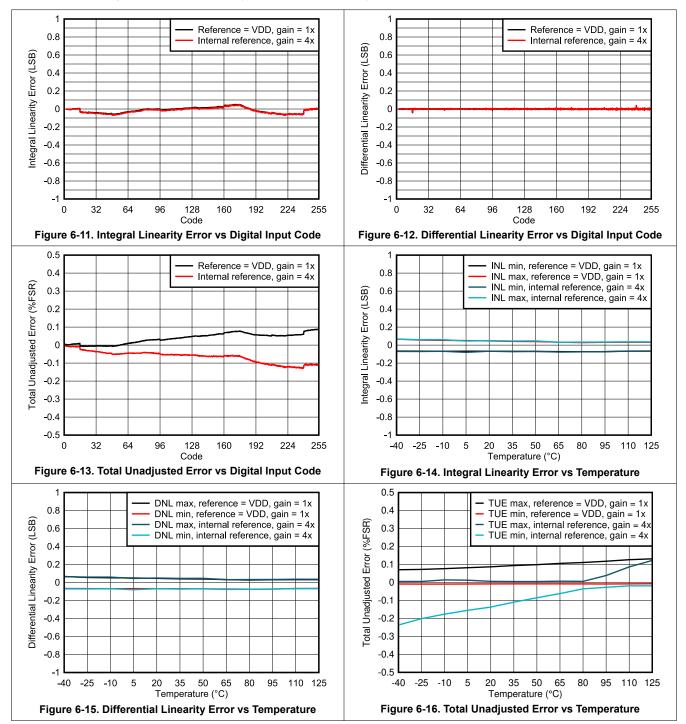
6.8 Timing Requirements: I²C Fast Mode Plus

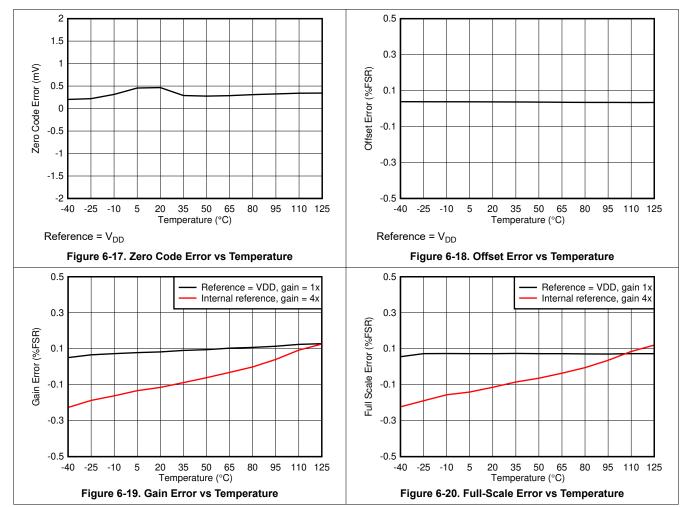

all input signals are timed from VIL to 70% of V_{DD}, 1.8 V \leq V_{DD} \leq 5.5 V, -40°C \leq T_A \leq +125°C, and 1.8 V \leq V_{pull-up} \leq V_{DD} (unless otherwise specified)

		MIN	NOM M	AX	UNIT
f _{SCLK}	SCL frequency			1	MHz
t _{BUF}	Bus free time between stop and start conditions	0.5			μs
t _{HDSTA}	Hold time after repeated start	0.26			μs
t _{SUSTA}	Repeated start setup time	0.26			μs
t _{SUSTO}	Stop condition setup time	0.26			μs
t _{HDDAT}	Data hold time	0			ns
t _{SUDAT}	Data setup time	50			ns
t _{LOW}	SCL clock low period	0.5			μs
t _{HIGH}	SCL clock high period	0.26			μs
t _F	Clock and data fall time			120	ns
t _R	Clock and data rise time			120	ns

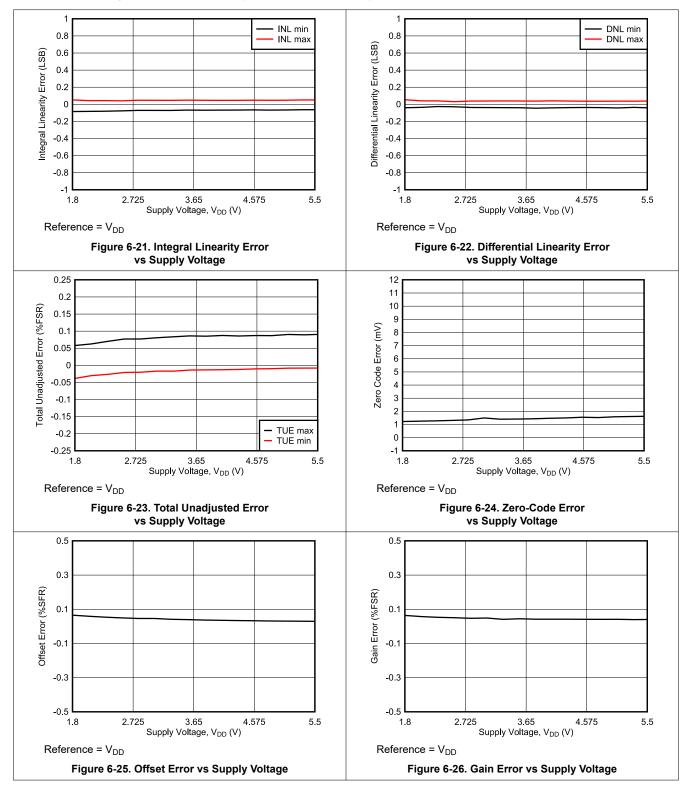

6.9 Typical Characteristics: V_{DD} = 1.8 V (Reference = V_{DD}) or V_{DD} = 2 V (Internal Reference)


at $T_A = 25^{\circ}C$ and digipot outputs unloaded (unless otherwise noted)


6.9 Typical Characteristics: V_{DD} = 1.8 V (Reference = V_{DD}) or V_{DD} = 2 V (Internal Reference) (continued)

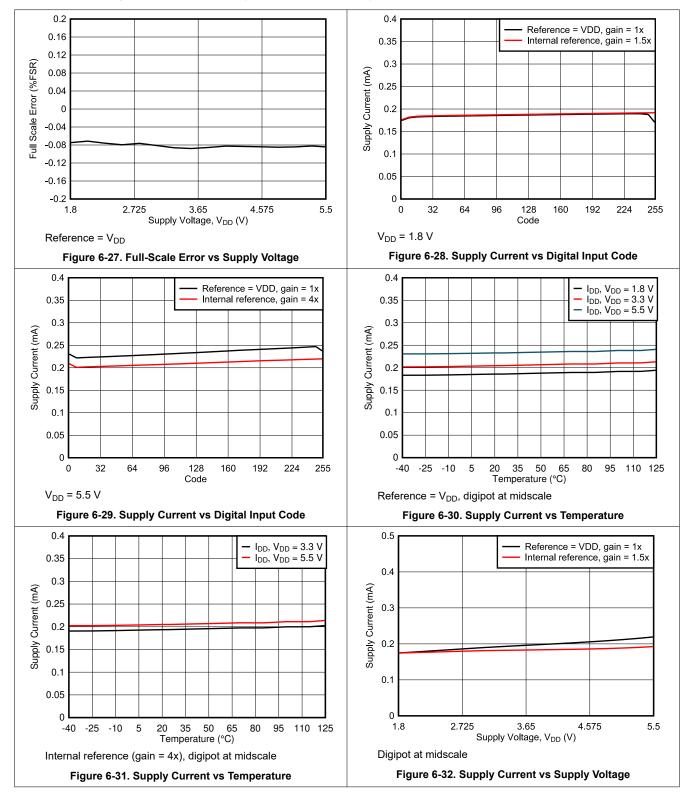

6.10 Typical Characteristics: V_{DD} = 5.5 V (Reference = V_{DD}) or V_{DD} = 5 V (Internal Reference)

at $T_A = 25^{\circ}C$ and digipot outputs unloaded (unless otherwise noted)


6.10 Typical Characteristics: V_{DD} = 5.5 V (Reference = V_{DD}) or V_{DD} = 5 V (Internal Reference) (continued)

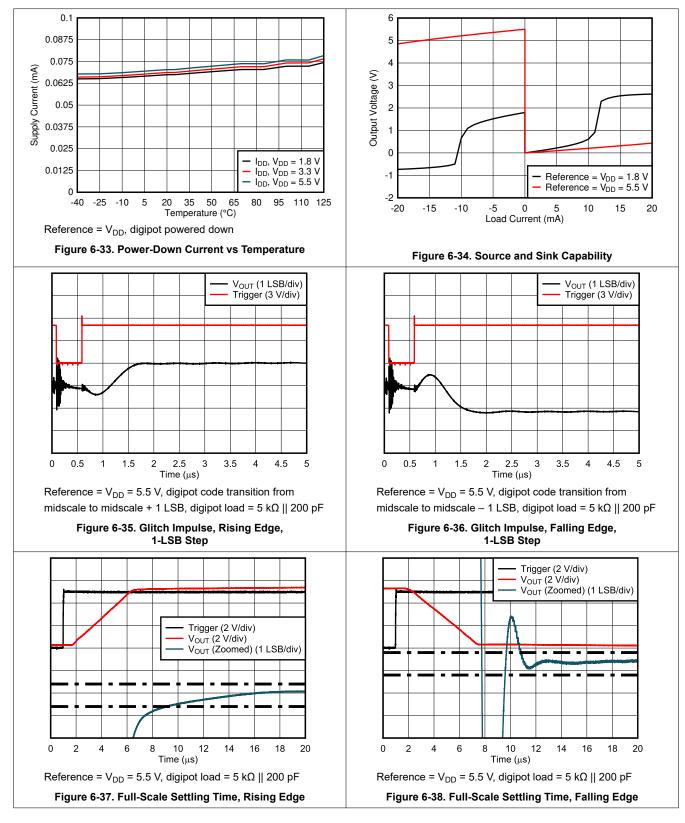
at T_A = 25°C and digipot outputs unloaded (unless otherwise noted)

6.11 Typical Characteristics


at T_A = 25°C and digipot outputs unloaded (unless otherwise noted)

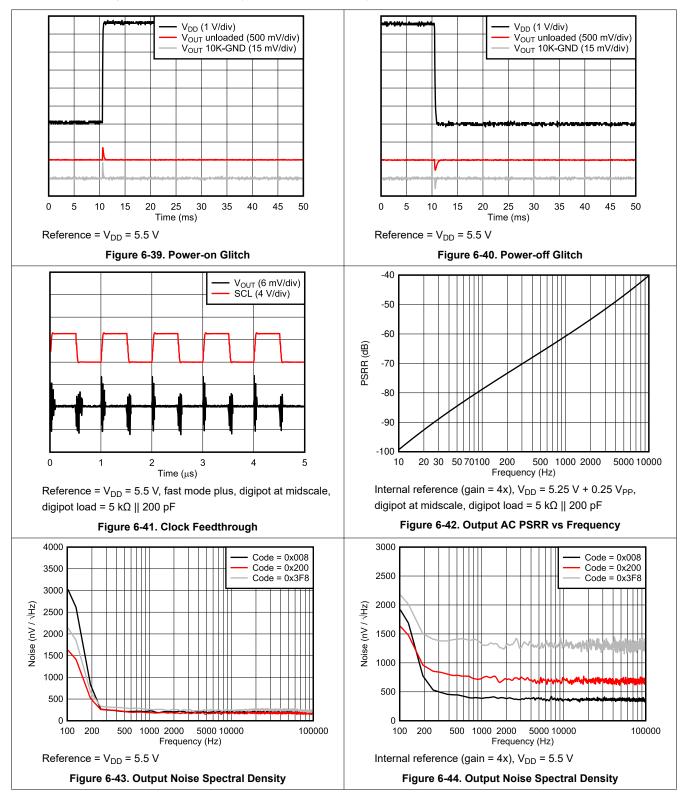
6.11 Typical Characteristics (continued)

at $T_A = 25^{\circ}C$ and digipot outputs unloaded (unless otherwise noted)

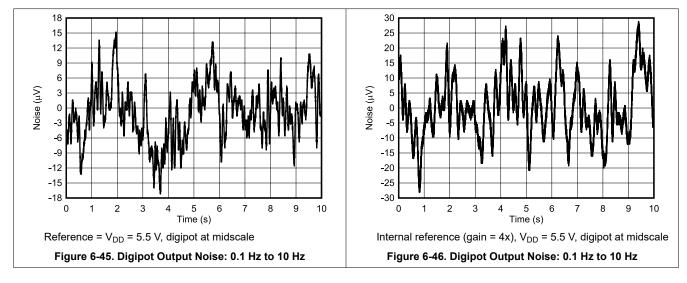


TPL1401 SNAS806 – SEPTEMBER 2020

6.11 Typical Characteristics (continued)


at $T_A = 25^{\circ}C$ and digipot outputs unloaded (unless otherwise noted)

6.11 Typical Characteristics (continued)


at T_A = 25°C and digipot outputs unloaded (unless otherwise noted)

6.11 Typical Characteristics (continued)

at $T_A = 25^{\circ}C$ and digipot outputs unloaded (unless otherwise noted)

7 Detailed Description

7.1 Overview

The TPL1401 is a digital potentiometer with buffered wiper. The buffered wiper helps achieve a higher load regulation as compared to standard digital potentiometers used in voltage-divider applications. This digipot contains nonvolatile memory (NVM) and an I²C interface. This makes the TPL1401 easy to use for factory trimming and calibration device in analog set-point applications. The TPL1401 operates with either the internal reference or the power supply as the reference, and provides a full-scale output of 1.8 V to 5.5 V.

The TPL1401 communicates through an I²C interface. This device supports I²C standard mode (100 kbps), fast mode (400 kbps), and fast mode plus (1 Mbps). This device also includes a wiper lock feature, an FB pin for current sink application, and 2 bytes of user-programmable NVM space.

The TPL1401 has a power-on-reset (POR) circuit that makes sure all the registers start with default or userprogrammed settings using NVM. The digipot output powers on in high-impedance mode (default); this setting can be programmed to $10k\Omega$ -GND using NVM.

VDD CAP LDO Internal reference Non Volatile Memory SCL ²C Interface OUT SDA BUF Digipot Digipot A0 Buffer Register R1 FB **۱**۸, ≶ 22 Power On Reset Power Down Logic AGND

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Digital Potentiometer (Digipot) Architecture

The TPL1401 consists of string architecture with an output buffer amplifier. Section 7.2 shows the digipot architecture within the block diagram. This digipot architecture operates from a 1.8-V to 5.5-V power supply. This device consume only 0.2 mA of current when using a 1.8-V power supply. The digipot output gets loaded from the NVM at power up. Write the required code so that the load circuit starts with a predictable operating point at power up.

7.3.1.1 Reference Selection and Digipot Transfer Function

The device writes the input data to the DPOT_POSITION register in straight-binary format. After a power-on or a reset event, the device sets all digipot registers to the values set in the NVM.

7.3.1.1.1 Power Supply as Reference

By default, the TPL1401 operates with the power-supply pin (VDD) as a reference. Equation 1 shows the digipot transfer function when the power-supply pin is used as a reference.

$$V_{OUT} = \frac{DPOT_POS}{256} \times V_{DD}$$
(1)

where:

- DPOT_POS is the decimal equivalent of the binary code that is loaded to the digipot register.
- DPOT_POS ranges from 0 to 255.
- V_{DD} is used as the digipot reference voltage.

7.3.1.1.2 Internal Reference

The TPL1401 also contains an internal reference that is disabled by default. Enable the internal reference by writing 1 to REF_EN (address D1h). The internal reference generates a fixed 1.21-V voltage (typical). Using the OUT_SPAN (address D1h) bits, a gain of 1.5x, 2x, 3x, 4x can be achieved for the digipot output voltage (V_{OUT}) Equation 2 shows digipot transfer function when the internal reference is used.

$$V_{OUT} = \frac{DPOT_POS}{256} \times V_{REF} \times GAIN$$
(2)

where:

- DPOT_POS is the decimal equivalent of the binary code that is loaded to the digipot register
- DPOT_POS ranges from 0 to 255.
- V_{REF} is the internal reference voltage = 1.21 V.
- GAIN = 1.5x, 2x, 3x, 4x based on OUT_SPAN (address D1h) bits.

7.3.2 Digipot Update

The digipot output pin (OUT) is updated at the end of I^2C digipot write frame.

7.3.3 Nonvolatile Memory (EEPROM or NVM)

The TPL1401 contains nonvolatile memory (NVM) bits. These NVM bits are user programmable and erasable, and retain the set values in the absence of a power supply. All the register bits, as shown in Table 7-1, can be stored in the device NVM by setting NVM_PROG = 1 (address D3h). The NVM_BUSY bit (address D0h) is set to 1 by the device when an NVM write or reload operation is ongoing. During this time, the device blocks all write operations to the device. The NVM_BUSY bit is set to 0 after the write or reload operation is complete; at this point, all write operations to the device are allowed. The default value for all the registers in the TPL1401 is loaded from NVM as soon as a POR event is issued. Do not perform a read operation from the digipot register while NVM_BUSY = 1.

The TPL1401 also implements NVM_RELOAD bit (address D3h). Set this bit to 1 for the device to start an NVM reload operation. After the operation is complete, the device autoresets this bit to 0. During the NVM_RELOAD operation, the NVM BUSY bit is set to 1.

REGISTER ADDRESS	REGISTER NAME	BIT NAME	
		13	DEVICE_LOCK
D1h	GENERAL CONFIG	4:3	DPOT_PDN
	GENERAL_CONFIG	2	REF_EN
		1:0	OUT_SPAN
10h	DPOT_POSITION	11:2	DPOT_POS
25h	USER_BYTE1	11:4	USER_BYTE1 (8 most significant bits)
26h	USER_BYTE2	11:4	USER_BYTE2 (8 most significant bits)

Table 7-1. NVM Programmable Registers

7.3.3.1 NVM Cyclic Redundancy Check

The TPL1401 implements a cyclic redundancy check (CRC) feature to make sure that the data stored in the device NVM are uncorrupted. There are two types of CRC alarm bits implemented in TPL1401:

- NVM_CRC_ALARM_USER (address D0h) This bit indicates the status of the user-programmable NVM bits.
- NVM_CRC_ALARM_INTERNAL (address D0h) This bit indicates the status of the internal NVM bits.

The CRC feature is implemented by storing a 10-bit CRC (CRC-10-ATM) along with the NVM data each time NVM program operation (write or reload) is performed and during the device start up. The device reads the NVM data and validates the data with the stored CRC. The CRC alarm bits report any errors after the data are read from the device NVM.

7.3.3.1.1 NVM_CRC_ALARM_USER Bit

A logic 1 on NVM_CRC_ALARM_USER bit indicates that the user-programmable NVM data is corrupt. During this condition, all registers in the digipot are initialized with factory reset values, and any digipot registers can be written to or read from. To reset the alarm bits to 0, issue a *Software Reset* command, or cycle power to the digipot. A power cycle reloads the user-programmable NVM bits. After the reset, write the desired data to the registers and assert the NVM_PROG bit in the PROTECT register to program the NVM.

7.3.3.1.2 NVM_CRC_ALARM_INTERNAL Bit

A logic 1 on NVM_CRC_ALARM_INTERNAL bit indicates that the internal NVM data is corrupt. During this condition, all registers in the digipot are initialized with factory reset values, and any digipot registers can be written to or read from. To reset the alarm bits to 0, issue a *Software Reset* command, or cycle power to the digipot. The NVM_PROG bit in the PROTECT register (address D3h) is blocked when the NVM_CRC_ALARM_INTERNAL bit is set. The device reset or power cycle does not reset the CRC error if there is a permanent NVM failure.

7.3.4 Power-On Reset (POR)

The TPL1401 includes a power-on reset (POR) function that controls the output voltage at power up. After the V_{DD} supply has been established, a POR event is issued. The POR causes all registers to initialize to default values, and communication with the device is valid only after a 30-ms POR delay. The default value for all the registers in the TPL1401 is loaded from NVM as soon as the POR event is issued.

When the device powers up, a POR circuit sets the device to the default mode. The POR circuit requires specific V_{DD} levels, as indicated in Figure 7-1, in order to make sure that the internal capacitors discharge and reset the device on power up. To make sure that a POR occurs, V_{DD} must be less than 0.7 V for at least 1 ms. When V_{DD} drops to less than 1.65 V, but remains greater than 0.7 V (shown as the undefined region), the device may or may not reset under all specified temperature and power-supply conditions. In this case, initiate a POR. When V_{DD} remains greater than 1.65 V, a POR does not occur.

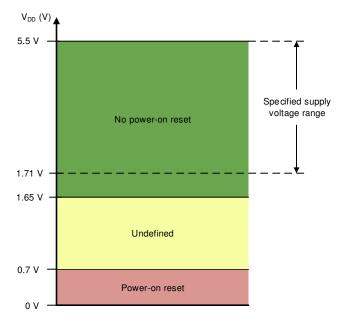


Figure 7-1. Threshold Levels for V_{DD} POR Circuit

7.3.5 Software Reset

To initiate a device software reset event, write reserved code 1010 to the SW_RESET bits (address D3h). A software reset initiates a POR event.

7.3.6 Device Lock Feature

The TPL1401 implements a device lock feature that prevents an accidental or unintended write to the digipot registers. The device locks all the registers when the DEVICE_LOCK bit (address D1h) is set to 1. To bypass the DEVICE_LOCK setting, write 0101 to the DEVICE_UNLOCK_CODE bits (address D3h).

7.4 Device Functional Modes

7.4.1 Power Down Mode

The TPL1401 output amplifier and internal reference can be independently powered down through the DPOT_PDN bits (address D1h).

At power up, the digipot output and the internal reference are disabled by default.

In power-down mode, the digipot output (OUT pin) is in a high-impedance state.

To change this state to $10k\Omega$ -A_{GND} (at power up), use the DPOT_PDN bits (address D1h).

The digipot power-up state can be programmed to any state (power-down or normal mode) using the NVM. Table 7-2 shows the digipot power-down bits.

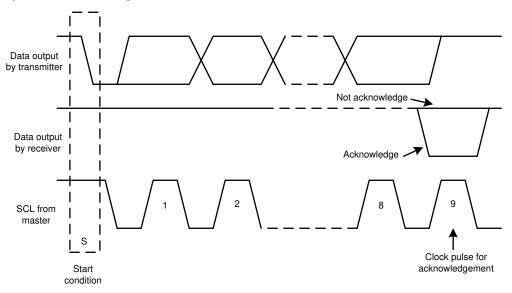
REGISTER ADDRESS AND NAME	DPOT_PDN[1]	DPOT_PDN[0]	DESCRIPTION
	0	0	Power up
	0	1	Power down to 10 kΩ
D1h, GENERAL_CONFIG	1	0	Power down to high impedance (HiZ) (default)
	1	1	Power down to 10 kΩ

Table 7-2. Digipot Power-Down Bits

7.5 Programming

The TPL1401 devices have a 2-wire serial interface (SCL and SDA), and one address pin (A0), as shown in *Section 5*. The I²C bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I²C-compatible devices connect to the I²C bus through the open drain I/O pins, SDA and SCL.

The I²C specification states that the device that controls communication is called a *master*, and the devices that are controlled by the master are called *slaves*. The master device generates the SCL signal. The master device also generates special timing conditions (start condition, repeated start condition, and stop condition) on the bus to indicate the start or stop of a data transfer. Device addressing is completed by the master. The master device on an I²C bus is typically a microcontroller or digital signal processor (DSP). The TPL1401 operates as a slave device on the I²C bus. A slave device acknowledges master commands, and upon master control, receives or transmits data.


Typically, the TPL1401 operates as a slave receiver. A master device writes to the TPL1401, a slave receiver. However, if a master device requires the TPL1401 internal register data, the TPL1401 operate as a slave transmitter. In this case, the master device reads from the TPL1401. According to I²C terminology, read and write refer to the master device.

The TPL1401 is a slave and supports the following data transfer modes:

- Standard mode (100 kbps)
- Fast mode (400 kbps)
- Fast mode plus (1.0 Mbps)

The data transfer protocol for standard and fast modes is exactly the same; therefore, both modes are referred to as F/S-mode in this document. The fast mode plus protocol is supported in terms of data transfer speed, but not output current. The low-level output current would be 3 mA; similar to the case of standard and fast modes. The TPL1401 supports 7-bit addressing. The 10-bit addressing mode is not supported. The device supports the general call reset function. Sending the following sequence initiates a software reset within the device: start or repeated start, 0x00, 0x06, stop. The reset is asserted within the device on the rising edge of the ACK bit, following the second byte.

Other than specific timing signals, the I²C interface works with serial bytes. At the end of each byte, a ninth clock cycle generates and detects an acknowledge signal. Acknowledge is when the SDA line is pulled low during the high period of the ninth clock cycle. A not-acknowledge is when the SDA line is left high during the high period of the ninth clock cycle as shown in Figure 7-2.

7.5.1 F/S Mode Protocol

The following steps explain a complete transaction in F/S mode.

- 1. The master initiates data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in Figure 7-3. All I²C-compatible devices recognize a start condition.
- 2. The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit (R/W) on the SDA line. During all transmissions, the master makes sure that data are valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse, as shown in Figure 7-4. All devices recognize the address sent by the master and compare the address to the respective internal fixed address. Only the slave device with a matching address generates an acknowledge by pulling the SDA line low during the entire high period of the ninth SCL cycle, as shown in Figure 7-2. When the master detects this acknowledge, the communication link with a slave has been established.
- 3. The master generates further SCL cycles to transmit (R/W bit 0) or receive (R/W bit 1) data to the slave. In either case, the receiver must acknowledge the data sent by the transmitter. The acknowledge signal can be generated by the master or by the slave, depending on which is the receiver. The 9-bit valid data sequences consists of 8-data bits and 1 acknowledge-bit, and can continue as long as necessary.
- 4. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low-to-high while the SCL line is high (see Figure 7-4). This action releases the bus and stops the communication link with the addressed slave. All I²C-compatible devices recognize the stop condition. Upon receipt of a stop condition, the bus is released, and all slave devices then wait for a start condition followed by a matching address.

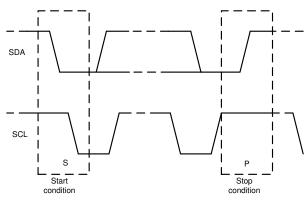


Figure 7-3. Start and Stop Conditions

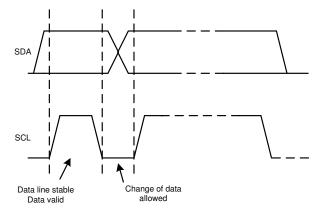


Figure 7-4. Bit Transfer on the I²C Bus

7.5.2 I²C Update Sequence

For a single update, the TPL1401 requires a start condition, a valid I²C address byte, a command byte, and two data bytes, as listed in Table 7-3.

									-						
MSB		LSB	ACK	MSB		LSB	ACK	MSB		LSB	ACK	MSB		LSB	ACK
Address (A) byte Section 7.5.3				Command byte Section 7.5.4				Data byte - MSDB Section 8.2.3				Data byte - LSDB Section 8.2.3			
C	DB [31:24]			C	DB [23:16	6]		DB [15:8]					DB [7:0]		

 Table 7-3. Update Sequence

After each byte is received, the TPL1401 acknowledges the byte by pulling the SDA line low during the high period of a single clock pulse, as shown in Figure 7-5. These four bytes and acknowledge cycles make up the 36 clock cycles required for a single update to occur. A valid I²C address byte selects the TPL1401 device.

Copyright © 2022 Texas Instruments Incorporated

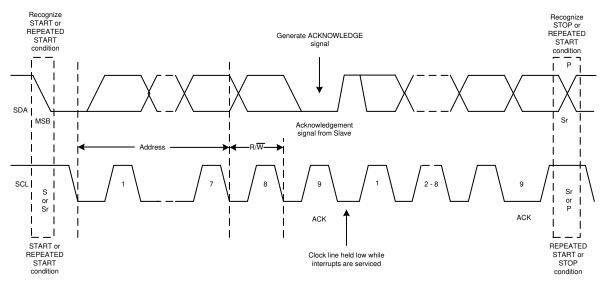


Figure 7-5. I²C Bus Protocol

The command byte sets the operating mode of the selected TPL1401. For a data update to occur when the operating mode is selected by this byte, the TPL1401 must receive two data bytes: the most significant data byte (MSDB) and least significant data byte (LSDB). The TPL1401 performs an update on the falling edge of the acknowledge signal that follows the LSDB.

When using fast mode (clock = 400 kHz), the maximum digipot update rate is limited to 10 kSPS. Using the fast mode plus (clock = 1 MHz), the maximum digipot update rate is limited to 25 kSPS. When a stop condition is received, the TPL1401 releases the $I^{2}C$ bus and awaits a new start condition.

7.5.3 Address Byte

The address byte, as shown in Table 7-4, is the first byte received from the master device following the start condition. The first four bits (MSBs) of the address are factory preset to 1001. The next three bits of the address are controlled by the A0 pin. The A0 pin input can be connected to VDD, AGND, SCL, or SDA. The A0 pin is sampled during the first byte of each data frame to determine the address. The device latches the value of the address pin, and consequently responds to that particular address according to Table 7-5.

The TPL1401 supports broadcast addressing, which is used for synchronously updating or powering down multiple TPL1401 devices. When the broadcast address is used, the TPL1401 responds regardless of the address pin state. Broadcast is supported only in write mode.

				. Audi 033	Dyte								
COMMENT		MSB											
—	AD6	AD5	AD5 AD4 AD3 AD2		AD2	AD1	AD0	R/ W					
General address	1	0	0	1		See Table 7-5 e address colu		0 or 1					
Broadcast address	1	0	0 0		1	1	1	0					

Table 7-4. Address Byte

Table 7-5. Ad	dress Format
SLAVE ADDRESS	A0 PIN
000	AGND
001	VDD
010	SDA
011	SCL

24

7.5.4 Command Byte

Table 7-6 lists the command byte.

Table 7-6. Co	mmand Byte (Register Names)
ADDRESS	REGISTER NAME
D0h	STATUS
D1h	GENERAL_CONFIG
D3h	PROTECT
21h	DPOT_POSITION
25h	USER_BYTE1
26h	USER_BYTE2

Table 7-6. Command Byte (Register Names)

7.5.5 I²C Read Sequence

To read any register, the following command sequence must be used, as shown in Table 7-7:

- 1. Send a start or repeated start command with a slave address and the R/W bit set to 0 for writing. The device acknowledges this event.
- 2. Send a command byte for the register to be read. The device acknowledges this event again.
- 3. Send a repeated start with the slave address and the R/W bit set to 1 for reading. The device acknowledges this event.
- 4. The device writes the MSDB byte of the addressed register. The master must acknowledge this byte.
- 5. Finally, the device writes out the LSDB of the register.

An alternative reading method allows for reading back the value of the last register written. The sequence is a start or repeated start with the slave address and the R/ \overline{W} bit set to 1, and the two bytes of the last register are read out.

The broadcast address cannot be used for reading.

s	MSB		R/ W (0)	ACK	MSB		LSB	АСК	Sr	MSB		R/ ₩ (1)	АСК	MSB		LSB	АСК	MSB		LSB	АСК
	E	DRE BYTE			E	MMA BYTE			Sr	E	ADDRESS BYTE Section 7.5.3			MSDB		В	LSDB		В		
	From I	Mast	er	Slave	Fron	n Ma	aster	Slave		From I	Mas	ter	Slave	Fro	m Sl	ave	Master	Fro	m Sl	lave	Master

Table 7-7. Read Sequence

7.6 Register Map

Table 7-8. Register Map MOST SIGNIFICANT DATA BYTE (MSDB) LEAST SIGNIFICANT DATA BYTE (LSDB) ADDRESS BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 NVM_CRC_ NVM_CRC_ D0h ALARM_ ALARM_ NVM_BUSY χ<mark>(1)</mark> Х DEVICE_ID VERSION_ID USER INTERNAL DEVICE D1h RESERVED RESERVED DPOT_PDN REF_EN OUT_SPAN LOCK DEVICE_ NVM NVM D3h DEVICE_UNLOCK_CODE Х CONFIG RESERVED SW_RESET RELOAD PROG RESET 21h Х DPOT POS[7:0] Х 25h Х USER_BYTE1[7:0] Х Х USER_BYTE2[7:0] Х 26h

(1) X = Don't care.

Table 7-9. Register Names

ADDRESS	REGISTER NAME	SECTION
D0h	STATUS	Section 7.6.1
D1h	GENERAL_CONFIG	Section 7.6.2
D3h	PROTECT	Section 7.6.3
21h	DPOT_POSITION	Section 7.6.4
25h	USER_BYTE1	Section 7.6.5
26h	USER_BYTE2	Section 7.6.6

Table 7-10. Access Type Codes

Access Type	Code	Description
Х	Х	Don't care
Read Type		
R	R	Read
Write Type		
W	W	Write
Reset or Default Value		
-n		Value after reset or the default value

7.6.1 STATUS Register (address = D0h) (reset = 000Ch or 0014h)

				-	-	-		J								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
NVM_CRC_ ALARM_ USER	NVM_CRC_ ALARM_ INTERNAL	NVM_ BUSY	Х			Х				DEVICE_ID				VERSION_ID		
R-0h	R-0h	R-0h	R-0h		X-00h						X-00h R-14h					

Table 7-11. STATUS Register

Table 7-12. STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	NVM_CRC_ALARM_USER	R	0	0 : No CRC error in user NVM bits 1: CRC error in user NVM bits
14	NVM_CRC_ALARM_INTERNAL	R	0	0 : No CRC error in internal NVM 1: CRC error in internal NVM bits
13	NVM_BUSY	R	0	0 : NVM write or load completed, Write to digipot registers allowed 1 : NVM write or load in progress, Write to digipot registers not allowed
12	X	R	0	Don't care
11 - 6	X	Х	00h	Don't care
5 - 2	DEVICE_ID	R	14h	14h
1 - 0	VERSION_ID	R		Version ID as per the silicon version

7.6.2 GENERAL_CONFIG Register (address = D1h) (reset = 01F0h)

Figure 7-5. GENERAL_CONFIG Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESE	RVED	DEVICE_ LOCK				RESER	RVED				DPOT	_PDN	REF_EN	OUT_	SPAN
R-I	0h	W-0h				R-0F	⁼h				R/ 1	⊽-2h	R/ W-0h	R/ 1	V-0h

Table 7-13. GENERAL_CONFIG Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 14	RESERVED	R	00	Always write 00b
13	DEVICE_LOCK	W	0	0 : Device not locked 1: Device locked, the device locks all the registers. This bit can be reset (unlock device) by writing 0101 to the DEVICE_UNLOCK_CODE bits (address D3h)
12 - 5	RESERVED	R	0Fh	Always write 0Fh
4 - 3	DPOT_PDN	R/ W	10	00: Power up 01: Power down to 10K 10: Power down to high impedance (default) 11: Power down to 10K
2	REF_EN	R/ ₩	0	 0: Internal reference disabled, V_{DD} is digipot reference voltage, digipot output range from 0 V to V_{DD}. 1: Internal reference enabled, digipot reference = 1.21 V
1 - 0	OUT_SPAN	R/ W	00	Only applicable when internal reference is enabled. 00: Reference to V_{OUT} gain 1.5x 01: Reference to V_{OUT} gain 2x 10: Reference to V_{OUT} gain 3x 11: Reference to V_{OUT} gain 4x

7.6.3 PROTECT Register (address = D3h) (reset = 0008h)

						•									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DEVI	ICE_UNL	-OCK_C	ODE	>	<	DEVICE_ CONFIG_ RESET		RESERVED		NVM_ RELOAD	NVM_ PROG	:	SW_R	ESET	
	W-	0h		>	<	W-0h		R-0h		W-0h	W-0h		W-	8h	

Figure 7-6. PROTECT Register

Table 7-14. PROTECT Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 12	DEVICE_UNLOCK_CODE	W	0000	Write 0101 to unlock the device to bypass DEVICE_LOCK bit.
11 - 10	x	Х	0h	Don't care
9	DEVICE_CONFIG_RESET	W	0	0: Device configuration reset not initiated 1: Device configuration reset initiated. All registers loaded with factory reset values.
8 - 6	RESERVED	R	000	Always write 000b
5	NVM_RELOAD	W	0	0: NVM reload not initiated 1: NVM reload initiated, applicable digipot registers loaded with corresponding NVM. NVM_BUSY bit set to 1 while this operation is in progress. This bit is self-resetting.
4	NVM_PROG	W	0	0: NVM write not initiated 1: NVM write initiated, NVM corresponding to applicable digipot registers loaded with existing register settings. NVM_BUSY bit set to 1 while this operation is in progress. This bit is self- resetting.
3 - 0	SW_RESET	W	1000	1000: Software reset not initiated 1010: Software reset initiated, digipot registers loaded with corresponding NVMs, all other registers loaded with default settings.

7.6.4 DPOT_POSITION Register (address = 21h) (reset = 0000h)

Table 7-15. DPOT_POSITION Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	>	(DPOT_P	OS[7:0] -	- MSB Le	eft aligned	ł			2	x
	X-	0h						R/W-	-000h					X-	0h

Table 7-16. DPOT_DATA Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	x	х	0h	Don't care
11-2	DPOT_POS[7:0]	R/W	000h	Writing to the DPOT_POSITION register forces the digipot to update the active register data to the DPOT_POS. Data are in straight binary format and use the following format: { DPOT_POS[7:0], X, X } X = Don't care bits
1-0	x	Х	0h	Don't care

7.6.5 USER_BYTE1 Register (address = 25h) (reset = 0000h)

Table 7-17. USER_BYTE1 Register

5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	>	<				U	SER_BY	'TE1[7:0]	– MSB L	eft aligne	ed				Х
X-0h R/W-000h										X	-0h				

Table 7-18. USER_BYTE1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	X	Х	0h	Don't care
11-2	USE_BYTE1[7:0] – MSB Left aligned	R/W	000h	8-bit user-programmable data. Data are in straight binary format and use the following format: { USER_BYTE1[7:0], X, X } X = Don't care bits
1-0	x	х	0h	Don't care

7.6.6 USER_BYTE2 Register (address = 26h) (reset = 0000h)

Table 7-19. USER_BYTE2 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	>	X				U	SER_BY	TE2[7:0]	– MSB L	.eft aligne	ed			2	Х
	Х-	0h						R/W-	000h					X-	-0h

Table 7-20. USER_BYTE2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	x	Х	0h	Don't care
11-2	USER_BYTE2[7:0] – MSB Left aligned	R/₩		8-bit user-programmable data. Data are in straight binary format and follows the format below: { USER_BYTE2[7:0], X, X } X = Don't care bits
1-0	x	Х	0h	Don't care

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The TPL1401 is a buffered, force-sense-output, single-channel, digipot that includes an internal reference and NVM, and is available in a tiny 2 mm × 2 mm package. This device interfaces to a processor using I²C. There are 4 I²C addresses possible by configuring the A0 pin as shown in Table 7-5. The NVM allows processor-less operation of this device after programming at factory. The force-sense output can work with a transitor to create a programmable current sink that can bias LEDs. These digipots are designed for general-purpose applications in a wide range of end equipment. Some of the most common applications for these devices are programmable current limits, adjustable power supplies, and offset and gain trimming in precision circuits.

8.2 Typical Application

Many analog and power devices, such as LED drivers, power amplifiers, high-side switches, e-fuses, and DC-DC converters, provide an analog input for an adjustable output current limit. Some of these devices recommend a resistor from this pin to ground for static settings. The TPL1401 is a very compact way to address the adjustable current limit requirements of such devices enabling scalability and configurability of these power devices. The integrated EEPROM makes sure the setting is retained even after power cycling, allowing the current limit to work without a processor. This section explains the design details of a programmable current limit application with an example LED driver, the TPS92692. Figure 8-1 shows the simplified circuit diagram of this application.

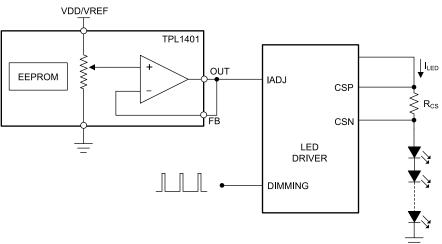


Figure 8-1. Programmable Current Limit

8.2.1 Design Requirements

- LED driver: TPS92692
- LED driver current limit: 100 mA

8.2.2 Detailed Design Procedure

The TPS92692 data sheet provides the equation for the voltage required to set a given LED current limit. Use a sense resistor of $1-\Omega$ for the TPS92692. The voltage at the IADJ pin, V_{IADJ}, must be 1.4 V for an LED current of 100 mA. The range for V_{IADJ} is 2.5 V. Enable the internal reference with 2x gain to set the digipot output range to 2.42 V that will fairly be in the range of current adjustment for the LED driver. Calculate the code needed to set the digipot output to 1.4 V using the following equation:

$$DPOT_POS = \frac{V_{IADJ}}{V_{RFF} \times GAIN} \times 256$$

(3)

The hex value for 148 is 0x94. Shift this value by 4 bits before writing to the DPOT_POSITION register, resulting in 0x940.

The pseudocode for the programmable current limit application is as follows:

```
//SYNTAX: WRITE <REGISTER NAME (Hex code)>, <MSB DATA>, <LSB DATA>
//Power-up the device, enable internal reference with 2x output span
WRITE GENERAL_CONFIG(0xD1), 0x11, 0xE5
//Write digipot code (12-bit aligned)
WRITE DPOT_POSITION(0x21), 0x09, 0x40
//Write settings to the NVM
WRITE PROTECT(0xD3), 0x00, 0x10
```

8.2.3 Application Curves

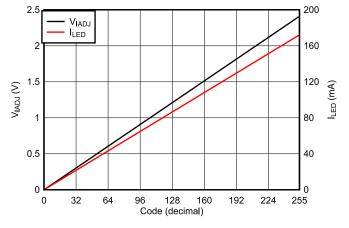
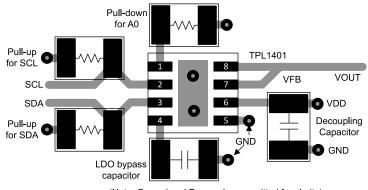


Figure 8-2. Digipot Code vs LED Current

9 Power Supply Recommendations

The TPL1401 does not require specific supply sequencing. The device requires a single power supply, V_{DD} . Use a 0.1- μ F decoupling capacitor for the V_{DD} pin. Use a bypass capacitor with a value greater than 1.5- μ F for the CAP pin.


10 Layout

10.1 Layout Guidelines

The TPL1401 pin configuration separates the analog, digital, and power pins for an optimized layout. For signal integrity, separate the digital and analog traces, and place decoupling capacitors close to the device pins.

10.2 Layout Example

Figure 10-1 shows an example layout drawing with decoupling capacitors and pullup resistors.

(Note: Ground and Power planes omitted for clarity)

Figure 10-1. Layout Example

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

Texas, Instruments TPL1401EVM user's guide

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPL1401DSGR	ACTIVE	WSON	DSG	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	14_1	Samples
TPL1401DSGT	ACTIVE	WSON	DSG	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	14_1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

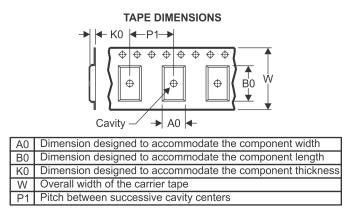
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

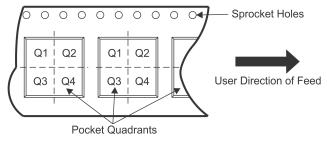
www.ti.com

PACKAGE OPTION ADDENDUM

30-Sep-2021

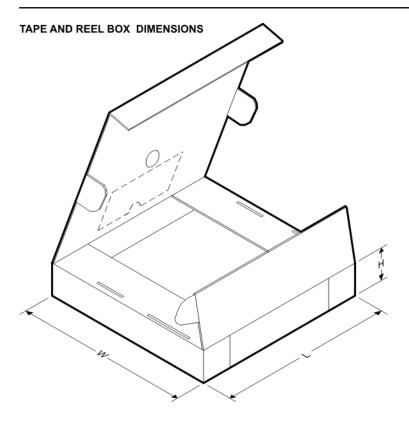

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPL1401DSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TPL1401DSGT	WSON	DSG	8	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

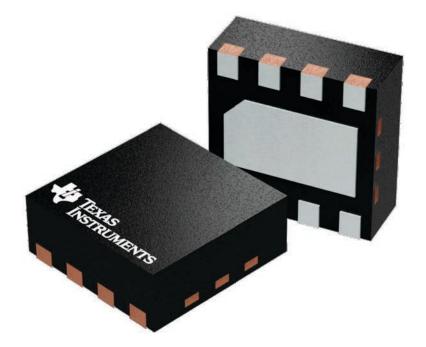
PACKAGE MATERIALS INFORMATION

9-Oct-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPL1401DSGR	WSON	DSG	8	3000	210.0	185.0	35.0
TPL1401DSGT	WSON	DSG	8	250	210.0	185.0	35.0

DSG 8

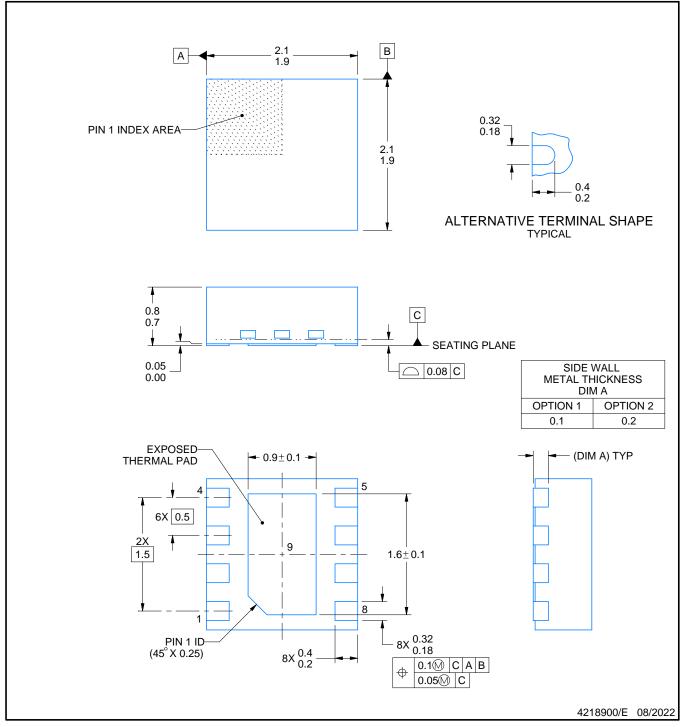

2 x 2, 0.5 mm pitch

GENERIC PACKAGE VIEW

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DSG0008A

PACKAGE OUTLINE

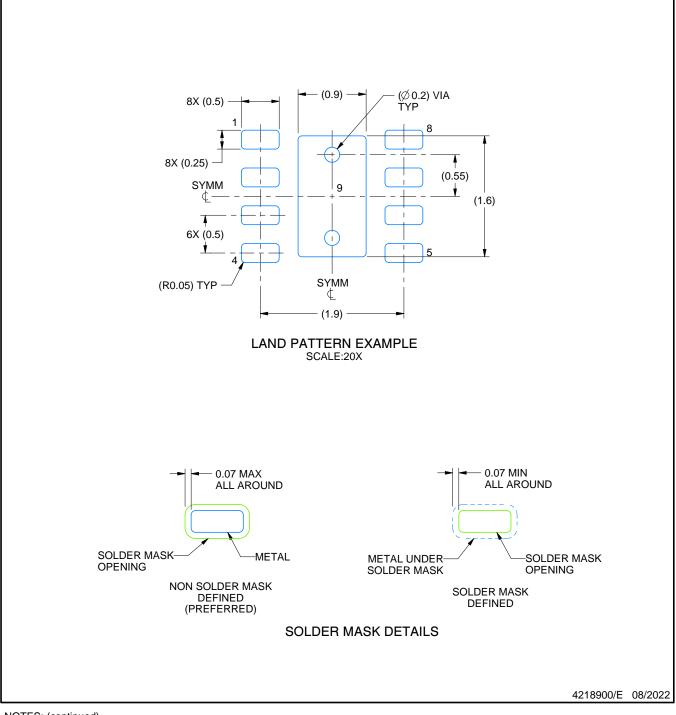
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



DSG0008A

EXAMPLE BOARD LAYOUT

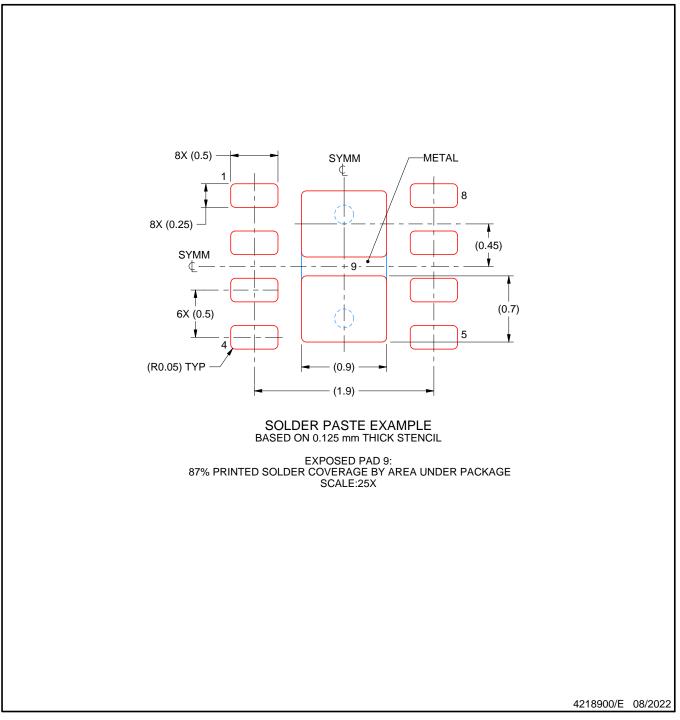
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



DSG0008A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated