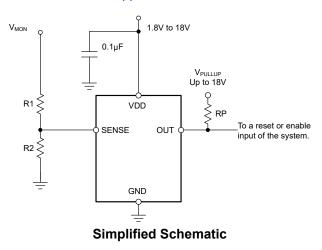


TPS3710-Q1 Wide VIN Voltage Detector

1 Features


Texas

INSTRUMENTS

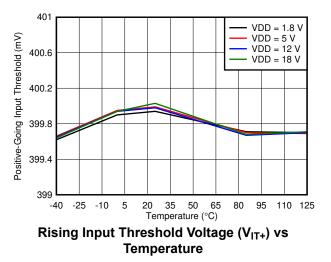
- Qualified for automotive applications
- AEC-Q100 qualified with the following results:
 - Device temperature grade 1: -40°C to 125°C ambient operating temperature range
 - Device HBM ESD classification level 2
 - Device CDM ESD classification level C6
- Wide supply voltage range: 1.8V to 18V
- Adjustable threshold: down to 400mV
- High threshold accuracy:
 - 1.0% Overtemperature
 - 0.25% Typical
- Low quiescent current: 5.5µA (typical)
- Open-Drain output
- Internal hysteresis: 5.5mV (typical)
- Temperature range: –40°C to +125°C
- Packages:
 - 1.5mm × 1.5mm WSON-6

2 Applications

- Automotive Systems
- Embedded Computing Modules
- DSP, Microcontroller, or Microprocessor Applications
- Notebook and Desktop Computers
- Portable- and Battery-Powered Products
- FPGA and ASIC Applications

3 Description

The TPS3710-Q1 wide supply voltage detector operates over a 1.8V to 18V range. The device has a high-accuracy comparator with an internal 400mV reference and an open-drain output rated to 18V for precision voltage detection. The monitored voltage can be set with the use of external resistors.

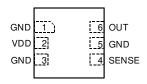

The OUT pin is driven low when the voltage at the SENSE pin drops below (V_{IT-}), and goes high when the voltage returns above the respective threshold (V_{IT+}). The comparator in the TPS3710-Q1 includes built-in hysteresis for filtering to reject brief glitches, which helps the device to operate without false triggering.

The TPS3710-Q1 is available in a 1.5mm × 1.5mm 6pin WSON package, and is specified over the junction temperature range of -40° C to +125°C.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
TPS3710-Q1	WSON (6)	1.50mm × 1.50mm

- (1) For all available packages, see the package option addendum at the end of the data sheet.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.


Table of Contents

1 Features 2 Applications	1
3 Description	
4 Pin Configuration and Functions	
5 Specifications	
5.1 Absolute Maximum Ratings	4
5.2 ESD Ratings	4
5.3 Recommended Operating Conditions	4
5.4 Thermal Information	4
5.5 Electrical Characteristics	
5.6 Timing Requirements	6
5.7 Switching Characteristics	6
5.8 Typical Characteristics	7
6 Detailed Description	9
6.1 Overview	
6.2 Functional Block Diagram	9
6.3 Feature Description.	
6.4 Device Functional Modes	

7 Application and Implementation	. 11
7.1 Application Information	11
7.2 Typical Application	
7.3 Do's and Don'ts	
7.4 Power-Supply Recommendations	14
7.5 Layout	15
8 Device and Documentation Support	
8.1 Device Support	
8.2 Documentation Support	
8.3 Receiving Notification of Documentation Updates	16
8.4 Support Resources	. 16
8.5 Trademarks	16
8.6 Electrostatic Discharge Caution	
8.7 Glossary	16
9 Revision History	. 16
10 Mechanical, Packaging, and Orderable	
Information	. 17

4 Pin Configuration and Functions

Figure 4-1. DSE Package 6-Pin WSON Top View

Table 4-1. Pin Functions

PIN		I/O	DESCRIPTION	
NAME	DSE		DESCRIPTION	
GND	1, 3, 5	—	Connect all three pins to ground.	
OUT	6	О	SENSE comparator open-drain output. OUT is driven low when the voltage at this comparator is below ($V_{\text{IT-}}$). The output goes high when the sense voltage returns above the respective threshold ($V_{\text{IT-}}$).	
SENSE	4	I	This pin is connected to the voltage to be monitored with the use of an external resistor divider. When the voltage at this pin drops below the threshold voltage (V_{IT-}), OUT is driven low.	
VDD	2	I	Supply voltage input. Connect a 1.8V to 18V supply to VDD to power the device. Good analog design practice is to place a 0.1μ F ceramic capacitor close to this pin.	

5 Specifications

5.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
	VDD	-0.3	20	
Voltage ⁽²⁾	OUT	-0.3	20	V
	SENSE	-0.3	7	
Current	OUT (output sink current)		40	mA
Temperature	Operating junction, T _J	-40	125	°C
	Storage, T _{stg}	-65	150	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to network ground pin.

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatio discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2500	V
V _(ESD) Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±1000	v	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Recommended Operating Conditions

over operating temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V _{DD}	Supply voltage		1.8	18	V
VI	Input voltage	SENSE	0	6.5	V
Vo	Output voltage	OUT	0	18	V

5.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DSE (WSON)	UNIT
		6 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	194.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	128.9	°C/W
R _{θJB}	Junction-to-board thermal resistance	153.8	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	11.9	°C/W
Ψјв	Junction-to-board characterization parameter	157.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report.

5.5 Electrical Characteristics

Over the operating temperature range of $T_J = -40^{\circ}$ C to $+125^{\circ}$ C, and $1.8V < V_{DD} < 18V$ (unless otherwise noted). Typical values are at $T_J = 25^{\circ}C$ and $V_{DD} = 5V$.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power-on reset voltage ⁽¹⁾	V _{OL} max = 0.2V, output sink current = 15µA			0.8	V
	V _{DD} = 1.8V	396	400	404	mV
Positive-going input the shour voltage	V _{DD} = 18V	396	400	404	IIIV
/ _{IT-} Negative-going input threshold voltage	V _{DD} = 1.8V	387	394.5	400	mV
	V _{DD} = 18V	387	394.5	400	IIIV
Hysteresis voltage (hys = $V_{IT+} - V_{IT-}$)			5.5	12	mV
Input current (at the SENSE pin)	V _{DD} = 1.8V and 18V, V _I = 6.5V	-25	1	25	nA
Low-level output voltage	V_{DD} = 1.3V, output sink current = 0.4mA			250	
	V _{DD} = 1.8V, output sink current = 3mA			250	
	V _{DD} = 5V, output sink current = 5mA			250	
Open drein autnut laskage autrent	V_{DD} = 1.8V and 18V, V_{O} = V_{DD}			300	nA
Open-drain output leakage-current	V _{DD} = 1.8V, V _O = 18V			300	ΠA
	V _{DD} = 1.8V, no load		5.5	11	
Supply aurrent	V _{DD} = 5V		6	13	
Supply current	V _{DD} = 12V		6	13	μA
	V _{DD} = 18V		7	13	
Undervoltage lockout ⁽²⁾	V _{DD} falling	1.3		1.7	V
	Power-on reset voltage ⁽¹⁾ Positive-going input threshold voltage Negative-going input threshold voltage Hysteresis voltage (hys = V _{IT+} - V _{IT-}) Input current (at the SENSE pin) Low-level output voltage Open-drain output leakage-current	Power-on reset voltage (1) $V_{OL}max = 0.2V$, output sink current = 15µAPositive-going input threshold voltage $V_{DD} = 1.8V$ Negative-going input threshold voltage $V_{DD} = 1.8V$ Negative-going input threshold voltage $V_{DD} = 1.8V$ Hysteresis voltage (hys = $V_{IT+} - V_{IT-}$) $V_{DD} = 1.8V$ and $18V$, $V_I = 6.5V$ Input current (at the SENSE pin) $V_{DD} = 1.8V$ and $18V$, $V_I = 6.5V$ Low-level output voltage $V_{DD} = 1.3V$, output sink current = 0.4mA $V_{DD} = 1.8V$, output sink current = 5mA $V_{DD} = 5V$, output sink current = 5mA $V_{DD} = 1.8V$ and $18V$, $V_O = V_{DD}$ $Open-drain output leakage-current$ $V_{DD} = 1.8V$, no load $V_{DD} = 1.8V$, no load $V_{DD} = 5V$ $V_{DD} = 12V$ $V_{DD} = 18V$	Power-on reset voltage (1) $V_{OL}max = 0.2V$, output sink current = 15µAPositive-going input threshold voltage $V_{DD} = 1.8V$ 396 $N_{DD} = 18V$ 396Negative-going input threshold voltage $V_{DD} = 1.8V$ 387Hysteresis voltage (hys = $V_{IT+} - V_{IT-}$)387Input current (at the SENSE pin) $V_{DD} = 1.8V$ and $18V$, $V_I = 6.5V$ -25 $Low-level output voltage$ $V_{DD} = 1.3V$, output sink current = 0.4mA-25 $V_{DD} = 1.8V$, output sink current = 5mA $V_{DD} = 1.8V$, output sink current = 3mA-25 $Open-drain output leakage-current$ $V_{DD} = 1.8V$ and $18V$, $V_O = V_{DD}$ -25 $V_{DD} = 1.8V$, output sink current = 5mA-25 $V_{DD} = 1.8V, V_O = 18V$ -25 $V_{DD} = 1.8V, N_O = 18V$ -25 $V_{DD} = 1.8V, no load$ -25 $V_{DD} = 1.8V, no load$ -25 $V_{DD} = 1.8V$ -25 $V_{DD} = 1.8V$ -25 $V_{DD} = 1.8V, no load$ -25 $V_{DD} = 1.8V$ -	Power-on reset voltage (1) V_{OL} max = 0.2V, output sink current = 15µA V_{DD} Positive-going input threshold voltage V_{DD} = 1.8V 396 400 Negative-going input threshold voltage V_{DD} = 1.8V 397 394.5 Negative-going input threshold voltage V_{DD} = 1.8V 387 394.5 Hysteresis voltage (hys = V_{IT+} - V_{IT-}) V_{DD} = 1.8V 387 394.5 Input current (at the SENSE pin) V_{DD} = 1.8V and 18V, V_I = 6.5V -25 1 V_{DD} = 1.8V and 18V, V_I = 6.5V -25 1 1 V_{DD} = 1.8V, output sink current = 0.4mA V_DD 1 1 V_{DD} = 1.8V, output sink current = 3mA V_DD 1 1 V_{DD} = 1.8V, output sink current = 3mA V_DD 1 1 V_{DD} = 1.8V and 18V, V_O = V_DD V_DD 1 1 V_{DD} = 1.8V and 18V, V_O = V_DD 1 1 1 V_{DD} = 1.8V, no load 5.5 1 1 1 1 V_{DD} = 1.8V, no load 5.5 1 6 1 <t< td=""><td>$\begin{array}{c c c c c c c c } Power-on reset voltage (1) & V_{OL}max = 0.2V, output sink current = 15 \mu A & 0.8 \\ \hline V_{DD} = 1.8V & 396 & 400 & 404 \\ \hline V_{DD} = 18V & 396 & 400 & 404 \\ \hline V_{DD} = 18V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 18V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 18V & -25 & 1 & 25 \\ \hline V_{DD} = 1.8V & 18V & -25 & 1 & 25 \\ \hline V_{DD} = 1.8V & and 18V, V_{I} = 6.5V & -25 & 1 & 250 \\ \hline V_{DD} = 1.8V, output sink current = 0.4mA & -250 \\ \hline V_{DD} = 1.8V, output sink current = 3mA & -250 \\ \hline V_{DD} = 5V, output sink current = 5mA & -250 \\ \hline V_{DD} = 1.8V & and 18V, V_{O} = V_{DD} & -300 \\ \hline V_{DD} = 1.8V, no load & 5.5 & 11 \\ \hline V_{DD} = 1.8V, no load & 5.5 & 11 \\ \hline V_{DD} = 12V & 6 & 6 \\ \hline V_{DD} = 18V & -25 & -25 & -25 \\ \hline V_{DD} = 18V & -25 & -25 & -25 & -25 \\ \hline V_{DD} = 18V & -25 & -25 & -25 & -25 \\ \hline V_{DD} = 18V & -25 & -25 & -25 & -25 & -25 \\ \hline V_{DD} = 1.8V, no load & -5.5 & -25 & -25 & -25 \\ \hline V_{DD} = 1.8V & -25$</td></t<>	$\begin{array}{c c c c c c c c } Power-on reset voltage (1) & V_{OL}max = 0.2V, output sink current = 15 \mu A & 0.8 \\ \hline V_{DD} = 1.8V & 396 & 400 & 404 \\ \hline V_{DD} = 18V & 396 & 400 & 404 \\ \hline V_{DD} = 18V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 18V & 387 & 394.5 & 400 \\ \hline V_{DD} = 1.8V & 18V & -25 & 1 & 25 \\ \hline V_{DD} = 1.8V & 18V & -25 & 1 & 25 \\ \hline V_{DD} = 1.8V & and 18V, V_{I} = 6.5V & -25 & 1 & 250 \\ \hline V_{DD} = 1.8V, output sink current = 0.4mA & -250 \\ \hline V_{DD} = 1.8V, output sink current = 3mA & -250 \\ \hline V_{DD} = 5V, output sink current = 5mA & -250 \\ \hline V_{DD} = 1.8V & and 18V, V_{O} = V_{DD} & -300 \\ \hline V_{DD} = 1.8V, no load & 5.5 & 11 \\ \hline V_{DD} = 1.8V, no load & 5.5 & 11 \\ \hline V_{DD} = 12V & 6 & 6 \\ \hline V_{DD} = 18V & -25 & -25 & -25 \\ \hline V_{DD} = 18V & -25 & -25 & -25 & -25 \\ \hline V_{DD} = 18V & -25 & -25 & -25 & -25 \\ \hline V_{DD} = 18V & -25 & -25 & -25 & -25 & -25 \\ \hline V_{DD} = 1.8V, no load & -5.5 & -25 & -25 & -25 \\ \hline V_{DD} = 1.8V & -25 $

The lowest supply voltage (V_{DD}) at which output is active; $t_{r(VDD)} > 15\mu s/V$. Below V_(POR), the output cannot be determined. When V_{DD} falls below UVLO, OUT is driven low. The output cannot be determined below V_(POR). (1)

(2)

5.6 Timing Requirements

over operating temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
t _{pd(HL)}	High-to-low propagation delay ⁽¹⁾	$\label{eq:VDD} \begin{array}{l} V_{DD} = 5V, \ 10mV \ input \ overdrive, \\ R_{P} = 10k\Omega, \ V_{OH} = 0.9 \times V_{DD}, \ V_{OL} = 400mV, \\ see \ Figure \ 5-1 \end{array}$		18		μs
t _{pd(LH)}	Low-to-high propagation delay ⁽¹⁾	$\label{eq:VDD} \begin{array}{l} V_{DD} = 5V, \ 10mV \ input \ overdrive, \\ R_P = 10k\Omega, \ V_{OH} = 0.9 \times V_{DD}, \ V_{OL} = 400mV, \\ see \ Figure \ 5-1 \end{array}$		29		μs
t _{d(start)}	Start-up delay ⁽²⁾			150		μs

(1) High-to-low and low-to-high refers to the transition at the input pin (SENSE).

(2) During power on, V_{DD} must exceed 1.8V for at least 150µs before the output is in a correct state.

5.7 Switching Characteristics

over operating temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r		V_{DD} = 5V, 10mV input overdrive, R _P = 10kΩ, V _O = (0.1 to 0.9) × V _{DD}		2.2		μs
t _f	Output fall time	V_{DD} = 5V, 10mV input overdrive, R _P = 10kΩ, V _O = (0.1 to 0.9) × V _{DD}		0.22		μs

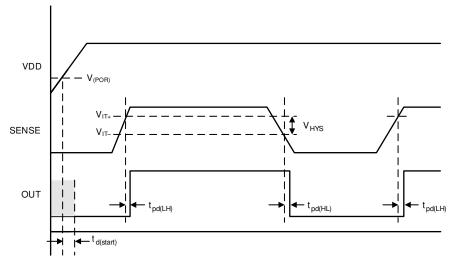
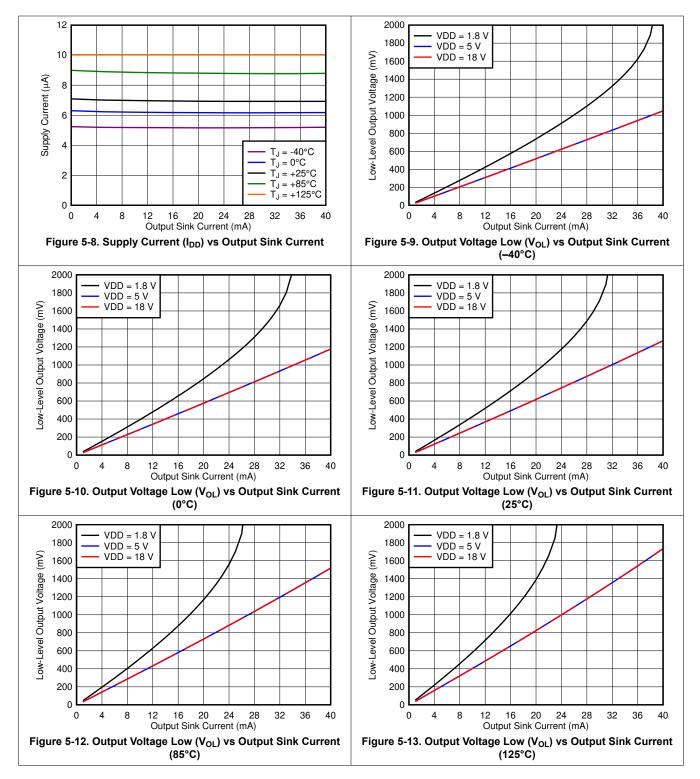



Figure 5-1. Timing Diagram


5.8 Typical Characteristics

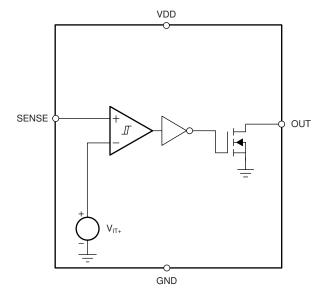
at $T_J = 25^{\circ}C$ and $V_{DD} = 5V$ (unless otherwise noted)

5.8 Typical Characteristics (continued)

at T_J = 25°C and V_{DD} = 5V (unless otherwise noted)

6 Detailed Description

6.1 Overview


The TPS3710-Q1 provides precision voltage detection. The TPS3710-Q1 is a wide-supply voltage range (1.8V to 18V) device with a high-accuracy rising input threshold of 400mV (1% over temperature) and built-in hysteresis. The output is also rated to 18V, and can sink up to 40mA.

The TPS3710-Q1 asserts the output signal, as shown in Table 6-1. To monitor any voltage above 0.4V, set the input using an external resistor divider network. Broad voltage thresholds are supported that enable the device for use in a wide array of applications.

CONDITION	STATUS				
SENSE > V _{IT+}	OUT high	Output not asserted			
SENSE < V _{IT-}	OUT low	Output asserted			

Table 6-1. TPS3710-Q1 Truth Table

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Input (SENSE)

The TPS3710-Q1 comparator has two inputs: one external input, and one input connected to the internal reference. The comparator rising threshold is trimmed to be equal to the reference voltage (400mV). The comparator also has a built-in falling hysteresis that makes the device less sensitive to supply-rail noise and provides stable operation.

The comparator input (SENSE) is able to swing from ground to 6.5V, regardless of the device supply voltage. Although not required in most cases, to reduce sensitivity to transients and layout parasitics for extremely noisy applications, place a 1nF to 10nF bypass capacitor at the comparator input.

OUT is driven to logic low when the input SENSE voltage drops below (V_{IT-}). When the voltage exceeds V_{IT+} , the output (OUT) goes to a high-impedance state; see Figure 5-1.

6.3.2 Output (OUT)

In a typical TPS3710-Q1 application, the output is connected to a reset or enable input of the processor (such as a digital signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or application-specific integrated circuit [ASIC]) or the output is connected to the enable input of a voltage regulator (such as a dc-dc converter or low-dropout regulator [LDO]).

The TPS3710-Q1device provides an open-drain output (OUT). Use a pullup resistor to hold this line high when the output goes to high impedance (not asserted). To connect the output to another device at the correct interface-voltage level, connect a pullup resistor to the proper voltage rail. The TPS3710-Q1 output can be pulled up to 18V, independent of the device supply voltage.

Table 6-1 and the Section 6.3.1 section describe how the output is asserted or deasserted. See Figure 5-1 for a timing diagram that describes the relationship between threshold voltage and the respective output.

6.3.3 Immunity to Input-Pin Voltage Transients

The TPS3710-Q1i s relatively immune to short voltage transient spikes on the sense pin. Sensitivity to transients depends on both transient duration and amplitude; see Figure 5-7, *Minimum Pulse Width vs Threshold Overdrive Voltage*.

6.4 Device Functional Modes

6.4.1 Normal Operation (V_{DD} > UVLO)

When the voltage on V_{DD} is greater than 1.8V for at least 150µs, the OUT signal correspond to the voltage on SENSE as listed in Table 6-1.

6.4.2 Undervoltage Lockout (V_(POR) < V_{DD} < UVLO)

When the voltage on V_{DD} is less than the device UVLO voltage, and greater than the power-on reset voltage, $V_{(POR)}$, the OUT signal is asserted regardless of the voltage on SENSE.

6.4.3 Power-On Reset (V_{DD} < V_(POR))

When the voltage on V_{DD} is lower than the required voltage to internally pull the asserted output to GND ($V_{(POR)}$), SENSE is in a high-impedance state and the OUT signal is undefined.

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The TPS3710-Q1 device is a wide-supply voltage comparator that operates over a V_{DD} range of 1.8V to 18V. The device has a high-accuracy comparator with an internal 400mV reference and an open-drain output rated to 18V for precision voltage detection. The device can be used as a voltage monitor. The monitored voltage are set with the use of external resistors.

7.1.1 V_{PULLUP} to a Voltage Other Than V_{DD}

The output is often tied to V_{DD} through a resistor. However, some applications may require the output to be pulled up to a higher or lower voltage than V_{DD} to correctly interface with the reset and enable pins of other devices.

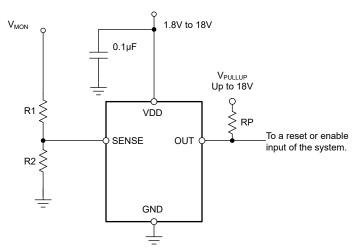


Figure 7-1. Interfacing to a Voltage Other Than V_{DD}

7.1.2 Monitoring V_{DD}

Many applications monitor the same rail that is powering V_{DD} . In these applications the resistor divider is simply connected to the V_{DD} rail.

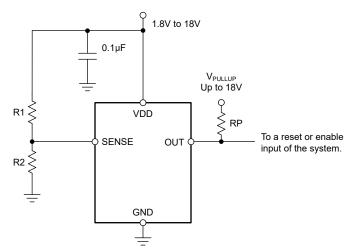
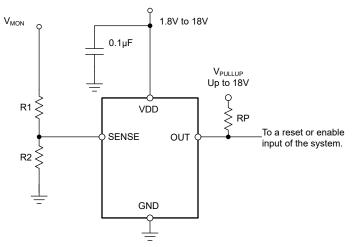



Figure 7-2. Monitoring the Same Voltage as V_{DD}

7.1.3 Monitoring a Voltage Other Than V_{DD}

Some applications monitor rails other than the one that is powering V_{DD} . In these types of applications the resistor divider used to set the desired threshold is connected to the rail that is being monitored.

NOTE: The input can monitor a voltage greater than maximum V_{DD} with the use of an external resistor divider network.

Figure 7-3. Monitoring a Voltage Other Than V_{DD}

7.2 Typical Application

The TPS3710-Q1 device is a wide-supply voltage comparator that operates over a V_{DD} range of 1.8 to 18V. The monitored voltage is set with the use of external resistors, so the device can be used either as a precision voltage monitor.

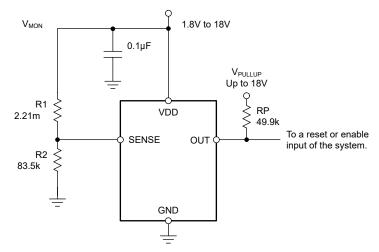


Figure 7-4. Wide VIN Voltage Monitor

7.2.1 Design Requirements

For this design example, use the values summarized in Table 7-1 as the input parameters.

Table 7-1. Design Parameters

PARAMETER	DESIGN REQUIREMENT	DESIGN RESULT
Monitored voltage	12V nominal rail with maximum falling threshold of 10%	V _{MON(UV)} = 10.99V (8.33%)

7.2.2 Detailed Design Procedure

7.2.2.1 Resistor Divider Selection

The resistor divider values and target threshold voltage can be calculated by using Equation 1 to determine $V_{MON(UV)}$.

$$V_{MON(UV)} = \left(1 + \frac{R1}{R2}\right) \times V_{IT-}$$

(1)

where

- R1 and R2 are the resistor values for the resistor divider on the SENSEx pins
- + $V_{MON(UV)}$ is the target voltage at which an undervoltage condition is detected

Choose R_{TOTAL} (= R1 + R2) so that the current through the divider is approximately 100 times higher than the input current at the SENSE pin. The resistors can have high values to minimize current consumption as a result of low input bias current without adding significant error to the resistive divider. For details on sizing input resistors, refer to application report SLVA450, *Optimizing Resistor Dividers at a Comparator Input*, available for download from www.ti.com.

7.2.2.2 Pullup Resistor Selection

To make ensure the proper voltage level, the pullup resistor value is selected by ensuring that the pullup voltage divided by the resistor does not exceed the sink-current capability of the device. This confirmation is calculated by verifying that the pullup voltage minus the output-leakage current ($I_{lkg(OD)}$) multiplied by the resistor is greater than the desired logic-high voltage. These values are specified in the Section 5.5.

Use Equation 2 to calculate the value of the pullup resistor.

$$\frac{\left(V_{\text{HI}}-V_{\text{PU}}\right)}{I_{\text{Ikg(OD)}}} \ \geq R_{\text{PU}} \geq \ \frac{V_{\text{PU}}}{I_{\text{O}}}$$

(2)

STRUMENTS

www.ti.com

7.2.2.3 Input Supply Capacitor

Although an input capacitor is not required for stability, for good analog design practice, connect a 0.1µF low equivalent series resistance (ESR) capacitor across the VDD and GND pins. A higher value capacitor can be necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power source.

7.2.2.4 Sense Capacitor

Although not required in most cases, for extremely noisy applications, place a 1nF to 10nF bypass capacitor from the comparator input (SENSE) to the GND pin for good analog design practice. This capacitor placement reduces device sensitivity to transients.

7.2.3 Application Curve

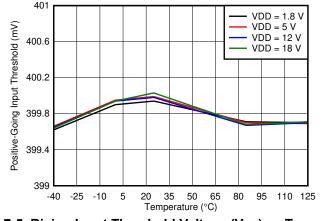


Figure 7-5. Rising Input Threshold Voltage (V_{IT+}) vs Temperature

7.3 Do's and Don'ts

Do connect a 0.1μ F decoupling capacitor from V_{DD} to GND for best system performance.

If the monitored rail is noisy, do connect a decoupling capacitor from the comparator input (sense) to GND.

Don't use resistors for the voltage divider that cause the current through them to be less than 100 times the input current of the comparator without also accounting for the effect to the accuracy.

Don't use a pullup resistor that is too small, because the larger current sunk by the output then exceeds the desired low-level output voltage (V_{OL}).

7.4 Power-Supply Recommendations

This device operates from an input voltage supply range between 1.8V and 18V.

7.5 Layout

7.5.1 Layout Guidelines

Placing a 0.1μ F capacitor close to the VDD pin to reduce the input impedance to the device is good analog design practice.

7.5.2 Layout Example

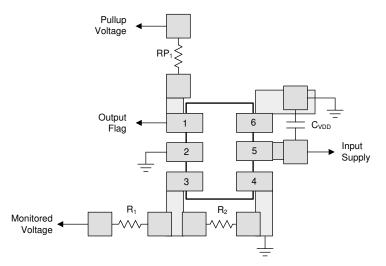


Figure 7-6. Layout Example

8 Device and Documentation Support

8.1 Device Support

8.1.1 Device Nomenclature

Table 8-1. Device Nomenclature

PRODUCT	DESCRIPTION
	yyy is package designator z is package quantity

8.2 Documentation Support

8.2.1 Related Documentation

For related documentation, see the following:

Optimizing Resistor Dividers at a Comparator Input

8.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (July 2017) to Revision A (February 2024)

- Updated images with capacitor value that changed from 0.01uF to 0.1uF at VDD pin throughout document...1

Page

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Devic	ce S	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS3710QDSER	Q1 A	CTIVE	WSON	DSE	6	3000	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	5P	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

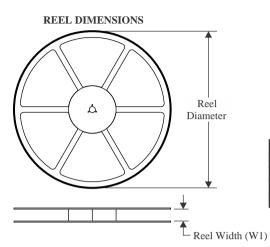
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

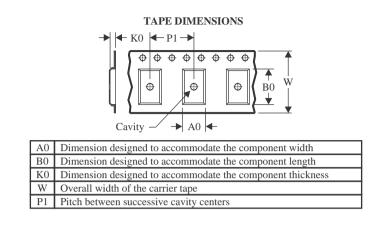
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

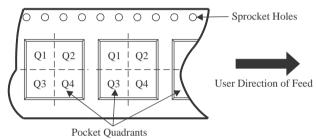
OTHER QUALIFIED VERSIONS OF TPS3710-Q1 :

www.ti.com

Catalog : TPS3710


NOTE: Qualified Version Definitions:

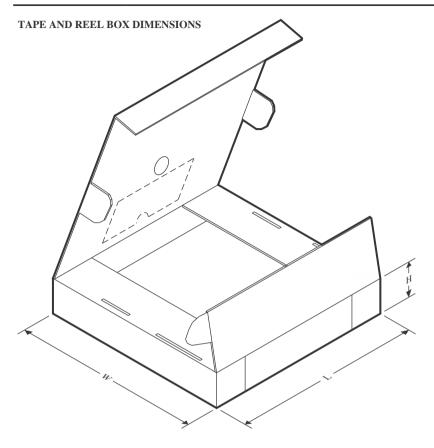

Catalog - TI's standard catalog product


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	
r	r


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3710QDSERQ1	WSON	DSE	6	3000	179.0	8.4	1.8	1.8	1.0	4.0	8.0	Q2

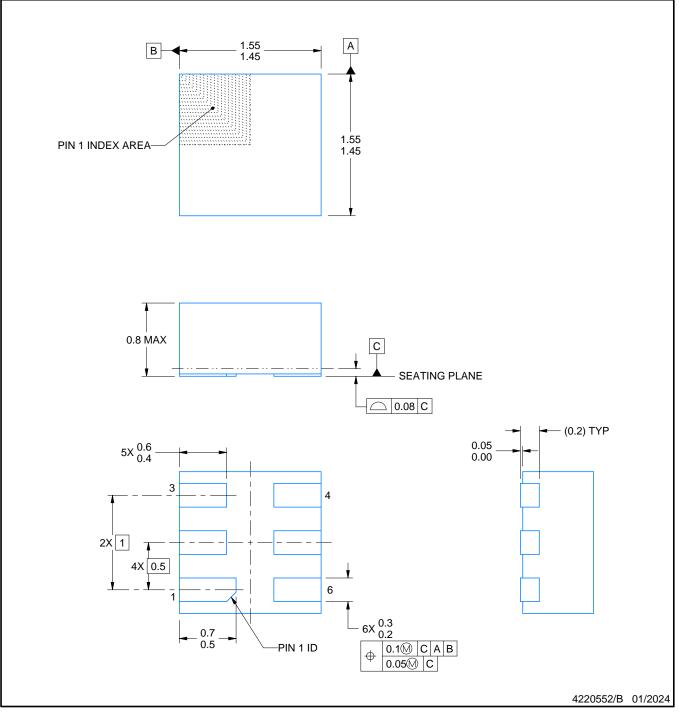
www.ti.com

PACKAGE MATERIALS INFORMATION

25-Jan-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3710QDSERQ1	WSON	DSE	6	3000	213.0	191.0	35.0


DSE0006A

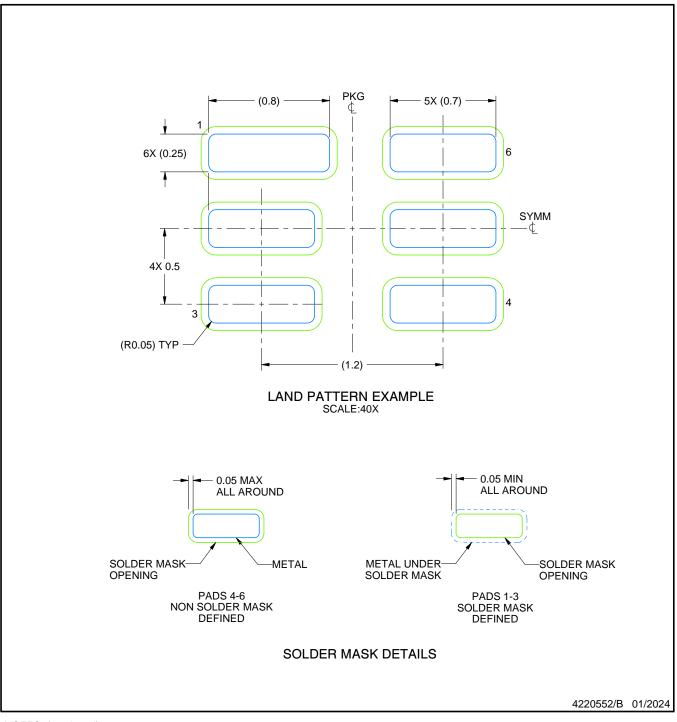
PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



DSE0006A

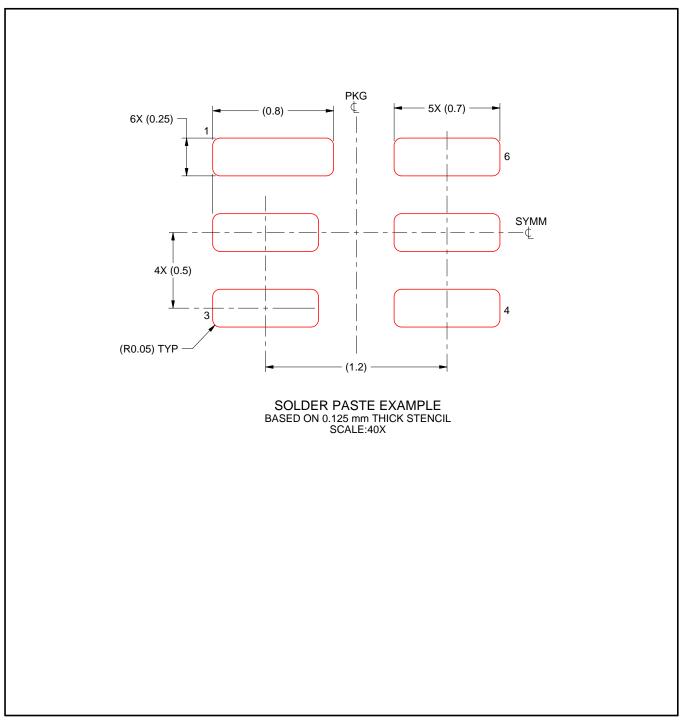
EXAMPLE BOARD LAYOUT

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



DSE0006A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated