1 Features
- Functional Safety-Capable
 - Documentation available to aid functional safety system design
- For boost, flyback, SEPIC, LED drive apps
- Wide input operating voltage: 4.5 V to 52 V
- Adjustable oscillator frequency
- Fixed frequency current mode control
- Internal slope compensation
- Integrated low-side driver
- Programmable closed-loop soft start
- Overcurrent protection
- External synchronization capable
- Reference 700 mV (TPS40210), 260 mV (TPS40211)
- Low current disable function
- Create a custom design using the TPS4021x with the WEBENCH Power Designer

2 Applications
- LED lighting
- Industrial control systems
- Battery-powered systems

3 Description
The TPS40210 and TPS40211 are wide-input voltage (4.5 V to 52 V), nonsynchronous boost controllers. They are suitable for topologies which require a grounded source N-channel FET including boost, flyback, SEPIC, and various LED Driver applications. The device features include programmable soft start, overcurrent protection with automatic retry, and programmable oscillator frequency. Current mode control provides improved transient response and simplified loop compensation. The main difference between the two parts is the reference voltage to which the error amplifier regulates the FB pin.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS40210</td>
<td>HVSSOP</td>
<td>3.05 mm x 4.98 mm</td>
</tr>
<tr>
<td>TPS40211</td>
<td>VSON</td>
<td>3.10 mm x 3.10 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the datasheet.
• Added \((V_{FD})\) and changed approximate duty cycle from 42.8% to 42.9% ... 28
• Changed equations 32, 34, 35, 36, 37, 38 and 39 .. 28
• Changed equations 47, 48, 49, 50, 51 and 53 .. 30
• Changed equations 58, 60, 61, 62 .. 31
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>9</td>
<td>O</td>
</tr>
<tr>
<td>COMP</td>
<td>4</td>
<td>O</td>
</tr>
<tr>
<td>DIS/EN</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>FB</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td>GDRV</td>
<td>8</td>
<td>O</td>
</tr>
<tr>
<td>GND</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>ISNS</td>
<td>7</td>
<td>I</td>
</tr>
<tr>
<td>RC</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>SS</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>VDD</td>
<td>10</td>
<td>I</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range unless otherwise noted\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD</td>
<td>–0.3</td>
<td>52</td>
<td>V</td>
</tr>
<tr>
<td>RC, SS, FB, DIS/EN</td>
<td>–0.3</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>ISNS</td>
<td>–0.3</td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP, BP, GDRV</td>
<td>–0.3</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>(T_J) Operating junction temperature</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg}) Storage temperature</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{(ESD)})</td>
<td>±1500</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD}) Input voltage</td>
<td>4.5</td>
<td>52</td>
<td>V</td>
</tr>
<tr>
<td>(T_J) Operating Junction temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TPS40210</th>
<th>TPS40211</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA}) Junction-to-ambient thermal resistance</td>
<td>67.2</td>
<td>47.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUC(top)}) Junction-to-case (top) thermal resistance</td>
<td>50.5</td>
<td>74.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{UB}) Junction-to-board thermal resistance</td>
<td>41.0</td>
<td>22.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JT}) Junction-to-top characterization parameter</td>
<td>2.4</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>(\psi_{JB}) Junction-to-board characterization parameter</td>
<td>40.7</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>(R_{JUC(bot)}) Junction-to-case (bottom) thermal resistance</td>
<td>15.6</td>
<td>8.8</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

\(T_J = –40°C\) to 125°C, \(V_{DD} = 12V_{dc}\), all parameters at zero power dissipation (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTAGE REFERENCE</td>
<td>TPS40210</td>
<td>COMP = FB, 4.5 ≤ V_{DD} ≤ 52 V, T_J = 25°C</td>
<td>693</td>
<td>700</td>
<td>707</td>
</tr>
<tr>
<td></td>
<td>TPS40211</td>
<td>COMP = FB, 4.5 ≤ V_{DD} ≤ 52 V, T_J = 25°C</td>
<td>254</td>
<td>260</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>TPS40210</td>
<td>COMP = FB, 4.5 ≤ V_{DD} ≤ 52 V, -40°C ≤ T_J ≤ 125°C</td>
<td>686</td>
<td>700</td>
<td>714</td>
</tr>
<tr>
<td></td>
<td>TPS40211</td>
<td>COMP = FB, 4.5 ≤ V_{DD} ≤ 52 V, -40°C ≤ T_J ≤ 125°C</td>
<td>250</td>
<td>260</td>
<td>270</td>
</tr>
</tbody>
</table>

| INPUT SUPPLY |

Copyright © 2008–2020, Texas Instruments Incorporated

Submit Documentation Feedback
Product Folder Links: TPS40210 TPS40211
Electrical Characteristics (continued)

$T_J = -40^\circ C$ to $125^\circ C$, $V_{DD} = 12V_{dc}$, all parameters at zero power dissipation (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Input voltage range</td>
<td>4.5</td>
<td>52</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Operating current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4.5 \leq V_{DD} \leq 52 , V$, no switching, $V_{DIS} < 0.8$</td>
<td>1.5</td>
<td>2.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2.5 \leq V_{DIS} \leq 7 , V$</td>
<td>10</td>
<td>20</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} < V_{UVLO(on)}$, $V_{DIS} < 0.8$</td>
<td>530</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNDERVOLTAGE LOCKOUT

| $V_{UVLO(on)}$ | Turn on threshold voltage | 4.00 | 4.25 | 4.50 | V |
| $V_{UVLO(hyst)}$ | UVLO hysteresis | 140 | 195 | 240 | mV |

OSCILLATOR

f_{OSC}	Oscillator frequency range$^{(1)}$	35	1000	kHz	
	Oscillator frequency	260	300	340	
	Frequency line regulation	-20%	7$\%$		
V_{SLP}	Slope compensation ramp	520	620	720	mV

(1) Ensured by design. Not production tested.
Electrical Characteristics (continued)

\(T_J = -40^\circ\text{C} \text{ to } 125^\circ\text{C}, \ V_{DD} = 12V_{dc}, \) all parameters at zero power dissipation (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{ON}^{(\text{min})})</td>
<td>Minimum pulse width</td>
<td>(V_{DD} = 12 \ V^{(1)})</td>
<td>275</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 30 \ V)</td>
<td>90</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>(t_{OFF}^{(\text{min})})</td>
<td>Minimum off time</td>
<td>170</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{LY})</td>
<td>Valley voltage</td>
<td>1.2</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFT-START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{SS^{(ofst)}})</td>
<td>Offset voltage from SS pin to error amplifier input</td>
<td>700</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(R_{SS^{(chg)}})</td>
<td>Soft-start charge resistance</td>
<td>320</td>
<td>430</td>
<td>600</td>
<td>kΩ</td>
</tr>
<tr>
<td>(R_{SS^{(dchg)}})</td>
<td>Soft-start discharge resistance</td>
<td>840</td>
<td>1200</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>ERROR AMPLIFIER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBWP</td>
<td>Unity gain bandwidth product(^{(1)})</td>
<td>1.5</td>
<td>3.0</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(A_{OL})</td>
<td>Open loop gain(^{(1)})</td>
<td>60</td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(I_{FB}^{(FB)})</td>
<td>Input bias current (current out of FB pin)</td>
<td>100</td>
<td>300</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>(I_{COMP^{(src)}})</td>
<td>Output source current (V_{FB} = 0.6 \ V, \ V_{COMP} = 1 \ V)</td>
<td>100</td>
<td>250</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{COMP^{(snk)}})</td>
<td>Output sink current (V_{FB} = 1.2 \ V, \ V_{COMP} = 1 \ V)</td>
<td>1.2</td>
<td>2.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>OVERCURRENT PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{ISNS^{(oc)}})</td>
<td>Overcurrent detection threshold (at ISNS pin) (4.5 \leq V_{DD} < 52 \ V, -40^\circ\text{C} \leq T_J \leq 125^\circ\text{C})</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>mV</td>
</tr>
<tr>
<td>(D_{OC})</td>
<td>Overcurrent duty cycle(^{(1)})</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{SS^{(rst)}})</td>
<td>Overcurrent reset threshold voltage (at SS pin)</td>
<td>100</td>
<td>150</td>
<td>350</td>
<td>mV</td>
</tr>
<tr>
<td>(T_{BLNK})</td>
<td>Leading edge blanking(^{(1)})</td>
<td>75</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>CURRENT SENSE AMPLIFIER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_{CS})</td>
<td>Current sense amplifier gain</td>
<td>4..2</td>
<td>5.6</td>
<td>7.2</td>
<td>V/V</td>
</tr>
<tr>
<td>(I_{B(ISNS)})</td>
<td>Input bias current</td>
<td>1</td>
<td>3</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>DRIVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{GDRV^{(src)}})</td>
<td>Gate driver source current (V_{GDRV} = 4 \ V, \ T_J = 25^\circ\text{C})</td>
<td>375</td>
<td>400</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{GDRV^{(snk)}})</td>
<td>Gate driver sink current (V_{GDRV} = 4 \ V, \ T_J = 25^\circ\text{C})</td>
<td>330</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINEAR REGULATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{BP})</td>
<td>Bypass voltage output (0 \ mA < I_{BP} < 15 \ mA)</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>DISABLE/ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{DIS^{(en)}})</td>
<td>Turn-on voltage</td>
<td>0.7</td>
<td>1.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{DIS^{(hys)}})</td>
<td>Hysteresis voltage</td>
<td>25</td>
<td>130</td>
<td>220</td>
<td>mV</td>
</tr>
<tr>
<td>(R_{DIS})</td>
<td>DIS pin pulldown resistance</td>
<td>0.7</td>
<td>1.1</td>
<td>1.5</td>
<td>MΩ</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Values at \(T_J = 25^\circ\text{C} \) unless otherwise noted.
6.6 Typical Characteristics

Figure 1. Frequency vs Timing Resistance

Figure 2. Switching Frequency vs Duty Cycle

Figure 3. Quiescent Current vs Junction Temperature

Figure 4. Shutdown Current vs Junction Temperature

Figure 5. Reference Voltage Change vs Junction Temperature

Figure 6. Reference Voltage Change vs Input Voltage
Typical Characteristics (continued)

Figure 7. Undervoltage Lockout Threshold vs Junction Temperature

Figure 8. Overcurrent Threshold vs Junction Temperature

Figure 9. Overcurrent Threshold vs Input Voltage

Figure 10. Switching Frequency Change vs Junction Temperature

Figure 11. Oscillator Amplitude vs Junction Temperature

Figure 12. Soft Start Charge/Discharge Resistance vs Junction Temperature
Typical Characteristics (continued)

Figure 13. FB Bias Current vs Junction Temperature

Figure 14. Compensation Source Current vs Junction Temperature

Figure 15. Compensation Sink Current vs Junction Temperature

Figure 16. Valley Voltage Change vs Junction Temperature

Figure 17. Regulator Voltage vs Junction Temperature

Figure 18. DIS/EN Turnon Threshold vs Junction Temperature
Typical Characteristics (continued)

![Graph showing Current Sense Amplifier Gain vs Junction Temperature](image)

Figure 19. Current Sense Amplifier Gain vs Junction Temperature
7 Detailed Description

7.1 Overview

The TPS4021x is a peak current-mode control low-side controller with a built in 400-mA gate driver designed to drive n-channel MOSFETs at a fixed frequency. The frequency is adjustable from 35 kHz to 1000 kHz. Small size combined with complete functionality makes the part both versatile and easy to use.

The controller uses a low-value current-sensing resistor in series with the power MOSFET’s source connection to detect switching current. When the voltage drop across this resistor exceeds 150 mV, the part enters an hiccup fault mode with a time period set by the external soft-start capacitor.

The TPS40210 uses voltage feedback to an error amplifier that is biased by a precision 700-mV reference. The TPS40211 has a lower 260-mV reference for higher efficiency in LED drive applications. Internal slope compensation eliminates the characteristic sub-harmonic instability of peak current mode control with duty cycles of 50% or greater.

The TPS4021x also incorporates a soft-start feature where the output follows a slowly rising soft-start voltage, preventing output-voltage overshoot. The DIS/EN disables the TPS40210 putting it in a low quiescent current shutdown mode.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Soft Start

The soft-start feature of the TPS40210 and TPS40211 is a closed-loop soft start, meaning that the output voltage follows a linear ramp that is proportional to the ramp generated at the SS pin. This ramp is generated by an internal resistor connected from the BP pin to the SS pin and an external capacitor connected from the SS pin to GND. The SS pin voltage (V_{SS}) is level shifted down by approximately V_{SS(ofst)} (approximately 700 mV) and sent to one of the “+” (the “+” input with the lowest voltage dominates) inputs of the error amplifier. When this level shifted voltage (V_{SSE}) starts to rise at time t_1 (see Figure 20), the output voltage the controller expects, rises as well. Since V_{SSE} starts at near 0 V, the controller attempts to regulate the output voltage from a starting point of zero volts. It cannot do this due to the converter architecture. The output voltage starts from the input voltage less the drop across the diode (V_{IN} - V_{D}) and rises from there. The point at which the output voltage starts to rise (t_2) is the point where the V_{SSE} ramp passes the point where it is commanding more output voltage than (V_{IN} - V_{D}). This voltage level is labeled V_{SSE(1)}. The time required for the output voltage to ramp from a theoretical zero to the final regulated value (from t_1 to t_3) is determined by the time it takes for the capacitor connected to the SS pin (C_{SS}) to rise through a 700-mV range, beginning at V_{SS(ofst)} above GND.

Figure 20. SS Pin Voltage and Output Voltage

Figure 21. SS Pin Functional Circuit
Feature Description (continued)

The required capacitance for a given soft-start time $t_3 - t_1$ in Figure 20 is calculated in Equation 1.

$$C_{SS} = \frac{t_{SS}}{R_{SS} \times \ln\left(\frac{V_{BP} - V_{SS(ofst)}}{V_{BP} - \left(V_{SS(ofst)} + V_{FB}\right)}\right)}$$

where

- t_{SS} is the soft-start time, in seconds
- $R_{SS(chg)}$ is the SS charging resistance in Ω, typically 500 kΩ
- C_{SS} is the value of the capacitor on the SS pin, in F
- V_{BP} is the value of the voltage on the BP pin, in V
- $V_{SS(ofst)}$ is the approximate level shift from the SS pin to the error amplifier (~700 mV)
- V_{FB} is the error amplifier reference voltage, 700 mV typical

Note that t_{SS} is the time it takes for the output voltage to rise from 0 V to the final output voltage. Also note the tolerance on $R_{SS(chg)}$ given in the Electrical Characteristics. This contributes to some variability in the output voltage rise time and margin must be applied to account for it in design.

Also take note of V_{BP}. Its value varies depending on input conditions. For example, a converter operating from a slowly rising input initializes V_{BP} at a fairly low value and increases during the entire startup sequence. If the controller has a voltage above 8 V at the input and the DIS pin is used to stop and then restart the converter, V_{BP} is approximately 8 V for the entire start-up sequence. The higher the voltage on BP, the shorter the start-up time is and conversely, the lower the voltage on BP, the longer the start-up time is.

The soft-start time (t_{SS}) must be chosen long enough so that the converter can start up without going into an overcurrent state. Since the over current state is triggered by sensing the peak voltage on the ISNS pin, that voltage must be kept below the overcurrent threshold voltage $V_{ISNS(oc)}$. The voltage on the ISNS pin is a function of the load current of the converter, the rate of rise of the output voltage and the output capacitance, and the current sensing resistor. The total output current that must be supported by the converter is the sum of the charging current required by the output capacitor and any external load that must be supplied during start-up. This current must be less than the $I_{OUT(oc)}$ value used in Equation 15 or Equation 16 (depending on the operating mode of the converter) to determine the current sense resistor value. In these equations, the actual input voltage at the time that the controller reaches the final output voltage is the important input voltage to use in the calculations. If the input voltage is slowly rising and is at less than the nominal input voltage when the start-up time ends, the output current limit is less than $I_{OUT(oc)}$ at the nominal input voltage. The output capacitor charging current must be reduced (decrease C_{OUT} or increase the t_{SS}) or $I_{OUT(oc)}$ must be increased and a new value for R_{ISNS} calculated.

$$I_{C(chg)} = \frac{C_{OUT} \times V_{OUT}}{t_{SS}}$$

(2)

$$t_{SS} > \frac{C_{OUT} \times V_{OUT}}{\left(I_{OUT(oc)} - I_{EXT}\right)}$$

(3)

where

- $I_{C(chg)}$ is the output capacitor charging current in A
- C_{OUT} is the total output capacitance in F
- V_{OUT} is the output voltage in V
- t_{SS} is the soft-start time from Equation 1
- $I_{OUT(oc)}$ is the desired over current trip point in A
- I_{EXT} is any external load current in A
Feature Description (continued)

The capacitor on the SS pin (C_{SS}) also plays a role in overcurrent functionality. It is used as the timer between restart attempts. The SS pin is connected to GND through a resistor, R_{SS(dchg)}, whenever the controller senses an overcurrent condition. Switching stops and nothing else happens until the SS pin discharges to the soft-start reset threshold, V_{SS(rst)}. At this point, the SS pin capacitor is allowed to charge again through the charging resistor R_{SS(chg)} and the controller restarts from that point. The shortest time between restart attempts occurs when the SS pin discharges from V_{SS(ofst)} (approximately 700 mV) to V_{SS(rst)} (150 mV) and then back to V_{SS(ofst)} and switching resumes. In actuality, this is a conservative estimate since switching does not resume until the V_{SSE} ramp rises to a point where it is commanding more output voltage than exists at the output of the controller. This occurs at some SS pin voltage greater than V_{SS(ofst)} and depends on the voltage that remains on the output overvoltage the converter while switching has been halted. The fastest restart time can be calculated by using Equation 4, Equation 5, and Equation 6.

\[
\begin{align*}
 t_{DCHG} &= R_{SS(dchg)} \times C_{SS} \times \ln \left(\frac{V_{SS(ofst)}}{V_{SS(rst)}} \right) \\
 t_{CHG} &= R_{SS(chg)} \times C_{SS} \times \ln \left(\frac{V_{BP} - V_{SS(rst)}}{V_{BP} - V_{SS(ofst)}} \right) \\
 t_{RSTRT(min)} &= t_{CHG} + t_{DCHG}
\end{align*}
\]

(4)
(5)
(6)

![Figure 22. Soft Start during Overcurrent](image)

7.3.2 BP Regulator

The TPS40210 and TPS40211 have an on-board linear regulator that supplies power to the internal circuitry of the controller, including the gate driver. This regulator has a nominal output voltage of 8 V and must be bypassed with a 1-μF capacitor. If the voltage at the VDD pin is less than 8 V, the voltage on the BP pin will also be less and the gate drive voltage to the external FET is reduced from the nominal 8 V. This should be considered when choosing a FET for the converter.
Feature Description (continued)

Connecting external loads to this regulator can be done, but care must be taken to ensure that the thermal rating of the device is observed since there is no thermal shutdown feature in this controller. Exceeding the thermal ratings causes out of specification behavior and can lead to reduced reliability. The controller dissipates more power when there is an external load on the BP pin and is tested for dropout voltage for up to 5-mA load. When the controller is in the disabled state, the BP pin regulator also shuts off so loads connected there power down as well. When the controller is disabled with the DIS/EN pin, this regulator is turned off.

The total power dissipation in the controller can be calculated as follows. The total power is the sum of \(P_Q \), \(P_G \), and \(P_E \).

\[
P_Q = V_{DD} \times I_{VDD(en)} \quad (7)
\]

\[
P_G = V_{DD} \times Q_g \times f_{SW} \quad (8)
\]

\[
P_E = V_{DD} \times I_{EXT} \quad (9)
\]

where
- \(P_Q \) is the quiescent power of the device in W
- \(V_{DD} \) is the VDD pin voltage in V
- \(I_{VDD(en)} \) is the quiescent current of the controller when enabled but not switching in A
- \(P_G \) is the power dissipated by driving the gate of the FET in W
- \(Q_g \) is the total gate charge of the FET at the voltage on the BP pin in C
- \(f_{SW} \) is the switching frequency in Hz
- \(P_E \) is the dissipation caused by external loading of the BP pin in W
- \(I_{EXT} \) is the external load current in A

7.3.3 Shutdown (DIS/EN Pin)

The DIS/EN pin is an active high shutdown command for the controller. Pulling this pin above 1.2 V causes the controller to completely shut down and enter a low current consumption state. In this state, the regulator connected to the BP pin is turned off. There is an internal 1.1-M\(\Omega \) pulldown resistor connected to this pin that keeps the pin at GND level when left floating. If this function is not used in an application, it is best to connect this pin to GND.

7.3.4 Minimum On-Time and Off-Time Considerations

The TPS40210 has a minimum off-time of approximately 200 ns and a minimum on-time of 300 ns. These two constraints place limitations on the operating frequency that can be used for a given input-to-output conversion ratio. See Figure 2 for the maximum frequency that can be used for a given duty cycle.

The duty cycle at which the converter operates is dependent on the mode in which the converter is running. If the converter is running in discontinuous conduction mode, the duty cycle varies with changes to the load much more than it does when running in continuous conduction mode.

In continuous conduction mode, the duty cycle is related primarily to the input and output voltages.

\[
\frac{V_{OUT} + V_D}{V_{IN}} = \frac{1}{1 - D} \quad (10)
\]

\[
D = \left(1 - \left(\frac{V_{IN}}{V_{OUT} + V_D}\right)\right) \quad (11)
\]

In discontinuous mode, the duty cycle is a function of the load, input and output voltages, inductance, and switching frequency.

\[
D = \frac{2 \times (V_{OUT} + V_D) \times I_{OUT} \times L \times f_{SW}}{(V_{IN})^2} \quad (12)
\]
Feature Description (continued)

All converters using a diode as the freewheeling or catch component have a load current level at which they transition from discontinuous conduction to continuous conduction. This is the point where the inductor current just falls to zero. At higher load currents, the inductor current does not fall to zero but remains flowing in a positive direction and assumes a trapezoidal wave shape as opposed to a triangular wave shape. This load boundary between discontinuous conduction and continuous conduction can be found for a set of converter parameters as follows.

\[I_{\text{OUT(crit)}} = \frac{(V_{\text{OUT}} + V_D - V_{\text{IN}})(V_{\text{IN}})^2}{2(V_{\text{OUT}} + V_D)^2 \times f_{SW} \times L} \]

(13)

For loads higher than the result of Equation 13, the duty cycle is given by Equation 11 and for loads less that the results of Equation 13, the duty cycle is given Equation 12. For Equations 1 through 4, the variable definitions are as follows.

• \(V_{\text{OUT}} \) is the output voltage of the converter in V
• \(V_D \) is the forward conduction voltage drop across the rectifier or catch diode in V
• \(V_{\text{IN}} \) is the input voltage to the converter in V
• \(I_{\text{OUT}} \) is the output current of the converter in A
• \(L \) is the inductor value in H
• \(f_{SW} \) is the switching frequency in Hz

7.3.5 Setting the Oscillator Frequency

The oscillator frequency is determined by a resistor and capacitor connected to the RC pin of the TPS40210. The capacitor is charged to a level of approximately \(V_{DD}/20 \) by current flowing through the resistor and is then discharged by a transistor internal to the TPS40210. The required resistor for a given oscillator frequency is found from either Figure 1 or Equation 14.

\[R_T = \frac{1}{5.8 \times 10^{-8} \times f_{SW} \times C_T + 8 \times 10^{-10} \times f_{SW}^2 + 1.4 \times 10^{-7} \times f_{SW} - 1.5 \times 10^{-4} + 1.7 \times 10^{-6} \times C_T - 4 \times 10^{-9} \times C_T^2} \]

where

• \(R_T \) is the timing resistance in kΩ
• \(f_{SW} \) is the switching frequency in kHz
• \(C_T \) is the timing capacitance in pF

(14)

For most applications, a capacitor in the range of 68 pF to 120 pF gives the best results. Resistor values should be limited to between 100 kΩ and 1 MΩ as well. If the resistor value falls below 100 kΩ, decrease the capacitor size and recalculate the resistor value for the desired frequency. As the capacitor size decreases below 47 pF, the accuracy of Equation 14 degrades and empirical means can be needed to fine tune the timing component values to achieve the desired switching frequency.

7.3.6 Synchronizing the Oscillator

The TPS40210 and TPS40211 can be synchronized to an external clock source. Figure 23 shows the functional diagram of the oscillator. When synchronizing the oscillator to an external clock, the RC pin must be pulled below 150 mV for 20 ns or more. The external clock frequency must be higher than the free running frequency of the converter as well. When synchronizing the controller, if the RC pin is held low for an excessive amount of time, erratic operation can occur. The maximum amount of time that the RC pin should be held low is 50% of a nominal output pulse, or 10% of the period of the synchronization frequency. If the external clock signal cannot operate with a low enough duty cycle to limit the amount of time the RC pin is held low, a resistor and capacitor can be added at the gate of the synchronization MOSFET. The capacitor should be added in series with the gate of the MOSFET to AC couple the rising edge of the synchronization signal. The resistor should be added from the gate of the MOSFET to ground to turn off the MOSFET. Typical values for the resistor and capacitor are 220 pF and 1 kΩ.
Feature Description (continued)

Under circumstances where the duty cycle is less than 50%, a Schottky diode connected from the RC pin to an external clock can be used to synchronize the oscillator. The cathode of the diode is connected to the RC pin. The trip point of the oscillator is set by an internal voltage divider to be 1/20 of the input voltage. The clock signal must have an amplitude higher than this trip point. When the clock goes low, it allows the reset current to restart the RC ramp, synchronizing the oscillator to the external clock. This provides a simple, single-component method for clock synchronization.

Figure 23. Oscillator Functional Diagram

Figure 24. Diode Connected Synchronization
Feature Description (continued)

7.3.7 Current Sense and Overcurrent

The TPS4021x is a current mode controller that uses a resistor in series with the source terminal power FET to sense current for both the current mode control and overcurrent protection. The device enters a current limit state if the voltage on the ISNS pin exceeds the current limit threshold voltage \(V_{ISNS(oc)} \) from the Electrical Characteristics. When this happens, the controller discharges the SS capacitor through a relatively high impedance and then attempts to restart. The amount of output current that causes this to happen is dependent on several variables in the converter.

\[
R_{ISNS} = \frac{f_{SW} \times L \times V_{ISNS(oc)}}{\sqrt{2 \times L \times f_{SW} \times I_{OUT(oc)} \times (V_{OUT} + V_D - V_{IN})}}
\]

\((15) \)

If the converter is operating in continuous conduction mode, \(R_{ISNS} \) can be found in Equation 16.

\[
R_{ISNS} = \frac{V_{ISNS}}{\left(\frac{I_{OUT}}{1 - D} \right) + \left(\frac{I_{RIPPLE}}{2} \right)} = \frac{V_{ISNS}}{\left(\frac{D \times V_{IN}}{2 \times f_{SW} \times L} \right) + \left(\frac{I_{OUT(oc)}}{(1 - D)} \right)}
\]

\((16) \)

where

- \(R_{ISNS} \) is the value of the current sense resistor in \(\Omega \)
- \(V_{ISNS(oc)} \) is the overcurrent threshold voltage at the ISNS pin (from electrical specifications)
- \(D \) is the duty cycle (from Equation 11)
- \(f_{SW} \) is the switching frequency in Hz
- \(V_{IN} \) is the input voltage to the power stage in V (see text)
- \(L \) is the value of the inductor in H
- \(I_{OUT(oc)} \) is the desired overcurrent trip point in A
- \(V_D \) is the drop across the diode in Figure 26
Feature Description (continued)

The TPS40210 and TPS40211 have a fixed undervoltage lockout (UVLO) that allows the controller to start at a typical input voltage of 4.25 V. If the input voltage is slowly rising, the converter might have less than its designed nominal input voltage available when it has reached regulation. As a result, this can decrease the apparent current limit load current value and must be taken into consideration when selecting R_{ISNS}. The value of V_{IN} used to calculate R_{ISNS} must be the value at which the converter finishes start-up. The total converter output current at start-up is the sum of the external load current and the current required to charge the output capacitor or capacitors. See the Soft Start section of this data sheet for information on calculating the required output capacitor charging current.

The topology of the standard boost converter has no method to limit current from the input to the output in the event of a short circuit fault on the output of the converter. If protection from this type of event is desired, it is necessary to use some secondary protection scheme, such as a fuse, or rely on the current limit of the upstream power source.

7.3.8 Current Sense and Subharmonic Instability

A characteristic of peak current mode control results in a condition where the current control loop can exhibit instability. This results in alternating long and short pulses from the pulse width modulator. The voltage loop maintains regulation and does not oscillate, but the output ripple voltage increases. The condition occurs only when the converter is operating in continuous conduction mode and the duty cycle is 50% or greater. The cause of this condition is described in the *Modeling, Analysis and Compensation of the Current-Mode Converter Application Report*. The remedy for this condition is to apply a compensating ramp from the oscillator to the signal going to the pulse width modulator. In the TPS40210 and TPS40211, the oscillator ramp is applied in a fixed amount to the pulse width modulator. The slope of the ramp is given in Equation 17.

$$s_e = f_{SW} \times \left(\frac{V_{\text{VDD}}}{20} \right)$$ \hspace{1cm} (17)

To ensure that the converter does not enter into subharmonic instability, the slope of the compensating ramp signal must be at least half of the down slope of the current ramp signal. Since the compensating ramp is fixed in the TPS40210 and TPS40211, this places a constraint on the selection of the current sense resistor.

The down slope of the current sense wave form at the pulse width modulator is described in Equation 18.

$$m_2 = \frac{A_{\text{CS}} \times R_{\text{ISNS}} \times (V_{\text{OUT}} + V_{\text{D}} - V_{\text{IN}})}{L}$$ \hspace{1cm} (18)

Since the slope compensation ramp must be at least half, and preferably equal to the down slope of the current sense waveform seen at the pulse width modulator, a maximum value is placed on the current sense resistor when operating in continuous mode at 50% duty cycle or greater. For design purposes, some margin should be applied to the actual value of the current sense resistor. As a starting point, the actual resistor chosen should be 80% or less that the value calculated in Equation 19. This equation calculates the resistor value that makes the slope compensation ramp equal to one half of the current ramp downslope. Values no more than 80% of this result would be acceptable.

$$R_{\text{ISNS(max)}} = \frac{V_{\text{VDD}} \times L \times f_{SW}}{60 \times (V_{\text{OUT}} + V_{\text{D}} - V_{\text{IN}})}$$

where

- S_e is the slope of the voltage compensating ramp applied to the pulse width modulator in V/s
- f_{SW} is the switching frequency in Hz
- V_{DD} is the voltage at the VDD pin in V
- m_2 is the down slope of the current sense waveform seen at the pulse width modulator in V/s
- R_{ISNS} is the value of the current sense resistor in Ω
- V_{OUT} is the converter output voltage V_{IN} is the converter power stage input voltage
- V_{D} is the drop across the diode in Figure 26
Feature Description (continued)

It is possible to increase the voltage compensation ramp slope by connecting the VDD pin to the output voltage of the converter instead of the input voltage as shown in Figure 26. This can help in situations where the converter design calls for a large ripple current value in relation to the desired output current limit setting.

NOTE

Connecting the VDD pin to the output voltage of the converter affects the start-up voltage of the converter since the controller undervoltage lockout (UVLO) circuit monitors the VDD pin and senses the input voltage less the diode drop before start-up. The effect is to increase the start-up voltage by the value of the diode voltage drop.

If an acceptable R_{ISNS} value is not available, the next higher value can be used and the signal from the resistor divided down to an acceptable level by placing another resistor in parallel with C_{IFLT}.

7.3.9 Current Sense Filtering

In most cases, a small filter placed on the ISNS pin improves performance of the converter. These are the components R_{IFLT} and C_{IFLT} in Figure 26. The time constant of this filter should be approximately 10% of the nominal pulse width of the converter. The pulse width can be found using Equation 20.

$$t_{ON} = \frac{D}{f_{SW}}$$ \hspace{1cm} (20)

The suggested time constant is then

$$R_{IFLT} \times C_{IFLT} = 0.1 \times t_{ON}$$ \hspace{1cm} (21)

The range of R_{IFLT} should be from about 1 kΩ to 5 kΩ for best results. Higher values can be used but this raises the impedance of the ISNS pin connection more than necessary and can lead to noise pickup issues in some layouts. C_{IFLT} should be located as close as possible to the ISNS pin as well to provide noise immunity.

7.3.10 Control Loop Considerations

There are two methods to design a suitable control loop for the TPS4021x. The first and preferred if equipment is available is to use a frequency response analyzer to measure the open loop modulator and power stage gain and to then design compensation to fit that. The usage of these tools for this purpose is well documented with the literature that accompanies the tool and is not be discussed here.

The second option is to make an initial guess at compensation, and then evaluate the transient response of the system to see if the compensation is acceptable to the application or not. For most systems, an adequate response can be obtained by simply placing a series resistor and capacitor (R_{FB} and C_{FB}) from the COMP pin to the FB pin as shown in Figure 27. The initial compensation selection can be done more accurately with aid of WEBENCH® to select the components or the average Spice model to simulate the open loop modulator and power stage gain.
The natural phase characteristics of most capacitors used for boost outputs combined with the current mode control provide adequate phase margin when using this type of compensation. To determine an initial starting point for the compensation, the desired crossover frequency must be considered when estimating the control to output gain. The model used is a current source into the output capacitor and load.

When using these equations, the loop bandwidth should be no more than 20% of the switching frequency, \(f_{SW} \). A more reasonable loop bandwidth would be 10% of the switching frequency. Be sure to evaluate the transient response of the converter over the expected load range to ensure acceptable operation.

\[
|K_{CO}| = g_M \times Z_{OUT} (f_{CO})
\]

\[
0.13 \times \sqrt{L \times \frac{f_{SW}}{R_{OUT}}}
\]

\[
g_M = \frac{(R_{ISNS})^2 \times (120 \times R_{ISNS} + L \times f_{SW})}{(R_{ISNS})^2}
\]

\[
|Z_{OUT}| = R_{OUT} \times \sqrt{\frac{1 + \left(2\pi \times f_L \times R_{ESR} \times C_{OUT}\right)^2}{1 + \left(R_{OUT}^2 + 2 \times R_{OUT} \times R_{ESR} + (R_{ESR})^2\right) \left(2\pi \times f_L \times C_{OUT}\right)^2}}
\]

where

- \(K_{CO} \) is the control to output gain of the converter, in V/V
- \(g_M \) is the transconductance of the power stage and modulator, in S
- \(R_{OUT} \) is the output load equivalent resistance, in \(\Omega \)
- \(Z_{OUT} \) is the output impedance, including the output capacitor, in \(\Omega \)
- \(R_{ISNS} \) is the value of the current sense resistor, in \(\Omega \)
- \(L \) is the value of the inductor, in H
Feature Description (continued)

- \(C_{OUT} \) is the value of the output capacitance, in F
- \(R_{ESR} \) is the equivalent series resistance of \(C_{OUT} \), in \(\Omega \)
- \(f_{SW} \) is the switching frequency, in Hz
- \(f_L \) is the desired crossover frequency for the control loop, in Hz

These equations assume that the operation is discontinuous and that the load is purely resistive. The gain in continuous conduction can be found by evaluating Equation 23 at the resistance that gives the critical conduction current for the converter. Loads that are more like current sources give slightly higher gains than predicted here.

To find the gain of the compensation network required for a control loop of bandwidth \(f_L \), take the reciprocal of Equation 22.

\[
K_{COMP} = \frac{1}{K_{CO}}
\]

(25)

The GBWP of the error amplifier is only guaranteed to be at least 1.5MHz. If \(K_{COMP} \) multiplied by \(f_L \) is greater than 750 kHz, reduce the desired loop crossover frequency until this condition is satisfied. This ensures that the high-frequency pole from the error amplifier response with the compensation network in place does not cause excessive phase lag at \(f_L \) and decreased phase margin in the loop.

The RC network connected from \(\text{COMP} \) to \(\text{FB} \) places a zero in the compensation response. That zero should be approximately 1/10th of the desired crossover frequency, \(f_L \). With that being the case, \(R_{FB} \) and \(C_{FB} \) can be found from Equation 26 and Equation 27.

\[
R_{FB} = \frac{R_1}{K_{CO}} = R_1 \times K_{COMP}
\]

(26)

\[
C_{FB} = \frac{10}{2\pi f_L R_{FB}}
\]

where

- \(R_1 \) is the high side feedback resistor in Figure 27, in \(\Omega \)
- \(f_L \) is the desired loop crossover frequency, in Hz

(27)

Thought not strictly necessary, it is recommended that a capacitor be added between \(\text{COMP} \) and \(\text{FB} \) to provide high-frequency noise attenuation in the control loop circuit. This capacitor introduces another pole in the compensation response. The allowable location of that pole frequency determines the capacitor value. As a starting point, the pole frequency should be \(10 \times f_L \). The value of \(C_{HF} \) can be found from Equation 28.

\[
C_{HF} = \frac{1}{20\pi f_L R_{FB}}
\]

(28)

While the error amplifier GBWP will usually be higher, it can be as low as 1.5MHz. If \(10 \times K_{COMP} \times f_L > 1.5MHz \), the error amplifier gain-bandwidth product may limit the high-frequency response below that of the high-frequency capacitor. To maintain a consistent high-frequency gain roll-off, \(C_{HF} \) can be calculated by Equation 29.

\[
C_{HF} = \frac{1}{2\pi \times 1.5 \times (10)^6 \times R_{FB}}
\]

where

- \(C_{HF} \) is the high-frequency roll-off capacitor value in F
- \(R_{FB} \) is the mid band gain setting resistor value in \(\Omega \)

(29)
Feature Description (continued)

7.3.11 Gate Drive Circuit

Some applications benefit from the addition of a resistor connected between the GDRV pin and the gate of the switching MOSFET. In applications that have particularly stringent load regulation (under 0.75%) requirements and operate from input voltages above 5 V, or are sensitive to pulse jitter in the discontinuous conduction region, this resistor is recommended. The recommended starting point for the value of this resistor can be calculated from Equation 30.

\[
R_G = \frac{105}{Q_G}
\]

where

- \(Q_G\) is the MOSFET total gate charge at 8 V, \(V_{GS}\) in nC
- \(R_G\) is the suggested starting point gate resistance in \(\Omega\)

![Figure 28. Gate Drive Resistor](UDG-07196)

7.3.12 TPS40211

The only difference between the TPS40210 and the TPS40211 is the reference voltage that the error amplifier uses to regulate the output voltage. The TPS40211 uses a 260-mV reference and is intended for applications where the output is actually a current instead of a regulated voltage. A typical example of an application of this type is an LED driver. An example schematic is shown in Figure 29.
Feature Description (continued)

Figure 29. Typical LED Drive Schematic

The current in the LED string is set by the choice of the resistor R_{ISNS} as shown in Equation 31.

$$R_{\text{FB}} = \frac{V_{\text{FB}}}{I_{\text{OUT}}}$$

where

- R_{FB} is the value of the current sense resistor for the LED string in Ω
- V_{FB} is the reference voltage for the TPS40211 in V (0.260 V typ.)
- I_{OUT} is the desired DC current in the LED string in A

(31)

7.4 Device Functional Modes

7.4.1 Operation Near Minimum Input Voltage

The TPS4021x is designed to operate with input voltages above 4.5 V. The typical VDD UVLO threshold is 4.25 V and the device can operate at input voltages down to the UVLO voltage. At input voltages below the actual UVLO voltage, the device will not switch. When V_{VDD} passes the UVLO threshold the device will become active. Switching is enabled and the soft-start sequence is initiated. The TPS4021x will ramp up the output voltage at the rate determined by the external capacitor at the SS pin.

7.4.2 Operation With DIS/EN Pin

The DIS/EN pin has a 1.2-V typical threshold which can be used to disable the TPS4021x. With DIS/EN forced above this threshold voltage, the device is disabled and switching is inhibited even if V_{VDD} is above its UVLO threshold. Hysteresis on the DIS/EN pin threshold gives a typical turnon threshold of 1.05 V. If the DIS/EN is left floating or is pulled below the 1.05-V threshold while V_{VDD} is above its UVLO threshold, the device becomes active. Switching is enabled and the soft-start sequence is initiated. The TPS4021x will ramp up the output voltage at the rate determined by the external capacitor at the soft-start pin.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS4021x is a 4.5-V to 52-V low-side controller with an integrated gate driver for a low-side N-channel MOSFET. This device is typically used in a boost topology to convert a lower DC voltage to a higher DC voltage with a peak current limit set by an external current sense resistor. It can also be configured in a SEPIC, Flyback and LED drive applications. In higher current applications, the maximum current can also be limited by the thermal performance of the external MOSFET and rectifying diode switch. Use the following design procedure to select external components for the TPS4021x. The design procedure illustrates the design of a typical boost regulator with the TPS40210. Alternatively, use the WEBENCH software to generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of components when generating a design.

8.2 Typical Applications

8.2.1 12-V to 24-V Nonsynchronous Boost Regulator

The following example illustrates the design process and component selection for a 12-V to 24-V nonsynchronous boost regulator using the TPS40210 controller.

![Diagram of a 12-V to 24-V Nonsynchronous Boost Regulator](image-url)

Figure 30. TPS40210 Design Example – 12 V to 24 V at 2 A
Typical Applications (continued)

8.2.1.1 Design Requirements

Table 1. TPS40210 Design Example Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{IN}}) Input voltage</td>
<td></td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{IN}}) Input current</td>
<td></td>
<td>4.4</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>No load input current</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{IN(UVLO)}}) Input undervoltage lockout</td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OUT}}) Output voltage</td>
<td></td>
<td>23.5</td>
<td>24.0</td>
<td>24.5</td>
<td>V</td>
</tr>
<tr>
<td>Line regulation</td>
<td></td>
<td></td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td></td>
<td></td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OUT(ripple)}}) Output voltage ripple</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>mV_Pp</td>
</tr>
<tr>
<td>(I_{\text{OUT}}) Output current</td>
<td>(8 \text{ V} \leq V_{\text{IN}} \leq 14 \text{ V})</td>
<td>0.1</td>
<td>1</td>
<td>2.0</td>
<td>A</td>
</tr>
<tr>
<td>(I_{\text{OCP}}) Output overcurrent inception point</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transient response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta I) Load step</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Load slew rate</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>(\text{A/\mu s})</td>
</tr>
<tr>
<td>Overshoot threshold voltage</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Settling time</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>SYSTEM CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{SW}}) Switching frequency</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>(\eta_{PK}) Peak efficiency</td>
<td>(V_{\text{IN}} = 12 \text{ V})</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\eta) Full load efficiency</td>
<td>(V_{\text{IN}} = 12 \text{ V}, I_{\text{OUT}} = 2 \text{ A})</td>
<td>94%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\text{OP}}) Operating temperature range</td>
<td>(8 \text{ V} \leq V_{\text{IN}} \leq 14 \text{ V}, I_{\text{OUT}} \leq 2 \text{ A})</td>
<td>25</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>MECHANICAL DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W) Width</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>inch</td>
</tr>
<tr>
<td>(L) Length</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) Height</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Custom Design with WEBENCH Tools

Click here to create a custom design using the TPS40210 device with the WEBENCH® Power Designer.

1. Start by entering your \(V_{\text{IN}}, V_{\text{OUT}}\) and \(I_{\text{OUT}}\) requirements.
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and compare this design with other possible solutions from Texas Instruments.
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real time pricing and component availability.
4. In most cases, you will also be able to:
 – Run electrical simulations to see important waveforms and circuit performance,
 – Run thermal simulations to understand the thermal performance of your board,
 – Export your customized schematic and layout into popular CAD formats,
 – Print PDF reports for the design, and share your design with colleagues.
5. Get more information about WEBENCH tools at www.ti.com/webench.

8.2.1.2.2 Duty Cycle Estimation

The duty cycle of the main switching MOSFET is estimated using Equation 32 and Equation 33.
Typical Applications (continued)

\[D_{\text{MIN}} \approx \frac{V_{\text{OUT}} - V_{\text{IN(max)}} + V_{\text{FD}}}{V_{\text{OUT}} + V_{\text{FD}}} = \frac{24 \, \text{V} - 14 \, \text{V} + 0.5 \, \text{V}}{24 \, \text{V} + 0.5 \, \text{V}} = 42.9\% \]
\[D_{\text{MAX}} \approx \frac{V_{\text{OUT}} - V_{\text{IN(min)}} + V_{\text{FD}}}{V_{\text{OUT}} + V_{\text{FD}}} = \frac{24 \, \text{V} - 8 \, \text{V} + 0.5 \, \text{V}}{24 \, \text{V} + 0.5 \, \text{V}} = 67.3\% \]

(32)
(33)

Using an estimated forward drop \(V_{\text{FD}} \) of 0.5 V for a schottky rectifier diode, the approximate duty cycle is 42.9% (minimum) to 67.3% (maximum).

8.2.1.2.3 Inductor Selection

The peak-to-peak ripple is chosen to be 30% of the maximum input current.

\[I_{\text{RIPPLE(max)}} = 0.3 \times I_{\text{OUT(max)}} = 0.3 \times \frac{2}{1 - D_{\text{MIN}}} = 1.05 \, \text{A} \]
\[= 0.3 \times \frac{2}{1 - 0.429} \]

(34)
Typical Applications (continued)

The minimum inductor size can be estimated using Equation 35.

\[
L_{MIN} \approx \frac{V_{\text{IN(max)}}}{I_{\text{RIPPLE(max)}}} \times D_{\text{MIN}} \times \frac{1}{f_{\text{SW}}} = \frac{14 \text{V}}{1.05 \text{A}} \times 0.429 \times \frac{1}{600 \text{kHz}} = 9.5 \mu\text{H}
\]
(35)

The next higher standard inductor value of 10 \(\mu\text{H}\) is selected. The ripple current for nominal and minimum \(V_{\text{IN}}\) is estimated by Equation 36 and Equation 37.

\[
I_{\text{RIPPLE(Vin typ)}} \approx \frac{V_{\text{IN}}}{L} \times D \times \frac{1}{f_{\text{SW}}} = \frac{12 \text{V}}{10 \mu\text{H}} \times 0.50 \times \frac{1}{600 \text{kHz}} = 1.02 \text{A}
\]
(36)

\[
I_{\text{RIPPLE(Vin min)}} \approx \frac{V_{\text{IN}}}{L} \times D \times \frac{1}{f_{\text{SW}}} = \frac{8 \text{V}}{10 \mu\text{H}} \times 0.673 \times \frac{1}{600 \text{kHz}} = 0.90 \text{A}
\]
(37)

The worst case peak-to-peak ripple current occurs at 50% duty cycle (\(V_{\text{IN}} = 12.25\text{ V}\)) and is estimated as 1.02 A. Worst case RMS current through the inductor is approximated by Equation 38.

\[
I_{\text{rms}} = \sqrt{\left(\frac{I_{\text{avg}}}{2}\right)^2 + \left(\frac{I_{\text{ripple(Vin min)}}}{2}\right)^2} = \sqrt{\left(\frac{2}{1-0.673}\right)^2 + \left(\frac{V_{\text{IN}}/2}{0.90 \text{A}}\right)^2} = 6.13 \text{ Arms}
\]
(38)

The worst case RMS inductor current is 6.13 Arms. The peak inductor current is estimated by Equation 39.

\[
I_{\text{peak}} \approx \frac{I_{\text{OUT(max)}}}{1-D_{\text{MAX}}} + \frac{1}{2}I_{\text{RIPPLE(Vin min)}} = \frac{2}{1-0.673} + \left(\frac{V_{\text{IN}}/2}{0.90 \text{A}}\right) = 6.57 \text{A}
\]
(39)

A 10-\(\mu\text{H}\) inductor with a minimum RMS current rating of 6.13 A and minimum saturation current rating of 6.57 A must be selected. A TDK RLF12560T-100M-7R5 7.5-A 10-\(\mu\text{H}\) inductor is selected.

This inductor power dissipation is estimated by Equation 40.

\[
P_{\text{L}} \approx (I_{\text{rms}})^2 \times \text{DCR}
\]
(40)

The TDK RLF12560T-100M-7R5 12.4-m\(\Omega\) DCR dissipates 466-mW of power.

8.2.1.2.4 Rectifier Diode Selection

A low forward voltage drop schottky diode is used as a rectifier diode to reduce its power dissipation and improve efficiency. Using 80% derating on \(V_{\text{OUT}}\) for ringing on the switch node, the rectifier diode minimum reverse breakdown voltage is given by Equation 41.

\[
V_{\text{(BR)R(min)}} \geq \frac{V_{\text{OUT}}}{0.8} = 1.25 \times V_{\text{OUT}} = 1.25 \times 24 \text{V} = 30 \text{V}
\]
(41)

The diode must have reverse breakdown voltage greater than 30 V. The rectifier diode peak and average currents are estimated by Equation 42 and Equation 43.

\[
I_{\text{D(avg)}} \approx I_{\text{OUT(max)}} = 2 \text{A}
\]
(42)

\[
I_{\text{D(peak)}} = I_{\text{L(peak)}} = 6.57 \text{A}
\]
(43)

The power dissipation in the diode is estimated by Equation 44.

\[
P_{\text{D(max)}} \approx V_{\text{FD}} \times I_{\text{D(avg)}} = 0.5 \text{V} \times 2 \text{A} = 1 \text{W}
\]
(44)

For this design, the maximum power dissipation is estimated as 1 W. Reviewing 30-V and 40-V schottky diodes, the MBRS340T3, 40-V, 3-A diode in an SMC package is selected. This diode has a forward voltage drop of 0.48 V at 6 A, so the conduction power dissipation is approximately 960 mW, less than half its rated power dissipation.
Typical Applications (continued)

8.2.1.2.5 Output Capacitor Selection

Output capacitors must be selected to meet the required output ripple and transient specifications.

\[
C_{OUT} = \frac{I_{OUT} \times D}{V_{OUT(ripple)}} \times \frac{1}{f_{SW}} = 8 \times \left(\frac{2A \times 0.673}{500\text{mV}}\right) \times \frac{1}{600\text{kHz}} = 36\mu\text{F}
\]

(45)

\[
ESR = \frac{7}{8} \times \frac{V_{OUT(ripple)}}{L_{(peak)} \times I_{OUT}} = \frac{7}{8} \times \frac{500\text{mV}}{6.57\text{A} - 2\text{A}} = 96\Omega
\]

(46)

A Panasonic EEEFC1V330P 35-V 33-μF, 120-mΩ bulk capacitor and a 6.8-μF ceramic capacitor are selected to provide the required capacitance and ESR at the switching frequency. The combined capacitance of 39.8 μF and ESR of 60 mΩ are used in compensation calculations.

8.2.1.2.6 Input Capacitor Selection

Since a boost converter has continuous input current, the input capacitor senses only the inductor ripple current. The input capacitor value can be calculated by Equation 47 and Equation 48.

\[
C_{IN} > \frac{I_{RIPPLE}}{4 \times V_{IN(ripple)} \times f_{SW}} = \frac{1.02\text{A}}{4 \times 60\text{mV} \times 600\text{kHz}} = 7.1\mu\text{F}
\]

(47)

\[
ESR < \frac{V_{IN(ripple)}}{2 \times L_{RIPPLE}} = \frac{60\text{mV}}{2 \times 1.02\text{A}} = 29\Omega
\]

(48)

For this design to meet a maximum input ripple of 60 mV (1/2% of \(V_{IN}\) nominal), a minimum 7.1-μF input capacitor with ESR less than 29 mΩ is needed. A 10-μF, X7R ceramic capacitor is selected.

8.2.1.2.7 Current Sense and Current Limit

The maximum allowable current sense resistor value is limited by both the current limit and sub-harmonic stability. These two limitations are given by Equation 49 and Equation 50.

\[
R_{ISNS} < \frac{V_{ISNS(OC)\text{MIN}}}{1.1 \times \left(L_{(peak)} + I_{Drive}\right)} = \frac{120\text{mV}}{1.1 \times (6.57\text{A} + 0.50\text{A})} = 15.4\Omega
\]

(49)

\[
R_{ISNS} < \frac{V_{IN(MAX)} \times L \times f_{SW}}{60 \times (V_{OUT} + V_{FD} - V_{IN})} = \frac{14\text{V} \times 10\mu\text{H} \times 600\text{kHz}}{60 \times (24\text{V} + 0.48\text{V} - 14\text{V})} = 134\Omega
\]

(50)

With 10% margin on the current limit trip point (the 1.1 factor) and assuming a maximum gate drive current of 500 mA, the current limit requires a resistor less than 15.4 mΩ and stability requires a sense resistor less than 134 mΩ. A 10-mΩ resistor is selected. Approximately 2 mΩ of routing resistance is added in compensation calculations.

The power dissipation in \(R_{ISNS}\) is calculated by Equation 51.

\[
P_{R_{ISNS}} = (I_{LRMS})^2 \times R_{ISNS} \times D
\]

(51)

At maximum duty cycle, this is 0.253 W.

8.2.1.2.8 Current Sense Filter

To remove switching noise from the current sense, an RC filter is placed between the current sense resistor and the ISNS pin. A resistor with a value between 1 kΩ and 5 kΩ is selected and a capacitor value is calculated by Equation 52.

\[
C_{IFLT} = \frac{0.1 \times D_{MIN}}{f_{SW} \times R_{IFLT}} = \frac{0.1 \times 0.429}{600\text{kHz} \times 1\text{k}\Omega} = 71\text{pF}
\]

(52)

For a 1-kΩ filter resistor, 71 pF is calculated and a 100-pF capacitor is selected.
Typical Applications (continued)

8.2.1.2.9 Switching MOSFET Selection

The TPS40210 drives a ground referenced N-channel FET. The $R_{DS(on)}$ and gate charge are estimated based on the desired efficiency target.

$$P_{DISS(total)} = P_{OUT} \times \left(\frac{1}{\eta} - 1 \right) = V_{OUT} \times I_{OUT} \times \left(\frac{1}{\eta} - 1 \right) = 24 \text{V} \times 2 \text{A} \times \left(\frac{1}{0.95} - 1 \right) = 2.526 \text{W}$$ \((53)\)

For a target of 95% efficiency with a 24-V input voltage at 2 A, maximum power dissipation is limited to 2.526 W. The main power dissipating devices are the MOSFET, inductor, diode, current sense resistor and the integrated circuit, the TPS40210.

$$P_{FET} < P_{DISS(total)} - P_L - P_D - P_{Risns} - V_{IN(max)} \times I_{VDD(max)}$$ \((54)\)

This leaves 812 mW of power dissipation for the MOSFET. This can likely cause an SO-8 MOSFET to get too hot, so power dissipation is limited to 500 mW. Allowing half for conduction and half for switching losses, we can determine a target $R_{DS(on)}$ and Q_{GS} for the MOSFET by Equation 55 and Equation 56.

$$Q_{GS} < \frac{3 \times P_{FET} \times I_{DRIVE}}{2 \times V_{OUT} \times I_{OUT} \times f_{SW}} = \frac{3 \times 0.50 \text{W} \times 0.50 \text{A}}{2 \times 24 \text{V} \times 2 \text{A} \times 600 \text{kHz}} = 13.0 \text{nC}$$ \((55)\)

A target MOSFET gate-to-source charge of less than 13.0 nC is calculated to limit the switching losses to less than 250 mW.

$$R_{DS(on)} < \frac{P_{FET}}{2 \times (I_{RMS})^2 \times D} = \frac{0.50 \text{W}}{2 \times 6.13^2 \times 0.673} = 9.9 \text{m}\Omega$$ \((56)\)

A target MOSFET $R_{DS(on)}$ of 9.9 mΩ is calculated to limit the conduction losses to less than 250 mW. Reviewing 30-V and 40-V MOSFETs, an Si4386DY 9-mΩ MOSFET is selected. A gate resistor was added per Equation 30. The maximum gate charge at V_{GS} = 8V for the Si4386DY is 33.2 nC, this implies $R_G = 3.3 \Omega$.

8.2.1.2.10 Feedback Divider Resistors

The primary feedback divider resistor (R_{FB}) from V_{OUT} to FB should be selected between 10 kΩ and 100 kΩ to maintain a balance between power dissipation and noise sensitivity. For a 24-V output, a high feedback resistance is desirable to limit power dissipation so $R_{FB} = 51.1 \text{k}\Omega$ is selected.

$$R_{BIAS} = \frac{V_{FB} \times R_{FB}}{V_{OUT} - V_{FB}} = \frac{0.700 \text{V} \times 51.1 \text{k}\Omega}{24 \text{V} - 0.700 \text{V}} = 1.53 \text{k}\Omega$$ \((57)\)

$R_{BIAS} = 1.50 \text{k}\Omega$ is selected.

8.2.1.2.11 Error Amplifier Compensation

Compensation selection can be done with aid of WEBENCH to select compensation components or with the aid of the average Spice model to simulate the open loop modulator and power stage gain. Alternatively, the following procedure gives a good starting point.

While current mode control typically only requires Type II compensation, it is desirable to layout for Type III compensation to increase flexibility during design and development. Current mode control boost converters have higher gain with higher output impedance, so it is necessary to calculate the control loop gain at the maximum output impedance, estimated by Equation 58.

$$R_{OUT(max)} = \frac{V_{OUT}}{I_{OUT(min)}} = \frac{24 \text{V}}{0.1\text{A}} = 240 \Omega$$ \((58)\)
Typical Applications (continued)

The transconductance of the TPS40210 current mode control can be estimated by Equation 59.

\[g_M = 0.13 \times \sqrt{\frac{f_{SW}}{R_{OUT}}} \]

\[= 0.13 \times \sqrt{\frac{600 \text{kHz}}{240 \Omega}} = 19.2 \, \text{A/V} \] \hspace{1cm} (59)

The maximum output impedance \(Z_{OUT} \), can be estimated by Equation 60.

\[|Z_{OUT}(f)| = R_{OUT} \times \frac{1 + (2\pi f R_{ESR} C_{OUT})^2}{1 + \left(R_{OUT}^2 + 2R_{OUT} R_{ESR} + (R_{ESR})^2 \right) \left(2\pi f C_{OUT} \right)^2} \]

\[|Z_{OUT}(f_L)| = 240 \Omega \times \frac{1 + \left(2\pi \times 30 \text{kHz} \times 60 \Omega \times 39.8 \mu \text{F} \right)^2}{1 + \left(240 \Omega^2 + 2 \times 240 \times 60 \times 39.8 \mu \text{F} \right)^2 \left(2\pi \times 30 \text{kHz} \times 39.8 \mu \text{F} \right)^2} = 0.146 \, \Omega \] \hspace{1cm} (60)

At the desired crossover frequency \(f_L \) of 30 kHz, \(Z_{OUT} \) becomes 0.146 \(\Omega \).

The modulator gain at the desired cross-over can be estimated by Equation 62.

\[|K_{CO}| = g_M \times |Z_{OUT}(f_{CO})| = 19.2 \, \text{A/V} \times 0.146 \, \Omega = 2.80 \] \hspace{1cm} (62)

The feedback compensation network needs to be designed to provide an inverse gain at the cross-over frequency for unity loop gain. This sets the compensation mid-band gain at a value calculated in Equation 63.

\[K_{COMP} = \frac{1}{|K_{CO}|} = \frac{1}{2.80} = 0.357 \] \hspace{1cm} (63)

To set the mid-band gain of the error amplifier to \(K_{COMP} \), use Equation 64.

\[R4 = R7 \times K_{COMP} = \frac{R7}{K_{CO}} = \frac{51.1 \, \text{k}\Omega}{2.80} = 18.2 \, \text{k}\Omega \] \hspace{1cm} (64)

\[R4 = 18.7 \, \text{k}\Omega \text{ selected.} \]

Place the zero at 1/10th of the desired cross-over frequency.

\[C2 = \frac{10}{2\pi f \times R4} = \frac{10}{2\pi \times 30 \, \text{kHz} \times 18.7 \, \text{k}\Omega} = 2837 \, \text{pF} \] \hspace{1cm} (65)

\[C2 = 2200 \, \text{pF} \text{ selected.} \]

Place a high-frequency pole at about five times the desired cross-over frequency and less than one-half the unity gain bandwidth of the error amplifier:

\[C4 = \frac{1}{10\pi f \times R4} = \frac{1}{10\pi \times 30 \, \text{kHz} \times 18.7 \, \text{k}\Omega} = 56.74 \, \text{pF} \] \hspace{1cm} (66)

\[C4 > \frac{1}{\pi \times GBW \times R4} = \frac{1}{\pi \times 1.5 \, \text{MHz} \times 18.7 \, \text{k}\Omega} = 11.35 \, \text{pF} \] \hspace{1cm} (67)

\[C4 = 47 \, \text{pF} \text{ selected.} \]

8.2.1.2.12 RC Oscillator

The RC oscillator calculation is given as shown in Equation 14 in the data sheet, substituting 100 for \(C_R \) and 600 for \(f_{SW} \). For a 600-kHz switching frequency, a 100pF capacitor is selected and a 262-k\(\Omega \) resistor is calculated (261-k\(\Omega \) selected).
Typical Applications (continued)

8.2.1.2.13 Soft-Start Capacitor

Since VDD > 8 V, the soft-start capacitor is selected by using Equation 68 to calculate the value.

\[C_{SS} = 20 \times T_{SS} \times 10^{-6} \]

(68)

For \(T_{SS} = 12 \) ms, \(C_{SS} = 240 \) nF. A 220-nF capacitor is selected.

8.2.1.2.14 Regulator Bypass

A regulator bypass (BP) capacitor of 1.0 \(\mu F \) is selected per the datasheet recommendation.

8.2.1.2.15 Bill of Materials

Table 2. Bill of Materials

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>SIZE</th>
<th>PART NUMBER</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100 (\mu)F, aluminum capacitor, SM, (\pm 20%), 35 V</td>
<td>0.406 x 0.457</td>
<td>EEEFC1V101P</td>
<td>Panasonic</td>
</tr>
<tr>
<td>C2</td>
<td>2200 pF, ceramic capacitor, 25 V, X7R, 20%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C3</td>
<td>100 pF, ceramic capacitor, 16 V, C0G, 10%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C4</td>
<td>47 pF, ceramic capacitor, 16V, X7R, 20%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C5</td>
<td>0.22 (\mu)F, ceramic capacitor, 16 V, X7R, 20%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C7</td>
<td>1.0 (\mu)F, ceramic capacitor, 16 V, X5R, 20%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C8</td>
<td>10 (\mu)F, ceramic capacitor, 25 V, X7R, 20%</td>
<td>0805</td>
<td>C3225X7R1E106M</td>
<td>TDK</td>
</tr>
<tr>
<td>C9</td>
<td>0.1 (\mu)F, ceramic capacitor, 50 V, X7R, 20%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C10</td>
<td>100 pF, ceramic capacitor, 16 V, X7R, 20%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>D1</td>
<td>Schottky diode, 3 A, 40 V</td>
<td>SMC</td>
<td>MBRS340T3</td>
<td>On Semi</td>
</tr>
<tr>
<td>L1</td>
<td>10 (\mu)H, inductor, SMT, 7.5 A, 12.4 m(\Omega)</td>
<td>0.325 x 0.318 inch</td>
<td>RLF12560T-100M-7R5</td>
<td>TDK</td>
</tr>
<tr>
<td>Q1</td>
<td>MOSFET, N-channel, 40 V, 14 A, 9m(\Omega)</td>
<td>SO-8</td>
<td>Si4840DY</td>
<td>Vishay</td>
</tr>
<tr>
<td>R3</td>
<td>10 k(\Omega), chip resistor, 1/16 W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R4</td>
<td>18.7 k(\Omega), chip resistor, 1/16 W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R5</td>
<td>1.5 k(\Omega), chip resistor, 1/16 W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R6</td>
<td>261 k(\Omega), chip resistor, 1/16 W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R7</td>
<td>51.1 k(\Omega), chip resistor, 1/16 W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R9</td>
<td>3.3 Q, chip resistor, 1/16 W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R10</td>
<td>1.0 k(\Omega), chip resistor, 1/16 W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R11</td>
<td>10 m(\Omega), chip resistor, 1/2 W, 2%</td>
<td>1812</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>U1</td>
<td>IC, 4.5 V-52 V I/P, current mode boost controller</td>
<td>DGQ10</td>
<td>TPS40210DGQ</td>
<td>TI</td>
</tr>
</tbody>
</table>
8.2.1.3 Application Curves

Figure 31. Gain and Phase vs Frequency

Figure 32. FET VDS and VGS Voltages vs Time

Figure 33. Efficiency vs Load Current

Figure 34. Power Loss vs Load Current

Figure 35. Output Voltage vs Load Current
8.2.2 12-V Input, 700-mA LED Driver, Up to 35-V LED String

This application uses the TPS40211 as a boost controller that drives a string of LED diodes. The feedback point for this circuit is a sense resistor in series with this string. The low 260-mV reference minimizes power wasted in this resistor, and maintains the LED current at a value given by \(0.26/R_6\). As the input voltage is varied, the duty cycle changes to maintain the LED current at a constant value so that the light intensity does not change with large input voltage variations.

![Circuit Diagram](UDG-08015)

Figure 36. 12-V Input, 700-mA LED Driver, Up to 35-V LED String

8.2.2.1 Design Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IN}) Input voltage</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OUT}) Output voltage</td>
<td></td>
<td>35</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(i_{OUT}) Output current</td>
<td></td>
<td>0.7</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>SYSTEM CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{SW}) Switching frequency</td>
<td></td>
<td>400</td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
8.2.2.2 Detailed Design Procedure

Table 4. TPS40211 LED Driver Bill of Materials

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>Capacitor</td>
<td>10 µF, 25 V</td>
<td>1206</td>
</tr>
<tr>
<td>C3, C4</td>
<td>Capacitor</td>
<td>2.2 µF, 100 V</td>
<td>1210</td>
</tr>
<tr>
<td>C5</td>
<td>Capacitor</td>
<td>1 nF, NPO</td>
<td>0603</td>
</tr>
<tr>
<td>C6</td>
<td>Capacitor</td>
<td>100 pF, NPO</td>
<td>0603</td>
</tr>
<tr>
<td>C8</td>
<td>Capacitor</td>
<td>100 pF</td>
<td>0603</td>
</tr>
<tr>
<td>C9</td>
<td>Capacitor</td>
<td>0.1 µF</td>
<td>0603</td>
</tr>
<tr>
<td>C10</td>
<td>Capacitor</td>
<td>0.1 µF, 25 V</td>
<td>0805</td>
</tr>
<tr>
<td>C11</td>
<td>Capacitor</td>
<td>1 µF, 25 V</td>
<td>1206</td>
</tr>
<tr>
<td>C13</td>
<td>Capacitor</td>
<td>220 pF</td>
<td>0603</td>
</tr>
<tr>
<td>C14</td>
<td>Capacitor</td>
<td>10 nF, X7R</td>
<td>0603</td>
</tr>
<tr>
<td>C21</td>
<td>Capacitor</td>
<td>330 µF, 25 V electrolytic</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>Diode</td>
<td>B2100, SHTKY, 100 V, 2 A</td>
<td>SMB</td>
</tr>
<tr>
<td>D2</td>
<td>Diode</td>
<td>BZT52C43</td>
<td>SOD-123</td>
</tr>
<tr>
<td>D3</td>
<td>Diode</td>
<td>MMBD7000</td>
<td>SOT-23</td>
</tr>
<tr>
<td>L1</td>
<td>Inductor</td>
<td>Wurth 7447709100, 10 µH, 6 A</td>
<td>12mm × 12mm × 10mm</td>
</tr>
<tr>
<td>Q1</td>
<td>MOSFET</td>
<td>Si7850DP, 60 V, 31 mΩ</td>
<td>SO-8</td>
</tr>
<tr>
<td>Q3</td>
<td>MOSFET</td>
<td>2N7002, 60 V, 0.1 A</td>
<td>SOT-23</td>
</tr>
<tr>
<td>R1</td>
<td>Resistor</td>
<td>15 mΩ</td>
<td>2512</td>
</tr>
<tr>
<td>R2</td>
<td>Resistor</td>
<td>3.01 Ω</td>
<td>0805</td>
</tr>
<tr>
<td>R3</td>
<td>Resistor</td>
<td>402 kΩ</td>
<td>0603</td>
</tr>
<tr>
<td>R4</td>
<td>Resistor</td>
<td>14.3 kΩ</td>
<td>0603</td>
</tr>
<tr>
<td>R6</td>
<td>Resistor</td>
<td>0.36 Ω</td>
<td>2512</td>
</tr>
<tr>
<td>R11</td>
<td>Resistor</td>
<td>1 kΩ</td>
<td>0603</td>
</tr>
<tr>
<td>R13</td>
<td>Resistor</td>
<td>30.1 kΩ</td>
<td>0603</td>
</tr>
<tr>
<td>R15</td>
<td>Resistor</td>
<td>49.9 kΩ</td>
<td>0603</td>
</tr>
<tr>
<td>R24</td>
<td>Resistor</td>
<td>10 kΩ</td>
<td>0603</td>
</tr>
<tr>
<td>R23</td>
<td>Resistor</td>
<td>10 Ω</td>
<td>0603</td>
</tr>
<tr>
<td>U1</td>
<td>Integrated circuit</td>
<td>TPS40211</td>
<td>DRC-10</td>
</tr>
</tbody>
</table>
9 Power Supply Recommendations

The TPS4021x is designed to operate from an input voltage supply range between 4.5 V and 52 V. This input supply should remain within the input voltage range of the TPS4021x. If the input supply is located more than a few inches from the buck power stage controlled by the TPS4021x, additional bulk capacitance can be required in addition to ceramic-bypass capacitors. An electrolytic capacitor with a value of 100 µF is a typical choice.

10 Layout

10.1 Layout Guidelines

- For the maximum effectiveness from C9, place it near the VDD pin of the controller. Excessive high frequency noise on VDD during switching degrades overall regulation as the load increases.
- Keep the output loop (Q1-D1-C12-R11) as small as possible. A larger loop can degrade current limit accuracy and increase radiated emissions.
- For best current limit accuracy keep the ISNS filter components C10 and R10 near the ISNS and GND pins.
- Avoid connecting traces carrying large AC currents through a ground plane. Instead, use PCB traces on the top layer to conduct the AC current and use the ground plane as a noise shield.
- Split the ground plane as necessary to keep noise away from the TPS4021x and noise sensitive areas such as components connected to the RC pin, FB pin, COMP pin, and SS pin. Also keep these noise sensitive components close to the TPS4021x IC.
- Keep C7 near the BP and GND pins to provide good bypass for the BP regulator.
- The GDRV trace should be as close as possible to the power FET gate to minimize parasitic resistance and inductance in the trace. The parasitics should also be minimized in the return path from the source of the MOSFET, through the sense resistor and back to the GND pin.
- Keep the SW node as physically small as possible to minimize parasitic capacitance and radiated emissions.
- For good output voltage regulation, Kelvin connections should be brought from the load to the top FB resistor R7.

10.2 Layout Example

![Component Placement Diagram](image-url)
Layout Example (continued)

Figure 38. Top Copper

Figure 39. Bottom Copper Viewed From Top
Layout Example (continued)

Figure 40. Internal 1 Copper Viewed From Top

Figure 41. Internal 2 Copper Viewed From Top
11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer
TI’s publication of information regarding third-party products or services does not constitute an endorsement regarding the suitability of such products or services or a warranty, representation or endorsement of such products or services, either alone or in combination with any TI product or service.

- Design and Application Guide for High Speed MOSFET Gate Drive Circuits, SEM 1400, 2001 Seminar Series
- Designing Stable Control Loops, SEM 1400, 2001 Seminar Series

11.1.2 Related Devices
The following devices have characteristics similar to the TPS40210 and may be of interest.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS6100x</td>
<td>Single- and Dual-Cell Boost Converter with Start-up into Full Load</td>
</tr>
<tr>
<td>TPS6101x</td>
<td>High Efficiency 1-Cell and 2-Cell Boost Converters</td>
</tr>
<tr>
<td>TPS6300x</td>
<td>High Efficiency Single Inductor Buck-Boost Converter with 1.8A Switches</td>
</tr>
</tbody>
</table>

11.1.3 Development Support

11.1.3.1 Custom Design with WEBENCH Tools
Click here to create a custom design using the TPS40210 device with the WEBENCH® Power Designer.

1. Start by entering your \(V_{\text{IN}} \), \(V_{\text{OUT}} \) and \(I_{\text{OUT}} \) requirements.
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and compare this design with other possible solutions from Texas Instruments.
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real time pricing and component availability.
4. In most cases, you will also be able to:
 - Run electrical simulations to see important waveforms and circuit performance,
 - Run thermal simulations to understand the thermal performance of your board,
 - Export your customized schematic and layout into popular CAD formats,
 - Print PDF reports for the design, and share your design with colleagues.
5. Get more information about WEBENCH tools at www.ti.com/webench.

11.2 Documentation Support

11.2.1 Related Documentation
These references may be found on the web at www.power.ti.com under Technical Documents. Many design tools and links to additional references, may also be found at www.power.ti.com.

- PowerPAD™ Thermally Enhanced Package
- PowerPAD™ Made Easy
- AC-DC Non-Isolated SMPS for Single-Phase Smart Meters Based on UCC28722

11.3 Related Links
The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.
11.4 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.5 Trademarks
WEBENCH is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 Glossary
SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS40210DGQ</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>80</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>40210</td>
<td></td>
</tr>
<tr>
<td>TPS40210DGQG4</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>80</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>40210</td>
<td></td>
</tr>
<tr>
<td>TPS40210DGQR</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>40210</td>
<td></td>
</tr>
<tr>
<td>TPS40210DQRG4</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>40210</td>
<td></td>
</tr>
<tr>
<td>TPS40210DRCR</td>
<td>ACTIVE</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>4210</td>
<td></td>
</tr>
<tr>
<td>TPS40210DRCT</td>
<td>ACTIVE</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>4210</td>
<td></td>
</tr>
<tr>
<td>TPS40211DGQ</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>80</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>40211</td>
<td></td>
</tr>
<tr>
<td>TPS40211DGQR</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>40211</td>
<td></td>
</tr>
<tr>
<td>TPS40211DRCR</td>
<td>ACTIVE</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>4211</td>
<td></td>
</tr>
<tr>
<td>TPS40211DRCRG4</td>
<td>ACTIVE</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>4211</td>
<td></td>
</tr>
<tr>
<td>TPS40211DRCT</td>
<td>ACTIVE</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>4211</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS40210, TPS40211:

- **Automotive:** TPS40210-Q1, TPS40211-Q1
- **Enhanced Product:** TPS40210-EP

NOTE: Qualified Version Definitions:

- **Automotive - Q100 devices** qualified for high-reliability automotive applications targeting zero defects
- **Enhanced Product -** Supports Defense, Aerospace and Medical Applications
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Q1**: One of the quadrants
- **Q2**: Another of the quadrants

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS40210DGQR</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS40210DQC</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.3</td>
<td>1.3</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS40210DRCT</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>3000</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TPS40211DGQR</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TPS40211DQCR</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>3000</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TPS40211DRCT</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>2500</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS40210DGQR</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
</tr>
<tr>
<td>TPS40210DGQR</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>346.0</td>
<td>346.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS40210DRCR</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>3000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS40210DRCT</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS40211DGQR</td>
<td>HVSSOP</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
</tr>
<tr>
<td>TPS40211DRCR</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>3000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS40211DRCT</td>
<td>VSON</td>
<td>DRC</td>
<td>10</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
TUBE

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Name</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>T (µm)</th>
<th>B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS40210DGQ</td>
<td>DGQ</td>
<td>HVSSOP</td>
<td>10</td>
<td>80</td>
<td>330</td>
<td>6.55</td>
<td>500</td>
<td>2.88</td>
</tr>
<tr>
<td>TPS40210DGQ</td>
<td>DGQ</td>
<td>HVSSOP</td>
<td>10</td>
<td>80</td>
<td>322</td>
<td>6.55</td>
<td>1000</td>
<td>3.01</td>
</tr>
<tr>
<td>TPS40210DGQG4</td>
<td>DGQ</td>
<td>HVSSOP</td>
<td>10</td>
<td>80</td>
<td>322</td>
<td>6.55</td>
<td>1000</td>
<td>3.01</td>
</tr>
<tr>
<td>TPS40210DGQG4</td>
<td>DGQ</td>
<td>HVSSOP</td>
<td>10</td>
<td>80</td>
<td>330</td>
<td>6.55</td>
<td>500</td>
<td>2.88</td>
</tr>
<tr>
<td>TPS40211DGQ</td>
<td>DGQ</td>
<td>HVSSOP</td>
<td>10</td>
<td>80</td>
<td>330</td>
<td>6.55</td>
<td>500</td>
<td>2.88</td>
</tr>
<tr>
<td>TPS40211DGQ</td>
<td>DGQ</td>
<td>HVSSOP</td>
<td>10</td>
<td>80</td>
<td>322</td>
<td>6.55</td>
<td>1000</td>
<td>3.01</td>
</tr>
</tbody>
</table>
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187, variation BA-T.

PowerPAD is a trademark of Texas Instruments.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
9. Size of metal pad may vary due to creepage requirement.
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

11. Board assembly site may have different recommendations for stencil design.
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

2. This drawing is subject to change without notice.

3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated