1 Features

- Input voltage range: 4.5 V to 17 V
- Output voltage range: 0.25 V to 5.5 V
- Per-phase switching frequency range: 300 kHz to 2000 kHz
- Dual output supporting N+M phase configurations (N+M ≤ 7, M ≤ 3)
- AVSBus compliant, per PMBus 1.3.1 part III
- PMBus v1.3.1 system interface for configuration, control and telemetry of voltage, current, power, temperature, and fault status
- Adaptive voltage scaling (AVS) through VOUT_COMMAND
- Enhanced D-CAP+ control to provide super transient performance with excellent dynamic current sharing
- Programmable loop compensation
- Flexible phase-firing order
- External pinstrap for Ch. A boot voltage settings
- Individual phase current calibrations and reporting
- Phase thermal balance management (TBM)
- Full support for dynamic phase shedding (DPS)
- Fast phase-adding for undershoot reduction (USR)
- Body-diode braking for overshoot reduction (OSR)
- Driverless configuration for efficient high-frequency switching
- Fully Compatible with TI NexFET™ power stage for high-density solutions
- Accurate, programmable adaptive voltage positioning (AVP)
- Patented AutoBalance™ phase balancing
- 6 mm × 6 mm, 48-pin, QFN package

2 Applications

- Data center network switches
- Campus and branch switches
- Core and edge routers
- Hardware accelerator cards
- High performance CPU/ASIC/FPGA power

3 Description

The TPS53676 is a step-down controller with dual channels, built-in non-volatile memory (NVM), and PMBus™ compatible serial interface, and is fully compatible with Ti NexFET™ smart power stage. Advanced control features such as D-CAP+™ architecture provide fast transient response, low output capacitance, and good current sharing. The device also provides novel phase interleaving strategy and flexible firing sequences to improve thermal performance. Adjustable control of output voltage slew rate and voltage positioning are also supported. In addition, the device supports the PMBus communication interface for reporting the telemetry of voltage, current, power, temperature, and fault conditions to the system host. All programmable parameters can be configured by the serial interface and can be stored in NVM as the new default values to minimize the external component count.

The TPS53676 device if offered in a thermally enhanced 48-pin QFN packaged and is rated to operate from −40°C to 125°C.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE(1)</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS53676</td>
<td>QFN (48)</td>
<td>6 mm × 6 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Application
Table of Contents

1 Features ..1 7.7 Power supply fault protection ... 60
2 Applications ...1 7.8 Programming ... 76
3 Description ...1 8 Applications and Implementation ...117
4 Revision History .. 2 8.1 Application Information ..117
5 Pin Configuration and Functions 3 8.2 Typical Application .. 117
6 Specifications ..6 9 Power Supply Recommendations ..129
 6.1 Absolute Maximum Ratings 6 10 Layout .. 130
 6.2 Recommended Operating Conditions 6 11 Device and Documentation Support 132
 6.3 ESD Ratings ... 7 11.1 Receiving Notification of Documentation Updates 132
 6.4 Electrical Specifications .. 7 11.2 Support Resources ... 132
7 Detailed Description ..30 11.3 Trademarks ... 132
 7.1 Overview ...30 11.4 Electrostatic Discharge Caution 132
 7.2 Functional Block Diagram ...30 11.5 Glossary .. 132
 7.3 Power-up and initialization ..31 12 Mechanical, Packaging, and Orderable Information 133
 7.4 Pin connections and behavoir32 12.1 Package Option Addendum .. 134
 7.5 Advanced power management functions43
 7.6 Control Loop Theory of Operation 54

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (December 2020) to Revision A (April 2021)

- Updated R_{HA} resistor values column Table 7-2

TPS53676
SLUSDP0A – AUGUST 2019 – REVISED MAY 2021

www.ti.com

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TPS53676
5 Pin Configuration and Functions

Table 5-1. Default Functionality of Multifunction Pins

<table>
<thead>
<tr>
<th>PIN(1)</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7, 8, 31, 32</td>
<td>APWM, ACSP</td>
</tr>
<tr>
<td>6, 33</td>
<td>BPWM, BCSP</td>
</tr>
<tr>
<td>19</td>
<td>BVR_EN</td>
</tr>
<tr>
<td>43</td>
<td>BTSEN</td>
</tr>
<tr>
<td>44</td>
<td>ATSEN</td>
</tr>
</tbody>
</table>

(1) Default settings can be changed through NVM settings
Table 5-2. Pin Functions

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>I/O</th>
<th>NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSP1</td>
<td>I</td>
<td>27</td>
<td>Current sense input for channel A. Connect to the IOUT pin of TI smart power stages. Float unused CSP pins.</td>
</tr>
<tr>
<td>ACSP2</td>
<td>I</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>ACSP3</td>
<td>I</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>ACSP4</td>
<td>I</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>ACSP5 / BCSP3</td>
<td>I</td>
<td>31</td>
<td>Current sense input for phase 7 of channel A or phase 3 of channel B. Float unused CSP pins.</td>
</tr>
<tr>
<td>ACSP6 / BCSP2</td>
<td>I</td>
<td>32</td>
<td>Current sense input for phase 7 of channel A or phase 2 of channel B. Float unused CSP pins.</td>
</tr>
<tr>
<td>ACSP7 / BCSP1</td>
<td>I</td>
<td>33</td>
<td>Current sense input for phase 7 of channel A or phase 1 of channel B. Float unused CSP pins.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>34</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>35</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>36</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>37</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>38</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>ADDR</td>
<td>I</td>
<td>42</td>
<td>Voltage divider to VREF and GND. The value of a resistor connected between this pin and GND and the voltage level set the PMBus address. Latched at VCC power up. Use the PIN_DETECT_OVERRIDE command to select addresses which are not available through pinstrap.</td>
</tr>
<tr>
<td>APWM1</td>
<td>O</td>
<td>12</td>
<td>PWM signal for phase 1 of channel A. Float unused PWM pins.</td>
</tr>
<tr>
<td>APWM2</td>
<td>O</td>
<td>11</td>
<td>PWM signal for phase 2 of channel A. Float unused PWM pins.</td>
</tr>
<tr>
<td>APWM3</td>
<td>O</td>
<td>10</td>
<td>PWM signal for phase 3 of channel A. Float unused PWM pins.</td>
</tr>
<tr>
<td>APWM4</td>
<td>O</td>
<td>9</td>
<td>PWM signal for phase 4 of channel A. Float unused PWM pins.</td>
</tr>
<tr>
<td>APWM5 / BPWM3</td>
<td>O</td>
<td>8</td>
<td>PWM signal for phase 5 of channel A, or phase 3 of channel B. Float unused PWM pins.</td>
</tr>
<tr>
<td>APWM6 / BPWM2</td>
<td>O</td>
<td>7</td>
<td>PWM signal for phase 6 of channel A, or phase 2 of channel B. Float unused PWM pins.</td>
</tr>
<tr>
<td>APWM7 / BPWM1</td>
<td>O</td>
<td>6</td>
<td>PWM signal for phase 7 of channel A, or phase 1 of channel B. Float unused PWM pins.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>5</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>4</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>3</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>2</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>1</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>ATSEN / BTSEN</td>
<td>I</td>
<td>44</td>
<td>Multi-function pin. Configure through PMBus. ATSEN (default): Connect to the TAO pin of the TI smart power stages of channel A to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages. BTSEN: Connect to the TAO pin of the TI smart power stages of channel B to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages. Float unused TSEN pins.</td>
</tr>
<tr>
<td>AVR_EN</td>
<td>I</td>
<td>17</td>
<td>Active high enable input for channel A. By default, asserting the AVR_EN pin activates channel A. Polarity and enable conditions are programmable through ON_OFF_CONFIG.</td>
</tr>
<tr>
<td>AVR_RDY</td>
<td>O</td>
<td>16</td>
<td>VRD “Ready” output signal of channel A. This open drain output requires an external pull-up resistor. The AVR_RDY pin is pulled low when a shutdown fault occurs.</td>
</tr>
<tr>
<td>AVSN</td>
<td>I</td>
<td>26</td>
<td>Negative input of the remote voltage sense of channel A.</td>
</tr>
<tr>
<td>AVSP</td>
<td>I</td>
<td>25</td>
<td>Positive input of the remote voltage sense of channel A.</td>
</tr>
<tr>
<td>AVS_CLK</td>
<td>I</td>
<td>21</td>
<td>AVSBus clock input.</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td>I</td>
<td>22</td>
<td>AVSBus master data (MOSI)</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>O</td>
<td>23</td>
<td>AVSBus slave data (MISO)</td>
</tr>
<tr>
<td>AVS_VDDIO</td>
<td>I</td>
<td>24</td>
<td>AVSBus supply pin. Bypass to ground with minimum 1uF effective ceramic capacitance and connect to a well regulated supply voltage which supplies the logic levels for the AVS communication interface.</td>
</tr>
<tr>
<td>BOOT_CHA</td>
<td>I</td>
<td>18</td>
<td>Pinstraps for Channel A boot voltage (8 bits). Use the PIN_DETECT_OVERRIDE command to select options which are not available through pinstrap.</td>
</tr>
<tr>
<td>PIN</td>
<td>I/O</td>
<td>DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BTSEN / ATSEN / TSEN</td>
<td>43</td>
<td>Multi-function pin. Configure through PMBus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BTSEN (default): Connect to the TAO pin of the TI smart power stages of channel B to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BTSEN: Connect to the TAO pin of the TI smart power stages of channel A to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSEN: Connect to the TAO pin of the TI smart power stages of channels A and B to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages. Float unused TSEN pins.</td>
<td></td>
</tr>
<tr>
<td>BVR_EN / RESETP / SYNC</td>
<td>19</td>
<td>Multi-function pin. Configure through PMBus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I/O</td>
<td>BVR_EN (Default): Active high enable input for channel B. Asserting the BVR_EN pin activates channel B. Polarity and enable conditions are programmable through ON_OFF_CONFIG.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESETP: Active low signal which causes both channels output voltage target to revert to their respective VBOOT values when asserted. Pull-up to 3.3 V.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SYNC: If assigned as an output, this pin provides a free-running clock for other TPS53676 devices to synchronize to. If assigned as an input, an internal phase locked-loop can synchronize switching of one or both channels to a clock supplied to this pin. Phase shift and data direction are programmable through NVM.</td>
<td></td>
</tr>
<tr>
<td>BVR_RDY</td>
<td>20</td>
<td>O VRD "Ready" output signal of channel B. This open drain output requires an external pull-up resistor. The BVR_RDY pin is pulled low when a shutdown fault occurs.</td>
<td></td>
</tr>
<tr>
<td>BVSN</td>
<td>39</td>
<td>I Negative input of the remote voltage sense of channel B. If channel B is not used, connect BVSN to GND.</td>
<td></td>
</tr>
<tr>
<td>BVSP</td>
<td>40</td>
<td>I Positive input of the remote voltage sense of channel B. If channel B is not used, connect BVSP to GND.</td>
<td></td>
</tr>
<tr>
<td>CSPIN</td>
<td>45</td>
<td>I Positive terminal of the integrated high-side current sensing amplifier. Connect to the supply side of the input current sense element. Tie to VIN_CSNIN, and to the input voltage, if measured input current sensing is not used.</td>
<td></td>
</tr>
<tr>
<td>SMB_ALERT#</td>
<td>15</td>
<td>O SMBus or I²C bi-directional alert pin interface. (Open drain)</td>
<td></td>
</tr>
<tr>
<td>SMB_CLK</td>
<td>14</td>
<td>I SMBus or I²C serial clock interface. (Open drain)</td>
<td></td>
</tr>
<tr>
<td>SMB_DIO</td>
<td>13</td>
<td>I/O SMBus or I²C bi-directional serial data interface. (Open drain)</td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>47</td>
<td>P 3.3-V power input. Bypass to GND with a ceramic capacitor with a value greater than or equal to 1 µF. Used to power all digital logic circuits.</td>
<td></td>
</tr>
<tr>
<td>VIN_CSNIN</td>
<td>46</td>
<td>I Negative terminal of the integrated high-side current sense amplifier. Connect to the power-stage side of the current sense element. The VIN_CSNIN voltage is also used to determine the correct on-time for the converter. Tie to CSPIN, and to the input voltage, if measured input current sensing is not used.</td>
<td></td>
</tr>
<tr>
<td>VREF</td>
<td>48</td>
<td>O 1.5-V LDO reference voltage. Bypass to GND with 1-µF effective ceramic capacitor. Connect the VREF pin to the REFIN pin of the TI smart power stages as the current sense common-mode voltage.</td>
<td></td>
</tr>
<tr>
<td>VR_FAULT#</td>
<td>41</td>
<td>O VR fault indicator. (Open-drain). The failures include the high-side FETs short, over-voltage, over-temperature, and the input over-current conditions. Use the fault signal on the platform to remove the power source by turning off the AC power supply. When the failure occurs, the VR_FAULT# pin is LOW, and put the controller into latch-off mode.</td>
<td></td>
</tr>
<tr>
<td>Thermal Pad</td>
<td>G</td>
<td>Analog ground pad. Connect to GND plan with vias.</td>
<td></td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage 1(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSPIN, VIN_CSNIN</td>
<td>–0.3</td>
<td>19</td>
<td>V</td>
</tr>
<tr>
<td>Pin voltage, duration less than 100 ns</td>
<td>–0.3</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>ACSP1, ACSP2, ACSP3, ACSP4, ACSP5 / BCSP3, ACSP6 / BCSP2, ACSP7 / BCSP1, ADDR, ATSEN / BTSEN, AVR_EN, AVSP, AVS_VDDIO, BOOT_CHA, BTSEN / ATSEN / TSEN, BVSP, BVR_EN / RESET# / SYNC, SMB_CLK, SMB_DIO, VCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin voltage, duration greater than or equal to 100 ns</td>
<td>–0.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>ACSP1, ACSP2, ACSP3, ACSP4, ACSP5 / BCSP3, ACSP6 / BCSP2, ACSP7 / BCSP1, ADDR, ATSEN / BTSEN, AVR_EN, AVSP, AVS_VDDIO, BOOT_CHA, BTSEN / ATSEN / TSEN, BVSP, BVR_EN / RESET# / SYNC, SMB_CLK, SMB_DIO, VCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVS_CLK, AVS_MDATA</td>
<td>–0.3</td>
<td>AVS</td>
<td>V</td>
</tr>
<tr>
<td>AVS_VDDIO + 0.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVSN, BVSN</td>
<td>–0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage 1(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APWM1, APWM2, APWM3, APWM4, APWM5 / BPWM3, APWM6 / BPWM2, APWM7 / BPWM1, AVR_RDY, BVR_RDY, SMB_ALERT#, VR_FAULT#</td>
<td>–0.3</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>Pin voltage, duration greater than or equal to 100 ns</td>
<td>–0.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>APWM1, APWM2, APWM3, APWM4, APWM5 / BPWM3, APWM6 / BPWM2, APWM7 / BPWM1, AVR_RDY, BVR_RDY, SMB_ALERT#, VR_FAULT#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>–0.3</td>
<td>AVS</td>
<td>V</td>
</tr>
<tr>
<td>AVS_VDDIO + 0.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VREF</td>
<td>–0.3</td>
<td>1.65</td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature, T_J</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, T_{STG}</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. All voltage values are with respect to the network ground terminal GND unless otherwise noted.

6.2 Recommended Operating Conditions

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSPIN, VIN_CSNIN</td>
<td>4.5</td>
<td>12</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>2.97</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>ACSP1, ACSP2, ACSP3, ACSP4, ACSP5 / BCSP3, ACSP6 / BCSP2, ACSP7 / BCSP1, ADDR, ATSEN / BTSEN, AVR_EN, AVSP, BOOT_CHA, BTSEN / ATSEN / TSEN, BVSP, BVR_EN / RESET# / SYNC, SMB_CLK, SMB_DIO</td>
<td>–0.1</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AVS_VDDIO</td>
<td>1.14</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVS_CLK, AVS_MDATA</td>
<td>–0.1</td>
<td>AVS</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AVS_VDDIO + 0.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDR</td>
<td>1.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVSN, BVSN</td>
<td>–0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VREF</td>
<td>–0.1</td>
<td>1.52</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>APWM1, APWM2, APWM3, APWM4, APWM5 / BPWM3, APWM6 / BPWM2, APWM7 / BPWM1, AVR_RDY, BVR_RDY, SMB_ALERT#, VR_FAULT#</td>
<td>–0.1</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>–0.1</td>
<td>AVS</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AVS_VDDIO + 0.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product Folder Links: TPS53676
6.3 ESD Ratings

<table>
<thead>
<tr>
<th>$V_{(ESD)}$ Electrostatic discharge</th>
<th>$V_{(ESD)}$ Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001$^{(1)}$</td>
<td>±1000</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101$^{(2)}$</td>
<td>±500</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Electrical Specifications

6.4.1 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC$^{(1)}$</th>
<th>TPS53676 RSL (VQFN)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\theta JA}$ Junction-to-ambient thermal resistance</td>
<td>25.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta JC(top)}$ Junction-to-case (top) thermal resistance</td>
<td>14.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta JB}$ Junction-to-board thermal resistance</td>
<td>7.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>Ψ_{JT} Junction-to-top characterization parameter</td>
<td>0.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>Y_{JB} Junction-to-board characterization parameter</td>
<td>7.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta JC(bot)}$ Junction-to-case (bottom) thermal resistance</td>
<td>0.7</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.4.2 Supply

$V_{CC} = 3.3$ V, CSPIN = VIN_CSNIN = 12 V, $T_J = -40$ to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{VCC} VCC supply current with all phases active</td>
<td>Enable = 'HI '</td>
<td></td>
<td></td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>$V_{CCNORMAL}$ VCC Normal Range</td>
<td>Normal operation</td>
<td>2.97</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{CCUVLOH}$ VCC UVLO 'OK ' Threshold</td>
<td>Ramp up</td>
<td>2.92</td>
<td>2.97</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{CCUVLOL}$ VCC UVLO Fault Threshold</td>
<td>Ramp down</td>
<td>2.68</td>
<td>2.82</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{CCUVLOH}$ VCC UVLO Hysteresis</td>
<td>Hyseteresis</td>
<td>138</td>
<td>600</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

6.4.3 DAC and Voltage Feedback

$V_{CC} = 3.3$ V, CSPIN = VIN_CSNIN = 12 V, $T_J = -40$ to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{MODE} Supported VOUT_MODE</td>
<td>VOUT_MODE = 16h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DACRNG} VDAC range</td>
<td>No external divider. VOUT_MAX ≤ 1.87 V</td>
<td>0.25</td>
<td>1.87</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No external divider. VOUT_MAX > 1.87 V</td>
<td>0.50</td>
<td>3.74</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R_{DIV} External resistor for output voltage scaling with Vout > 3.74 V</td>
<td>VOUT to VSP resistor</td>
<td>500</td>
<td></td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VSP to VSN resistor</td>
<td>500</td>
<td></td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>V_{DAC} VSP accuracy</td>
<td>0.25 ≤ VSP ≤ 1 V, $I_{CORE} = 0A$</td>
<td>-5</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 V < VSP ≤ 1.87 V; I_CORE = 0A</td>
<td>-0.5</td>
<td>0.5</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.87 V < VSP ≤ 5 V; I_CORE = 0A</td>
<td>-1</td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td>VREF</td>
<td>VREF output accuracy</td>
<td>VCC = 2.97 V to 3.6 V, I_VREF = 0</td>
<td>1.493</td>
<td>1.5</td>
<td>1.077</td>
</tr>
<tr>
<td>VREF(REG)</td>
<td>VREF load regulation (sourcing)</td>
<td>I_VREF = 0A to 10 mA</td>
<td>-8</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>VREF load regulation (sinking)</td>
<td>I_VREF = -10 mA to 0A</td>
<td>8</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V.Trim(RES)</td>
<td>Vout offset NVM resolution (1)</td>
<td>MFR_SPECIFIC_ED[13:12] = 00b</td>
<td>0.9765</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFR_SPECIFIC_ED[13:12] = 01b</td>
<td>1.953</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFR_SPECIFIC_ED[13:12] = 10b</td>
<td>3.9063</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFR_SPECIFIC_ED[13:12] = 11b</td>
<td>7.8125</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V.Trim(RNG)</td>
<td>Vout offset NVM range (1)</td>
<td>VOUT_TRIM in SLINEAR16 format</td>
<td>-128</td>
<td>127</td>
<td>LSB</td>
</tr>
</tbody>
</table>

Voltage Sense: AVSP/BVSP and AVSN/BVSN

I_AVSP	AVSP Input Bias Current	Not in Fault, Disable or UVLO; AVSP = VDAC = 1.8 V, AVSN = 0 V	50	µA
I_AVSN	AVSN Input Bias Current	Not in Fault, Disable or UVLO; AVSP = VDAC = 1.8 V, AVSN = 0 V	-55	µA
I_BVSP	BVSP Input Bias Current	Not in Fault, Disable or UVLO; BVSP = VDAC = 1.8 V, BVSN = 0 V	50	µA
I_BVSN	BVSN Input Bias Current	Not in Fault, Disable or UVLO; BVSP = VDAC = 1.8 V, BVSN = 0 V	-55	µA

(1) Specified by Design.

6.4.4 Control Loop Parameters
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable Loadline and Loop Compensation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_DCLL(RES)</td>
<td>DC load line resolution</td>
<td>VOUT_DROOP = 0 to 1 mΩ</td>
<td>7.8125</td>
<td>µΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOUT_DROOP = 1 to 2 mΩ</td>
<td>15.625</td>
<td>µΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOUT_DROOP = 2 to 4 mΩ</td>
<td>31.25</td>
<td>µΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOUT_DROOP = 4 to 8 mΩ</td>
<td>62.5</td>
<td>µΩ</td>
<td></td>
</tr>
<tr>
<td>R_DCLL(ACC)</td>
<td>DC load line accuracy</td>
<td>VOUT_DROOP > 0.3 mΩ</td>
<td>-2.5</td>
<td>2.5</td>
<td>%</td>
</tr>
<tr>
<td>R_ACLL(RES)</td>
<td>AC load line resolution (1)</td>
<td>USER_DATA_01[47:32] = 0 mΩ (program in SLINEAR11 format)</td>
<td>15.625</td>
<td>µΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[47:32] = 1 to 2 mΩ (program in SLINEAR11 format)</td>
<td>31.25</td>
<td>µΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[47:32] = 2 to 4 mΩ (program in SLINEAR11 format)</td>
<td>62.5</td>
<td>µΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[47:32] = 4 to 8 mΩ (program in SLINEAR11 format)</td>
<td>125</td>
<td>µΩ</td>
<td></td>
</tr>
<tr>
<td>R_ACLL(RES)</td>
<td>AC load line accuracy (1)</td>
<td>AC loadline > 0.3 mΩ</td>
<td>-5</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>INT</td>
<td>Static integration-time constant (1)</td>
<td>USER_DATA_01[23:20] = 0000b</td>
<td>0.9</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[23:20] = 0001b</td>
<td>1.8</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[23:20] = 0010b</td>
<td>2.7</td>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[23:20] = 0011b</td>
<td>3.6</td>
<td>4</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[23:20] = 0100b</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[23:20] = 0101b</td>
<td>5.4</td>
<td>6</td>
<td>6.6</td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T\textsubscript{J} = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_DATA_01[23:20] = 0110b</td>
<td>6.3</td>
<td>7</td>
<td>7.7</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 0111b</td>
<td>7.2</td>
<td>8</td>
<td>8.8</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 1000b</td>
<td>8.1</td>
<td>9</td>
<td>9.9</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 1001b</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 1010b</td>
<td>9.9</td>
<td>11</td>
<td>12.1</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 1011b</td>
<td>10.8</td>
<td>12</td>
<td>13.2</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 1100b</td>
<td>11.7</td>
<td>13</td>
<td>14.3</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 1101b</td>
<td>12.6</td>
<td>14</td>
<td>15.4</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 1110b</td>
<td>13.5</td>
<td>15</td>
<td>16.5</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_01[23:20] = 1111b</td>
<td>14.4</td>
<td>16</td>
<td>17.6</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

\(t\text{DINT} \) Dynamic integration-time constant (1)

USER_DATA_01[27:24] = 0000b	0.8	1	1.2	µs
USER_DATA_01[27:24] = 0001b	1.9	2	2.1	µs
USER_DATA_01[27:24] = 0010b	2.85	3	3.15	µs
USER_DATA_01[27:24] = 0011b	3.8	4	4.2	µs
USER_DATA_01[27:24] = 0100b	4.75	5	5.25	µs
USER_DATA_01[27:24] = 0101b	5.7	6	6.3	µs
USER_DATA_01[27:24] = 0110b	6.65	7	7.35	µs
USER_DATA_01[27:24] = 0111b	7.6	8	8.4	µs
USER_DATA_01[27:24] = 1000b	8.55	9	9.45	µs
USER_DATA_01[27:24] = 1001b	9.5	10	10.5	µs
USER_DATA_01[27:24] = 1010b	10.45	11	11.55	µs
USER_DATA_01[27:24] = 1011b	11.4	12	12.6	µs
USER_DATA_01[27:24] = 1100b	12.35	13	13.65	µs
USER_DATA_01[27:24] = 1101b	13.3	14	14.7	µs
USER_DATA_01[27:24] = 1110b	14.25	15	15.75	µs
USER_DATA_01[27:24] = 1111b	15.2	16	16.8	µs

\(G\text{INTTC} \) Scaling factor for integration time constants (1)

| USER_DATA_01[4] = 0b | 1 | x |
| USER_DATA_01[4] = 1b | 6 | x |

\(K\text{AC} \) AC gain settings (1)

USER_DATA_01[13:12] = 00b	0.45	0.5	0.55	x
USER_DATA_01[13:12] = 01b	0.9	1	1.1	x
USER_DATA_01[13:12] = 10b	1.35	1.5	1.65	x
USER_DATA_01[13:12] = 11b	1.8	2	2.2	x

\(K\text{INT} \) Integration gain settings (1)

USER_DATA_01[15:14] = 00b	0.45	0.5	0.55	x
USER_DATA_01[15:14] = 01b	0.9	1	1.1	x
USER_DATA_01[15:14] = 10b	1.35	1.5	1.65	x
USER_DATA_01[15:14] = 11b	1.8	2	2.2	x

\(V\text{INT} \) Dynamic Integration Voltage Setting. Based on \(V\text{ERR} \) (1)

USER_DATA_01[11:8] = 000b	48	60	72	mV
USER_DATA_01[11:8] = 001b	68	80	92	mV
USER_DATA_01[11:8] = 010b	88	100	112	mV
USER_DATA_01[11:8] = 011b	108	120	132	mV
USER_DATA_01[11:8] = 100b	128	140	152	mV
USER_DATA_01[11:8] = 101b	148	160	172	mV
USER_DATA_01[11:8] = 110b	168	180	192	mV
USER_DATA_01[11:8] = 111b	Disabled			
PARAMETER | **TEST CONDITIONS** | **MIN** | **TYP** | **MAX** | **UNIT**
--- | --- | --- | --- | --- | ---
Ramp Selections

<table>
<thead>
<tr>
<th>VRAMP</th>
<th>Ramp Setting (1)</th>
<th>USER_DATA_01[19:17] = 000b</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>mV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[19:17] = 001b</td>
<td>110</td>
<td>120</td>
<td>130</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[19:17] = 010b</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[19:17] = 011b</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[19:17] = 100b</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[19:17] = 101b</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[19:17] = 110b</td>
<td>310</td>
<td>320</td>
<td>330</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_01[19:17] = 111b</td>
<td>350</td>
<td>360</td>
<td>370</td>
<td>mV</td>
</tr>
</tbody>
</table>

(1) Specified by Design.

6.4.5 Dynamic VID (DVID) Tuning

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| **Dynamic Voltage Transitions**

		USER_DATA_04[1:0] = 00b	0	mV	
VOFS(WAKE)		**USER_DATA_04[1:0] = 01b**	30	mV	
		USER_DATA_04[1:0] = 10b	60	mV	
		USER_DATA_04[1:0] = 11b	90	mV	
	V DAC offset during soft-start (1)	**USER_DATA_04[11:10] = 00b**	0	mV	
	(independently programmable for each channel)	**USER_DATA_04[11:10] = 01b**	10	mV	
		USER_DATA_04[11:10] = 10b	20	mV	
		USER_DATA_04[11:10] = 11b	30	mV	
	VOFS(UP)				
		USER_DATA_04[9:8] = 00b	0	mV	
	(independently programmable for each channel)	**USER_DATA_04[9:8] = 01b**	10	mV	
		USER_DATA_04[9:8] = 10b	20	mV	
		USER_DATA_04[9:8] = 11b	30	mV	

		VOFS(DOWN)				
R DCLL(UP)		**VOUT_DROOP = 0.0 to 1.0 mΩ**	USER_DATA_04[36:32] = 00h to 1Fh	0	96875	mΩ
			Resolution = 0.03125 mΩ			
		VOUT_DROOP = 1.0 to 2.0 mΩ	USER_DATA_04[36:32] = 00h to 1Fh	0	1.9375	mΩ
			Resolution = 0.0625 mΩ			
		VOUT_DROOP = 2.0 to 4.0 mΩ	USER_DATA_04[36:32] = 00h to 1Fh	0	3.8750	mΩ
			Resolution = 0.125 mΩ			
		VOUT_DROOP = 4.0 to 8.0 mΩ	USER_DATA_04[36:32] = 00h to 1Fh	0	7.75	mΩ
			Resolution = 0.250 mΩ			
		RACLLEX	USER_DATA_04[19:16] = 0h to Fh	0	0.9375	mΩ
			Resolution = 0.0625 mΩ			
		RACLLEX	USER_DATA_04[19:16] = 0h to Fh	0	1.875	mΩ
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACLL</td>
<td>Dynamic DC load line during down transitions (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RACLL = 2.0 to 4.0 mΩ</td>
<td>USER_DATA_04[19:16] = 0h to Fh</td>
<td>0</td>
<td>3.75</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>Resolution = 0.250 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RACLL = 4.0 to 8.0 mΩ</td>
<td>USER_DATA_04[19:16] = 0h to Fh</td>
<td>0</td>
<td>7.5</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>Resolution = 0.500 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>VOUT_DROOP = 0.0 to 1.0 mΩ</td>
<td>0</td>
<td>0.96875</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[44:40] = 00h to 1Fh</td>
<td>Resolution = 0.03125 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>VOUT_DROOP = 1.0 to 2.0 mΩ</td>
<td>0</td>
<td>1.9375</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[44:40] = 00h to 1Fh</td>
<td>Resolution = 0.0625 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>VOUT_DROOP = 2.0 to 4.0 mΩ</td>
<td>0</td>
<td>3.8750</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[44:40] = 00h to 1Fh</td>
<td>Resolution = 0.125 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>VOUT_DROOP = 4.0 to 8.0 mΩ</td>
<td>0</td>
<td>7.75</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[44:40] = 00h to 1Fh</td>
<td>Resolution = 0.250 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RACLL(DOWN)</td>
<td>Dynamic AC load line during down transitions (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RACLL = 0.0 to 1.0 mΩ</td>
<td>USER_DATA_04[27:24] = 0h to Fh</td>
<td>0</td>
<td>1</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>Resolution = 0.0625 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>RACLL = 1.0 to 2.0 mΩ</td>
<td>1</td>
<td>2</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[27:24] = 0h to Fh</td>
<td>Resolution = 0.125 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>RACLL = 2.0 to 4.0 mΩ</td>
<td>2</td>
<td>4</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[27:24] = 0h to Fh</td>
<td>Resolution = 0.250 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>RACLL = 4.0 to 8.0 mΩ</td>
<td>4</td>
<td>8</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[27:24] = 0h to Fh</td>
<td>Resolution = 0.500 mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tLLR(UP)</td>
<td>Dynamic load line up recovery delay (PWM cycles) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[23:22] = 00b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>clks</td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>USER_DATA_04[23:22] = 01b</td>
<td>2</td>
<td></td>
<td></td>
<td>clks</td>
</tr>
<tr>
<td>USER_DATA_04[23:22] = 1b</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>clks</td>
</tr>
<tr>
<td>USER_DATA_04[23:22] = 11b</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>clks</td>
</tr>
<tr>
<td>tLLR(DOWN)</td>
<td>Dynamic load line down recovery delay (PWM cycles) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_04[31:30] = 00b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>clks</td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>USER_DATA_04[31:30] = 01b</td>
<td>2</td>
<td></td>
<td></td>
<td>clks</td>
</tr>
<tr>
<td>USER_DATA_04[31:30] = 1b</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>clks</td>
</tr>
<tr>
<td>USER_DATA_04[31:30] = 11b</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>clks</td>
</tr>
<tr>
<td>SRVOUTPMB</td>
<td>Slew Rate Setting (PMBus VOUT_COMMAND)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E050h</td>
<td></td>
<td>5</td>
<td>5.875</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E0A0h</td>
<td></td>
<td>10</td>
<td>11.75</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E0F0h</td>
<td></td>
<td>15</td>
<td>17.625</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E140h</td>
<td></td>
<td>20</td>
<td>23.5</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E190h</td>
<td></td>
<td>25</td>
<td>29.375</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E1E0h</td>
<td></td>
<td>30</td>
<td>35.25</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E230h</td>
<td></td>
<td>35</td>
<td>41.125</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E280h</td>
<td></td>
<td>39</td>
<td>47</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>VOUT_TRANSITION_RATE = E005h</td>
<td></td>
<td>0.3125</td>
<td>0.36718</td>
<td>mV/µs</td>
<td></td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOUT_TRANSITION_RATE = E00Ah</td>
<td>0.625</td>
<td>0.73437</td>
<td>5 mV/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9375</td>
<td>1.10156</td>
<td>3 mV/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOUT_TRANSITION_RATE = E014h</td>
<td>1.25</td>
<td>1.46875</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5625</td>
<td>1.83593</td>
<td>8 mV/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOUT_TRANSITION_RATE = E01Eh</td>
<td>1.875</td>
<td>2.20312</td>
<td>5 mV/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1875</td>
<td>2.57031</td>
<td>3 mV/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOUT_TRANSITION_RATE = E023h</td>
<td>2.5</td>
<td>2.9375</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.75</td>
<td>4.36</td>
<td>mV/µs</td>
<td></td>
</tr>
</tbody>
</table>

SRVOUTAVS Slew Rate Setting (AVSBus)

<table>
<thead>
<tr>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVS Transition Rate = 5 mV/µs</td>
<td>4.8</td>
<td>5.5</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>AVS Transition Rate = 10 mV/µs</td>
<td>9.5</td>
<td>10.9</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>AVS Transition Rate = 15 mV/µs</td>
<td>14.2</td>
<td>16.4</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>AVS Transition Rate = 20 mV/µs</td>
<td>19</td>
<td>21.8</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>AVS Transition Rate = 25 mV/µs</td>
<td>23.6</td>
<td>27.3</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>AVS Transition Rate = 30 mV/µs</td>
<td>28.3</td>
<td>32.7</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>AVS Transition Rate = 35 mV/µs</td>
<td>32.9</td>
<td>38.2</td>
<td>mV/µs</td>
<td></td>
</tr>
<tr>
<td>AVS Transition Rate = 40 mV/µs</td>
<td>37.5</td>
<td>43.6</td>
<td>mV/µs</td>
<td></td>
</tr>
</tbody>
</table>

(1) Specified by Design.

6.4.6 Undershoot Reduction (USR) and Overshoot Reduction (OSR)

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Level OSR and USR</td>
<td>USER_DATA_02[12:8] = 00010b</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>mV</td>
</tr>
<tr>
<td>VUSR1 USR Level 1 Voltage Setting (V_DAC- V_DROOP)</td>
<td>USER_DATA_02[12:8] = 00011b</td>
<td>7.5</td>
<td>17.5</td>
<td>27.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 00100b</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 00101b</td>
<td>12.5</td>
<td>22.5</td>
<td>32.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 00110b</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 00111b</td>
<td>17.5</td>
<td>27.5</td>
<td>37.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 01000b</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 01001b</td>
<td>22.5</td>
<td>32.5</td>
<td>42.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 01010b</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 01011b</td>
<td>27.5</td>
<td>37.5</td>
<td>47.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 01100b</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 01101b</td>
<td>32.5</td>
<td>42.5</td>
<td>52.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 01110b</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 01111b</td>
<td>37.5</td>
<td>47.5</td>
<td>57.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 10000b</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 10001b</td>
<td>42.5</td>
<td>52.5</td>
<td>62.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 10010b</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 10011b</td>
<td>47.5</td>
<td>57.5</td>
<td>67.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 10100b</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>USER_DATA_02[12:8] = 10101b</td>
<td>52.5</td>
<td>62.5</td>
<td>72.5</td>
<td>mV</td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_DATA_02[12:8] = 10110b</td>
<td>55</td>
<td>65</td>
<td>75</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[12:8] = 10111b</td>
<td>57.5</td>
<td>67.5</td>
<td>77.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[12:8] = 11000b</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[12:8] = 11001b (1)</td>
<td>62.5</td>
<td>72.5</td>
<td>82.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[12:8] = other (1)</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 00000b</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 00001b</td>
<td>7.5</td>
<td>17.5</td>
<td>27.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 00010b</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 00011b</td>
<td>12.5</td>
<td>22.5</td>
<td>32.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 00100b</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 00101b</td>
<td>17.5</td>
<td>27.5</td>
<td>37.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 00110b</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 00111b</td>
<td>22.5</td>
<td>32.5</td>
<td>42.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 01000b</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 01001b</td>
<td>27.5</td>
<td>37.5</td>
<td>47.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 01010b</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 01011b</td>
<td>32.5</td>
<td>42.5</td>
<td>52.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 01100b</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 01101b</td>
<td>37.5</td>
<td>47.5</td>
<td>57.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 01110b</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 01111b</td>
<td>42.5</td>
<td>52.5</td>
<td>62.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 10000b</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 10001b</td>
<td>47.5</td>
<td>57.5</td>
<td>67.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 10010b</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 10011b</td>
<td>52.5</td>
<td>62.5</td>
<td>72.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 10100b</td>
<td>55</td>
<td>65</td>
<td>75</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 10101b</td>
<td>57.5</td>
<td>67.5</td>
<td>77.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 10110b</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 10111b</td>
<td>62.5</td>
<td>72.5</td>
<td>82.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 11000b</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = 11001b (1)</td>
<td>67.5</td>
<td>77.5</td>
<td>87.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[36:32] = others (1)</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[1:0] = 00b</td>
<td>3</td>
<td>phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[1:0] = 01b</td>
<td>4</td>
<td>phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[1:0] = 10b</td>
<td>5</td>
<td>phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[1:0] = 11b</td>
<td>All available</td>
<td>phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 0000b</td>
<td>8</td>
<td>20</td>
<td>32</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 0001b</td>
<td>10</td>
<td>30</td>
<td>42</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 0010b</td>
<td>12</td>
<td>40</td>
<td>52</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 0011b</td>
<td>14</td>
<td>50</td>
<td>62</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 0100b</td>
<td>16</td>
<td>60</td>
<td>72</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 0101b</td>
<td>18</td>
<td>70</td>
<td>82</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 0110b</td>
<td>20</td>
<td>80</td>
<td>92</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

VUSR2: USR Level 2 Voltage Setting (V_DAC-V_DROOP)

PHUSR1: Maximum phase added in USR level 1

VOSR: OSR Voltage Setting
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T\textsubscript{J} = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_DATA_02[19:16] = 0111b</td>
<td>78</td>
<td>90</td>
<td>102</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 1000b</td>
<td>88</td>
<td>100</td>
<td>112</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 1001b</td>
<td>98</td>
<td>110</td>
<td>122</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 1010b</td>
<td>108</td>
<td>120</td>
<td>132</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 1011b</td>
<td>118</td>
<td>130</td>
<td>142</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 1100b</td>
<td>128</td>
<td>140</td>
<td>152</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 1101b</td>
<td>138</td>
<td>150</td>
<td>162</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 1110b</td>
<td>148</td>
<td>160</td>
<td>172</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>USER_DATA_02[19:16] = 1111b</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BB\textsubscript{OSR} OSR pulse truncation for 1ph (1) USER_DATA_02[7] = 0b Disable

BB\textsubscript{OSR} OSR body braking for normal phases (1) USER_DATA_02[5] = 0b and USER_DATA_02[7] = 0b Disable

BB\textsubscript{OSR} OSR body braking for normal phases (1) USER_DATA_02[5] = 1b or USER_DATA_02[7] = 1b Enable

TB\textsubscript{OSR} OSR body braking time durations (1) USER_DATA_02[4:2] = 000b 0.3 0.4 0.5 µs

TB\textsubscript{OSR} OSR body braking time durations (1) USER_DATA_02[4:2] = 001b 0.4 0.5 0.6 µs

TB\textsubscript{OSR} OSR body braking time durations (1) USER_DATA_02[4:2] = 010b 0.5 0.6 0.7 µs

TB\textsubscript{OSR} OSR body braking time durations (1) USER_DATA_02[4:2] = 011b 0.8 0.9 1 µs

TB\textsubscript{OSR} OSR body braking time durations (1) USER_DATA_02[4:2] = 100b 0.9 1 1.1 µs

TB\textsubscript{OSR} OSR body braking time durations (1) USER_DATA_02[4:2] = 101b 1 1.1 1.2 µs

TB\textsubscript{OSR} OSR body braking time durations (1) USER_DATA_02[4:2] = 110b 1.8 1.9 2 µs

TB\textsubscript{OSR} OSR body braking time durations (1) USER_DATA_02[4:2] = 111b 1.9 2 2.1 µs

(1) Specified by Design

6.4.7 Dynamic Phase Shedding (DPS)

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T\textsubscript{J} = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Phase Shedding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P\textsubscript{DPS} Minimum operating phase numbers with DPS enabled (1) USER_DATA_07[3:2] = 00b</td>
<td>1</td>
<td>Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[3:2] = 01b</td>
<td>2</td>
<td>Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[3:2] = 10b</td>
<td>4</td>
<td>Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[3:2] = 11b</td>
<td>8</td>
<td>Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{PAFIL} Filter time constant for phase adding (1) USER_DATA_07[7:6] = 00b</td>
<td>0.5</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[7:6] = 01b</td>
<td>1</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[7:6] = 10b</td>
<td>1.5</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[7:6] = 11b</td>
<td>2</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{PA2} Dynamic phase adding thresholds (1-2ph) USER_DATA_07[11:8] = 0h</td>
<td>8.2</td>
<td>12</td>
<td>15.4</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = 1h</td>
<td>8.8</td>
<td>13</td>
<td>17.3</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = 2h</td>
<td>12.2</td>
<td>14</td>
<td>15.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = 3h</td>
<td>13.3</td>
<td>15</td>
<td>16.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = 4h</td>
<td>14.3</td>
<td>16</td>
<td>17.7</td>
<td>A</td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CS_PIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_DATA_07[11:8] = 5h</td>
<td></td>
<td>15.1</td>
<td>17</td>
<td>18.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = 6h</td>
<td></td>
<td>16.2</td>
<td>18</td>
<td>19.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = 7h</td>
<td></td>
<td>17.3</td>
<td>19</td>
<td>20.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = 8h</td>
<td></td>
<td>17.9</td>
<td>20</td>
<td>21.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = 9h</td>
<td></td>
<td>19.2</td>
<td>21</td>
<td>22.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = Ah</td>
<td></td>
<td>20.2</td>
<td>22</td>
<td>23.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = Bh</td>
<td></td>
<td>21.3</td>
<td>23</td>
<td>24.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = Ch</td>
<td></td>
<td>22.3</td>
<td>24</td>
<td>25.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = Eh</td>
<td></td>
<td>24</td>
<td>26</td>
<td>27.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[11:8] = Fh</td>
<td></td>
<td>24.9</td>
<td>27</td>
<td>28.8</td>
<td>A</td>
</tr>
</tbody>
</table>

I\text{DPA3}

Dynamic phase adding thresholds (2-3ph)

| USER_DATA_07[23:20] = 0h | | 25.2 | 30 | 35.8 | A |

Average current, assuming DPA Hysteresis is set equal to 1/2 I\text{SUM} ripple for active phase number, accounting for ripple cancellation

| USER_DATA_07[23:20] = 1h | | 27.5 | 32 | 37.4 | A |

USER_DATA_07[23:20] = 2h		29.1	34	40	A
USER_DATA_07[23:20] = 3h		31.9	36	41.2	A
USER_DATA_07[23:20] = 4h		33.5	38	43.5	A
USER_DATA_07[23:20] = 5h		35.6	40	45.4	A
USER_DATA_07[23:20] = 6h		37.8	42	47	A
USER_DATA_07[23:20] = 7h		39.7	44	49.3	A
USER_DATA_07[23:20] = 8h		45.6	50	55.2	A
USER_DATA_07[23:20] = 9h		55.6	60	65.3	A
USER_DATA_07[23:20] = Ah		65.8	70	75.2	A
USER_DATA_07[23:20] = Bh		75.3	80	85.5	A
USER_DATA_07[23:20] = Ch		85.8	90	95	A
USER_DATA_07[23:20] = Dh		95.8	100	105	A
USER_DATA_07[23:20] = Eh		105.7	110	114.9	A
USER_DATA_07[23:20] = Fh		114.3	120	125.9	A

I\text{DPA4}

Dynamic phase adding thresholds (3-4ph)

| USER_DATA_07[19:16] = 0h | | 40.6 | 46 | 52.2 | A |

Average current, assuming DPA Hysteresis is set equal to 1/2 I\text{SUM} ripple for active phase number, accounting for ripple cancellation

| USER_DATA_07[19:16] = 1h | | 43.5 | 48 | 53.6 | A |

USER_DATA_07[19:16] = 2h		43.2	50	57.4	A
USER_DATA_07[19:16] = 3h		47.5	52	57.6	A
USER_DATA_07[19:16] = 4h		48.2	54	60.2	A
USER_DATA_07[19:16] = 5h		51.5	56	61.4	A
USER_DATA_07[19:16] = 6h		52.8	58	64.4	A
USER_DATA_07[19:16] = 7h		54.7	60	66.3	A
USER_DATA_07[19:16] = 8h		74.7	80	86	A
USER_DATA_07[19:16] = 9h		94.6	100	106.1	A
USER_DATA_07[19:16] = Ah		114.9	120	125.4	A
USER_DATA_07[19:16] = Bh		135.2	140	145.4	A
USER_DATA_07[19:16] = Ch		154.6	160	166.1	A
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_DATA_07[19:16] = Dh</td>
<td></td>
<td>175.1</td>
<td>180</td>
<td>185.5</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[19:16] = Eh</td>
<td></td>
<td>194.5</td>
<td>200</td>
<td>205.6</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[19:16] = Fh</td>
<td></td>
<td>213.4</td>
<td>220</td>
<td>226.7</td>
<td>A</td>
</tr>
<tr>
<td>(I_{\text{DPA5}}) Dynamic phase adding thresholds (4-5ph)</td>
<td>USER_DATA_07[31:28] = 0h</td>
<td>55.9</td>
<td>62</td>
<td>69</td>
<td>A</td>
</tr>
<tr>
<td>Average current, assuming DPA Hysteresis is set equal to 1/2 (I_{\text{SUM}}) ripple for active phase number, accounting for ripple cancellation</td>
<td>USER_DATA_07[31:28] = 1h</td>
<td>59.5</td>
<td>64</td>
<td>69.6</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 2h</td>
<td></td>
<td>59.6</td>
<td>66</td>
<td>73.2</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 3h</td>
<td></td>
<td>63.4</td>
<td>68</td>
<td>73.3</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 4h</td>
<td></td>
<td>65.1</td>
<td>70</td>
<td>76</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 5h</td>
<td></td>
<td>67.3</td>
<td>72</td>
<td>77.3</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 6h</td>
<td></td>
<td>69</td>
<td>74</td>
<td>79.6</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 7h</td>
<td></td>
<td>71.1</td>
<td>76</td>
<td>81.4</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 8h</td>
<td></td>
<td>85.1</td>
<td>90</td>
<td>95.4</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 9h</td>
<td></td>
<td>94.9</td>
<td>100</td>
<td>105.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = Ah</td>
<td></td>
<td>104.9</td>
<td>110</td>
<td>115.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = 8h</td>
<td></td>
<td>115.2</td>
<td>120</td>
<td>125.4</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = Ch</td>
<td></td>
<td>135.2</td>
<td>140</td>
<td>145.4</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = Dh</td>
<td></td>
<td>154.5</td>
<td>160</td>
<td>165.6</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = Eh</td>
<td></td>
<td>175.2</td>
<td>180</td>
<td>185.2</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[31:28] = Fh</td>
<td></td>
<td>193.4</td>
<td>200</td>
<td>206.7</td>
<td>A</td>
</tr>
<tr>
<td>(I_{\text{DPA6}}) Dynamic phase adding thresholds (5-6ph)</td>
<td>USER_DATA_07[39:36] = 0h</td>
<td>71.7</td>
<td>78</td>
<td>84.8</td>
<td>A</td>
</tr>
<tr>
<td>Average current, assuming DPA Hysteresis is set equal to 1/2 (I_{\text{SUM}}) ripple for active phase number, accounting for ripple cancellation</td>
<td>USER_DATA_07[39:36] = 1h</td>
<td>74.8</td>
<td>81</td>
<td>87.1</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 2h</td>
<td></td>
<td>77.9</td>
<td>84</td>
<td>90.6</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 3h</td>
<td></td>
<td>81.6</td>
<td>87</td>
<td>92.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 4h</td>
<td></td>
<td>84.5</td>
<td>90</td>
<td>95.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 5h</td>
<td></td>
<td>87.2</td>
<td>93</td>
<td>99.5</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 6h</td>
<td></td>
<td>89.9</td>
<td>96</td>
<td>102.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 7h</td>
<td></td>
<td>93</td>
<td>99</td>
<td>105.5</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 8h</td>
<td></td>
<td>103.4</td>
<td>110</td>
<td>117</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 9h</td>
<td></td>
<td>114.5</td>
<td>120</td>
<td>126.5</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Ah</td>
<td></td>
<td>124</td>
<td>130</td>
<td>137.1</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 8h</td>
<td></td>
<td>134.7</td>
<td>140</td>
<td>145.1</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Ch</td>
<td></td>
<td>154.1</td>
<td>160</td>
<td>166.6</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Dh</td>
<td></td>
<td>174.8</td>
<td>180</td>
<td>185.5</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Eh</td>
<td></td>
<td>194.2</td>
<td>200</td>
<td>205.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Fh</td>
<td></td>
<td>213.2</td>
<td>220</td>
<td>227.3</td>
<td>A</td>
</tr>
<tr>
<td>(I_{\text{DPA7}}) Dynamic phase adding thresholds (6-7ph)</td>
<td>USER_DATA_07[39:36] = 0h</td>
<td>100.1</td>
<td>105</td>
<td>110.5</td>
<td>A</td>
</tr>
<tr>
<td>Average current, assuming DPA Hysteresis is set equal to 1/2 (I_{\text{SUM}}) ripple for active phase number, accounting for ripple cancellation</td>
<td>USER_DATA_07[39:36] = 1h</td>
<td>105.6</td>
<td>110</td>
<td>114.7</td>
<td>A</td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_DATA_07[39:36] = 2h</td>
<td></td>
<td>109.8</td>
<td>115</td>
<td>120.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 3h</td>
<td></td>
<td>115.5</td>
<td>120</td>
<td>125</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 4h</td>
<td></td>
<td>120.2</td>
<td>125</td>
<td>130.2</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 5h</td>
<td></td>
<td>125.2</td>
<td>130</td>
<td>135.4</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 6h</td>
<td></td>
<td>130.6</td>
<td>135</td>
<td>140.1</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 7h</td>
<td></td>
<td>135.3</td>
<td>140</td>
<td>144.8</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 8h</td>
<td></td>
<td>155.1</td>
<td>160</td>
<td>165.2</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = 9h</td>
<td></td>
<td>195.2</td>
<td>200</td>
<td>205</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Ah</td>
<td></td>
<td>215</td>
<td>220</td>
<td>225.3</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Ch</td>
<td></td>
<td>235</td>
<td>240</td>
<td>245.2</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Dh</td>
<td></td>
<td>274.7</td>
<td>280</td>
<td>285.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Eh</td>
<td></td>
<td>314.3</td>
<td>320</td>
<td>325.7</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[39:36] = Fh</td>
<td></td>
<td>353.9</td>
<td>360</td>
<td>366.1</td>
<td>A</td>
</tr>
<tr>
<td>USER_DATA_07[59:56] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[71:68] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[67:64] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[79:76] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[75:72] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[87:84] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[15:14] = 00b</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[15:14] = 01b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[15:14] = 10b</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[15:14] = 11b</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[59:56] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[71:68] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[67:64] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[79:76] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[75:72] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[87:84] = 0h to Fh</td>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[15:14] = 00b</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[15:14] = 01b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[15:14] = 10b</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER_DATA_07[15:14] = 11b</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHYST2</td>
<td>DPA Hysteresis (1-2ph)</td>
<td>USER_DATA_07[59:56] = 0h to Fh</td>
<td>0</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>IHYST3</td>
<td>DPA Hysteresis (2-3ph)</td>
<td>USER_DATA_07[71:68] = 0h to Fh</td>
<td>0</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>IHYST4</td>
<td>DPA Hysteresis (3-4ph)</td>
<td>USER_DATA_07[67:64] = 0h to Fh</td>
<td>0</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>IHYST5</td>
<td>DPA Hysteresis (4-5ph)</td>
<td>USER_DATA_07[79:76] = 0h to Fh</td>
<td>0</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>IHYST6</td>
<td>DPA Hysteresis (5-6ph)</td>
<td>USER_DATA_07[75:72] = 0h to Fh</td>
<td>0</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>IHYST7</td>
<td>DPA Hysteresis (6-7ph)</td>
<td>USER_DATA_07[87:84] = 0h to Fh</td>
<td>0</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>IHYST-DPS</td>
<td>Dynamic phase shedding hysteresis</td>
<td>USER_DATA_07[15:14] = 00b</td>
<td>0</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>IHYST-DPS</td>
<td>Dynamic phase shedding hysteresis</td>
<td>USER_DATA_07[15:14] = 01b</td>
<td>1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>IHYST-DPS</td>
<td>Dynamic phase shedding hysteresis</td>
<td>USER_DATA_07[15:14] = 10b</td>
<td>2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>IHYST-DPS</td>
<td>Dynamic phase shedding hysteresis</td>
<td>USER_DATA_07[15:14] = 11b</td>
<td>3</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DPS2</td>
<td>Phase shed threshold (2-1ph)</td>
<td>Avg. current, calculated</td>
<td>I_DPA2 = 1 × IHYST-DPS</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DPS3</td>
<td>Phase shed threshold (3-2ph)</td>
<td>Avg. current, calculated</td>
<td>I_DPA3 = 2 × IHYST-DPS</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DPS4</td>
<td>Phase shed threshold (4-3ph)</td>
<td>Avg. current, calculated</td>
<td>I_DPA4 = 3 × IHYST-DPS</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DPS5</td>
<td>Phase shed threshold (5-4ph)</td>
<td>Avg. current, calculated</td>
<td>I_DPA5 = 4 × IHYST-DPS</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DPS6</td>
<td>Phase shed threshold (6-5ph)</td>
<td>Avg. current, calculated</td>
<td>I_DPA6 = 5 × IHYST-DPS</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DPS7</td>
<td>Phase shed threshold (7-6ph)</td>
<td>Avg. current, calculated</td>
<td>I_DPA7 = 6 × IHYST-DPS</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DPS_DELAY</td>
<td>Dynamic phase shedding delay (N+1 ph to N ph)</td>
<td></td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
</tbody>
</table>

(1) Specified by Design
6.4.8 Turbo Mode and Thermal Balance Management (TBM)

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo Mode and Thermal Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_turbo</td>
<td>Number of turbo phases</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_TURBO</td>
<td>Current share gain for Turbo Phases (1)</td>
<td>USER_DATA_10[6:5] = 00b</td>
<td>100</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[6:5] = 01b</td>
<td>150</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[6:5] = 10b</td>
<td>180</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[6:5] = 11b</td>
<td>220</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>K_T</td>
<td>Thermal balance gain (1)</td>
<td>USER_DATA_10[3:0] = 0000b</td>
<td>0.8</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[3:0] = 0001b</td>
<td>0.85</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[3:0] = 0010b</td>
<td>0.9</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[3:0] = 0011b</td>
<td>0.95</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[3:0] = 0100b</td>
<td>1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[3:0] = 0101b</td>
<td>1.05</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[3:0] = 0110b</td>
<td>1.1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[3:0] = 0111b</td>
<td>1.15</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_10[3:0] = 1000b</td>
<td>1.2</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

(1) Specified by Design.

6.4.9 Overcurrent Limit (OCL)

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent Limit Thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_OCL</td>
<td>Phase Valley OCL Thresholds</td>
<td>Programmable Range</td>
<td>17</td>
<td>130</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(Program through IOUT_OC_FAULT_LIMIT)</td>
<td>Programmable Resolution</td>
<td>17 A ≤ I_OCL ≤ 80 A</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programmable Resolution</td>
<td>85 A ≤ I_OCL ≤ 130 A</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Accuracy</td>
<td>17 A ≤ I_OCL ≤ 80 A</td>
<td>-3.05</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Accuracy</td>
<td>85 A ≤ I_OCL ≤ 130 A</td>
<td>-5.55</td>
<td>5.55</td>
</tr>
</tbody>
</table>

6.4.10 Telemetry

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telemetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_CS_FIL</td>
<td>Per-phase current filter time constant (1)</td>
<td>230</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_CS_UPDATE</td>
<td>Per-phase current update time (1)</td>
<td>14</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_CS_RNG</td>
<td>Per-phase current reporting range</td>
<td>-10</td>
<td>120</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_MON_FIL</td>
<td>IMON average time (1)</td>
<td>290</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_MON_UPDATE</td>
<td>IMON update time (1)</td>
<td>12</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_MON_RNG</td>
<td>IMON reporting range</td>
<td>-10</td>
<td>70 x Nph</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_MON_ERROR</td>
<td>Per-phase and total current error (1)</td>
<td>Summed of the per-phase currents and the total current</td>
<td>1.0</td>
<td>A/phi</td>
<td></td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T\textsubscript{J} = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I\textsubscript{MON_CAL_OF_LSB}</td>
<td>IMON Calibration Offset LSB (1)</td>
<td>IOUT_CAL_OFFSET resolution</td>
<td>0.125</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I\textsubscript{MON_CAL_OF_RNG}</td>
<td>IMON Calibration Offset Range (1)</td>
<td>IOUT_CAL_OFFSET range</td>
<td>-4</td>
<td>3.75</td>
<td>A</td>
</tr>
<tr>
<td>I\textsubscript{MON_CAL_GA_LSB}</td>
<td>IMON Calibration Gain LSB (1)</td>
<td>IOUT_CAL_GAIN resolution</td>
<td>0.2</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I\textsubscript{MON_CAL_GA_RNG}</td>
<td>IMON Calibration Gain Range (1)</td>
<td>IOUT_CAL_GAIN range</td>
<td>-10</td>
<td>10</td>
<td>%</td>
</tr>
<tr>
<td>I\textsubscript{MON_LSB}</td>
<td>IMON LSB via PMBus (1)</td>
<td></td>
<td>0.125</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I\textsubscript{MON_ACC}</td>
<td>Digital IMON Accuracy</td>
<td>6-phase, I\textsubscript{OUT} = 0 A</td>
<td>-2.4</td>
<td>2.4</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-phase, I\textsubscript{OUT} = 25.5 A</td>
<td>-9.41</td>
<td>9.41</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-phase, I\textsubscript{OUT} = 51 A</td>
<td>-4.71</td>
<td>4.71</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-phase, I\textsubscript{OUT} = 76.5 A</td>
<td>-3.14</td>
<td>3.14</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-phase, I\textsubscript{OUT} = 102 A</td>
<td>-2.35</td>
<td>2.35</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-phase, I\textsubscript{OUT} = 127.5 A</td>
<td>-1.88</td>
<td>1.88</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-phase, I\textsubscript{OUT} = 153 A</td>
<td>-1.57</td>
<td>1.57</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-phase, I\textsubscript{OUT} = 255 A</td>
<td>-0.94</td>
<td>0.94</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-phase, I\textsubscript{OUT} = 0 A</td>
<td>-0.8</td>
<td>0.8</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-phase, I\textsubscript{OUT} = 8.2 A</td>
<td>-10.2</td>
<td>10.2</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-phase, I\textsubscript{OUT} = 16.4 A</td>
<td>-4.88</td>
<td>4.88</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-phase, I\textsubscript{OUT} = 24.6 A</td>
<td>-3.25</td>
<td>3.25</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-phase, I\textsubscript{OUT} = 32.8 A</td>
<td>-2.44</td>
<td>2.44</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-phase, I\textsubscript{OUT} = 41 A</td>
<td>-1.95</td>
<td>1.95</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-phase, I\textsubscript{OUT} = 49.2 A</td>
<td>-1.63</td>
<td>1.63</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-phase, I\textsubscript{OUT} = 82 A</td>
<td>-0.98</td>
<td>0.98</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-phase, I\textsubscript{OUT} = 0 A</td>
<td>-0.35</td>
<td>0.35</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-phase, I\textsubscript{OUT} = 3 A</td>
<td>-11.67</td>
<td>11.67</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-phase, I\textsubscript{OUT} = 6 A</td>
<td>-6.4</td>
<td>6.4</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-phase, I\textsubscript{OUT} = 9 A</td>
<td>-3.89</td>
<td>3.89</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-phase, I\textsubscript{OUT} = 12 A</td>
<td>-2.92</td>
<td>2.92</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-phase, I\textsubscript{OUT} = 15 A</td>
<td>-2.33</td>
<td>2.33</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-phase, I\textsubscript{OUT} = 18 A</td>
<td>-1.94</td>
<td>1.94</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-phase, I\textsubscript{OUT} = 30 A</td>
<td>-1.17</td>
<td>1.17</td>
<td>%</td>
</tr>
<tr>
<td>V\textsubscript{READ_VOUT}</td>
<td>READ_VOUT accuracy</td>
<td>V\textsubscript{VSP} = 0.25 V to 0.75 V</td>
<td>-5</td>
<td>5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{VSP} = 0.75 V to 1.5 V</td>
<td>-10</td>
<td>10</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{VSP} > 1.5 V</td>
<td>-15.0</td>
<td>15.0</td>
<td>mV</td>
</tr>
<tr>
<td>V\textsubscript{READ_VOUT_UPDATE}</td>
<td>READ_VOUT update rate (1)</td>
<td></td>
<td>200</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>V\textsubscript{READ_VIN}</td>
<td>READ_VIN accuracy</td>
<td>V\textsubscript{IN} = 4.5 V to 17 V</td>
<td>-2</td>
<td>2</td>
<td>%</td>
</tr>
<tr>
<td>V\textsubscript{READ_VIN_UPDATE}</td>
<td>READ_VIN update rate (1)</td>
<td></td>
<td>150</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Temp</td>
<td>READ_TEMPERATURE_1 accuracy</td>
<td>0.28 V to 1.8 V on TSEN pin (-40C to 150C)</td>
<td>-2.5</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>Temp\textsubscript{UPDATE}</td>
<td>READ_TEMPERATURE_1 update rate (1)</td>
<td></td>
<td>150</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>V\textsubscript{TSENUVR}</td>
<td>TSEN low voltage (rising edge)</td>
<td>Low voltage detection on TSEN pin before soft-start and during operations</td>
<td>220</td>
<td>245</td>
<td>270</td>
</tr>
<tr>
<td>V\textsubscript{TSENUVF}</td>
<td>TSEN low voltage (falling edge)</td>
<td>Low voltage detection on TSEN pin before soft-start and during operations</td>
<td>135</td>
<td>160</td>
<td>185</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>TEST CONDITIONS</td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
<td>UNIT</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>V_TSENUVH</td>
<td>TSEN low voltage (hysteresis)</td>
<td>50</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>TSTEP</td>
<td>TSEN filter time constant</td>
<td>5</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>C_TSEN</td>
<td>Maximum capacitance on TSEN pin</td>
<td></td>
<td></td>
<td>220</td>
<td>pF</td>
</tr>
<tr>
<td>R_INSHUNT</td>
<td>Input current shunt range</td>
<td>0.1</td>
<td>10</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>G_INSHUNT</td>
<td>Input amplifier gain options for different shunts (analog gain setting)</td>
<td></td>
<td></td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td>V_CSN_MAX</td>
<td>Maximum CSPIN-CSNIN voltage can be sensed</td>
<td>800</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>t_IIN_FIL</td>
<td>IIN average time</td>
<td>440</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t_IIN_UPDATE</td>
<td>IIN update time</td>
<td>24</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>I_IN_RNG</td>
<td>IIN reporting range</td>
<td>-5</td>
<td>100</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I_IN</td>
<td>READ_IIN accuracy</td>
<td>-1</td>
<td>1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I_IN_CAL</td>
<td>Calculated input current accuracy</td>
<td>-10</td>
<td>10</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>V_READ_PIN</td>
<td>READ_PIN accuracy</td>
<td>-2.5</td>
<td>2.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>P_OUT_ACC</td>
<td>READ_POUT Accuracy</td>
<td>Per IOUT and VOUT</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Specified by Design.

6.4.11 Phase-Locked Loop and Closed-Loop Frequency Control

VCC = 3.3 V, CSPIN = VIN_CSININ = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_SW(RNG)</td>
<td>Switching Frequency Range</td>
<td>300</td>
<td>2000</td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switching Frequency</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_SW(RNG)</td>
<td>V_{IN} = 12 V, V_{VGS} = 1.0 V</td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>f_{SW} × N_D ≤ 8 MHz</td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>fSW(TOL)</td>
<td>Switching Frequency Tolerance</td>
<td>V IN = 12 V, V VSP = 1.0 V</td>
<td>fSW × NΩ ≤ 8 MHz</td>
<td>–10</td>
<td>10</td>
</tr>
</tbody>
</table>

Phase-Lock Loop and Synchronization

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIL(SYNC)</td>
<td>SYNC input logic low (1)</td>
<td></td>
<td></td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>VIH(SYNC)</td>
<td>SYNC input logic high (1)</td>
<td></td>
<td></td>
<td>1.35</td>
<td>V</td>
</tr>
<tr>
<td>VOL(SYNC)</td>
<td>SYNC output logic low (1)</td>
<td>IPIN = ± 0.5 mA</td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>VOH(SYNC)</td>
<td>SYNC output logic high (1)</td>
<td>IPIN = ± 0.5 mA</td>
<td></td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>tPW(SYNC)</td>
<td>SYNC input minimum pulse width (1)</td>
<td></td>
<td></td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>DSYNCOUT</td>
<td>SYNC output duty cycle (1)</td>
<td></td>
<td></td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>fSYNC</td>
<td>Synchronization frequency (1)</td>
<td></td>
<td></td>
<td>200</td>
<td>2000</td>
</tr>
<tr>
<td>DSYNC</td>
<td>SYNC allowable frequency difference from free-running frequency (1)</td>
<td>FREQUENCY_SWITCH from 300 kHz to 2 MHz</td>
<td></td>
<td>–50</td>
<td>50</td>
</tr>
</tbody>
</table>

MSYNC

Channel A Sync mode (1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>= X</td>
<td>= 0b</td>
<td>= 0b</td>
<td>Disabled</td>
</tr>
<tr>
<td>= X</td>
<td>= 0b</td>
<td>= 0b</td>
<td>Internal Clock, CLF Mode</td>
</tr>
<tr>
<td>= X</td>
<td>= 1b</td>
<td>= 0b</td>
<td>External Clock, PLL Mode</td>
</tr>
<tr>
<td>= X</td>
<td>= 0b</td>
<td>= 1b</td>
<td></td>
</tr>
<tr>
<td>= X</td>
<td>= 1b</td>
<td>= 1b</td>
<td></td>
</tr>
</tbody>
</table>

MSYNCB

Channel B Sync mode (1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>= X</td>
<td>= 0b</td>
<td>= 0b</td>
<td>Disabled</td>
</tr>
<tr>
<td>= X</td>
<td>= 0b</td>
<td>= 0b</td>
<td>Internal Clock, CLF Mode</td>
</tr>
<tr>
<td>= X</td>
<td>= 1b</td>
<td>= 0b</td>
<td>External Clock, PLL Mode</td>
</tr>
<tr>
<td>= X</td>
<td>= 0b</td>
<td>= 1b</td>
<td></td>
</tr>
<tr>
<td>= X</td>
<td>= 1b</td>
<td>= 1b</td>
<td></td>
</tr>
</tbody>
</table>

PHSYNCA

Channel A SYNC Phase Offset (1)

<table>
<thead>
<tr>
<th>MFR_SPECIFIC_E4[23:20]</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0h</td>
<td></td>
</tr>
<tr>
<td>= 30h</td>
<td></td>
</tr>
<tr>
<td>= 60h</td>
<td></td>
</tr>
<tr>
<td>= 90h</td>
<td></td>
</tr>
<tr>
<td>= 120h</td>
<td></td>
</tr>
<tr>
<td>= 150h</td>
<td></td>
</tr>
<tr>
<td>= 180h</td>
<td></td>
</tr>
<tr>
<td>= 210h</td>
<td></td>
</tr>
<tr>
<td>= 240h</td>
<td></td>
</tr>
<tr>
<td>= 270h</td>
<td></td>
</tr>
<tr>
<td>= 300h</td>
<td></td>
</tr>
<tr>
<td>= 330h</td>
<td></td>
</tr>
</tbody>
</table>

PHSYNCB

Channel B SYNC Phase Offset (1)

<table>
<thead>
<tr>
<th>MFR_SPECIFIC_E4[31:28]</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0h</td>
<td></td>
</tr>
<tr>
<td>= 30h</td>
<td></td>
</tr>
<tr>
<td>= 60h</td>
<td></td>
</tr>
<tr>
<td>= 90h</td>
<td></td>
</tr>
<tr>
<td>= 120h</td>
<td></td>
</tr>
<tr>
<td>= 150h</td>
<td></td>
</tr>
<tr>
<td>= 180h</td>
<td></td>
</tr>
<tr>
<td>= 210h</td>
<td></td>
</tr>
<tr>
<td>= 240h</td>
<td></td>
</tr>
<tr>
<td>= 270h</td>
<td></td>
</tr>
<tr>
<td>= 300h</td>
<td></td>
</tr>
<tr>
<td>= 330h</td>
<td></td>
</tr>
<tr>
<td>= 360h</td>
<td></td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR_SPECIFIC_E4[31:28] = 8h</td>
<td>240</td>
<td>deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFR_SPECIFIC_E4[31:28] = 9h</td>
<td>270</td>
<td>deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFR_SPECIFIC_E4[31:28] = Ah</td>
<td>300</td>
<td>deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFR_SPECIFIC_E4[31:28] = Bh</td>
<td>330</td>
<td>deg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Specified by Design.

6.4.12 Logic Interface
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_AENL</td>
<td>Channel A ENABLE Logic Low</td>
<td></td>
<td>0.975</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_AENH</td>
<td>Channel A ENABLE Logic High</td>
<td></td>
<td>1.525</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_AENHY</td>
<td>Channel A ENABLE Hysteresis (1)</td>
<td></td>
<td>0.4</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>I_AENDIG</td>
<td>Channel A ENABLE Deglitch (1)</td>
<td></td>
<td>0.275</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>I_AENRDF</td>
<td>Channel A ENABLE Low to VRRDY Low</td>
<td>No soft-stop; Only valid when using AVR_EN pin.</td>
<td>1.5</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>I_AENN</td>
<td>Channel A I/O Leakage</td>
<td>Leakage current , V_AVREN = 1.1 V</td>
<td>25</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_BENL</td>
<td>Channel B ENABLE Logic Low</td>
<td></td>
<td>0.925</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_BENH</td>
<td>Channel B ENABLE Logic High</td>
<td></td>
<td>1.225</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_BENHY</td>
<td>Channel B ENABLE Hysteresis (1)</td>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>I_BENDIG</td>
<td>Channel B ENABLE Deglitch (1)</td>
<td></td>
<td>0.275</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>I_BENRDF</td>
<td>Channel B ENABLE Low to VRRDY Low (1)</td>
<td>No soft-stop; Only valid when using BVR_EN pin.</td>
<td>1.5</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>I_BENN</td>
<td>Channel B I/O Leakage</td>
<td>Leakage current , V_BVR_EN = 1.1 V</td>
<td>25</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_PWML</td>
<td>PWMx Output Low-level</td>
<td>I_LOAD = ± 0.5 mA</td>
<td>0.11</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_PWMH</td>
<td>PWMx Output High-level</td>
<td>I_LOAD = ± 0.5 mA; VCC = 2.97 V</td>
<td>2.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_PWM_Tri</td>
<td>PWMx Tri-State</td>
<td>I_LOAD = ± 100 µA</td>
<td>1.440</td>
<td>1.5</td>
<td>1.560</td>
</tr>
<tr>
<td>I_P_S_HL</td>
<td>PWMx H-L Transition-time (1)</td>
<td>CLOAD = 10 pF; I_LOAD = ± 100 µA; 10% to 90% both edges</td>
<td>10</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>I_P_S_TRI</td>
<td>PWMx Tri-State Transition (1)</td>
<td>CLOAD = 10 pF; I_LOAD = ± 100 µA; 10% or 90% to tri-state; both edges</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

(1) Specified by Design.

6.4.13 Current Sensing and Current Sharing
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_CSPx</td>
<td>ACSPx leakage current</td>
<td>VACSPx = 2.1 V</td>
<td>75</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_BAL_TOL</td>
<td>Internal current share tolerance (1)</td>
<td>At 20.5A/ph operations</td>
<td>-4.5</td>
<td>4.5</td>
<td>%</td>
</tr>
<tr>
<td>I_SHARE_WRN_T_H</td>
<td>Current Share Warning Threshold</td>
<td>Based on the filtered CSPx average current</td>
<td>USER_DATA_11[47:46] = 00b</td>
<td>2.8</td>
<td>5</td>
</tr>
</tbody>
</table>
(Independently programmable for each channel) | USER_DATA_11[47:46] = 01b | 7.5 | 10 | 12.5 | A |
| | USER_DATA_11[47:46] = 10b | 12.5 | 15 | 17.5 | A |

(1) Specified by Design.
6.4.14 Pin Detection Thresholds

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(_{\text{DECODE}})</td>
<td>Low-Side Pinstrap Resistor Decode (3 LSB bits)(^{(1)})</td>
<td>R(_{\text{LOWER}}) = 154 kΩ with 1% tolerance</td>
<td>111</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_{\text{LOWER}}) = 115 kΩ with 1% tolerance</td>
<td>110</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_{\text{LOWER}}) = 86.6 kΩ with 1% tolerance</td>
<td>101</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_{\text{LOWER}}) = 64.9 kΩ with 1% tolerance</td>
<td>100</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_{\text{LOWER}}) = 49.9 kΩ with 1% tolerance</td>
<td>011</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_{\text{LOWER}}) = 37.4 kΩ with 1% tolerance</td>
<td>010</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_{\text{LOWER}}) = 27.4 kΩ with 1% tolerance</td>
<td>001</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_{\text{LOWER}}) = 20.0 kΩ with 1% tolerance</td>
<td>000</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td>V(_{\text{DECODE}})</td>
<td>Pin Voltage Decode (5 MSB bits)(^{(1)})</td>
<td>V(_{\text{PIN}}) = 22.5 mV</td>
<td>00000</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 67.5 mV</td>
<td>00001</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 112.5 mV</td>
<td>00010</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 157.5 mV</td>
<td>00011</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 202.5 mV</td>
<td>00100</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 247.5 mV</td>
<td>00101</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 292.5 mV</td>
<td>00110</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 337.5 mV</td>
<td>00111</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 382.5 mV</td>
<td>01000</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 427.5 mV</td>
<td>01001</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 472.5 mV</td>
<td>01010</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 517.5 mV</td>
<td>01011</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 562.5 mV</td>
<td>01100</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 607.5 mV</td>
<td>01101</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 652.5 mV</td>
<td>01110</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 697.5 mV</td>
<td>01111</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 742.5 mV</td>
<td>10000</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 787.5 mV</td>
<td>10001</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 832.5 mV</td>
<td>10010</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 877.5 mV</td>
<td>10011</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 922.5 mV</td>
<td>10100</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 967.5 mV</td>
<td>10101</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1012.5 mV</td>
<td>10110</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1057.5 mV</td>
<td>10111</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1102.5 mV</td>
<td>11000</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1147.5 mV</td>
<td>11001</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1192.5 mV</td>
<td>11010</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1237.5 mV</td>
<td>11011</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1282.5 mV</td>
<td>11100</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1327.5 mV</td>
<td>11101</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1372.5 mV</td>
<td>11110</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{\text{PIN}}) = 1417.5 mV</td>
<td>11111</td>
<td>Bin</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) The same decoding scheme and thresholds apply to both the ADDR_CONFIG and VBOOT_CHA pins.
6.4.15 ADDR Pinstrap Decoding
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMB_ADDR</td>
<td>PMBus Address (7 bit I2C Address)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinstrap Mode</td>
<td>88d</td>
<td></td>
<td></td>
<td>Bin</td>
</tr>
<tr>
<td></td>
<td>NVM Mode (PIN_DETECT_OVERRIDE)</td>
<td>SLAVE_ADDRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4.16 BOOT_CHA Pinstrap Decoding
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_BOOTA</td>
<td>Boot voltage for Channel A</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Pinstrap Mode</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decode = 0d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decode = 1d to 253d</td>
<td>0.24</td>
<td>(Decode × 0.01)</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Decode = 254d</td>
<td>3.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Decode = 255d(1)</td>
<td>5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>NVM Mode (PIN_DETECT_OVERRIDE)</td>
<td>VOUT_COMMAND</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

(1) Requires an external divider on the VSP and VSN pins. VOUT_SCALE_LOOP is automatically programmed to 0.5

6.4.17 Timing Specifications
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_ENABLE</td>
<td>Enable delay time options (1)</td>
<td>TON_DELAY range = 0.5 ms to 127.5 ms with</td>
<td>0.5</td>
<td>127.5</td>
<td>ms</td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>TON_DELAY resolution</td>
<td>0.5</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_ENABLE accuracy</td>
<td>-10</td>
<td>10</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>T_DISABLE</td>
<td>Disable delay time options (1)</td>
<td>TOFF_DELAY range = 0.5 ms to 127.5 ms</td>
<td>0.5</td>
<td>127.5</td>
<td>ms</td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>TOFF_DELAY resolution</td>
<td>0.5</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOFF_DELAY accuracy</td>
<td>-10</td>
<td>10</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>PH.getStart</td>
<td>Operating Phases during Soft-Start (1)</td>
<td>USER_DATA_07[5:4] = 00b</td>
<td>MIN(4, NTOTAL)</td>
<td>ph</td>
<td></td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>USER_DATA_07[5:4] = 01b</td>
<td>MIN(6, NTOTAL)</td>
<td>ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USER_DATA_07[5:4] = 11b</td>
<td>NTOTAL</td>
<td></td>
<td>ph</td>
<td></td>
</tr>
<tr>
<td>TOFF.MIN</td>
<td>Controller minimum OFF time range</td>
<td>Programmable Range</td>
<td>USER_DATA_02[23:20] = 0 to Fh</td>
<td>40</td>
<td>135</td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>Resolution</td>
<td>15</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-25</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>ION_MIN</td>
<td>Controller minimum ON time (1)</td>
<td>USER_DATA_02[39:38] = 0 to 3h</td>
<td>30</td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>(independently programmable each channel)</td>
<td>Resolution</td>
<td>10</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>-12</td>
<td>12</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>ION_BLANK</td>
<td>Rising-edge blanking time range (1)</td>
<td>Programmable Range</td>
<td>USER_DATA_02[31:24]</td>
<td>20</td>
<td>155</td>
</tr>
<tr>
<td>(independently programmable for each channel)</td>
<td>Resolution</td>
<td>5</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td></td>
<td>-25</td>
<td>25</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

(1) Specified by Design.

6.4.18 Faults and Converter Protection

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{O V T R K A}) Channel A Tracking OV Fault Threshold (Offset with respect to output voltage target including VDROOP)</td>
<td>Programmable Range ((2))</td>
<td>32</td>
<td>448</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>32</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-16</td>
<td>16</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{O V T R K B}) Channel B Tracking OV Fault Threshold (Offset with respect to output voltage target including VDROOP)</td>
<td>Programmable Range ((2))</td>
<td>32</td>
<td>448</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>32</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-20</td>
<td>20</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{O V F I X A}) Channel A Fixed OV Fault Threshold</td>
<td>Programmable Range ((2))</td>
<td>0.6</td>
<td>3.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>0.1</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy ((V_{O V F I X} < 3.6 \text{ V}))</td>
<td>-50</td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy ((V_{O V F I X} \geq 3.6 \text{ V}))</td>
<td>-65</td>
<td>65</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{O V F I X B}) Channel B Fixed OV Fault Threshold</td>
<td>Programmable Range ((2))</td>
<td>0.6</td>
<td>3.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>0.1</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy ((V_{O V F I X} < 3.6 \text{ V}))</td>
<td>-50</td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy ((V_{O V F I X} \geq 3.6 \text{ V}))</td>
<td>-65</td>
<td>65</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{O V P B - A}) Pre-biased OVP Channel A threshold ((1))</td>
<td></td>
<td>3.7</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{O V P B - B}) Pre-biased OVP Channel B threshold ((1))</td>
<td></td>
<td>3.7</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{O W W - A}) Channel A Tracking OV Warning Threshold (Offset with respect to output voltage target including VDROOP)</td>
<td>Programmable Range ((2))</td>
<td>16</td>
<td>448</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>8</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-12</td>
<td>12</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{O W W - B}) Channel B Tracking OV Warning Threshold (Offset with respect to output voltage target including VDROOP)</td>
<td>Programmable Range ((2))</td>
<td>24</td>
<td>448</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>8</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-23</td>
<td>23</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{U W W - A}) Channel A UV Warning Threshold (Offset with respect to output voltage target including VDROOP)</td>
<td>Programmable Range ((2))</td>
<td>-16</td>
<td>-448</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>8</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-11</td>
<td>11</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{U W W - B}) Channel B UV Warning Threshold (Offset with respect to output voltage target including VDROOP)</td>
<td>Programmable Range ((2))</td>
<td>-8</td>
<td>-448</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>8</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-22</td>
<td>22</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{U V F - A}) Channel A Tracking UV Fault Threshold (Offset with respect to output voltage target including VDROOP)</td>
<td>Programmable Range ((2))</td>
<td>32</td>
<td>448</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>32</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-16</td>
<td>16</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{U V F - B}) Channel B Tracking UV Fault Threshold (Offset with respect to output voltage target including VDROOP)</td>
<td>Programmable Range ((2))</td>
<td>32</td>
<td>448</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>32</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-21</td>
<td>21</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(t_{D L Y (U V F)}) Deglitch Time for Triggering UV Fault ((1))</td>
<td>(VOUT_{-U V F A U T U L R E S P O N S E}[2:0] = x00b)</td>
<td>4</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(VOUT_{-U V F A U T U L R E S P O N S E}[2:0] = x01b)</td>
<td>8</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_OC.P.A Channel A Overcurrent Protection Threshold</td>
<td>VOUT_UV_FAULT_RESPONSE[2:0] = x10b</td>
<td>12</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>VOUT_UV_FAULT_RESPONSE[2:0] = x11b</td>
<td>16</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>I_OC.P.B Channel B Overcurrent Protection Threshold</td>
<td>Programmable Range (2)</td>
<td>1</td>
<td>1023</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Accuracy (11 phase, IOCP ≤ 135 A)</td>
<td>-7</td>
<td>7</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Accuracy (11 phase, IOCP > 135 A)</td>
<td>-4</td>
<td>4</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I_OC.W.A Channel A Overcurrent Warning Threshold</td>
<td>Programmable Range (2)</td>
<td>1</td>
<td>1023</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Accuracy (11 phase, IOCW ≤ 135 A)</td>
<td>-7</td>
<td>7</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Accuracy (11 phase, IOCW > 135 A)</td>
<td>-4</td>
<td>4</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I_OC.W.B Channel B Overcurrent Warning Threshold</td>
<td>Programmable Range (2)</td>
<td>1</td>
<td>1023</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Accuracy (4 phase, IOCP ≤ 75 A)</td>
<td>-3</td>
<td>3</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Accuracy (4 phase, IOCP > 75 A)</td>
<td>-3</td>
<td>3</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>T_OTF Over-temperature Fault threshold</td>
<td>Programmable Range</td>
<td>90</td>
<td>160</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>1</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-3</td>
<td>3</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_OTW Over-temperature Warning threshold</td>
<td>Programmable Range</td>
<td>90</td>
<td>160</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>10</td>
<td></td>
<td>10</td>
<td>°C</td>
</tr>
<tr>
<td>V_IOVF Input over-voltage fault threshold</td>
<td>Programmable Range</td>
<td>4</td>
<td>18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>-2</td>
<td>2</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>V_IOVV Input over-voltage warning threshold</td>
<td>Programmable Range</td>
<td>4</td>
<td>18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>-2</td>
<td>2</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>V_IUVW Input under-voltage warning threshold</td>
<td>Programmable Range</td>
<td>4.25</td>
<td>11.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>0.25</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-0.25</td>
<td>0.25</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_IUWF Input under-voltage fault threshold</td>
<td>Programmable Range</td>
<td>4.0</td>
<td>11.25</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>0.25</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-0.25</td>
<td>0.25</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>T_UVF Input Under-Voltage Fault Response Time (1)</td>
<td>VOUT_UV_FAULT_RESPONSE = 80h</td>
<td></td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>Time from VIN < V_UVF to converter shutdown</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_OC8F Input over-current fault threshold</td>
<td>Programmable Range</td>
<td>4</td>
<td>128</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>4</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-3.5</td>
<td>3.5</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{OCW})</td>
<td>Input over-current warning threshold</td>
<td>Programmable Range</td>
<td>4</td>
<td>128</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>4</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy (all settings)</td>
<td>-4</td>
<td>4</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(t_{HICCUP})</td>
<td>Hiccup Wait Time (1) Applies only to HICCUP fault responses</td>
<td>USER_DATA_11[15:14] = 00b</td>
<td>5</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_11[15:14] = 01b</td>
<td>10</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_11[15:14] = 10b</td>
<td>25</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER_DATA_11[15:14] = 11b</td>
<td>50</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>(V_{PSFLT})</td>
<td>ATSEN/BTSEN pin voltage causing Power stage fault (TAO HIGH)</td>
<td></td>
<td>2.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>ATSEN/BTSEN pin voltage clearing Power stage fault (TAO HIGH)</td>
<td></td>
<td>2.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>ATSEN/BTSEN pin voltage hysteresis for Power stage fault (TAO HIGH)</td>
<td></td>
<td>0.2</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

(1) Specified by Design.
(2) Settings are programmed through PMBus commands as described in the Programming section of this document. The device internally maps programmed settings to hardware supported values.

6.4.19 PMBus/AVS Interfaces

VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T_J = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PMB-BUF})</td>
<td>PMBus Free time between STOP and START conditions (1)</td>
<td>0.5</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>(t_{PMB-HD-STA})</td>
<td>Hold time after Repeated Start Condition (1)</td>
<td>0.26</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>(t_{PMB-SU-STO})</td>
<td>Stop condition Setup time (1)</td>
<td>0.26</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>(t_{PMB-HD-DAT})</td>
<td>SMB_DIO Hold Time (1) (2)</td>
<td>0</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>(t_{PMB-SU-DAT})</td>
<td>SMB_DIO Setup Time</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PMB-TIMEOUT})</td>
<td>SMB_CLK low timeout (1) (3)</td>
<td>25</td>
<td>35</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>(t_{PMB-LOW})</td>
<td>SMB_CLK low time (1)</td>
<td>0.5</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>(t_{PMB-HIGH})</td>
<td>SMB_CLK high time (1) (4)</td>
<td>0.26</td>
<td>50</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>(t_{PMB-LOW-SEXT})</td>
<td>Maximum clock stretching time (slave) (1) (5)</td>
<td>25</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>(t_{PMB-LOW-MEXT})</td>
<td>Maximum clock stretching time (master) (1) (6)</td>
<td>10</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>(t_{P-F-PMB})</td>
<td>SMB_DIO/SMB_CLK rise time, ((V_{IL,(MAX)}) - 150 mV to (V_{IH,(MIN)}) + 150 mV) (1)</td>
<td>100 kHz Class</td>
<td>1000</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 kHz Class</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 kHz Class</td>
<td>120</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{F-PMB})</td>
<td>SMB_DIO/SMB_CLK fall time, ((V_{IH,(MIN)}) + 150 mV to (V_{IL,(MAX)}) + 150 mV) (1)</td>
<td>100 kHz Class</td>
<td>1000</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 kHz Class</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 kHz Class</td>
<td>120</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PMB-REJ})</td>
<td>Noise spike suppression-time (1) (7)</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(I_{L-K-PMB-BUS})</td>
<td>Input leakage per PMBus segment (1)</td>
<td>-200</td>
<td>200</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{L-K-PMB-PIN})</td>
<td>Input leakage for PMBus pins</td>
<td>-10</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TPS53676
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, T\textsubscript{J} = -40 to 125 °C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C\textsubscript{PMB-BUS}</td>
<td>PMBus Bus Capacitance</td>
<td>400</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C\textsubscript{PMB-PIN}</td>
<td>PMBus Pin Capacitance</td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{PULLUP_PM}</td>
<td>PMBus interface pull ups</td>
<td>1.62</td>
<td>3.63</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{IL_PMBus}</td>
<td>SMB_DIO, SMB_CLK Input logic low</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{IH_PMBus}</td>
<td>SMB_DIO, SMB_CLK Input logic high</td>
<td>1.35</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{HYST_PM}</td>
<td>Hysteresis voltage</td>
<td>80</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{OL_PMBus}</td>
<td>Low-level output voltage</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMBCLKR</td>
<td>PMBus clock frequency range</td>
<td>0.05</td>
<td>2 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVSBus Timing and Physical Characteristics

<table>
<thead>
<tr>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t\textsubscript{P-AVS}</td>
<td>AVS_CLK Active Clock Period</td>
<td>20</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>t\textsubscript{HIGH-AVSCLK}</td>
<td>AVS_CLK high period</td>
<td>10</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{LOW-AVSCLK}</td>
<td>AVS_CLK low period</td>
<td>t\textsubscript{P-AVS}/2</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{T-O-AVSCLK}</td>
<td>AVS Clock Timeout Delay</td>
<td>5</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>N\textsubscript{PRECLK-AVS}</td>
<td>Number of preamble AVSCLK required to accept AVS frame after AVS clock timeout</td>
<td>2</td>
<td>cycles</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{R-AVS}</td>
<td>AVS_MDATA, AVS_SDATA rise time</td>
<td>3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{F-AVS}</td>
<td>AVS_MDATA, AVS_SDATA fall time</td>
<td>3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{PD-AVS}</td>
<td>Time for signals to propagate from one device to another</td>
<td>4</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{CAPT-AVSS}</td>
<td>Time from falling clock edge in Master to data capture inside slave</td>
<td>t\textsubscript{PD-AVS} \times 2</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{SU-AVSS}</td>
<td>Time from data-out edge in Master to clock edge in Slave</td>
<td>2 \times t\textsubscript{PD-AVS}</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{LAUNCH-AVSS}</td>
<td>Time from rising clock edge in Master to data-out transition at Slave's data-out port</td>
<td>2 \times t\textsubscript{PD-AVS} + 8 \times t\textsubscript{PD-AVS} + 14 \times t\textsubscript{PD-AVS}</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{H-AVSM}</td>
<td>Time from capture clock edge in Master to data-out edge in Slave (for next bit)</td>
<td>2 \times t\textsubscript{LOW-AVSCLK}</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{LK-AVS}</td>
<td>AVSBus pin (AVS_MDATA, AVS_SDATA, AVS_CLK, AVS_VDDIO) leakage</td>
<td>-10</td>
<td>10 µA</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{DDIO-AVSSbus}</td>
<td>AVS_VDDIO input range</td>
<td>1.14</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V\textsubscript{IL-AVSSMDA}</td>
<td>AVS_MDATA input logic low</td>
<td>0.4 \times V\textsubscript{DDI}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{IH-AVSSMDA}</td>
<td>AVS_MDATA input logic high</td>
<td>0.6 \times V\textsubscript{DDI}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{OL-AVSSSDA}</td>
<td>AVS_SDATA output logic low</td>
<td>0.2 \times V\textsubscript{DDI}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{OH-AVSSSDA}</td>
<td>AVS_SDATA output logic high</td>
<td>0.8 \times V\textsubscript{DDI}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AVS_CLKR</td>
<td>AVSBus clock frequency range</td>
<td>5</td>
<td>50 MHz</td>
<td></td>
</tr>
</tbody>
</table>

(1) Specified by Design.
(2) A device must internally provide sufficient hold time for the SMBDAT signal (with respect to the V\textsubscript{IH_MIN} of the SMBCLK signal) to bridge the undefined region of the falling edge of SMBCLK.
(3) Devices participating in a transfer can abort the transfer in progress and release the bus when any single clock low interval exceeds the value of $t_{\text{TIMEOUT, MIN}}$. After the master in a transaction detects this condition, it must generate a stop condition within or after the current data byte in the transfer process. Devices that have detected this condition must reset their communication and be able to receive a new START condition no later than $t_{\text{TIMEOUT, MAX}}$. Typical device examples include the host controller, and embedded controller, and most devices that can master the SMBus. Some simple devices do not contain a clock low drive circuit; this simple kind of device typically may reset its communications port after a start or a stop condition. A timeout condition can only be ensured if the device that is forcing the timeout holds the SMBCLK low for $t_{\text{TIMEOUT, MAX}}$ or longer.

(4) $t_{\text{MB-HIGH, MAX}}$ provides a simple guaranteed method for masters to detect bus idle conditions. A master can assume that the bus is free if it detects that the clock and data signals have been high for greater than $t_{\text{HIGH, MAX}}$.

(5) $t_{\text{MB-LOW-SEXT}}$ is the cumulative time a given slave device is allowed to extend the clock cycles in one message from the initial START to the STOP. It is possible that another slave device or the master also extends the clock, causing the combined clock low extend time to be greater than $t_{\text{LOW-SEXT}}$. Therefore, this parameter is measured with the slave device as the sole target of a full-speed master.

(6) $t_{\text{MB-LOW-MEXT}}$ is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or another master also extends the clock, causing the combined clock low time to be greater.

(7) Devices must provide a means to reject noise spikes of a duration up to the maximum specified value.

(8) The clock used by the slave is a delayed version of the clock in the master. For that reason, launching data from the slave starts later than launching from the master, and relatively speaking, capturing by the master comes earlier. If t_{delay} is large on a given board, it may be necessary to increase t_{HIGH} to compensate and give more time for the data to go from the slave to the master.

(9) I2C High-speed mode is not supported.

(10) Due to the upper limit $t_{\text{LAUNCH-AVSS}}$ operation at 50 MHz typically requires changing the duty cycle of the AVS_CLK to allow more launch time for the TPS53676.
7 Detailed Description

7.1 Overview

The TPS53676 is a 7-phase step-down controller with two channels, built-in non-volatile memory (NVM), AVSBus, and PMBus interface, and is fully compatible with TI NexFET power stages.

7.2 Functional Block Diagram

![Functional Block Diagram](image-url)
7.3 Power-up and initialization

7.3.1 First power-up

When power is applied to TPS53676, an initialization procedure performs self-checks of internal memories, performs pin detection, and loads the values stored in non-volatile memory to operating memory. This procedure can take up to 20 ms to complete, during which time the device may not respond to PMBus commands. Initialization takes place the first time power is applied to the VCC pin and does not repeat unless the device is power cycled. Pin configuration is loaded during this time. Until initialization is complete, all pins remain high impedance, except for the AVR_RDY and BVR_RDY pins which are pulled low by default.

Once initialization is complete, the device waits for an enable condition specified by the ON_OFF_CONFIG command to begin power conversion. By default the device is configured to wait for the AVR_EN pin to be set high to enable channel A, and the BVR_EN pin to be set high to enable channel B. Once an enable condition is received, TPS53676 checks that the powerstage input supply (VIN_CSNIN pin) is above the VIN_ON value, and the powerstage driver is fully powered (e.g. that no TAO_LOW condition exists). This takes approximately 750 μs (up to 1.0 ms) to complete before the first PWM pulses are output by the controller. This process repeats each time power conversion is enabled for any reason, including enable cycling or fault shutdown.

Figure 7-1. Initialization process

7.3.2 Boot voltage configuration (BOOT_CHA)

By default, the boot voltage for channel A is given by pin-detection on the BOOT_CHA pin. Alternatively, configure the device to use a value stored in non-volatile memory (NVM) for VOUT_COMMAND using the PIN_DETECT_OVERRIDE command. See Section 7.4.4 for more information. The boot voltage for Channel B is given by the value stored in non-volatile memory for VOUT_COMMAND always. Whenever power conversion is enabled, each channel boots to its VBOOT value, regardless of whether the output voltage was changed after the last boot-up.

Use the VOUT_COMMAND PMBus command or the AVSBus Vout command to change the output voltage on-the-fly. This is one implementation of adaptive voltage scaling (AVS) or dynamic VID (DVID). Output voltage transitions occur at the value slew rate specified by the VOUT_TRANSITION_RATE command.

7.3.3 Power Sequencing

There are no strict supply sequencing requirements for TPS53676. VIN_CSNIN and CSP, the powerstage 5-V supply, and the controller VCC (3.3-V) may be safely powered up independently of each other. TI recommends that the AVR_EN/BVR_EN signals be asserted last, once all supplies are established and have had time to settle. Refer to Power Supply Recommendations for more information.
7.4 Pin connections and behavior

7.4.1 Supplies: VCC and VREF

The VCC pin supplies all analog and digital circuits internal to the device. Connect a 3.3-V supply voltage, and local ceramic bypass capacitor with a minimum effective capacitance of 1.0 µF.

The VREF pin is the output of an internal LDO with a nominal voltage of 1.5 V. The VREF voltage provides a common-mode voltage for the power stage IOUT pins, as well as internal analog circuits. Bypass the VREF pin local to the controller, with a ceramic bypass capacitor with a minimum effective capacitance of 1.0 µF. Connect VREF to the REFIN pins of the power stages.

7.4.2 Differential remote sensing and output voltage scaling: AVSP/AVSN, BVSP/BVSN

A differential remote sense amplifier enables the controller to compensate for I×R drop due to PCB copper, in high current applications. Connect the AVSP/BVSP and AVSN/BVSN pins respectively to the output voltage at the load point, through the network described in Figure 7-2. A connection to the output voltage, local to the power stages, shown by \(R_{LCL_P} \) and \(R_{LCL_N} \), maintains closed loop operation even if the load is uninstalled, or the remote sense connection is opened. Route the differential remote sense lines as a tightly-coupled differential pair, and maintain a wide clearance to any fast switching nets, such as power stage switch nodes or power input voltage. Optionally, use a small filtering capacitor, shown as \(C_{FILT} \), at the controller side to improve noise immunity.

An internal precision reference DAC generates the output voltage set-point. The reference DAC is produces reference voltages up to 1.87 V. For output voltage set-points below 1.87 V, no scaling (internal or external) is required, and the sensed output voltage is compared directly to the reference voltage.

For output voltage set-points between 1.87 V and 3.74 V, the controller applies internal scaling of the remote sense amplifier, and no external sense divider is needed. Set the \(VOUT_MAX \) command greater than 1.87 V to enable this internal scaling. For output voltage set-points greater than 3.74 V, apply an external sense divider with \(R_{RMT_P} = R_{DIV} = 500 \, \Omega \), and set the \(VOUT_SCALE_LOOP \) command to 0.5 V/V. This enables output voltage set-points up to 5.5 V. The overvoltage/undervoltage thresholds are referenced to the VSP/VSN pins only and need to be scaled appropriately for applications with an external resistor divider. Refer to Table 7-1 for more information.

TPS53676 performs an open- and short-circuit detection on the AVSP/AVSN and BVSP/BVSN pins at initialization to determine if the voltage sense lines are open. The controller flags a fault condition and does not attempt to boot if an open sense line is detected. Ground the VSP/VSN lines for unused channels to prevent false-triggering, in applications which do not make use of both channels. As such, the local sense resistor connection may be omitted, but is still recommended for debug and system bode plot measurement.

![Figure 7-2. Differential remote sensing](image-url)
Table 7-1. Component and command values

<table>
<thead>
<tr>
<th>Component / Command(1)</th>
<th>Value (Vout ≤ 1.87 V)</th>
<th>Value (1.87 V < Vout ≤ 3.74 V)</th>
<th>Value (3.74 V < Vout ≤ 5.5 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>LCL_P</sub></td>
<td>DNP</td>
<td>DNP</td>
<td>DNP</td>
</tr>
<tr>
<td>R<sub>RMT_P</sub></td>
<td>0 Ω</td>
<td>0 Ω</td>
<td>500 Ω</td>
</tr>
<tr>
<td>R<sub>RMT_N</sub></td>
<td>0 Ω</td>
<td>0 Ω</td>
<td>0 Ω</td>
</tr>
<tr>
<td>R<sub>LCL_N</sub></td>
<td>DNP</td>
<td>DNP</td>
<td>DNP</td>
</tr>
<tr>
<td>R<sub>DIV</sub></td>
<td>DNP</td>
<td>DNP</td>
<td>500 Ω</td>
</tr>
<tr>
<td>C<sub>FILT</sub></td>
<td>100 pF (optional)</td>
<td>100 pF (optional)</td>
<td>100 pF (optional)</td>
</tr>
<tr>
<td>VOUT_SCALE_LOOP</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>VOUT_MAX</td>
<td>VOUT_MAX ≤ 1.87 V</td>
<td>1.87 V < VOUT_MAX ≤ 3.74 V</td>
<td>3.74 V < VOUT_MAX ≤ 5.5 V</td>
</tr>
<tr>
<td>VOUT_COMMAND</td>
<td>VOUT_COMMAND ≤ 1.87 V</td>
<td>VOUT_COMMAND ≤ 3.74 V</td>
<td>VOUT_COMMAND ≤ 5.5 V</td>
</tr>
</tbody>
</table>

(1) PMBus commands may accept a greater range of values than those listed, this table gives TI recommended values.

7.4.3 Input current sensing: VIN_CSIN and CSPIN

The VIN_CSIN and CSP pins are internally connected to a high-side current sense amplifier. Kelvin connect these pins to the external sense element R_{SENSE} as shown in Figure 7-3, and route back to the controller as a tightly coupled differential pair. R_{SENSE} may be a precision current sense shunt resistor or an input inductor DCR, with an associated temperature compensation network. TI recommends adding common-mode filtering capacitors, shown as C_{CMFILT}, and a differential-mode filtering capacitor C_{DMFILT} to reduce measurement noise. A typical value for these capacitors is 1.0 µF.

For designs that do not use input current sensing, connect VIN_CSIN and CSPIN together, and to the input voltage supply. The controller requires input voltage sense for proper on-time generation. Ensure the VIN_CSIN and CSPIN pins remain within ± 300 mV due to internal ESD protection structures on these pins.

Figure 7-3. Input current sensing

Once properly calibrated, the READ_IIN command returns measured input current data in real time. Section 7.5.3 describes the process and equations for input current calibration.

7.4.4 Pin-strap detection and PIN_DETECT_OVERRIDE

The ADDR pin provides limited resistor pin detection for the PMBus slave address. Connect a resistor divider to ADDR as shown in Figure 7-4. Refer to Table 7-2 to select resistor values. The table shows series E96 value equivalents. Use 1% tolerance resistors for all values. The device loads the decoded value into the SLAVE_ADDRESS command, after pin detection completes. Disable ADDR pin detection using PIN_DETECT_OVERRIDE, to use another address, which is not available in the table.
The BOOT_CHA pin provides resistor pin detection for the channel A boot voltage. The channel B boot voltage does not have pin detection and must be programmed in non-volatile memory. Connect a resistor divider to BOOT_CHA as shown in Table 7-2. The table shows series E96 value equivalents. Use 1% tolerance resistors for all values. After pin detection completes, the decoded result is loaded into the VOUT_COMMAND command for PAGE 0.

For each pin detection, during boot-up the device performs two measurements to determine an 8 bit binary number, referred to as the pinstrap decode. The 3 LSB bits are determined by shorting the high-side resistor and measuring the low-side resistor value. Pin voltage measurement determines the 5 MSB bits. Pinstrap decodes are mapped to PMBus addresses, and Channel A VBOOT values as shown in the tables below.

Use the PIN_DETECT_OVERRIDE command to achieve values not given by the tables below. This command instructs the device at power-up, whether to follow the values given by pin detection, or use values stored in non-volatile memory to populate the SLAVE_ADDRESS, and VOUT_COMMAND commands.

Figure 7-4. Pin-strap pin connections

Example: Selecting a PMBus address not available by pin-strapping

1. Select the ADDR resistors \(R_{HA}\) and \(R_{LA}\) to ensure each device on the bus still has a unique address at the first power-up. Each device must still be addressed uniquely, in order to configure the PIN_DETECT_OVERRIDE command.
2. Set bit 1 of PIN_DETECT_OVERRIDE 0b, to disable pin detection for the ADDR pin.
3. Write the SLAVE_ADDRESS command, to configure the new slave address, in 7-bit right justified binary format.
4. Issue a STORE_USER_ALL command to commit the configuration to non-volatile memory.
5. At the next power cycle, the values stored in non-volatile memory are used, instead of those selected by the ADDR resistors.
Table 7-2 shows ADDR pinstrap decoding.

<table>
<thead>
<tr>
<th>MSB</th>
<th>PMBus Address</th>
<th>R_{LA} (kΩ)</th>
<th>R_{HA} (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000b</td>
<td>88d / B0h</td>
<td>20</td>
<td>1300</td>
</tr>
<tr>
<td>00001b</td>
<td>89d / B2h</td>
<td>20</td>
<td>422</td>
</tr>
<tr>
<td>00010b</td>
<td>90d / B4h</td>
<td>20</td>
<td>249</td>
</tr>
<tr>
<td>00011b</td>
<td>91d / B6h</td>
<td>20</td>
<td>169</td>
</tr>
<tr>
<td>00100b</td>
<td>92d / B8h</td>
<td>20</td>
<td>127</td>
</tr>
<tr>
<td>00101b</td>
<td>93d / BAh</td>
<td>20</td>
<td>102</td>
</tr>
<tr>
<td>00110b</td>
<td>94d / BCh</td>
<td>20</td>
<td>82.5</td>
</tr>
<tr>
<td>00111b</td>
<td>95d / BEh</td>
<td>20</td>
<td>68.1</td>
</tr>
<tr>
<td>01000b</td>
<td>96d / C0h</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>01001b</td>
<td>97d / C2h</td>
<td>Not recommended - reserved address</td>
<td></td>
</tr>
<tr>
<td>01010b</td>
<td>98d / C4h</td>
<td>20</td>
<td>43.2</td>
</tr>
<tr>
<td>01011b</td>
<td>99d / C6h</td>
<td>20</td>
<td>38.3</td>
</tr>
<tr>
<td>01100b</td>
<td>100d / C8h</td>
<td>20</td>
<td>33.2</td>
</tr>
<tr>
<td>01101b</td>
<td>101d / CAh</td>
<td>20</td>
<td>29.4</td>
</tr>
<tr>
<td>01110b</td>
<td>102d / CCh</td>
<td>20</td>
<td>26.1</td>
</tr>
<tr>
<td>01111b</td>
<td>103d / CEh</td>
<td>20</td>
<td>23.2</td>
</tr>
<tr>
<td>10000b</td>
<td>104d / D0h</td>
<td>20</td>
<td>20.5</td>
</tr>
<tr>
<td>10001b</td>
<td>105d / D2h</td>
<td>20</td>
<td>18.2</td>
</tr>
<tr>
<td>10010b</td>
<td>106d / D4h</td>
<td>20</td>
<td>16.2</td>
</tr>
<tr>
<td>10011b</td>
<td>107d / D6h</td>
<td>20</td>
<td>14.3</td>
</tr>
<tr>
<td>10100b</td>
<td>108d / D8h</td>
<td>20</td>
<td>12.4</td>
</tr>
<tr>
<td>10101b</td>
<td>109d / DAh</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>10110b</td>
<td>110d / DCh</td>
<td>20</td>
<td>9.53</td>
</tr>
<tr>
<td>10111b</td>
<td>111d / DEh</td>
<td>20</td>
<td>8.45</td>
</tr>
<tr>
<td>11000b</td>
<td>112d / E0h</td>
<td>20</td>
<td>7.15</td>
</tr>
<tr>
<td>11001b</td>
<td>113d / E2h</td>
<td>20</td>
<td>6.19</td>
</tr>
<tr>
<td>11010b</td>
<td>114d / E4h</td>
<td>20</td>
<td>5.11</td>
</tr>
<tr>
<td>11011b</td>
<td>115d / E6h</td>
<td>20</td>
<td>4.22</td>
</tr>
<tr>
<td>11100b</td>
<td>116d / E8h</td>
<td>20</td>
<td>3.4</td>
</tr>
<tr>
<td>11101b</td>
<td>117d / EAh</td>
<td>20</td>
<td>2.61</td>
</tr>
<tr>
<td>11110b</td>
<td>118d / ECh</td>
<td>20</td>
<td>1.87</td>
</tr>
<tr>
<td>11111b</td>
<td>119d / EEh</td>
<td>20</td>
<td>1.15</td>
</tr>
</tbody>
</table>
Table 7-3. BOOT_CHA Pinstrap Decoding

<table>
<thead>
<tr>
<th>MSB</th>
<th>(R_{LB} = 20.0 , \text{kΩ})</th>
<th>(R_{LB} = 27.4 , \text{kΩ})</th>
<th>(R_{LB} = 37.4 , \text{kΩ})</th>
<th>(R_{LB} = 49.9 , \text{kΩ})</th>
<th>(R_{LB} = 64.9 , \text{kΩ})</th>
<th>(R_{LB} = 86.6 , \text{kΩ})</th>
<th>(R_{LB} = 115.0 , \text{kΩ})</th>
<th>(R_{LB} = 154.0 , \text{kΩ})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB = 000b</td>
<td>(V_{BOOTA}) (V)</td>
<td>(R_{Res}) (kΩ)</td>
</tr>
<tr>
<td>0000b</td>
<td>Do Not Use</td>
<td>0.25</td>
<td>1780</td>
<td>0.26</td>
<td>2430</td>
<td>0.27</td>
<td>3240</td>
<td>0.28</td>
</tr>
<tr>
<td>0001b</td>
<td>0.32</td>
<td>422</td>
<td>0.33</td>
<td>576</td>
<td>0.34</td>
<td>787</td>
<td>0.35</td>
<td>1050</td>
</tr>
<tr>
<td>0010b</td>
<td>0.4</td>
<td>249</td>
<td>0.41</td>
<td>340</td>
<td>0.42</td>
<td>464</td>
<td>0.43</td>
<td>619</td>
</tr>
<tr>
<td>0011b</td>
<td>0.48</td>
<td>169</td>
<td>0.49</td>
<td>232</td>
<td>0.5</td>
<td>316</td>
<td>0.51</td>
<td>422</td>
</tr>
<tr>
<td>0100b</td>
<td>0.56</td>
<td>127</td>
<td>0.57</td>
<td>174</td>
<td>0.58</td>
<td>237</td>
<td>0.59</td>
<td>316</td>
</tr>
<tr>
<td>0101b</td>
<td>0.64</td>
<td>102</td>
<td>0.65</td>
<td>140</td>
<td>0.66</td>
<td>191</td>
<td>0.67</td>
<td>285</td>
</tr>
<tr>
<td>0110b</td>
<td>0.72</td>
<td>82.5</td>
<td>0.73</td>
<td>113</td>
<td>0.74</td>
<td>154</td>
<td>0.75</td>
<td>205</td>
</tr>
<tr>
<td>0111b</td>
<td>0.8</td>
<td>68.1</td>
<td>0.81</td>
<td>95.3</td>
<td>0.82</td>
<td>130</td>
<td>0.83</td>
<td>174</td>
</tr>
<tr>
<td>1000b</td>
<td>0.88</td>
<td>59</td>
<td>0.89</td>
<td>80.6</td>
<td>0.9</td>
<td>110</td>
<td>0.91</td>
<td>147</td>
</tr>
<tr>
<td>1001b</td>
<td>0.96</td>
<td>49.9</td>
<td>0.97</td>
<td>68.1</td>
<td>0.98</td>
<td>93.1</td>
<td>0.99</td>
<td>124</td>
</tr>
<tr>
<td>1010b</td>
<td>1.04</td>
<td>43.2</td>
<td>1.05</td>
<td>59</td>
<td>1.06</td>
<td>80.6</td>
<td>1.07</td>
<td>110</td>
</tr>
<tr>
<td>1011b</td>
<td>1.12</td>
<td>38.3</td>
<td>1.13</td>
<td>52.3</td>
<td>1.14</td>
<td>71.5</td>
<td>1.15</td>
<td>95.3</td>
</tr>
<tr>
<td>1100b</td>
<td>1.2</td>
<td>33.2</td>
<td>1.21</td>
<td>45.3</td>
<td>1.22</td>
<td>61.9</td>
<td>1.23</td>
<td>82.5</td>
</tr>
<tr>
<td>1101b</td>
<td>1.28</td>
<td>29.4</td>
<td>1.29</td>
<td>40.2</td>
<td>1.3</td>
<td>54.9</td>
<td>1.31</td>
<td>73.2</td>
</tr>
<tr>
<td>1110b</td>
<td>1.36</td>
<td>26.1</td>
<td>1.37</td>
<td>35.7</td>
<td>1.38</td>
<td>48.7</td>
<td>1.39</td>
<td>64.9</td>
</tr>
<tr>
<td>1111b</td>
<td>1.44</td>
<td>23.2</td>
<td>1.45</td>
<td>31.6</td>
<td>1.46</td>
<td>43.2</td>
<td>1.47</td>
<td>57.6</td>
</tr>
<tr>
<td>1000b</td>
<td>1.52</td>
<td>20.5</td>
<td>1.53</td>
<td>28</td>
<td>1.54</td>
<td>38.3</td>
<td>1.55</td>
<td>51.1</td>
</tr>
<tr>
<td>1001b</td>
<td>1.6</td>
<td>18.2</td>
<td>1.61</td>
<td>24.9</td>
<td>1.62</td>
<td>34</td>
<td>1.63</td>
<td>45.3</td>
</tr>
<tr>
<td>1010b</td>
<td>1.68</td>
<td>16.2</td>
<td>1.69</td>
<td>22.1</td>
<td>1.7</td>
<td>30.1</td>
<td>1.71</td>
<td>40.2</td>
</tr>
<tr>
<td>1011b</td>
<td>1.76</td>
<td>14.3</td>
<td>1.77</td>
<td>19.6</td>
<td>1.78</td>
<td>26.7</td>
<td>1.79</td>
<td>35.7</td>
</tr>
<tr>
<td>1100b</td>
<td>1.84</td>
<td>12.4</td>
<td>1.85</td>
<td>17.4</td>
<td>1.86</td>
<td>23.2</td>
<td>1.87</td>
<td>30.9</td>
</tr>
<tr>
<td>1101b</td>
<td>1.92</td>
<td>11</td>
<td>1.93</td>
<td>15</td>
<td>1.94</td>
<td>20.5</td>
<td>1.95</td>
<td>27.4</td>
</tr>
<tr>
<td>1110b</td>
<td>2</td>
<td>9.53</td>
<td>2.01</td>
<td>13.3</td>
<td>2.02</td>
<td>18.2</td>
<td>2.03</td>
<td>24.3</td>
</tr>
<tr>
<td>1111b</td>
<td>2.08</td>
<td>8.45</td>
<td>2.09</td>
<td>11.5</td>
<td>2.1</td>
<td>15.8</td>
<td>2.11</td>
<td>21</td>
</tr>
</tbody>
</table>

(1) Requires the use of an external output voltage divider.
7.4.5 Enable and disable: AVR_EN and BVR_EN

The ON_OFF_CONFIG command controls the conditions which TPS53676 requires to enable power conversion. By default only the AVR_EN (active high) pin enables channel A, and only the BVR_EN pin (active high) enables channel B. This command can program the controller ignore the VR_EN pins and require the OPERATION command to be sent to enable power conversion, or even require a combination of the two.

When enabled, first the controller waits for a delay time given by TON_DELAY, then ramps the output voltage at a controlled slew rate SRBOOT. The device requires 750 μs typically (up to 1.0 ms), to begin ramping the output voltage, after being enabled. Turn-on delay added by the TON_DELAY is in addition to this delay.

The ON_OFF_CONFIG command also controls the turn-off behavior. When configured for immediate-off, the controller immediately tri-states all PWM pins assigned to that channel and stops transferring power immediately. When configured for soft-off the controller first waits for the TOFF_DELAY time, then actively ramps down the output voltage at a controlled slew rate.

![Figure 7-5. Soft-start and immediate-off (decay)](image)

![Figure 7-6. Soft-start and soft-off](image)

The TON_RISE and TOFF_FALL commands are used to calculate the turn-on and turn-off (in the case of soft-off) slew rates. While these commands are numerically programmable from 0 to 31.75 ms, only a limited set of slew rates are supported. During the enable time period, the device calculates the target rising and falling slew rates according to Equation 1 and Equation 2, then selects the nearest available value from Table 7-4.

\[
SR_{BOOT} = \text{LOOKUP}\left(\frac{\text{VOUT COMMAND}}{\text{TON_RISE}}\right) \quad (1)
\]

\[
SR_{OFF} = \text{LOOKUP}\left(\frac{\text{VOUT COMMAND}}{\text{TOFF_FALL}}\right) \quad (2)
\]

Table 7-4. Supported SRBOOT and SROFF slew rates

<table>
<thead>
<tr>
<th>Supported slew rates (mV/μs)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.093</td>
<td>0.313</td>
</tr>
<tr>
<td>0.097</td>
<td>0.625</td>
</tr>
<tr>
<td>0.101</td>
<td>0.938</td>
</tr>
<tr>
<td>0.105</td>
<td>1.250</td>
</tr>
<tr>
<td>0.111</td>
<td>1.563</td>
</tr>
<tr>
<td>0.117</td>
<td>1.875</td>
</tr>
<tr>
<td>0.124</td>
<td>2.188</td>
</tr>
<tr>
<td>0.131</td>
<td>2.50</td>
</tr>
<tr>
<td>0.140</td>
<td>5.00</td>
</tr>
<tr>
<td>0.151</td>
<td>10.00</td>
</tr>
<tr>
<td>1.163</td>
<td>15.00</td>
</tr>
<tr>
<td>0.175</td>
<td>20.00</td>
</tr>
<tr>
<td>0.192</td>
<td>25.00</td>
</tr>
</tbody>
</table>
Table 7-4. Supported SR_{BOOT} and SR_{OFF} slew rates (continued)

<table>
<thead>
<tr>
<th>Supported slew rates (mV/μs)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.213</td>
<td>30.00</td>
</tr>
<tr>
<td>0.238</td>
<td>35.00</td>
</tr>
<tr>
<td>0.265</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Example: VOUT_COMMAND = 0.88 V, TON_RISE = 1.0 ms

The target slew rate is calculated as SR_{BOOT} = LOOKUP(880 mV/1000 μs) = 0.88 mV/μs. The nearest supported value of 0.9375 mV/μs is selected.

The expected rise time is approximately (880 mV / 0.9375 mV/μs) = 940 μs.

7.4.6 System feedback: AVR_RDY and BVR_RDY

The AVR_RDY and BVR_RDY pins are used to signal to the system, when each channel is in regulation. These pins are open drain structures, and require external pull-up resistors. During boot-up, the VR_RDY pins are released when the internal reference DAC reaches the boot voltage. Any condition which causes the channel to stop converting power, causes its VR_RDY pin to pull low. This includes any fault protection-related shutdown, or the channel simply being disabled. The VR_RDY pins do not assert to alert the host to any warning conditions or faults configured to be ignored. The VR_RDY pins de-assert at the beginning of the TOFF_DELAY time, when soft-off is used.

7.4.7 Catastrophic fault alert: VR_FAULT#

The VR_FAULT# pin is an open drain output, which alerts the system to potentially catastrophic power supply faults. The VR_FAULT# pin is an open drain structure. Connect an external pull-up resistor to this pin.

Only the most critical fault conditions assert the VR_FAULT# pin. Fault responses configured to be ignored, do not assert the VR_FAULT# pin. The VR_FAULT_CONFIG PMBus command provides some options to control which fault conditions cause this pin to assert.

Fault conditions which assert the VR_FAULT# pin include:
- Over-voltage fault (including pre-bias OVP, fixed OVP, and tracking OVP)
- Powerstage fault (TAO_HIGH)
- Input overcurrent fault
- Output overcurrent fault (configurable)
- Over-temperature fault (configurable)
- Faults from channel A only, or channel A+B (configurable)

7.4.8 Output voltage reset: RESET#

By default, pin 19 functions as the channel B enable pin, BVR_EN. Use the MULTIFUNCTION_PIN_CONFIG command to assign pin 19 as a hardware voltage reset signal, RESET#, as needed. When pin 19 is not assigned as BVR_EN, the AVR_EN pin becomes a shared enable pin for both channels. RESET# is an active-low signal. Connect an external pull-up to this pin to make its default state high (e.g. not in reset).

Asserting the RESET# pin low during regulation causes the output voltage of both channels to slew back to their respective V_{BOOT} values, at the slew rate defined by VOUT_TRANSITION_RATE. While RESET# is asserted low, new output voltage targets from PMBus are ignored. Figure 7-7 describes the behavior of the RESET# pin.
The RESET# pin is not a global reset pin for the device. Asserting RESET# changes only the output voltage target of both channels. RESET# does not cause any operating state change or re-initialization.

7.4.9 Synchronization: SYNC

By default, pin 19 functions as the channel B enable pin, BVR_EN. Use the MULTIFUNCTION_PIN_CONFIG command to assign pin 19 as a synchronization pin as needed. When pin 19 is not assigned as BVR_EN, the AVR_EN pin becomes a shared enable pin for both channels. When there is no SYNC pin assigned, configure the SYNC_CONFIG to operate based on internal timing, in order to maintain an accurate switching frequency over the full range of operation. Any external clock applied to TPS53676 must have a 50% duty cycle, and the FREQUENCY_SWITCH command must still be programmed as close as possible to the desired switching frequency after any scaling. The input on the SYNC pin must be ±50 kHz from the configured FREQUENCY_SWITCH value.

An internal phase-locked loop (PLL) adjusting the on-time of each phase enables edge synchronization. During steady-state operation, when synchronization is used, the PWM pin assigned to order 0 is synchronized to a clock on the SYNC pin. The DCAP+ control topology is inherently a variable frequency scheme. During load transients, the pulse frequency of each channel modulates to maintain voltage regulation. Load transients cause the PLL to lose phase lock, and slowly return to phase lock based on the PLL loop bandwidth. The PLL bandwidth is much slower than the voltage regulation loop, and it can take many cycles for the PLL to re-lock following a transient event. Figure 7-8 illustrates the DCAP+ response to a load transient using edge synchronization.
gain/scalar terms to increase/decrease the PLL loop bandwidth. Refer to the Technical Reference Manual for a complete register map.

Figure 7-9 and Figure 7-10 illustrate two common methods of synchronizing multiple converters based on TPS53676. Use the programmable phase shift parameters to phase spread multiple converters, to improve ripple cancellation and reduce beat frequencies on input supplies.

7.4.10 Smart power stage connections: PWM, CSP and TSEN

Interface the controller to TI smart power stage devices, as shown in Figure 7-11.

Connect the PWM pins of the controller to the PWM pins of the power stage devices. The PWM pins are three-state logic outputs of the controller. A PWM pin being logic-high commands the power stage device to turn its high-side FET on, and its low-side FET off. A PWM pin being logic-low commands the power stage device to turn its low-side FET on and its high-side FET off. TI power stage devices provide a weak drive on their PWM pins, causing them to float to a mid-level value when the controller stops driving them. During enable, or dynamic phase addition, the controller starts phases switching with a transition from tri-state to high. Similarly, during disable or dynamic phase shedding, the controller disables phases with a transition from low-to-tri-state. Float unused PWM pins on the controller.

Connect the IOUT pins of the powerstage devices to the CSP pins of the controller. Connect the VREF pin of the controller to the REFIN pins of the powerstage devices. A local bypass capacitor C_{VREF}, is required for the controller VREF pin. Optionally, add a local VREF bypass capacitor at the powerstage devices. VREF provides common-mode voltage for the IOUT signal, which is a voltage representing the output current of each powerstage with a nominal gain of 5 mV/A. Float unused CSP pins on the controller.

Connect the TAO/FAULT pins of all powerstages within a channel to each other, and to the corresponding TSEN pin of the controller. For example, tie all TAO/FAULT pins of powerstages used on channel A together and to the controller ATSEN pin. TI recommends adding a 2200 pF capacitor to the TSEN pins at the controller to reduce temperature measurement noise. TI recommends keeping a place holder for a 1000 pF capacitor at the powerstage side. Refer to the individual powerstage datasheet for more detailed recommendations. During normal operation, the TSEN pins provide a voltage signal proportional to the temperature of the warmest powerstage device according to the equation below. During a UVLO condition, the powerstages pull the shared TAO line low to inform the controller they are not able to accept PWM input. When powerstages detect a fault condition internally, they pull the shared TAO pin high to inform the controller a fault condition has occurred. If channel B is not used, float the BTSEN pin.

$$READ_TEMPERATURE_1 = \left(\frac{V_{\text{SEN}} - 600mV}{8mV} \right) ^\circ C \quad (3)$$
7.4.11 PMBus pins: SMB_DIO, SMB_CLK, and SMB_ALERT#

The SMB_CLK, SMB_DIO, and SMB_ALERT# pins are used for PMBus communication, an open-drain interface. TPS53676 is compatible with both 1.8-V and 3.3-V logic levels as shown in to Part I of the PMBus specification, revision v1.3.1. At least one external pull-up resistor is required for these pins. The 100 kHz, 400 kHz and 1 MHz modes of operation are supported. PMBus is a shared bus, where devices are assigned a communication address. Select the PMBus slave address as described in Section 7.4.4. The controller device stretches clock pulses during operation when more processing time is required. Clock stretching support in the PMBus master is mandatory. See the Section 7.8 section for more information about PMBus functionality.

7.4.12 AVSBus: AVS_CLK, AVS_MDATA, AVS_SDATA, and AVS_VDDIO

Figure 7-12 illustrates how to interface the TPS53676 with a host ASIC or load with an integrated Serial Peripheral Interface (SPI) port. AVSBus is a point-to-point protocol and does not use a chip select (CS) pin. AVSBus uses push-pull signaling and requires a separate supply pin, AVS_VDDIO. Connect a well-regulated supply between 1.14 V and 3.6 V to AVS_VDDIO, and a local high quality ceramic bypass capacitor of 100 nF minimum effective capacitance. The input high and low thresholds are set relative to the voltage supplied at the AVS_VDDIO pin, as shown in the Electrical Specifications table. In applications which do not use AVSBus, ground the AVS_VDDIO, AVS_CLK and AVS_MDATA pins; float the AVS_SDATA pin.

AVSBus communication can be run at up to 50 MHz clock rate, and may require special care in PCB routing for signal integrity. Note the TPS53676 device has a clock-to-output delay of up to 14 ns, which exceeds the half-clock cycle setup time nominally given to an AVSBus slave at the full 50 MHz clock rate. This may require changing the duty cycle of the clock to compensate, as described in the AVSBus specification. Refer to the PMBus specification revision 1.3.1, part III for more information about AVSBus.
Figure 7-12. AVSBus connection diagram
7.5 Advanced power management functions

7.5.1 Adaptive voltage scaling or dynamic VID (DVID)

Figure 7-13 shows a conceptual view of the TPS53676 output voltage control, and dynamic behavior.

Update the VOUT_COMMAND value through PMBus, to change the output voltage of each channel on-the-fly. Optionally, use the OPERATION command to toggle the output voltage between the VOUT_MARGIN_HIGH, VOUT_MARGIN_LOW and VOUT_COMMAND values. This is described in more detail in Section 7.5.2. AVSBus may also control the output voltage and slew rate when configured to do so through OPERATION.

The VOUT_MAX and VOUT_MIN commands define the maximum and minimum allowed voltage, through any combination of offsets and voltage target commands. If commanded higher or lower than these limits, the output voltage transitions to these limits and stops.

The soft-start and soft-stop slew rates are calculated using the current output voltage target and TON_RISE and TOFF_FALL command values. All output voltage transitions which occur during normal power conversion follow the slew rate defined by VOUT_TRANSITION_RATE.

The VOUT_SCALE_LOOP parameter must be set properly, when an external output voltage divider is being used. This value is used internally to provide scaling for all output voltage related parameters.

Update the VOUT_TRIM value to apply a static offset to the output voltage target. This may be used to fine-tune the output voltage in production, or null any board related offsets.

Figure 7-13. Output voltage control conceptual view

TPS53676 provides several options to fine-tune the controller response to high speed output voltage transitions. For example, large output voltage steps upward cause an inrush current, required to charge the output capacitors for that channel. This inrush current combined with the DC load line setting make the output voltage appear to move more slowly than the commanded slew rate. Use the DVID_CONFIG command to configure dynamic loadlines and offsets which apply only during output voltage transitions. Typically, set the DC and AC load lines for upward moving transitions to a value equal or lower than the nominal. Similarly, typically, set the DC and AC loadlines to a value larger than the nominal value for downward moving transitions. Refer to the Technical Reference Manual for a register map of this command.
The DVID_CONFIG command also allows the user to configure dynamic offsets which are only applied during output voltage transitions. The configured recovery delays determine when the load line and offset values return to nominal settings, in terms of PWM (order 0) cycle counts. Figure 7-14 illustrates the dynamic load line, offset and recovery delay behavior of the controller.

7.5.2 Output voltage margining

Output voltage margin testing allows power designers to test the response of their system to across output voltage tolerance corners.

The MARGIN bits in the OPERATION command can be used to toggle the active channel between several states:

<table>
<thead>
<tr>
<th>MARGIN bits</th>
<th>Description</th>
<th>Output voltage target</th>
<th>Voltage fault detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000b</td>
<td>Margin none</td>
<td>VOUT_COMMAND</td>
<td>Enabled</td>
</tr>
<tr>
<td>0101b</td>
<td>Margin low (act on faults)</td>
<td>VOUT_MARGIN_LOW</td>
<td>Enabled</td>
</tr>
<tr>
<td>0110b</td>
<td>Margin low (ignore on faults)</td>
<td>VOUT_MARGIN_LOW</td>
<td>Disabled</td>
</tr>
<tr>
<td>1001b</td>
<td>Margin high (act on faults)</td>
<td>VOUT_MARGIN_HIGH</td>
<td>Enabled</td>
</tr>
<tr>
<td>1010b</td>
<td>Margin high (ignore on faults)</td>
<td>VOUT_MARGIN_HIGH</td>
<td>Disabled</td>
</tr>
<tr>
<td>Other</td>
<td>Not supported/invalid data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example procedure: voltage margin (ignore fault) testing

1. Write to the PAGE command to select the desired channel (E.g. 00h for channel A).
2. Write VOUT_COMMAND to the desired value during margin none operation.
3. Write VOUT_MARGIN_LOW to the desired value during margin low operation.
4. Write VOUT_MARGIN_HIGH to the desired value during margin high operation.
5. Write the ON_OFF_CONFIG command to ensure the device is configured to respect the OPERATION command.
6. Toggle to margin none operation. Write OPERATION to 80h.
7. Toggle to margin low (ignore fault) operation. Write OPERATION to 94h.
8. Toggle to margin high (ignore fault) operation. Write OPERATION to A4h.
7.5.3 Power supply telemetry and calibration

Table 7-6 summarizes the available telemetry functions through PMBus.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensed Signal(s)</th>
<th>Shared/ Paged/ Phased</th>
<th>PMBus Command(s)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>VSP-VSN</td>
<td>Paged</td>
<td>READ_VOUT</td>
<td>0 to 3.74 V (VOUT_SCALE_LOOP=1.0) 0 to 5.5 V (VOUT_SCALE_LOOP=0.5)</td>
</tr>
<tr>
<td>Output current</td>
<td>CSP1 to CSP7</td>
<td>Paged</td>
<td>READ_IOUT (PHASE=FFh) IOUT_CAL_GAIN IOUT_CAL_OFFSET</td>
<td>(-10.0 to 70.0 A) × Np + Offset</td>
</tr>
<tr>
<td>Per-phase current</td>
<td>CSP1 to CSP7</td>
<td>Paged, Phased</td>
<td>READ_IOUT (PHASE=00h, 01h, ...) IOUT_CAL_OFFSET</td>
<td>-10.0 to 70.0 A per phase</td>
</tr>
<tr>
<td>Output power</td>
<td>Calculated (VOUT × IOUT)</td>
<td>Paged</td>
<td>READ_POUT</td>
<td>Per READ_VOUT and READ_IOUT</td>
</tr>
<tr>
<td>Power stage temperature</td>
<td>ATSEN, BTSEN</td>
<td>Paged</td>
<td>READ_TEMPERATURE_1</td>
<td>-40 to 165 °C</td>
</tr>
<tr>
<td>Input voltage</td>
<td>VIN_CSNIN</td>
<td>Shared</td>
<td>READ_VIN</td>
<td>0.0 to 18.7 V</td>
</tr>
<tr>
<td>Input current</td>
<td>CSPIN, VIN_CSNIN</td>
<td>Shared</td>
<td>READ_IIN MFR_CALIBRATION_CONFIG</td>
<td>-5.0 to 100.0 A</td>
</tr>
<tr>
<td>Input power</td>
<td>Calculated (VIN × IN)</td>
<td>Shared</td>
<td>READ_PIN</td>
<td>Per READ_VIN and READ_IIN</td>
</tr>
</tbody>
</table>

No sensor gain or offset calibration is required for output voltage, temperature or input voltage telemetry.

7.5.3.1 Output current calibration

Use the IOUT_CAL_GAIN to adjust the gain of the output current measurements. One gain setting is provided which applies to all phases in the channel. Use the IOUT_CAL_OFFSET to adjust the current measurement offset for each phase. The offset for the total channel is calculated as a sum of the configured offsets for all phases. During power supply characterization use the PHASE_CONFIG command to configure the controller for 1-phase mode, to enable measurement of a single phase measurement offset. Refer to the example below.

The READ_IOUT command value is calculated according to Equation 4 and Equation 5.

\[
\text{READ}_{\text{IOUT}}_{\text{TOTAL}} = \frac{1}{IOUT_{\text{CAL_GAIN}}} \times \sum_{\text{active phases}}^{\text{phases}} (CSP_i - VREF) + \sum_{\text{phases}}^{\text{active}} \text{IOUT}_{\text{CAL_OFFSET}}_i \quad (4)
\]

where

- \(\text{READ}_{\text{IOUT}}_{\text{TOTAL}} \) is the total output current telemetry value, accessible with PHASE=FFh
- \(\text{IOUT}_{\text{CAL_GAIN}} \) is the output current gain setting (one per channel)
- \(\text{CSP}_i \) is the voltage of the current sense signal from each power stage
- \(\text{VREF} \) is the digitized value of the internal 1.5-V LDO
- \(\text{IOUT}_{\text{CAL_OFFSET}}_i \) is the output current offset setting for each phase

\[
\text{READ}_{\text{IOUT}}_{\text{PHASE}}_i = \frac{1}{IOUT_{\text{CAL_GAIN}}} \times (CSP_i - VREF) + \text{IOUT}_{\text{CAL_OFFSET}}_i \quad (5)
\]

where

- \(\text{READ}_{\text{IOUT}}_{\text{PHASE}}_i \) is the per-phase current telemetry value, accessible with PHASE=00h for phase 1, 01h for phase 2, etc ...
- \(\text{IOUT}_{\text{CAL_GAIN}} \) is the output current gain setting (one per channel)
- \(\text{CSP}_i \) is the voltage of the current sense signal for that phase
VREF is the digitized value of the internal 1.5-V LDO
IOUT_CAL_OFFSET is the output current offset setting for that phase

Example procedure: Per-Phase calibration of READ_IOUT

First select the correct IOUT_CAL_GAIN for the whole channel:

1. With all phases active, apply the first load current, IOUT1, to the converter and wait for the READ_IOUT value to stabilize. Read-back and record the value of READ_IOUT as IMON1.
2. With all phases active, apply the second load current, IOUT2, to the converter and wait for the READ_IOUT value to stabilize. Read-back and record the value of READ_IOUT as IMON2.
3. Calculate the new gain setting according to Equation 6.
4. Write the PAGE to the current channel, and the PHASE to FFh.
5. Write the newly calculated value to IOUT_CAL_GAIN.
6. Perform an NVM Store operation and power cycle.

\[
IOUT_{\text{CAL_GAIN}}_{\text{new}} = \frac{I_{\text{OUT}2} - I_{\text{OUT}1}}{I_{\text{MON}2} - I_{\text{MON}1}} \times IOUT_{\text{CAL_GAIN}}_{\text{current}} \tag{6}
\]

Next, select the IOUT_CAL_OFFSET for each phase according to the procedure below:

1. Record the current values of PHASE_CONFIG and IOUT_CAL_OFFSET for each phase.
2. Adjust the TON_RISE temporarily to accommodate enabling power conversion with one phase only active, if needed.
3. With power conversion disabled for both channels, update the PHASE_CONFIG command so that only the first phase is active, and its assigned ORDER is 0.
4. Enable power conversion through the VR_EN pins or OPERATION as configured through ON_OFF_CONFIG.
5. Apply a known load current, IOUT1. Wait for the READ_IOUT to stabilize and record the value as IMON1.
6. Calculate the new IOUT_CAL_OFFSET per Equation 7, where \(i\) is the currently configured phase.
7. Store the newly calculated offset for the first phase value in memory temporarily.
8. Repeat steps 3-7 for each phase in the converter.
9. Disable power conversion.
10. Set the PHASE_CONFIG back to the original value.
11. Write the PAGE to the current channel, and the PHASE to 00h for the first phase.
12. Write the newly calculated IOUT_CAL_OFFSET value.
13. Repeat steps 11-12 for each phase. PHASE value 01h refers to the 2nd phase, 02h refers to the 3rd phase and so on.
14. Re-set the TON_RISE to the desired value during normal operation, if needed.
15. Perform an NVM Store operation and power cycle.

\[
IOUT_{\text{CAL_OFFSET}}_{\text{new}} = I_{\text{OUT}i} - (I_{\text{MON}i} + IOUT_{\text{CAL_OFFSET}}_{\text{current}}) \tag{7}
\]

7.5.3.2 Input current calibration (measured)

Use MFR_CALIBRATION_CONFIG command to adjust the gain and offset of the input current sensor. First, set analog front-end gain such to keep the signal at the ADC to be less than 800 mV. Then set the digital gain to fine-tune the total gain based on the selected input current shunt. Finally adjust the input current offset based on lab measurements. A detailed example of input current sensor calibration is shown in Pin Functions.

The equation for input current sense measurements is shown in Equation 8.

\[
\text{READ}_IIN = I_N \times R_{\text{SENSE}} \times G_{\text{INSHUNT}} \times \left(\frac{G_{\text{INMAX}}}{800 \text{ mV}}\right) + IIN_{\text{OFS}} \tag{8}
\]

where

- \(I_N\) is the true input current in amperes
Estimate the maximum input current for the design using Equation 9.

\[
I_{\text{IN (MAX)}} = \left(\frac{V_{\text{OUT(A)}} \times I_{\text{PEAK(A)}}}{V_{\text{IN}} \times \eta_{\text{IPEAK(A)}}} + \frac{V_{\text{OUT(B)}} \times I_{\text{PEAK(B)}}}{V_{\text{IN}} \times \eta_{\text{IPEAK(B)}}} \right) \times K_{\text{MARGIN}}
\]

(9)

where

- \(V_{\text{OUT(A)}}\) and \(V_{\text{OUT(B)}}\) are the output voltage for channels A and B respectively
- \(I_{\text{PEAK(A)}}\) and \(I_{\text{PEAK(B)}}\) are the peak design currents for channels A and B respectively
- \(V_{\text{IN}}\) is the input voltage for the design
- \(\eta_{\text{IPEAK(A)}}\) and \(\eta_{\text{IPEAK(B)}}\) are the full-load conversion efficiency for channels A and B respectively
- \(K_{\text{MARGIN}}\) is a factor of safety used for design margin

Select the analog front-end gain, \(G_{\text{INSHUNT}}\), to maximize the signal level at the ADC while remaining within its full scale range of 800 mV. Select the closest available value less than the result of Equation 10.

\[
G_{\text{INSHUNT}} \leq \frac{800 \text{ mV}}{I_{\text{IN (MAX)}} \times R_{\text{SENSE}}}
\]

(10)

Finally select the digital gain factor, \(G_{\text{INMAX}}\), with a resolution of 0.5 per LSB, to fine-tune the current sense gain using Equation 11.

\[
G_{\text{INMAX}} = \frac{800 \text{ mV}}{G_{\text{INSHUNT}} \times R_{\text{SENSE}}}
\]

(11)

Example: 12V to 1.0 V 4+0 design at 100 A, \(R_{\text{SENSE}} = 1.0 \text{ m\Omega}\)

Channel B is not used in this design. Estimate the maximum input current, according to the calculation below.

\[
I_{\text{IN (MAX)}} = \left(\frac{10 \text{ V} \times 100 \text{ A}}{12 \times 90\%} \right) \times 1.25 = 11.6 \text{ A}
\]

(12)

Select the analog front-end gain, and digital gain factors as shown below. Set the \(I\text{IN_OFS}\) to 0.0 A, and tune based on design characterization measurements.

\[
G_{\text{INSHUNT}} \leq \frac{800 \text{ mV}}{11.6 \text{ A} \times 1.0 \text{ m\Omega}} \rightarrow G_{\text{INSHUNT}} = 60.0
\]

(13)

\[
G_{\text{INMAX}} = \frac{800 \text{ mV}}{60.0 \times 1.0 \text{ m\Omega}} \approx 13.5
\]

(14)

Finally, the calibrated input current measurement is verified to be calibrated properly.

\[
\text{READ}_{I\text{IN}} = I_{\text{IN}} \times 1.0 \text{ m\Omega} \times 60 \times \left(\frac{13.5}{800 \text{ mV}} \right) \approx 1.0 \times I_{\text{IN}}
\]

(15)

7.5.3.3 Input current calibration (calculated)

Applications which do not use measured current sensing can still report calculated input current based on the output voltage, output current and input voltage of each channel. To use calculated input current reporting, connect the \(V_{\text{IN_CSNIN}}\) and \(C_{\text{SPIN}}\) pins together, and to the input voltage. A connection to the input voltage is still required for the control loop to set the correct on-time. Use the \(\text{CALCIIN_RD}\) setting in \(\text{MISC_OPTIONS}\) to enable calculated input current reporting. The controller estimates the converter power efficiency for each channel by comparing the actual on-time of the PWM pins, which get wider as the conversion loss increases to maintain voltage and frequency regulation, to the idealized on-time assuming no power loss. Fine-tune the gain of the calculated input current measurement through \(\text{PMBus}\), using the \(\text{MFR_CALIBRATION_CONFIG}\) command.
\[I_{IN\,(CALC)} = \frac{V_{OUT\,(A)} \times I_{OUT\,(A)}}{V_{IN} \times \eta_{est\,(A)} \times \text{CALCIIN_EFF\,A}} + \frac{V_{OUT\,(B)} \times I_{OUT\,(B)}}{V_{IN} \times \eta_{est\,(B)} \times \text{CALCIIN_EFF\,B}} \] \hspace{1cm} (16)

where

- \(V_{OUT\,(A)} \) is the output voltage telemetry value for channel A
- \(I_{OUT\,(A)} \) is the output current telemetry value for channel A
- \(V_{IN} \) is the input current telemetry value (shared)
- \(\eta_{est\,(A)} \) is the controller's estimated conversion efficiency on channel A
- \(\text{CALCIIN_EFF\,A} \) is the PMBus programmable gain factor to fine-tune the current gain for channel A
- \(V_{OUT\,(B)} \) is the output voltage telemetry value for channel B
- \(I_{OUT\,(B)} \) is the output current telemetry value for channel B
- \(\eta_{est\,(B)} \) is the controller's estimated conversion efficiency on channel B
- \(\text{CALCIIN_EFF\,B} \) is the PMBus programmable gain factor to fine-tune the current gain for channel B

7.5.4 Flexible phase assignment

Use the PHASE_CONFIG command to assign each PWM pin to a logical phase number. Refer to the Technical Reference Manual for a register map of the PHASE_CONFIG command. Each PWM pin has 4 available settings:

- **ENABLE**: Controls whether the phase is active or remains at tristate always.
- **PAGE**: Assigns each phase to channel A or channel B. This setting also determines which CSP pins are incorporated in the \(I_{SUM} \) control signals for each channel.
- **PHASE**: Assigns each phase within a channel a PHASE setting at which it can be addressed. Note the PHASE assignment is not backed by non-volatile memory, and each phase is assigned a derived PHASE setting at power-on.
- **ORDER**: Controls the order in which phases are fired with respect to each other. Figure 7-15 and Figure 7-16 illustrate the effect of different ordering assignments. Reconfigure the phase ordering to ensure adjacent phases do not interfere with each other due to layout related coupling issues. If dynamic phase shedding is used, phases add or drop according to their assigned ORDER value.

![Figure 7-15. 0-1-2-3-4-5 fire order (6 phase example)](image)

![Figure 7-16. 0-2-4-1-3-5 fire order (6 phase example)](image)

Observe the following rules when updating the phase configuration settings. The Fusion Digital Power Designer GUI enforces these rules, but the controller itself does not:

- Channel A may be assigned up to 7 phases. Channel B may be assigned up to 3 phases.
- The ORDER assignments within a channel must be continuous, and start at 0. Do not skip phase order assignments.
• The PHASE assignments within a channel must be continuous, start at 0 counting upward from APWM1 for channel A and downward from BPWM1 for channel B.

Example: 3+2 phase configuration with non-standard fire order

1. Disable power conversion, as specified per ON_OFF_CONFIG.
2. Write the PHASE_CONFIG command as shown below.
3. Issue STORE_DEFAULT_ALL to save the current settings into NVM as default values for the next power-on.

<table>
<thead>
<tr>
<th>Physical Phase</th>
<th>Enable</th>
<th>Page</th>
<th>Phase</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 12, 27 (APWM1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pins 11, 28 (APWM2)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pins 10, 29 (APWM3)</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pins 9, 30 (APWM4)</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pins 8, 31 (APWM5/ BPWM3)</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pins 7, 32 (APWM6/ BPWM2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pins 6, 33 (APWM7/ BPWM1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pins 5, 34 (NC)</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pins 4, 35 (NC)</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pins 3, 36 (NC)</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pins 2, 37 (NC)</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pins 1, 37 (NC)</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

7.5.5 Thermal balance management (TBM)

In any practical multiphase printed circuit board design, some power stages are physically located near to, or between other phases. Power stages physically located between two other power stages experience mutual heating as a result of power dissipation from adjacent power stages. Hence, even though the controller device regulates the DC current sharing of each phase, the temperature of each power stage may be different.

 Optionally, adjust the per-phase current sharing ratio K_T for each phase using the ISHARE_CONFIG command. This open-loop adjustment allows the designer to balance the temperature of each phase to compensate for mutual heating and non-uniform ground copper for heat spreading. The per-phase current limit of each phase is not affected by this setting. Refer to the Technical Reference Manual for a register map of ISHARE_CONFIG.

Thermal balancing is accomplished by scaling the gain of each phase current, as provided to the current sharing amplifier, in the on-time generator circuit for each phase. Refer to Figure 7-22 for more information. Each phase has an independently programmable gain K_T. Current share gain is assigned according to the logical phase number (PHASE setting) for each phase. The current carried by each phase when thermal balancing is active, can be calculated according to Equation 17.

First, calculate the effective thermal phase number, N_T as shown below. Note this value changes with different numbers of operational phases, when phase shedding is enabled.

$$N_T = \frac{1}{K_{T1}} + \frac{1}{K_{T2}} + \ldots + \frac{1}{K_{Tn}}$$ (17)

where

• N_T is the effective thermal phase number.
• K_{T1}, K_{T2}, K_{Tn} are the individual thermal balance gains for phase 1, phase 2, ... phase n.

Then each phase carries a portion of the total current, I_{SUM}, as shown in Equation 18.
\[I_{\text{PHASE } i} = \frac{I_{\text{SUM}}}{N_T \times K_{Ti}} \] \hspace{1cm} (18)

where

- \(I_i \) is the phase current for the i-th phase in amperes
- \(I_{\text{SUM}} \) is the total current carried by all phases in amperes
- \(K_{Ti} \) is thermal balance gain assigned to the i-th phase
- \(N_T \) is the effective thermal phase number, calculated above

Then, the current sharing ratio, comparing one phase to another is given by Equation 19.

\[\frac{I_{\text{PHASE } i}}{I_{\text{PHASE } j}} = \frac{K_{Tj}}{K_{Ti}} \] \hspace{1cm} (19)

where

- \(I_i \) and \(I_j \) are the phase current of the i-th and j-th phases in amperes
- \(K_{Ti} \) and \(K_{Tj} \) are the thermal balance gains of the i-th and j-th phases
Example: Balancing phase temperature for 7-phase converter

Consider a 7-phase converter with the following thermal balance gains assigned:

<table>
<thead>
<tr>
<th>PHASE</th>
<th>Thermal Balance Gain K_i</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>K_1</td>
<td>0.8</td>
</tr>
<tr>
<td>Phase 2</td>
<td>K_2</td>
<td>0.9</td>
</tr>
<tr>
<td>Phase 3</td>
<td>K_3</td>
<td>1.0</td>
</tr>
<tr>
<td>Phase 4</td>
<td>K_4</td>
<td>1.0</td>
</tr>
<tr>
<td>Phase 5</td>
<td>K_5</td>
<td>1.0</td>
</tr>
<tr>
<td>Phase 6</td>
<td>K_6</td>
<td>0.9</td>
</tr>
<tr>
<td>Phase 7</td>
<td>K_7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Calculate N_T according to Equation 20.

$$N_T = \frac{1}{0.8} + \frac{1}{0.9} + \frac{1}{1.0} + \frac{1}{1.0} + \frac{1}{0.9} + \frac{1}{0.8} = 7.722$$

(20)

Phases 1 and 7 have the same thermal balance gain, and carry the same proportion of the total current. Phases 2 and 6 have the same thermal balance gain and carry the same proportion of total current. Similarly, phases 3, 4, and 5 carry the same proportion of total current. Equation 21, Equation 22, and Equation 23 show the expected phase currents as a fraction of the total current I_{SUM}.

$$I_1 = I_7 = \frac{I_{SUM}}{N_T \times K_1} = \frac{I_{SUM}}{7.722 \times 0.8} \approx I_{SUM} \times 0.162$$

(21)

$$I_2 = I_6 = \frac{I_{SUM}}{N_T \times K_2} = \frac{I_{SUM}}{7.722 \times 0.9} \approx I_{SUM} \times 0.144$$

(22)

$$I_3 = I_4 = I_5 = \frac{I_{SUM}}{N_T \times K_3} = \frac{I_{SUM}}{7.722 \times 1.0} \approx I_{SUM} \times 0.129$$

(23)

The ratios of two phase currents can be easily calculated as shown in Equation 24 and Equation 25.

$$\frac{I_2}{I_1} = \frac{K_{T1}}{K_{T2}} = \frac{0.9}{0.8} \approx 1.125$$

(24)

$$\frac{I_4}{I_6} = \frac{K_{T6}}{K_{T4}} = \frac{0.9}{1.0} \approx 0.9$$

(25)

7.5.6 Dynamic phase adding/shedding (DPA/DPS)

The dynamic phase shedding (DPS) feature allows the controller to dynamically select the number of operational phases for each channel, based on the total output current. This increases the total converter efficiency by reducing unnecessary switching losses when the output current is low enough to be supported by a fewer number of phases, than are available in hardware. Use the PHASE_SHED_CONFIG command to configure the phase adding/shedding thresholds. Refer to the Technical Reference Manual for a full listing of available thresholds.

Set the DPS_EN bit to 0b to disable phase shedding operation. The MIN_PH setting determines the minimum number of phases which are active during light-load operation.

Phase adding is detected based on the summed peak current of all phases in the analog domain. Phase shedding is detected based on average current telemetry, with a forced delay of 120 μs. The phase add thresholds are not affected by current measurement calibration, but the phase shed thresholds are.

Each phase has 3 settings available:

- **Phase add threshold (PH_ADDx)** selects the nominal phase adding threshold. Set this value approximately equal to the peak efficiency point per phase to optimize overall converter efficiency.
- **Phase add hysteresis (DPA_HYSTx)** selects the phase add threshold hysteresis. Nominally set this value to one-half the value of the ripple current on the I_{SUM} current for that number of phases.
• **Phase drop hysteresis (DPS_HYST)** selects the phase drop hysteresis (per-phase average current). There is one setting per channel.

The phase add/drop thresholds can be calculated according to the equations below. First determine the ripple cancellation effect for each combination of phase numbers, for the chosen duty cycle using Equation 26. This value affects the true add thresholds.

\[
K_i = \frac{\Delta I_{\text{Ripple(ISUM)}}}{\Delta I_{\text{Ripple(PHASE)}}} \approx \frac{N_i \times \left(D - \frac{m}{N_i}\right) \times \left(\frac{m+1}{N_i} - D\right)}{D \times (1-D)}
\]

(26)

where

- \(K_i\) is the ripple cancellation ratio before the phase transition
- \(\Delta I_{\text{Ripple(ISUM)}}\) is the ripple in the summed current after cancellation
- \(\Delta I_{\text{Ripple(PHASE)}}\) is the ripple each individual phase
- \(N_i\) is the number of phases currently active
- \(D\) is the converter duty cycle, nominally \(V_{\text{out}} / V_{\text{in}}\)
- \(m\) is the maximum integer which does not exceed \(N_i \times D\) (can be zero)

Calculate the DC phase adding thresholds based on the chosen configuration using Equation 27. Phases are added based on peak \(I_{\text{SUM}}\) current, after being passed through a 1 \(\mu\)s filter. Typically, choose the DPA_HYST settings to cancel out the current ripple term. Then the DC current adding threshold is equal to the PH_ADDx value selected.

\[
I_{\text{DPA(i to i+1)}} \approx PH_{\text{ADD}i+1} + DPA_{\text{HYST}i+1} - K_i \times \frac{\Delta I_{\text{Ripple(PHASE)}}}{2}
\]

(27)

where

- \(I_{\text{DPA(i to i+1)}}\) is the DC current at which the controller transitions from \(i\) to \(i+1\) phases
- \(PH_{\text{ADD}i}\) is the selected phase add threshold for phase number \(i\)
- \(DPA_{\text{HYST}i}\) is the selected phase add hysteresis for phase number \(i\)
- \(\Delta I_{\text{Ripple(PHASE)}}\) is the ripple each individual phase

Calculate the DC phase drop thresholds based on the chosen configuration using Equation 28. Phases are added based on the output current telemetry value, with a deglitch filter of 130 \(\mu\)s.

\[
I_{\text{DPS(i+1 to i)}} \approx PH_{\text{ADD}i+1} - i \times DPA_{\text{HYST}i}
\]

(28)

where

- \(I_{\text{DPS(i+1 to i)}}\) is the DC current at which the controller transitions from \(i+1\) to \(i\) phases
- \(PH_{\text{ADD}i+1}\) is the selected phase add threshold for phase number \(i+1\)
- \(N_i\) is the number of phases currently active before the phase shed event
- \(DPA_{\text{HYST}i}\) is the selected phase shed hysteresis

Phase add/shed example: 600-kHz, 7-phase, 12-V to 0.8-V converter, with 120 nH inductor

Assume \(V_{\text{IN}} = 12\) V, \(V_{\text{OUT}} = 0.88\), \(f_{\text{SW}} = 600\) kHz, \(L = 120\) nH.

The example below explains how to calculate the phase adding and shedding thresholds for 2 to 3 phases. First calculate the inductor ripple current in one phase. Set the DPA_HYST3 setting to approximately 1/2 the inductor current ripple in one phase. Assuming the phase adding threshold for phase 3, \(PH_{\text{ADD}3}\), parameter is set to 40.0 A, and the phase shed hysteresis, \(DPS_{\text{HYST}}\) is set to 2.0 A, the phase adding and shedding thresholds are calculated as shown below.

\[
I_{\text{Ripple(PHASE)}} = \frac{V_{\text{OUT}} \times (V_{\text{OUT}} - V_{\text{IN}})}{V_{\text{IN}} \times L \times f_{\text{SW}}} = \frac{0.88V \times (12V - 0.88V)}{12V \times 120\text{nH} \times 600\text{kHz}} = 11.3\text{A}
\]

(29)
\[m = \text{FLOOR} \left(2 \times \frac{0.88V}{12V} \right) = 0 \] (30)

\[K_2 \approx \frac{N_i \times \left(D - \frac{m}{N_i} \right) \times \left(\frac{m+1}{N_i} - D \right)}{D \times (1 - D)} \approx \frac{2 \times \left(\frac{0.88V}{12V} - \frac{0}{12\text{phases}} \right) \times \left(\frac{0 + 1}{12\text{phases}} - \frac{0.88V}{12V} \right)}{0.88V \times \left(1 - \frac{0.88V}{12V} \right)} \approx 0.92 \] (31)

\[I_{\text{DPA}(2 \text{ to } 3)} \approx PH_{\text{ADD}} + DPA_{\text{HYST}} - K_i \times \frac{\Delta I_{\text{RIPPLE(Phase)}}}{2} \approx 40A + 6A - 0.92 \times \frac{113A}{2} = 40.8A \] (32)

\[I_{\text{DPS}(3 \text{ to } 2)} \approx PH_{\text{ADD}} - 2 \times DPS_{\text{HYST}} = 40A - 2 \times 2A = 36A \] (33)
7.6 Control Loop Theory of Operation

7.6.1 Adaptive voltage positioning and DC load line (droop)

TPS53676 supports adaptive voltage positioning (AVP) through the VOUT_DROOP PMBus command. This feature is also referred to as the DC load line (DCLL) for the control loop. Use a non-zero DC load line to reduce output voltage set-point as a function of the load current, with a controlled slope. This feature is optional. Set the DC load line to 0.0 mΩ in applications which do not use a load line.

The DC load line provides two main benefits:

- Reducing the output voltage set-point, reduces the power consumption of the system, when the load current is high.
- Adaptive voltage positioning increases the allowable undershoot and overshoot during load transient events. Figure 7-17 and Figure 7-18 compare example output voltage specifications for systems with zero load line and non-zero load line. The nominal setting for the output voltage is chosen to be higher, to allow the entire transient window as margin for transient overshoot and undershoot.

![Figure 7-17. Load transient specification (zero load line)](image)

![Figure 7-18. Load transient specification (non-zero load line)](image)

7.6.2 DCAP+ conceptual overview

Figure 7-19 below describes the theory of operation for multiphase DCAP+ control, in continuous conduction mode (CCM).

The summed inductor currents, I_{SUM}, and output voltage deviation information, along with appropriate gain and integration, are processed to form a control signal V_{COMP}. Neglecting the output voltage information and integration, the V_{COMP} signal is a scaled version of I_{SUM}. A compensating ramp signal, V_{RAMP}, has a slope proportional to the number of phases, and switching frequency setting. When the V_{RAMP} and V_{COMP} signals intersect, the controller fires a new pulse.

Phase management logic distributes new pulses to the next phase in the firing order sequence. Each phase is assigned a firing order, at which pulses are passed to that phase. A separate, slower loop adjusts the on-times for each phase based on the output voltage setpoint, switching frequency setting, and current balance error.
7.6.3 Off-time control: loop compensation and transient tuning

Figure 7-21 shows a conceptual block diagram of the DCAP+ off-time control loop. Transient response tuning is accomplished by changing the parameters which generate the V\text{COMP} signal. These parameters are accessible using the COMPENSATION_CONFIG command. Refer to the Technical Reference Manual for a register map of this command.

The V\text{COMP} signal is generated by the sum of three signal paths. Finally the V\text{COMP} signal is scaled by the AC gain parameter, K_{AC}.

- **Proportional path:** An error amplifier subtracts the sensed output voltage from the output voltage target, set by V\text{DAC}. The gain of the proportional path is set by the AC load line (ACLL). Reducing the value of the AC load line increases the proportional path gain, which gives faster transient response. Setting the AC load line to a very low value can lead to low phase margin.

- **Integral path:** The difference between the sensed output voltage and the output voltage target, V\text{DAC}, is compared to the ideal droop (I_{SUM} \times DCLL) value to create an error voltage, V\text{ERR}. An integrator adjusts the setpoint of V\text{COMP}, to drive the output voltage error to zero. Integration provides high DC gain, giving the power supply excellent output regulation and DC load line performance. The programmable integration time constant, t\text{INT}, changes the settling time of of the output voltage following a transient. Increasing the integration time constant improves phase margin. The programmable integration path gain, K\text{INT}, sets the gain of the integral path.

- **Current feedback:** The summed phase current, I_{SUM}, with a nominal gain of 5 mV/A, is used directly to generate V\text{COMP}, as well as in the integral path to set the DC load line. The gain of this path is not affected by the IO\text{UT_CAL_GAIN} or IO\text{UT_CAL_OFFSET} calibration commands.
7.6.4 On-time control: adaptive t_{on} and autobalance current sharing

The nominal on-time for each phase is determined by an adaptive one-shot circuit, which generates on-times according to Equation 34. PWM on-times are adjusted very slowly compared to off-times, so the DCAP+ modulator behaves similar to a constant-on-time architecture.

Use the FREQUENCY_SWITCH command to set the nominal per-phase switching frequency.

$$t_{on} = \frac{V_{DAC} + K_{ISHARE} \times (I_L - I_{AVG})}{V_{IN} \times FREQUENCY_SWITCH} + \Delta PLL_CLF$$ \hspace{1cm} (34)

where

- t_{on} is the on-time for the phase in seconds
- V_{DAC} is the output voltage set-point in volts
- FREQUENCY_SWITCH is the commanded switching frequency in Hz
- V_{IN} is the sensed input voltage from the VIN_CSNIN pin
- K_{ISHARE} is the gain of the current share loop
- I_L is the current carried by the phase
- I_{AVG} is the average phase current for all phases
- ΔPLL_CLF is the on-time adjustment from the closed loop frequency correction circuit

Current sharing is implemented by adapting the on-time for each phase, according to the difference between its own phase current I_L, and the average of all phase currents I_{AVG}. When the phase current for any one phase is greater than the average of all phase currents, the on-time of that phase is reduced accordingly. Similarly, if the phase current of any one phase is less than the average of all phase currents, the on-time of that phase is increased.

The on-time is also proportional to the sensed input voltage, which provides the controller with inherent input voltage feed-forward.

Furthermore, a frequency control loop adjusts the on-times for each phase to drive the actual switching frequency equal to the FREQUENCY_SWITCH setting. An internal clock counts the number of observed pulses over a set interval, and compares the result to the calculated ideal number. If too many pulses are fired in the sampling period, the switching frequency is too high, and the on-times are increased to reduce the steady-state switching frequency. If too few pulses are fired during the sampling period, the switching frequency is too low and the on-times are reduced to increase the steady-state frequency. The PWM pin assigned to ORDER=0 is used for counting purposes, as it does not drop due to phase shedding.

![Figure 7-22. On-time generation and auto-balance current sharing](image-url)
7.6.5 Load transient response

TPS53676 achieves fast load transient performance using the inherently variable switching frequency characteristics of DCAP+ control. Figure 7-23 illustrates the load insertion behavior, in which PWM pulses are generated with faster frequency than the steady-state frequency, to provide more energy to the output voltage, improving undershoot performance. Figure 7-24 illustrates the load release behavior, in which PWM pulses can be delayed to avoid charging extra energy to the load until the output voltage reaches the peak overshoot.

When there is a sudden load increase, the output voltage immediately drops. The controller device reacts to this drop by lowering the voltage on internal V\textsubscript{COMP} signal. This forces PWM pulses to fire more frequently, which causes the inductor current to rapidly increase. As the converter output current reaches the new load current, the device reaches a steady-state operating condition and the PWM switching resumes the steady-state frequency.

When there is a sudden load release, the output voltage immediately overshoots. The control loop reacts to this rise by increasing the voltage of the internal V\textsubscript{COMP} signal. This rise forces the PWM pulses to be delayed until the converter output current reaches the new load current. At that point, the switching resumes and steady-state switching continues. In Figure 7-23 and Figure 7-24, the ripples on V\textsubscript{OUT} and V\textsubscript{COMP} voltages are not shown for simplicity.

![Figure 7-23. Load insertion response (4-phase example, 0-1-2-3 ordering)](image1)

![Figure 7-24. Load release response (4-phase Example, 0-1-2-3 ordering)](image2)
7.6.6 Forced minimum on-time, minimum off-time and leading-edge blanking time

Under normal linear operation, the PWM on- and off-times are generated by the control loop. To improve noise immunity, the controller forces a minimum on-time whenever the PWM pins pulse high. The off-time for any phase is limited by a forced minimum off-time. Although TI smart power stage devices have built-in protection from glitches on the PWM pins also, this feature provides redundant protection against cross-conduction issues.

The controller also limits the time between sending pulses to any two adjacent phases. This is referred to as the leading-edge blanking time, t_{BLANK}. Increase the leading edge blanking time to prevent over-compensation (or "ring-back") by the controller during heavy load transient events. The minimum on-time, minimum off-time, and leading edge blanking time are programmable by the NONLINEAR_CONFIG PMBus command. Refer to the Technical Reference Manual for a register map of this command.

For multiphase designs, the maximum per-phase switching frequency during transients, is limited by the leading edge blanking time parameters as shown in Equation 35. The controller also forces a minimum-off-time per phase. The greater of the two limits the maximum frequency.

$$f_{PHASE(max)} = \frac{1}{N_{\Phi} \times t_{BLANK}}$$

where

- N_{Φ} is the number of active phases
- t_{BLANK} is the leading edge blanking time in seconds

7.6.7 Nonlinear: undershoot reduction (USR), overshoot reduction (OSR) and dynamic integration

Nonlinear features improve the controller response to severe repetitive load transient conditions.

When the controller is subjected to load transients at very high frequency, the output voltage may not be able to completely settle before the next transient event occurs. As a result, particularly during overshoot events, when the controller is firing pulses infrequently, the controller integration path can see error which does not completely settle. Accumulation of large overshoot error can cause the controller response to following undershoot events to be slower. To prevent excess accumulation of error during repetitive load transient events, the controller implements dynamic integration. When the output voltage overshoots its target by a certain voltage, V_{DINT}, the controller integration time constant can be changed to an alternate value, the dynamic integration time constant. Use the COMPENSATION_CONFIG command to configure the dynamic integration time constant and threshold voltage. Typically, set the dynamic integration constant to a longer time than the static integration time constant.

![Figure 7-25. Dynamic integration, OSR, USR detection](image)

Systems which use the dynamic phase shedding feature, may still have sudden and severe load transient events occur. The undershoot reduction (USR) feature allows the controller to add phases even before the output current reaches the dynamic phase adding thresholds. This ensures the transient undershoot event is stopped...
as quickly as possible. TPS53676 has two levels of USR. The USR1 threshold is used to quickly enable a configurable number of phases, USR1_PH. The USR2 threshold adds all enabled phases, assigned to that channel. Use the NONLINEAR_CONFIG command to configure the USR1 and USR2 features.

The overshoot reduction (OSR) feature reduces output voltage overshoot during severe load transient events, by turning off the low-side FETs of the powerstage devices (e.g. tri-stating the controller PWM pins), when an overshoot event occurs. The inductor current of each phase must remain continuous, forcing the output current through the body diode of each low-side FET. This dissipates excess energy more quickly than keeping the powerstage low-side FET fully conducting, due to the forward voltage drop characteristics of the body diodes. As a result, the transient overshoot is smaller when this technique is used, compared to simply turning on the low-side FET of each powerstage. However, this results in excess heat which must be properly managed in systems with highly repetitive transient conditions. Additionally, TPS53676 can be configured to truncate PWM pulses, to reduce the worst-case response time to overshoot events. The NONLINEAR_CONFIG command provides four controls for overshoot reduction: an enable bit for diode braking, an enable bit for pulse truncation, the OSR threshold, \(V_{\text{OSR}} \), and the diode braking timeout, which limits the maximum amount of time during which diode braking takes place, to manage excess heating. Refer to the Technical Reference Manual for a register map of this command.
7.7 Power supply fault protection

7.7.1 Host notification and status reporting

TPS53676 supports a full set of PMBus status registers and the SMB_ALERT# notification protocol. All of the fault conditions listed in the table on the following pages have associated status bits. Status bits and SMB_ALERT# may be cleared using the CLEAR_FAULTS command, commanding the offending channel to disable (as specified in ON_OFF_CONFIG), or by power cycling. Most commonly, issue CLEAR_FAULTS with the PAGE set to FFh, to clear faults for both channels.

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Bit 3</th>
<th>Bit 4</th>
<th>Bit 5</th>
<th>Bit 6</th>
<th>Bit 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 7-26. Status register support and decoding
TPS53676 supports a full set of PMBus status registers and the SMB_ALERT# notification protocol. Any condition which causes a status bit to assert, also causes TPS53676 to assert the SMB_ALERT# signal (unless that bit is masked via SMBALERT_MASK). Use the alert response address (ARA) protocol to determine the address of the device experiencing a fault condition in multi-slave systems. The SMB_ALERT# protocol is optional, and the system designer may choose to implement fault management through other means. The figure below shows a flow diagram of using the ARA protocol.

Figure 7-27. Flow diagram of SMB_ALERT# response protocol
7.7.2 Fault type and response definitions

Paged fault conditions apply only to a single channel and are duplicated for channel A and channel B. Paged fault conditions only cause one channel to shut down when triggered. For latch-off faults, the enable for that channel must be toggled to re-enable power conversion. For example, if channel B experiences an overvoltage fault, only channel B stops power conversion, and channel B must be commanded to disable power conversion, and re-enable power conversion to continue normal operation.

Shared fault conditions apply to channels A and B simultaneously. Shared fault conditions cause both channels A and B to shut down when triggered.

Warning conditions do not cause any interruption to power conversion. They are meant to inform the system host of changing conditions so that it can react prior to a fault being triggered. Warnings do not trigger PMBus status bits and trigger the SMB_ALERT# signal when not masked.

Fault conditions set to the ignore response are treated as warnings. Faults set to the ignore response do not cause any interruption of power conversion but do still cause status bits and SMB_ALERT# to trigger.

Fault conditions set to the latch-off response cause power conversion to stop immediately. The channel must be commanded to stop power conversion then restart to continue operation. Start-up from a latch-off fault is identical to a normal power-up and the configured TON_DELAY is still observed. The RSTOSD option in MISC_OPTIONS controls whether the boot voltage returns to its last programmed value, or boots to its VBOOT value.

Fault conditions set to the hysteretic response cause power conversion to stop immediately. When the fault condition no longer exists, the TPS53676 attempts to restart immediately. The configured TON_DELAY is still observed.

Fault conditions set to the hiccup response cause power conversion to stop immediately. After a hiccup wait time, 25 ms by default, TPS53676 attempts to re-enable power conversion. The configured TON_DELAY is still observed. If the fault condition has disappeared, the start-up attempt succeeds and power conversion continues. Otherwise, the process repeats indefinitely. The RSTOSD option in MISC_OPTIONS controls whether the boot voltage returns to its last programmed value, or boots to its VBOOT value.

The TOFF_DELAY is not respected during any fault shutdown response.
7.7.3 Fault behavior summary

Table 7-8. Fault detection and behavior

<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Shared / Paged / Phased</th>
<th>Condition</th>
<th>Latency</th>
<th>Enabled</th>
<th>Programmable Range</th>
<th>Response</th>
<th>Alerts (1)</th>
<th>Clearing(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage / Current / Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Bias OV Fault</td>
<td>Shared</td>
<td>VSP voltage exceeded threshold</td>
<td>Max 350 µs</td>
<td>After initialization complete, then disabled</td>
<td>3.7 V fixed by design</td>
<td>All PWM Low, Latch-Off</td>
<td>VR_FAULT#</td>
<td>3.3 V Power Cycle</td>
</tr>
<tr>
<td>Fixed OV Fault</td>
<td>Paged</td>
<td>VSP voltage exceeded fixed threshold</td>
<td>1.0 µs</td>
<td>After initialization complete</td>
<td>0.6 V to 3.7 V</td>
<td>Ignore, Latch-Off, Hiccup PWM Pulled Low</td>
<td>VR_FAULT# if not ignore response</td>
<td>3.3 V power cycle if triggered while power conversion is disabled. Otherwise, clearable through Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Tracking OV Fault</td>
<td>Paged</td>
<td>VSP-VSN voltage exceeded VID + Droop + OV Offset</td>
<td>1.0 µs</td>
<td>During power conversion</td>
<td>Offset from current VID+Droop, +32 to +448 mV Offset</td>
<td>Ignore, Latch-Off, Hickup PWM pulled low</td>
<td>VR_FAULT# if not ignore response</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Tracking OV Warn</td>
<td>Paged</td>
<td>VSP-VSN voltage below VID + Droop - UV Offset</td>
<td>2.0 µs</td>
<td>During power conversion</td>
<td>Offset from current VID + Droop -24 to -448 mV Offset</td>
<td>Warning only</td>
<td>n/a</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Tracking UV Warn</td>
<td>Paged</td>
<td>VSP-VSN voltage below VID - UV Offset</td>
<td>2.0 µs</td>
<td>During power conversion</td>
<td>Offset from current VID - Droop -32 to -448 mV Offset</td>
<td>Warning only</td>
<td>n/a</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Tracking UV Fault</td>
<td>Paged</td>
<td>VSP-VSN voltage exceeded VID + Droop + UV Offset</td>
<td>1.0 µs</td>
<td>During power conversion</td>
<td>Offset from current VID + Droop +32 to +448 mV Offset</td>
<td>Ignore, Latch-Off, Hickup PWM Tri-State</td>
<td>n/a</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Max Turn-on time (TON_MAX)</td>
<td>Paged</td>
<td>VSP-VSN did not rise to threshold quickly enough during soft-start</td>
<td>500 µs</td>
<td>During soft-start only</td>
<td>0 ms to 31.75 ms</td>
<td>Ignore, Latch-Off, Hickup PWM Tri-State</td>
<td>n/a</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Vout Min/Max Warning</td>
<td>Paged</td>
<td>Vout commanded above VOUT_MAX or below VOUT_MIN</td>
<td>N/A</td>
<td>During power conversion</td>
<td>VOUT_MAX and VOUT_MIN</td>
<td>DAC Voltage clamped to limit</td>
<td>Warning only</td>
<td>n/a</td>
</tr>
<tr>
<td>Over-current Fault</td>
<td>Paged</td>
<td>Total current exceeded threshold</td>
<td>175 µs</td>
<td>During power conversion</td>
<td>0 to 1023 A(3)</td>
<td>Ignore, Latch-Off, Hickup PWM Tri-State</td>
<td>VR_FAULT# configurable</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Per-Phase Over-current Limit</td>
<td>Paged, Phased</td>
<td>Phase current exceeded threshold</td>
<td>Cycle-by-cycle</td>
<td>During power conversion</td>
<td>17 to 130 A(3)</td>
<td>Warning only, PWM pulses skipped to limit phase current</td>
<td>n/a</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Current Share Warning</td>
<td>Paged, Phased</td>
<td>Phase current above or below average current for all phases by threshold</td>
<td>175 µs</td>
<td>During power conversion</td>
<td>5 to 20 A per phase</td>
<td>Warning only</td>
<td>n/a</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
</tbody>
</table>

(1) Any fault response which causes a shutdown event de-asserts VR_RDY. All faults have associated PMBus status bits and SMB_ALERT# response (unless masked by SMBALERT_MASK commands)
(2) Fault condition must have disappeared, otherwise fault re-triggers immediately
(3) IOUT_OC_FAULT_LIMIT[PAGE=x][PHASE=FFh] sets the per-page OC fault threshold, IOUT_OC_FAULT_LIMIT[PAGE=x][PHASE=Other] sets the per-phase OCL threshold
Table 7-9. Fault detection and behavior (continued)

<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Shared / Paged / Phased</th>
<th>Condition</th>
<th>Latency</th>
<th>Enabled</th>
<th>Programmable Range</th>
<th>Response</th>
<th>Alerts (1)</th>
<th>Clearing (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Stage Feedback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-Temperature Fault</td>
<td>Paged</td>
<td>Power Stage Temperature exceeded threshold</td>
<td>950 µs</td>
<td>After initialization complete</td>
<td>+90 to +160 °C</td>
<td>Ignore, Latch-Off, Hiccup PWM Tri-State</td>
<td>VR_FAULT# configurable</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Over-Temperature Warning</td>
<td>Paged</td>
<td>Power Stage Temperature exceeded threshold</td>
<td>950 µs</td>
<td>After initialization complete</td>
<td>+90 to +160 °C</td>
<td>Warning only</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Power Stage Fault</td>
<td>Paged</td>
<td>TAO pulled high by power stage</td>
<td>1.0 µs</td>
<td>After initialization complete</td>
<td>TAO > 2.5 V</td>
<td>Ignore, Latch-Off, Hiccup PWM Tri-State</td>
<td>VR_FAULT# if not ignore response</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Power Stage Not Ready (TAO LOW)</td>
<td>Paged</td>
<td>TAO pulled low by power stage</td>
<td>1.0 µs</td>
<td>After initialization complete</td>
<td>TAO < 230 mV Failing (50mV hysteresis)</td>
<td>Hysteresis Start-up is blocked if not yet enabled, or rail is shutdown. PWM tristated</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Input Voltage / Current / Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Over-Voltage Fault</td>
<td>Shared</td>
<td>VIN_CSNIN voltage exceeded threshold</td>
<td>950 µs</td>
<td>After initialization complete</td>
<td>0 to 19 V</td>
<td>Ignore, Latch-Off, Hiccup PWM Tri-State</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Input Over-Voltage Warning</td>
<td>Shared</td>
<td>VIN_CSNIN voltage exceeded threshold</td>
<td>950 µs</td>
<td>After initialization complete</td>
<td>0 to 19 V</td>
<td>Warning only</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Input Under-Voltage Warning</td>
<td>Shared</td>
<td>VIN_CSNIN voltage below threshold</td>
<td>950 µs</td>
<td>VIN > VIN_ON first time and either channel enabled</td>
<td>4.0 to 11.25 V</td>
<td>Warning only</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Input Under-Voltage Fault</td>
<td>Shared</td>
<td>VIN_CSNIN voltage below threshold</td>
<td>950 µs</td>
<td>VIN > VIN_ON first time and either channel enabled</td>
<td>4.0 to 11.25 V</td>
<td>Ignore, Latch-Off, Hiccup PWM Tri-State</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Input Over-Current Fault</td>
<td>Shared</td>
<td>CSPIN, VIN_CSNIN current below threshold</td>
<td>525 µs</td>
<td>During power conversion</td>
<td>4 to 128 A</td>
<td>Ignore, Latch-Off, Hiccup PWM Tri-State</td>
<td>VR_FAULT# if not ignore response</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Input Over-Current Warning</td>
<td>Shared</td>
<td>CSPIN, VIN_CSNIN current below threshold</td>
<td>525 µs</td>
<td>During power conversion</td>
<td>4 to 128 A</td>
<td>Warning only</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Input Over-Power Warning</td>
<td>Shared</td>
<td>Computed input power above threshold</td>
<td>525 µs</td>
<td>During power conversion</td>
<td>8 to 2044 W</td>
<td>Warning only</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
<tr>
<td>Self-Checking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid ADDR Pinstrap</td>
<td>Shared</td>
<td>ADDR pin open, low, high, or non-convergent detection</td>
<td>Checked once at initialization</td>
<td>Checked during power-on and enable</td>
<td>Per detection thresholds</td>
<td>Latch-Off, PWM tristate</td>
<td>None</td>
<td>3.3 V Power Cycle</td>
</tr>
<tr>
<td>Invalid BOOT Pinstrap</td>
<td>Shared</td>
<td>BOOT pin open, low, high, or non-convergent detection</td>
<td>Checked once at initialization</td>
<td>Checked during power-on and enable</td>
<td>Per detection thresholds</td>
<td>Latch-Off, PWM tristate</td>
<td>None</td>
<td>3.3 V Power Cycle</td>
</tr>
<tr>
<td>PMBus Interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMBus Communication Error</td>
<td>Shared</td>
<td>PMBus Communication Error (See STATUS_CML)</td>
<td>Per PMBus communication frequency</td>
<td>After initialization complete</td>
<td>See PMBus Specification</td>
<td>Warning only</td>
<td>None</td>
<td>Enable cycle, or CLEAR_FAULTS</td>
</tr>
</tbody>
</table>

(1) Any fault response which causes a shutdown event de-asserts VR_RDY. All faults have associated PMBus status bits and SMB_ALERT# response (unless masked by SMBALERT_MASK commands)

(2) Fault condition must have disappeared, otherwise fault re-triggers immediately
7.7.4 Detailed fault descriptions
7.7.4.1 Overvoltage fault (OVF) and warning (OVW)

TPS53676 supports several forms of overvoltage protection. The figure below describes the overvoltage protection scheme in more detail.

- **Pre-Bias OVF** protects the converter while initialization runs. This protection is active \(t_{\text{INIT-PBOV}} \), 350 \(\mu \)s maximum after the VCC pin voltage is established, until initialization is complete. The threshold is hard-coded to 3.7 V. In response to this condition, all PWM pins (regardless of channel assignment) pull low, regardless of the overvoltage response setting. This fault cannot be cleared without a power cycle of the VCC pin. The fixed overvoltage protection becomes active after \(t_{\text{INIT-LOGIC}} \), up to 20 ms after the VCC pin voltage is established. This fault detection cannot be disabled.

- **Fixed OVF** is a programmable limit based on the VSP pin voltage, above which it is not safe to operate the load device. Program the threshold through the MFR_PROTECTION_CONFIG command. This fault detection is active regardless of power conversion. If triggered while power conversion is disabled, this fault is treated as potentially catastrophic, and cannot be cleared without a power cycle of the VCC pin.

- **Tracking OVF** is a fault limit, programmable as an offset from the current VOUT_COMMAND value. Program this threshold through VOUT_OV_FAULT_LIMIT. When the VSP-VSN pin differential voltage exceeds this limit during power conversion, the tracking overvoltage fault condition is detected. This fault detection is disabled whenever power conversion is disabled.

- **Tracking OVW** is a warning limit, programmable as an offset from the current VOUT_COMMAND value. Program this threshold through VOUT_OV_WARN_LIMIT. When the VSP-VSN pin differential voltage exceeds this limit during power conversion, the tracking overvoltage warning condition is detected. This is a warning condition only, and does not cause any interruption to power conversion. The overvoltage warning provides early feedback to the system host allowing it to make adjustments prior a fault triggering.

In response to the overvoltage warning condition, TPS53676 sets the appropriate status bits in STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.

In response to the overvoltage fault condition TPS53676 responds according to the programmed VOUT_OV_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced a fault to pull low immediately. Additionally, TPS53676 sets the appropriate status bits in STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.

![Figure 7-28. Overvoltage Protection](image-url)

Program the tracking overvoltage fault threshold through the VOUT_OV_FAULT_LIMIT command as an absolute voltage. When a new VOUT_OV_FAULT_LIMIT command is received the device calculates the tracking overvoltage offset value internally according to the equation below. The threshold voltages get scaled with the use of an external voltage sensing divider and VOUT_SCALE_LOOP. TPS53676 supports tracking overvoltage fault offsets from +32 mV to +448 mV in 32 mV steps.
Program the tracking overvoltage warning through the VOUT_OV_WARN_LIMIT command as an absolute voltage. Similarly, when a new VOUT_OV_WARN_LIMIT command is received, the device calculates the tracking overvoltage warning offset according to the equation below. The threshold voltages get scaled with the use of an external voltage sensing divider and VOUT_SCALE_LOOP. TPS53676 supports tracking overvoltage warning offsets from +24 mV to +448 mV in 8 mV steps.

Program the fixed overvoltage fault threshold through MFR_PROTECTION_CONFIG. TPS53676 supports values from 0.6 V to 3.7 V, in 100 mV steps.

\[
V_{OFS(OVF TRK)} = \frac{V_{OUT_OV_FAULT_LIMIT} - V_{OUT_COMMAND}}{VOUT_SCALE_LOOP} \tag{36}
\]

\[
V_{OFS(OVW TRK)} = \frac{V_{OUT_OV_WARN_LIMIT} - V_{OUT_COMMAND}}{VOUT_SCALE_LOOP} \tag{37}
\]

The over-voltage warning and fault trip thresholds include the load-line setting as shown in the equations below.

\[
V_{OVW(trip)} = V_{OUT_COMMAND} + V_{OFS(OVW TRK)} - VOUT_DROOP \times I_{OUT} \tag{38}
\]

\[
V_{OVF(trip)} = \text{Min}(V_{OVFIX}, V_{OUT_COMMAND} + V_{OFS(OVF TRK)} - VOUT_DROOP \times I_{OUT}) \tag{39}
\]

Updates to VOUT_COMMAND do not cause these the overvoltage offsets to be recalculated. After the output voltage target has been changed, TPS53676 reports the fault and warning thresholds by adding the previously select offset value to the current VOUT_COMMAND.

Example: Programming the OVF and OVW offsets

Assume the current VOUT_COMMAND is 1.000 V, the VOUT_DROOP setting is equal to 0.5 mΩ, and the load current is equal to 100 A.

- Program the VOUT_OV_WARN_LIMIT to 1.128 V (1.0 V + 128 mV), to select the +128 mV tracking overvoltage warning offset. The VOUT_DROOP is assumed to be zero for calculation purposes. However, the over-voltage warning trip threshold does account for the load-line setting and is equal to 1.128 V - 0.5 mΩ × I_{OUT}.
- Program the VOUT_OV_FAULT_LIMIT to 1.256 V (1.0 V + 256 mV) , to select the +256 mV tracking overvoltage fault offset. The VOUT_DROOP is assumed to be zero for calculation purposes. However, the over-voltage fault trip threshold does account for the load-line setting and is equal to 1.256 V - 0.5 mΩ × I_{OUT}.

If the VOUT_COMMAND value is changed to is 1.100 V, the TPS53676 reports VOUT_OV_WARN_LIMIT as 1.228 V (1.1 V + 128 mV), and VOUT_OV_FAULT_LIMIT as 1.356 V (1.1 V + 256 mV). The offset values are not changed.
7.7.4.2 Undervoltage fault (UVF) and warning (UVW)

Two undervoltage threshold limits are provided:

- **Tracking UVF** is a fault limit, programmable as an offset from the current VOUT_COMMAND value. Program this threshold through VOUT_UV_FAULT_LIMIT. When the VSP-VSN pin differential voltage falls below this limit during power conversion, the tracking undervoltage fault condition is detected. This fault detection is disabled whenever power conversion is disabled.

- **Tracking UVW** is a warning limit, programmable as an offset from the current VOUT_COMMAND value. Program this threshold through VOUT_UV_WARN_LIMIT. When the VSP-VSN pin differential voltage exceeds this limit during power conversion, the tracking undervoltage warning condition is detected. This is a warning condition only, and does not cause any interruption to power conversion. The undervoltage warning provides early feedback to the system host allowing it to make adjustments prior to a fault triggering.

In response to the undervoltage warning condition, TPS53676 sets the appropriate status bits in STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.

In response to the undervoltage fault condition TPS53676 responds according to the programmed VOUT_UV_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced a fault to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.

Program the tracking undervoltage fault threshold through the VOUT_UV_FAULT_LIMIT command as an absolute voltage. When a new VOUT_UV_FAULT_LIMIT command is received, the device calculates the tracking undervoltage offset value internally according to the equation below. Threshold voltages get scaled with the use of an external voltage sensing divider, and VOUT_SCALE_LOOP. TPS53676 supports tracking undervoltage fault offsets from -32 mV to -448 mV in 32 mV steps.

Program the tracking undervoltage warning through the VOUT_UV_WARN_LIMIT command as an absolute voltage. When a new VOUT_UV_WARN_LIMIT command is received, the device calculates the tracking undervoltage warning offset according to the equation below. Threshold voltages get scaled with the use of an external voltage sensing divider, and VOUT_SCALE_LOOP. TPS53676 supports tracking undervoltage warning offsets from -24 mV to -448 mV in 8 mV steps.

\[
V_{OFS(UVW \ TRK)} = \frac{\text{VOUT_COMMAND} - \text{VOUT_UV_WARN_LIMIT}}{\text{VOUT_SCALE_LOOP}} \tag{40}
\]

\[
V_{OFS(UVF \ TRK)} = \frac{\text{VOUT_COMMAND} - \text{VOUT_UV_FAULT_LIMIT}}{\text{VOUT_SCALE_LOOP}} \tag{41}
\]

The undervoltage warning and fault trip thresholds include the load-line setting as shown in the equations below.

\[
V_{UVW(\text{trip})} = \text{VOUT_COMMAND} - V_{OFS(UVW \ TRK)} - \text{VOUT_DROOP} \times I_{OUT} \tag{42}
\]

\[
V_{UVF(\text{trip})} = \text{VOUT_COMMAND} - V_{OFS(UVF \ TRK)} - \text{VOUT_DROOP} \times I_{OUT} \tag{43}
\]

Example: Programming the UVF and UVW thresholds

Assume the current VOUT_COMMAND is 1.000 V, the VOUT_DROOP setting is equal to 0.5 mΩ, and the load current is equal to 100 A.

- Program the VOUT_UV_WARN_LIMIT to 0.872 V (1.0 V - 128 mV), to select the -128 mV tracking undervoltage warning offset. The VOUT_DROOP is assumed to be zero for calculation purposes. However, the undervoltage warning trip threshold does account for the load-line setting and is equal to 0.872 V - 0.5 mΩ × I_{OUT}.

- Program the VOUT_UV_FAULT_LIMIT to 0.744 V (1.0 V - 256 mV), to select the -256 mV tracking undervoltage fault offset. The VOUT_DROOP is assumed to be zero for calculation purposes. However, the undervoltage fault trip threshold does account for the load-line setting and is equal to 0.744 V - 0.5 mΩ × I_{OUT}.
If the VOUT_COMMAND value is changed to is 1.100 V, the TPS53676 reports VOUT_UV_WARN_LIMIT as 0.972 V (1.1 V - 128 mV), and VOUT_UV_FAULT_LIMIT as 0.844 V (1.1 V - 256 mV). The offset values are not changed.
7.7.4.3 Maximum turn-on time exceeded (TON_MAX)

The TON_MAX_FAULT_LIMIT command sets a maximum allowable time during which the output voltage must reach the regulation window during turn-on. The TON_MAX time is defined as the time between the first switching pulses, and the sensed output voltage exceeding the the minimum allowed regulation point, defined as \(V_{TON\text{MAX}} \), in the equation below. Program the TON_MAX_FAULT_LIMIT greater than the TON_RISE.

\[
V_{TON\text{MAX}} = V_{OUT_UV_FAULT_LIMIT} - (VOUT_DROOP \times IOUT_OC_FAULT_LIMIT)
\] (44)

The figure below illustrates the TON_MAX fault. TPS53676 enables its undervoltage fault protection at the first PWM pulses, during the output voltage rise time. Consequently, whenever the VOUT_UV_FAULT_RESPONSE is not set to the ignore response, it triggers first and disables power conversion prior to the TON_MAX time.

![Figure 7-29. TON_MAX fault](image)

In response to the TON_MAX fault condition, TPS53676 responds according to the programmed TON_MAX_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced the fault to tristate immediately. The TPS53676 then sets the appropriate status bits in STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.

7.7.4.4 Output commanded out-of-bounds (VOUT_MIN_MAX)

The VOUT_MIN and VOUT_MAX commands set the minimum and maximum allowed output voltage targets. TPS53676 does not ramp the output voltage target for either channel outside these limits for any reason. This includes being commanded to do so by VOUT_COMMAND, VOUT_MARGIN_HIGH, VOUT_MARGIN_LOW or VOUT_TRIM.

Whenever the output voltage target is commanded outside the limits set by VOUT_MIN and VOUT_MAX, the TPS53676 device detects the VOUT_MIN_MAX warning condition. In response, the device begins ramping the output voltage target of that channel to the new target and clamps to the VOUT_MIN or VOUT_MAX value. An example is shown in Figure 7-30.

![Figure 7-30. VOUT_MIN_MAX example](image)
7.7.4.5 Overcurrent fault (OCF), warning (OCW), and per-phase overcurrent limit (OCL)

TPS53676 provides three layers of overcurrent protection:

- **Overcurrent fault (OCF)** is a programmable threshold which sets the maximum allowed total current (sum of all phases) for a channel. Detection is based on output current telemetry. When the sensed output current for a channel exceeds this limit, the output overcurrent fault is detected. Program this threshold using the IOUT_OC_FAULT_LIMIT command with the PHASE set to FFh. TPS53676 supports values of 0 to 1023 A per channel.

- **Per-phase overcurrent limit (OCL)** is a programmable cycle-by-cycle valley current limit for each individual phase current, to protect against inductor saturation. TPS53676 does not pass PWM pulses to phases when their current is above the configured OCL threshold. Other than cycle-by-cycle current limit, no action is taken when the per-phase OCL is engaged. Typically, in the case of a severe overload event, power conversion is disabled when the output voltage reaches the VOUT_UV_FAULT_LIMIT. This is illustrated in the figure below. Program the OCL threshold using the IOUT_OC_FAULT_LIMIT command with the PHASE set to 00h. TPS53676 supports values of 17 A to 130 A per phase.

- **Overcurrent warning (OCW)** is a programmable warning threshold based on the total current (sum of all phases) for a channel. Detection is based on output current telemetry. When the sensed output current for a channel exceeds this limit, the output overcurrent warning is detected. Program this threshold using the IOUT_OC_WARN_LIMIT. TPS53676 supports values of 0 to 1023 A per channel.

![Figure 7-31. Per-phase OCL (2 phase example)](image)

Typically, set the per-phase OCL threshold greater than total peak design current $I_{PK-CHANNEL}$ to allow margin for transient events, as shown in the equation below. TI recommends 30-50% design margin. Then peak current allowed in any individual phase is given by the equation below. Select output inductor components such that current saturation levels are above this limit, including margin for threshold and current sensing accuracy.

$$I_{OCL(min)} = K_{MARGIN} \times \frac{I_{OUT(peak)}}{N_{\Phi}} - \frac{1}{2} \Delta I_{ripples}$$ (45)

where

- $I_{OCL(min)}$ is the per-phase overcurrent limit in amperes
- $I_{OUT(peak)}$ is the peak design current in amperes
- N_{Φ} is the number of phases assigned to the channel
- K_{MARGIN} is a factor of safety for design margin
where
• $I_{\text{PEAK(phase)}}$ is the peak current observed in any individual phase
• I_{OCL} is the per-phase overcurrent limit in amperes
• ΔI_{RIPPLE} is the peak-to-peak inductor current ripple

In response to the overcurrent warning condition, TPS53676 sets the appropriate status bits in STATUS_WORD and STATUS_IOUT and asserts the SMB_ALERT# line if these bits are not masked.

In response to the overcurrent fault condition, TPS53676 responds according to the programmed IOUT_OC_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced a fault to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS_WORD and STATUS_IOUT and asserts the SMB_ALERT# line if these bits are not masked.

7.7.4.6 Current share warning (ISHARE)

The TPS53676 telemetry system continually monitors the average current in each phase, and compares it to the average current of all phases assigned the channel. For each phase, whenever the condition described by the equation below is satisfied, the current share warning condition is detected. Configure the current share warning threshold through the MFR_PROTECTION_CONFIG command.

\[
\left(\frac{I_{\text{SUM}}}{N_{\Phi}} - I_{\text{PHASE}}\right) \leq -I_{\text{SHAREW}} \quad \text{or} \quad \left(I_{\text{PHASE}} - \frac{I_{\text{SUM}}}{N_{\Phi}}\right) \geq +I_{\text{SHAREW}}
\]

where
• I_{PHASE} is the current in each individual phase of a channel
• I_{SUM} is the total current in that channel
• N_{Φ} is the total number of phases assigned to that channel
• I_{SHAREW} is the programmed ISHARE warning in amperes

In response to the current share warning condition, TPS53676 sets the appropriate status bits in STATUS_WORD and STATUS_IOUT and asserts the SMB_ALERT# line if these bits are not masked.
7.7.4.7 Overtemperature fault protection (OTF) and warning (OTW)

TI smart power stages sense their internal die temperature and output temperature information as a voltage signal through their TAO pins. The temperature sense output of the powerstage device includes an OR'ing function such that the voltage signal present at the TSEN pin of the TPS53676 represents that of the hottest powerstage in the channel. The TPS53676 digitizes its TSEN pins to provide temperature telemetry.

- **Overtemperature fault (OTF)** is a programmable threshold which sets the maximum allowed temperature of the powerstage devices attached to a channel. Detection is based on output temperature telemetry. When the sensed temperature for a channel exceeds this limit, the overtemperature fault condition is detected. Program this threshold using the OT_FAULT_LIMIT command. TPS53676 supports values of 90 to 160 °C.

- **Overtemperature warning (OTW)** is a programmable threshold which sets a warning based on the temperature sense telemetry for a channel. Detection is based on temperature sense telemetry. When the sensed temperature for a channel exceeds this limit, the overtemperature warning is detected. Program this threshold using the OT_WARN_LIMIT. TPS53676 supports values of 90 to 160 °C.

In response to the overtemperature warning condition, TPS53676 sets the appropriate status bits in STATUS_WORD and STATUS_TEMPERATURE and asserts the SMB_ALERT# line if these bits are not masked.

In response to the overtemperature fault condition, TPS53676 responds according to the programmed OT_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced a fault to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS_WORD and STATUS_TEMPERATURE and asserts the SMB_ALERT# line if these bits are not masked.

7.7.4.8 Powerstage fault (TAO_HIGH) and powerstage not ready (TAO_LOW)

In addition to temperature sense information, the TPS53676 and TI smart power stage devices use the TAO lines to communicate fault information:

- **Powerstage fault (TAO_HIGH)** is a fault condition detected when any of the connected powerstage devices pulls its TAO line high (> 2.5 V). This occurs for any fault conditions detected inside the smart powerstage itself. Refer to the individual powerstage datasheets for a complete list of conditions which cause the powerstage fault. Program the controller response to a powerstage fault with MFR_PROTECTION_CONFIG.

- **Powerstage not ready (TAO_LOW)** is a fault condition detected when the TAO line is low (160 mV falling, 245 mV rising) for any reason. At power-on, the TI smart power stages hold their TSEN/TAO lines low, until their internal logic is valid, and their state is known (TAO_LOW condition). Once each device is in a valid state, it's pull-down of the shared TSEN/TAO line is released, and the TAO/TSEN lines are driven by the power-stage devices, based on temperature sense telemetry. The start-up of TPS53676 is blocked while the TAO_LOW condition exists, such that the controller does not attempt to begin conversion, until the TAO/TSEN line is released by all power stages. During the initial power-on, no status bits or alerts are set if the controller is commanded to enable with one of its TSEN/TAO pins low. This is done to accommodate power sequences which have the power stage 5V rail being enabled after the controller 3.3V. The TAO_LOW fault is a hysteretic-type response. When the TSEN/TAO pin is released, if the VR enable condition is still active, power conversion starts immediately.

In response to the powerstage fault, the TPS53676 responds according to the configured fault response in MFR_PROTECTION_CONFIG. When not set to the ignore response, this causes the PWM pins for that channel to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS_WORD and STATUS_MFR_SPECIFIC and asserts the SMB_ALERT# line if these bits are not masked.

In response to the TAO_LOW condition, TPS53676 tristates the PWM pins for that channel. TPS53676 then sets the appropriate status bits in STATUS_WORD and STATUS_MFR_SPECIFIC and asserts the SMB_ALERT# line if these bits are not masked. TAO_LOW is a hysteretic fault and cannot be configured otherwise.
7.7.4.9 Input overvoltage fault (VIN_OVF) and warning (VIN_OVW)

TPS53676 supports two layers of input overvoltage protection:

- **Input overvoltage fault (VIN_OVF)** is a programmable threshold which sets the maximum allowed input voltage, above which it is not safe to convert power. Detection is based on input voltage telemetry. When the sensed input voltage exceeds this limit, the input overvoltage fault condition is detected. Program this threshold using the VIN_OV_FAULT_LIMIT command. TPS53676 supports values of 0 to 19 V.

- **Input overvoltage warning (VIN_OVW)** is a programmable threshold which sets a warning based on the input voltage sense telemetry. Detection is based on input voltage sense telemetry. When the sensed input voltage for a channel exceeds this limit, the input overvoltage warning is detected. Program this threshold using the VIN_OV_WARN_LIMIT command. TPS53676 supports values of 0 to 19 V.

In response to the input overvoltage fault, the TPS53676 responds according to the configured fault response in VIN_OV_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins for both channels to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS_WORD and STATUS_INPUT and asserts the SMB_ALERT# line if these bits are not masked.

7.7.4.10 Input undervoltage fault (VIN_UVF), warning (VIN_UVW) and turn-on voltage (VIN_ON)

Three programmable parameters control the TPS53676 input undervoltage protection. More detail is shown in the figure below.

- **Turn-on voltage (VIN_ON)** is the input voltage at which TPS53676 allows power conversion to be enabled. Program this threshold through the VIN_ON command. The input undervoltage fault and warning are masked until the turn-on voltage is exceeded the first time during power-up. TPS53676 does not act on commands to enable power conversion while the input voltage is below this limit. No action is taken when the input voltage falls below this threshold during power conversion. Detection is based on input voltage telemetry. TPS53676 supports values from 4.25 V to 11.5 V.

- **Input undervoltage fault (VIN_UVF)** is the input voltage at which power conversion stops. Program this threshold through the VIN_UV_FAULT_LIMIT command. This command is also forced equal to the turn-off voltage (VIN_OFF). Detection is based on input voltage telemetry. When the sensed input voltage falls below this limit, the input undervoltage fault condition is detected. This fault is masked until the sensed input voltage exceeds the turn-on voltage VIN_ON for the first time. TPS53676 supports values from 4.00 V to 11.25 V.

- **Input undervoltage warning (VIN_UVW)** is a programmable threshold which sets a warning based on the input voltage sense telemetry for a channel. Detection is based on input voltage sense telemetry. When the sensed input voltage falls below this limit, the input undervoltage warning is detected. Program this threshold using the VOUT_UV_WARN_LIMIT command. TPS53676 supports values of 4.0 V to 11.25 V.

The input undervoltage fault is triggered when the sensed input voltage falls below the VIN_UV_FAULT_LIMIT threshold, and considered to be cleared when the sensed input voltage exceeds the VIN_ON limit. The input undervoltage fault is enabled only when either of the channels is enabled. Toggling the enable for both channels at the same time with the input voltage above the VIN_UV_FAULT_LIMIT threshold clears the fault, and enables power conversion to begin automatically after the input voltage exceeds the VIN_ON limit. In the case where the enable for each channel is independent, commanding one channel to enable conversion does not clear the input undervoltage condition and power conversion may not start automatically when the input voltage exceeds the VIN_ON thresholds. TI recommends to enable power conversion only after the input voltage exceeds the VIN_ON as shown in the figure below.
7.7.4.11 Input overcurrent fault (IIN_OCF) and warning (IIN_OCW)

- **Input overcurrent fault (IIN_OCF)** is a programmable threshold which sets the maximum allowed input current for the converter. Detection is based on input current telemetry. When the sensed input current exceeds this limit, the input overcurrent fault condition is detected. Program this threshold using the IIN_OC_FAULT_LIMIT command. TPS53676 supports values of 4 to 128A.

- **Input overcurrent warning (IIN_OCW)** is a programmable threshold which sets a warning threshold for the input current for the converter. Detection is based on input current telemetry. When the sensed input current exceeds this limit, the input overcurrent warning condition is detected. Program this threshold using the IIN_OC_WARN_LIMIT command. TPS53676 supports values of 4 to 128A.

In response to the input overcurrent fault, the TPS53676 responds according to the configured fault response in the IIN_OC_FAULT_RESPONSE command. When not set to the ignore response, this causes the PWM pins for both channels to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS_WORD and STATUS_INPUT and asserts the SMB_ALERT# line if these bits are not masked.

7.7.4.12 Input overpower warning (PIN_OPW)

The PIN_OP_WARN_LIMIT command sets an input overpower warning limit for the converter. Detection is based on the input power telemetry, which is derived by multiplying the input voltage and input current measurement values. When the input current telemetry measurements exceeds this limit, TPS53676 detects the input overpower warning condition. TPS53676 supports values from 8 to 2044 W.

The input overpower warning does not interrupt power conversion. In response, TPS53676 sets the appropriate status bits in STATUS_WORD and STATUS_INPUT and asserts the SMB_ALERT# line if these bits are not masked.

7.7.4.13 PMBus command, memory and logic errors (CML)

The STATUS_CML command provides information about communication errors which have occurred. Communication errors are warnings and do not cause any interruption to power conversion.

- **Invalid command (IVC)** occurs when the host attempts to access TPS53676 at a command which it does not support.

- **Invalid data (IVD)** occurs when the host sends data to a supported command which is out of range or unsupported.

- **Packet error check (PEC) error** occurs when TPS53676 receives a transaction with an invalid or incorrect PEC byte.

- **Communication error (COMM)** occurs when the SMBus timeout condition is detected.

- **Other (CML_OTHER)** can occur due to multiple conditions (may not be an exhaustive list):
 - Wrong transaction prototype - e.g. accessing a read word command as a read block
 - Block command send with the incorrect number of bytes, or block count was not acknowledged
- Bus arbitration was lost
- Transaction aborted
7.8 Programming

7.8.1 PMBus Interface

TPS53676 is designed to be compatible with the timing and physical layer electrical characteristics of the Power Management Bus (PMBus) Specification, part I, revision 1.3.1 available at http://pmbus.org. The 100-kHz, 400-kHz, and 1000-kHz classes are supported. Input logic levels are designed to be compatible with 1.8-V and 3.3-V logic. PMBus revision 1.3 is derived from the System Management Bus (SMBus) revision 3.0, available at http://smbus.org/. The communication mechanism is based on the inter-integrated circuit I²C protocol.

A master with clock stretching support is mandatory for communication with TPS53676 through the PMBus interface. TPS53676 does support the packet error check (PEC) protocol. If the system host supplies clock pulses for the PEC byte, PEC is used. If the CLK pulses are not present before a STOP, the PEC is not used. TPS53676 can be configured to require PEC for each transaction in systems which require high reliability of communication.

TPS53676 supports the SMB_ALERT# response protocol. The SMB_ALERT# response protocol is a mechanism by which a slave device can alert the master device that it is available for communication. The master device processes this event and simultaneously accesses all slave devices on the bus (that support the protocol) through the alert response address (ARA). Only the slave device that caused the alert acknowledges this request. The host device performs a modified receive byte operation to ascertain the slave devices address. At this point, the master device can use the PMBus status commands to query the slave device that caused the alert. By default, these devices implement the auto alert response, a manufacturer specific improvement to the SMB_ALERT# response protocol, intended to mitigate the issue of bus hogging. For more information on the SMBus alert response protocol, see the System Management Bus (SMBus) specification.

7.8.1.1 PMBus transaction types

Support for the following SMBus transaction types is mandatory. The use of PEC is optional. Refer to the SMBus specification and Technical Reference Manual for more detailed transaction diagrams.

Note that the SMBus Write Block and Read Block transaction types contain a repeated start condition, which may not be compatible with all I²C master device IP.

- Write Byte / Read Byte
- Write Word / Read Word
- Write Block / Read Block
- Send Byte / Receive Byte
- Block-Write-Block-Read Process Call (for SMBALERT_MASK commands)

7.8.1.2 PMBus data formats

TPS53676 supports 3 data formats according to the PMBus specification. The data format for each command is listed along with its address and supported values.

- **ULINEAR16 format** uses a 16-bit unsigned integer. The default LSB size is $2^{-10} = 0.97656 \text{ mV}$
- **SLINEAR16 format** uses a 16-bit number representing a decimal. This number has two fields: the 5 MSB bits form an two's complement exponent, referred to as N, and the 11 LSB bits form a two's complement mantissa, referred to as M. The decimal number is represented as $D = M \times 2^N$
- **Unsigned binary format** uses direct bit maps with each command being subdivided into multiple fields that can have different meaning. Refer to the register maps in the Technical Reference Manual for these commands.

TPS53676 accepts writes to SLINEAR11 format commands with any desired exponent value. TI recommends using the default exponent listed for each command for writes to ensure consistent NVM store and restore behavior.

Telemetry commands in the SLINEAR11 format return data with variable exponent values according to the absolute value of the returned value. As a rule TPS53676 returns data in the SLINEAR11 format with the smallest possible exponent, to provide the highest possible command resolution. As a result the host must be able to support decoding of the SLINEAR11 format with any exponent value.
7.8.1.2.1 Example PMBus number format conversions

Example: Decode SLINAR11 number E804h

E804h = 11101 00000000100b
Exponent = 11101b. N = -3 (5-bit two's complement)
Mantissa = 00000000100b. M = 4 (11-bit two's complement)
The decimal number D = M × 2^N = 4 × 2^{-3} = 0.5

Example: Encode 5.25 to SLINAR11 with exponent -4

Exponent = -4 = 11100b (5-bit two's complement)
Mantissa = 5.25 / 2^N = 5.25 / 2^{-4} = 84d = 0001010100b (11-bit two's complement)
SLINAR11 representation = 11100 00001010100b = E054h

Example: Encode 1.00 V to ULINEAR16 with VOUT_MODE = 16h

VOUT_MODE = 16h (Linear Absolute). Exponent (PARAMETER) = 10110b = -10 (5-bit two's complement)
1.00 V = 1.00 / 2^{-10} = 1024d = 0400h

Example: Decode 03E6h in ULINEAR16 with VOUT_MODE = 16h

VOUT_MODE = 16h (Linear Absolute). Exponent (PARAMETER) = 10110b = -10 (5-bit two's complement)
2^{-10} × 03D6h = 0.9746 V

7.8.1.2.2 Example system code for PMBus format conversion

Example code for handling the SLINAR11 and ULINEAR16 formats at the system level is given below.
Example code in C-like syntax is provided for reference only. Error checking code is not included. It is the responsibility of the system designer to verify and test all system code.

```
//Maps 5 bit linear exponent to LSB value (2^(twos complement of index))
const float LUT_linear_exponents[32] = {
  1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0, 2048.0, 4096.0, 8192.0, 16384.0, 32768.0, 0.000152587890625, 0.00030517578125, 0.0006103515625, 0.001220703125, 0.00244140625, 0.0048828125, 0.009765625, 0.01953125, 0.0390625, 0.078125, 0.15625, 0.3125, 0.625, 1.25, 0.25, 0.5
};
```

Figure 7-33. Linear exponent to LSB conversion (look-up table approach)
unsigned int float_to_slinear11(float number, signed int exponent)
{
 signed int mantissa;
 float lsb;

 //Decode the exponent and generate twos complement form
 if(exponent < 0) {
 lsb = LUT_linear_exponents[(exponent+32)];
 } else {
 lsb = LUT_linear_exponents[exponent];
 }

 //Decode mantissa based on exponent and generate twos complement form
 mantissa = (signed int)(number / lsb);

 //If numbers are negative, de-sign-extend to 5/11 bit numbers
 mantissa &= 0x07FF;
 exponent &= 0x1F;
 return (mantissa | (exponent << 11));
}

Figure 7-34. Floating point to SLINEAR11 conversion

float slinear11_to_float(unsigned int number)
{
 unsigned int exponent;
 int mantissa;
 float lsb;

 exponent = number >> 11;
 mantissa = number & 0x07FF;

 //Sign extend Mantissa to 32 bits (use your int size here)
 if (mantissa > 0x03FF) {
 mantissa |= 0xFFFFF800;
 }
 lsb = LUT_linear_exponents[exponent];
 return ((float)mantissa)*lsb;
}

Figure 7-35. SLINEAR11 to floating point conversion

unsigned int float_to_ulinear16(float number, unsigned char vout_mode)
{
 float lsb;
 lsb = LUT_linear_exponents[(vout_mode & 0x1F)];
 return (unsigned int)(number*lsb);
}

Figure 7-36. Floating point to ULINEAR16 conversion

float ulinear16_to_float(unsigned int number, unsigned char vout_mode)
{
 float lsb;
 lsb = LUT_linear_exponents[(vout_mode & 0x1F)];
 return ((float)number)*lsb;
}

Figure 7-37. ULINEAR16 to floating point conversion

7.8.1.3 Raw non-volatile memory programming

TPS53676 has 256 bytes of internal EEPROM non-volatile memory (NVM). Each PMBus command with NVM backup is mapped into the NVM array. For example, if a command supports 16 possible values, there are 4 corresponding bits for that field. The NVM array is designed withstand being overwritten greater than 1,000 times over the lifetime of the device.

The USER_NVM_INDEX and USER_NVM_EXECUTE commands provide access to read and write the raw data bytes. These commands allow the entire configuration data for the device to be read/written with a minimum number of transactions, to save programming time. The USER_NVM_EXECUTE command is a 32 byte block which accesses blocks of raw NVM data. The USER_NVM_INDEX command is an auto-incrementing byte
command which selects which 32 bytes of memory are being accessed via the USER_NVM_EXECUTE command.

The Fusion Digital Power Designer software provided for this device is capable of exporting raw configuration data, as well as XML configuration files containing the value of each PMBus command.

Configuration validation

The first 9 bytes of data returned by USER_NVM_EXECUTE with index zero, are identifying information for the configuration. Bytes 0 to 6 represent the IC_DEVICE_ID. Bytes 7-8 represent the ICDEVICE_REV. Byte 9 represents the currently configured PMBus slave address.

During the NVM import process, the controller checks these 9 bytes versus its current configuration, and NACKs the USER_NVM_EXECUTE (index = 0) command if the data does not match.

Example: Configuration validation

- Reading the USER_NVM_EXECUTE (index 0) from a configured device returns value 0x54 49 53 67 60 00 00 04 60 ... [NVM bytes 0 to 22]. This indicates the configuration data was generated from a device with IC_DEVICE_ID 0x54 49 53 67 60 00, IC_DEVICE_REV 00 04 and PMBus address 0x60.
- Writing the USER_NVM_EXECUTE (index 0) with the value 0x54 49 53 67 60 00 00 04 60 ... [NVM bytes 0 to 22] to a new device causes it to check its ICDEVICE_ID is equal to 0x54 49 53 67 60 00, check its ICDEVICE_REV is equal to 00 04 and check its PMBus address 0x60. If any of these checks fail, the write operation is rejected.
- Writing the USER_NVM_EXECUTE (index 0) with the value 0xFF FF FF FF FF FF 00 04 60 ... [NVM bytes 0 to 22] to a new device causes it skip the ICDEVICE_ID check, but still check its ICDEVICE_REV is equal to 00 04 and check its PMBus address 0x60. If any of these checks fail, the write operation is rejected.
- Writing the USER_NVM_EXECUTE (index 0) with the value 0xFF FF FF FF FF FF FF FF 60 ... [NVM bytes 0 to 22] to a new device causes it skip the ICDEVICE_ID check, skip its ICDEVICE_REV check, but still check its PMBus address 0x60. If any of these checks fail, the write operation is rejected.
- Writing the USER_NVM_EXECUTE (index 0) with the value 0xFF FF FF FF FF FF FF FF FF ... [NVM bytes 0 to 22] to a new device causes it skip the ICDEVICE_ID check, skip its ICDEVICE_REV check, and skip its PMBus address check. No checks were performed, so the data is accepted.

Procedure: Read all configuration data

Follow the procedures below to read-back NVM data for TPS53676 devices.

1. Configure the device as desired through PMBus commands, then issue STORE_USER_ALL. Power cycle the device or issue RESTORE_USER_ALL with power conversion disabled to ensure operating memory and non-volatile memory bytes are matching.
2. Write the USER_NVM_INDEX command to 00h.
3. Read back and record the USER_NVM_EXECUTE command (index = 0).
4. Read back and record the USER_NVM_EXECUTE command (index = 1).
5. Read back and record the USER_NVM_EXECUTE command (index = 2).
6. Read back and record the USER_NVM_EXECUTE command (index = 3).
7. Read back and record the USER_NVM_EXECUTE command (index = 4).
8. Read back and record the USER_NVM_EXECUTE command (index = 5).
9. Read back and record the USER_NVM_EXECUTE command (index = 6).
10. Read back and record the USER_NVM_EXECUTE command (index = 7).
11. Read back and record the USER_NVM_EXECUTE command (index = 8). The last 23 bytes of this command are not used by the device. TI recommends replacing these bytes with 00h for consistency across different configurations.

Procedure: Write all configuration data

Follow the procedures below to write NVM data for TPS53676 devices.

1. Apply +3.3V to the VCC pin of TPS53676
2. Ensure power conversion is disabled for both channels.
3. Write the USER_NVM_INDEX command to 00h.
4. Write the previously recorded USER_NVM_EXECUTE (index = 0). In this example, disable the self-validation checks by replacing the first 9 bytes with FFh.
5. Write the previously recorded USER_NVM_EXECUTE (index = 1).
6. Write the previously recorded USER_NVM_EXECUTE (index = 2).
7. Write the previously recorded USER_NVM_EXECUTE (index = 3).
8. Write the previously recorded USER_NVM_EXECUTE (index = 4).
9. Write the previously recorded USER_NVM_EXECUTE (index = 5).
10. Write the previously recorded USER_NVM_EXECUTE (index = 6).
11. Write the previously recorded USER_NVM_EXECUTE (index = 7).
12. Write the previously recorded USER_NVM_EXECUTE (index = 8). Replace the last 23 bytes with 00h. An NVM store operation is automatically performed once the last block is successfully received.
13. Wait 100 ms for non-volatile memory programming to complete successfully. Ensure that the +3.3V power supply to the device is not interrupted during this time to guarantee proper memory storage and retention.
14. **Do not** issue an NVM store operation at this point. This overwrites the NVM array with the data values in operating memory.
15. Power cycle the device or issue RESTORE_USER_ALL to continue operation with the newly programmed values. Multifunction pin configurations require a power cycle to take effect.
<table>
<thead>
<tr>
<th>CMD Code</th>
<th>Command Name</th>
<th>Default Behavior Ch. A (PAGE = 0)</th>
<th>Default Behavior Ch. B (PAGE = 1)</th>
<th>Default Hex Ch. A</th>
<th>Default Hex Ch. B</th>
<th>R/W Access, NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>PAGE</td>
<td>Commands address both Channel A and Channel B</td>
<td></td>
<td>FFh</td>
<td>FFh</td>
<td>R/W</td>
</tr>
<tr>
<td>01h</td>
<td>OPERATION</td>
<td>OPERATION Off, Margin None</td>
<td>OPERATION Off, Margin None</td>
<td>00h</td>
<td>00h</td>
<td>R/W</td>
</tr>
<tr>
<td>02h</td>
<td>ON_OFF_CONFIG</td>
<td>AVR_EN pin only, Active High</td>
<td>BVR_EN pin only, Active High</td>
<td>17h</td>
<td>17h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>03h</td>
<td>CLEAR_FAULTS</td>
<td>Clears all faults related to channel A</td>
<td>Clears all faults related to channel B</td>
<td>N/A</td>
<td>N/A</td>
<td>W</td>
</tr>
<tr>
<td>04h</td>
<td>PHASE</td>
<td>Commands address all phases in channel A</td>
<td>Commands address all phases in channel B</td>
<td>FFh</td>
<td>FFh</td>
<td>R/W</td>
</tr>
<tr>
<td>05h</td>
<td>PAGE_PLUS_WRITE</td>
<td>Utility to send PAGE along with a PMBus write transaction</td>
<td>Per command</td>
<td>00h</td>
<td>R/W, NVM</td>
<td></td>
</tr>
<tr>
<td>06h</td>
<td>PAGE_PLUS_READ</td>
<td>Utility to send PAGE along with a PMBus read transaction</td>
<td>Per command</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10h</td>
<td>WRITE_PROTECT</td>
<td>All commands are writeable</td>
<td>00h</td>
<td>R/W, NVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15h</td>
<td>STORE_USER_ALL</td>
<td>Stores all current storable register settings into NVM as new defaults</td>
<td>N/A</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16h</td>
<td>RESTORE_USER_ALL</td>
<td>Restores all storable register settings from NVM</td>
<td>N/A</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19h</td>
<td>CAPABILITY</td>
<td>1 MHz, PEC, SMB_ALERT Supported</td>
<td>D4h</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18h</td>
<td>SMBALERT_MASK_WORD</td>
<td>No SMB_ALERT sources masked</td>
<td>No SMB_ALERT sources masked</td>
<td>00h</td>
<td>00h</td>
<td>R/W</td>
</tr>
<tr>
<td>18h</td>
<td>SMBALERT_MASK_VOUT</td>
<td>No SMB_ALERT sources masked</td>
<td>No SMB_ALERT sources masked</td>
<td>00h</td>
<td>00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>18h</td>
<td>SMBALERT_MASK_IOUT</td>
<td>No SMB_ALERT sources masked</td>
<td>No SMB_ALERT sources masked</td>
<td>00h</td>
<td>00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>18h</td>
<td>SMBALERT_MASK_INPUT</td>
<td>LOW VIN bit is masked</td>
<td>00h</td>
<td>R/W, NVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18h</td>
<td>SMBALERT_MASK_TEMPERATURE</td>
<td>No SMB_ALERT sources masked</td>
<td>No SMB_ALERT sources masked</td>
<td>00h</td>
<td>00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>18h</td>
<td>SMBALERT_MASK_CML</td>
<td>No SMB_ALERT sources masked</td>
<td>No SMB_ALERT sources masked</td>
<td>00h</td>
<td>00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>18h</td>
<td>SMBALERT_MASK_MFR</td>
<td>No SMB_ALERT sources masked</td>
<td>No SMB_ALERT sources masked</td>
<td>06h</td>
<td>06h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>18h</td>
<td>SMBALERT_MASK_OTHER</td>
<td>FIRST_TO_ALERT does not assert SMB_ALERT#</td>
<td>00h</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20h</td>
<td>VOUT_MODE</td>
<td>ULINEAR16 Mode, Absolute, Exponent = -10</td>
<td>ULINEAR16 Mode, Absolute, Exponent = -10</td>
<td>16h</td>
<td>16h</td>
<td>R</td>
</tr>
<tr>
<td>21h</td>
<td>VOUT_COMMAND</td>
<td>0.880 V</td>
<td>0.800 V</td>
<td>03 85h</td>
<td>03 33h</td>
<td>R/W, NVM/ Pin Detect (Ch A)</td>
</tr>
<tr>
<td>22h</td>
<td>VOUT_TRIM</td>
<td>+0.000 V</td>
<td>+0.000 V</td>
<td>00 00h</td>
<td>00 00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>24h</td>
<td>VOUT_MAX</td>
<td>1.869 V (VBOOT_CHA pintrp active by default) NVM stored value is 1.200 V</td>
<td>1.400 V</td>
<td>07 7Ah / 04 CDh</td>
<td>05 9Ah</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>25h</td>
<td>VOUT_MARGIN_HIGH</td>
<td>0.000 V</td>
<td>0.000 V</td>
<td>00 00h</td>
<td>00 00h</td>
<td>R/W</td>
</tr>
<tr>
<td>26h</td>
<td>VOUT_MARGIN_LOW</td>
<td>0.000 V</td>
<td>0.000 V</td>
<td>00 00h</td>
<td>00 00h</td>
<td>R/W</td>
</tr>
<tr>
<td>27h</td>
<td>VOUT_TRANSITION_RATE</td>
<td>5.0 mV/µs</td>
<td>5.0 mV/µs</td>
<td>E0 50h</td>
<td>E0 50h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>28h</td>
<td>VOUT_DROOP</td>
<td>0.000 mΩ</td>
<td>0.000 mΩ</td>
<td>C8 00h</td>
<td>C8 00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>29h</td>
<td>VOUT_SCALE_LOOP</td>
<td>1.000</td>
<td>1.000</td>
<td>E8 08h</td>
<td>E8 08h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>28h</td>
<td>VOUT_MIN</td>
<td>0.000 V</td>
<td>0.000 V</td>
<td>00 00h</td>
<td>00 00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>33h</td>
<td>FREQUENCY_SWITCH</td>
<td>500 kHz</td>
<td>500 kHz</td>
<td>01 14h</td>
<td>01 14h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>34h</td>
<td>POWER_MODE</td>
<td>DPS disabled, all phases FCCM</td>
<td>DPS disabled, all phases FCCM</td>
<td>03h</td>
<td>03h</td>
<td>R/W</td>
</tr>
<tr>
<td>35h</td>
<td>VIN_ON</td>
<td>9.250 V</td>
<td></td>
<td>F0 25h</td>
<td>R/W, NVM</td>
<td></td>
</tr>
</tbody>
</table>
Supported Commands and NVM Defaults (continued)

<table>
<thead>
<tr>
<th>CMD Code</th>
<th>Command Name</th>
<th>Default Behavior Ch. A (PAGE = 0)</th>
<th>Default Behavior Ch. B (PAGE = 1)</th>
<th>Default Hex Ch. A</th>
<th>Default Hex Ch. B</th>
<th>R/W Access, NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>38h</td>
<td>IOOUT_CAL_GAIN</td>
<td>5.000 mΩ</td>
<td>5.000 mΩ</td>
<td>CA 80h</td>
<td>CA 80h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>39h</td>
<td>IOOUT_CAL_OFFSET</td>
<td>0.000 A (all phases)</td>
<td>0.000 A (all phases)</td>
<td>E8 00h</td>
<td>E8 00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>40h</td>
<td>VOUT_OV_FAULT_LIMIT</td>
<td>1.072 V (VOUT_COMMAND + 192 mV)</td>
<td>0.992 V (VOUT_COMMAND + 192 mV)</td>
<td>04 4Ah</td>
<td>03 F7h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>41h</td>
<td>VOUT_OV_FAULT_RESPONSE</td>
<td>Latch-off and do not restart</td>
<td>Latch-off and do not restart</td>
<td>80h</td>
<td>80h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>42h</td>
<td>VOUT_OV_WARN_LIMIT</td>
<td>1.056 V (VOUT_COMMAND + 176 mV)</td>
<td>0.976 V (VOUT_COMMAND + 176 mV)</td>
<td>04 39h</td>
<td>03 E7h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>43h</td>
<td>VOUT_UV_WARN_LIMIT</td>
<td>0.704 V (VOUT_COMMAND - 176 mV)</td>
<td>0.623 V (VOUT_COMMAND - 176 mV)</td>
<td>04 39h</td>
<td>03 E7h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>44h</td>
<td>VOUT_UV_FAULT_LIMIT</td>
<td>0.688 V (VOUT_COMMAND - 192 mV)</td>
<td>0.607 V (VOUT_COMMAND - 192 mV)</td>
<td>02 C0h</td>
<td>02 6Eh</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>45h</td>
<td>VOUT_UV_FAULT_RESPONSE</td>
<td>Latch-off after 5.0 μs and do not restart</td>
<td>Latch-off after 5.0 μs and do not restart</td>
<td>40h</td>
<td>40h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>46h</td>
<td>IOOUT_OC_FAULT_LIMIT</td>
<td>480 A total current</td>
<td>80 A total current</td>
<td>10 E0h</td>
<td>00 35h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>47h</td>
<td>IOOUT_OC_FAULT_RESPONSE</td>
<td>Latch-off and do not restart</td>
<td>Latch-off and do not restart</td>
<td>C0h</td>
<td>C0h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>4Ah</td>
<td>IOOUT_OC_WARN_LIMIT</td>
<td>440 A total current</td>
<td>60 A total current</td>
<td>01 B8h</td>
<td>00 3Ch</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>4Bh</td>
<td>OT_FAULT_LIMIT</td>
<td>120°C</td>
<td>120°C</td>
<td>00 7Bh</td>
<td>00 7Bh</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>50h</td>
<td>OT_FAULT_RESPONSE</td>
<td>Latch-off and do not restart</td>
<td>Latch-off and do not restart</td>
<td>80h</td>
<td>80h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>51h</td>
<td>OT_WARN_LIMIT</td>
<td>110°C</td>
<td>110°C</td>
<td>00 6Bh</td>
<td>00 6Bh</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>55h</td>
<td>VIN_OV_FAULT_LIMIT</td>
<td>15.0 V</td>
<td></td>
<td>00 0Fh</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>56h</td>
<td>VIN_OV_FAULT_RESPONSE</td>
<td>Latch-off and do not restart</td>
<td></td>
<td>80h</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>57h</td>
<td>VIN_OV_WARN_LIMIT</td>
<td>14.0 V</td>
<td></td>
<td>00 0Bh</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>58h</td>
<td>VIN_UV_WARN_LIMIT</td>
<td>8.50 V</td>
<td>F0 22h</td>
<td></td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>59h</td>
<td>VIN_UV_FAULT_LIMIT</td>
<td>8.00 V</td>
<td>F0 22h</td>
<td></td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>5Ah</td>
<td>VIN_UV_FAULT_RESPONSE</td>
<td>Latch-off and do not restart</td>
<td></td>
<td>80h</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>58h</td>
<td>IIN_OC_FAULT_LIMIT</td>
<td>52.0 A</td>
<td></td>
<td>00 34h</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>5Ch</td>
<td>IIN_OC_FAULT_RESPONSE</td>
<td>Latch-off and do not restart</td>
<td></td>
<td>C0h</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>5Dh</td>
<td>IIN_OC_WARN_LIMIT</td>
<td>44.0 A</td>
<td></td>
<td>00 2Ch</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>60h</td>
<td>TON_DELAY</td>
<td>0.00 ms</td>
<td>0.00 ms</td>
<td>F8 00h</td>
<td>F8 00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>61h</td>
<td>TON_RISE</td>
<td>1.5 ms (SR_{BOOT} = 0.625 mV/μs)</td>
<td>1.5 ms (SR_{BOOT} = 0.625 mV/μs)</td>
<td>F0 06h</td>
<td>F0 06h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>62h</td>
<td>TON_MAX_FAULT_LIMIT</td>
<td>2.0 ms</td>
<td>2.0 ms</td>
<td>F0 0Bh</td>
<td>F0 0Bh</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>63h</td>
<td>TON_MAX_FAULT_RESPONSE</td>
<td>Latch-off and do not restart</td>
<td>Latch-off and do not restart</td>
<td>80h</td>
<td>80h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>64h</td>
<td>TOFF_DELAY</td>
<td>0.00 ms</td>
<td>0.00 ms</td>
<td>F8 00h</td>
<td>F8 00h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>65h</td>
<td>TOFF_FALL</td>
<td>1.5 ms (SR_{OFF} = 0.625 mV/μs)</td>
<td>1.5 ms (SR_{OFF} = 0.625 mV/μs)</td>
<td>F0 06h</td>
<td>F0 06h</td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>66h</td>
<td>PIN_OP_WARN_LIMIT</td>
<td>592.0 W</td>
<td></td>
<td>09 28h</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>70h</td>
<td>STATUS_BYTE</td>
<td>Current status channel A</td>
<td>Current status channel B</td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>70h</td>
<td>STATUS_WORD</td>
<td>Current status channel A</td>
<td>Current status channel B</td>
<td></td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>71h</td>
<td>STATUS_VOUT</td>
<td>Current status channel A</td>
<td>Current status channel B</td>
<td></td>
<td></td>
<td>R/W</td>
</tr>
</tbody>
</table>
Table 7-10. Supported Commands and NVM Defaults (continued)

<table>
<thead>
<tr>
<th>CMD Code</th>
<th>Command Name</th>
<th>Default Behavior Ch. A (PAGE = 0)</th>
<th>Default Behavior Ch. B (PAGE = 1)</th>
<th>Default Hex Ch. A</th>
<th>Default Hex Ch. B</th>
<th>R/W Access, NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Bh</td>
<td>STATUS_IOUT</td>
<td>Current status channel A</td>
<td>Current status channel B</td>
<td>Current Status</td>
<td>Current Status</td>
<td>R/W</td>
</tr>
<tr>
<td>7Ch</td>
<td>STATUS_INPUT</td>
<td>Current status</td>
<td></td>
<td>Current Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7Dh</td>
<td>STATUS_TEMPERATURE</td>
<td>Current status channel A</td>
<td>Current status channel B</td>
<td>Current Status</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>7Eh</td>
<td>STATUS_CML</td>
<td>Current status</td>
<td></td>
<td>Current Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7Fh</td>
<td>STATUS_OTHER</td>
<td>Current status</td>
<td></td>
<td>Current status</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>80h</td>
<td>STATUS_MFR_SPECIFIC</td>
<td>Current status channel A</td>
<td>Current status channel B</td>
<td>Current Status</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>88h</td>
<td>READ_VIN</td>
<td>Measured input voltage</td>
<td></td>
<td>Current Status</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>89h</td>
<td>READ_IIN</td>
<td>Measured input current</td>
<td></td>
<td>Current Status</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>8Bh</td>
<td>READ_VOUT</td>
<td>Measured output voltage channel A</td>
<td>Measured output voltage channel B</td>
<td>Current Status</td>
<td>Current Status</td>
<td>R</td>
</tr>
<tr>
<td>8Ch</td>
<td>READ_IOUT</td>
<td>Measured output current channel A</td>
<td>Measured output current channel B</td>
<td>Current Status</td>
<td>Current Status</td>
<td>R</td>
</tr>
<tr>
<td>8Dh</td>
<td>READ_TEMPERATURE</td>
<td>Measured power stage temperature</td>
<td></td>
<td>Current Status</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>96h</td>
<td>READ_POUT</td>
<td>Calculated output power channel A</td>
<td>Calculated output power channel B</td>
<td>Current Status</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>97h</td>
<td>READ_PIN</td>
<td>Calculated input power</td>
<td></td>
<td>Current Status</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>98h</td>
<td>PMBUS_REVISION</td>
<td>Revision 1.3, Part I and Part II compatible</td>
<td>33h</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>99h</td>
<td>MFR_ID</td>
<td>Manufacturer company identification</td>
<td>02 00 00h</td>
<td></td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>9Ah</td>
<td>MFR_MODEL</td>
<td>Manufacturer model identification</td>
<td>00 00 00h</td>
<td></td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>9Bh</td>
<td>MFR_REVISION</td>
<td>Manufacturer revision identification</td>
<td>00 00 00h</td>
<td></td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>9Dh</td>
<td>MFR_DATE</td>
<td>Manufacturer date identification</td>
<td>00 00 00h</td>
<td></td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td>ADh</td>
<td>IC_DEVICE_ID</td>
<td>TPS53676</td>
<td>54 53 67 60 00h</td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>AEh</td>
<td>IC_DEVICE_REV</td>
<td>Revision 2</td>
<td>00 04h</td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>B1h</td>
<td>USER_DATA_01 (COMPENSATION_CONFIG)</td>
<td>DC load line: 0.00 mΩ</td>
<td>DC load line: 0.00 mΩ</td>
<td>00 D0 0E</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC load line: 0.20 mΩ</td>
<td>AC load line: 0.4375 mΩ</td>
<td>73 00 D0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integration time constant: 1.0 μs</td>
<td>Integration time constant: 7.0 μs</td>
<td>72 1C D0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamic integration constant: 4.0 μs</td>
<td>Dynamic integration constant: 3.0 μs</td>
<td>00 C8h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamic integration threshold: 60 mV</td>
<td>Dynamic integration threshold: 120 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC gain: 1.0</td>
<td>AC gain: 1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integration gain: 1.0</td>
<td>Integration gain: 1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramp amplitude: 360 mV</td>
<td>Ramp amplitude: 200 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2h</td>
<td>USER_DATA_02 (NONLINEAR_CONFIG)</td>
<td>USR1 threshold: 120 mV</td>
<td>USR1 threshold: 120 mV</td>
<td>31 1A 0F</td>
<td></td>
<td>R/W, NVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USR2 threshold: 50 mV</td>
<td>USR2 threshold: 50 mV</td>
<td>31 1A 0F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min off time: 30 ns</td>
<td>Min off time: 30 ns</td>
<td>06 DAh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blanking time: 30 ns</td>
<td>Blanking time: 30 ns</td>
<td>07 DAh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSR: Disabled</td>
<td>OSR: Disabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USR1 phases: 4 phases</td>
<td>USR1 phases: 4 phases</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TPS53676
<table>
<thead>
<tr>
<th>CMD Code</th>
<th>Command Name</th>
<th>Default Behavior Ch. A (PAGE = 0)</th>
<th>Default Behavior Ch. B (PAGE = 1)</th>
<th>Default Hex Ch. A</th>
<th>Default Hex Ch. B</th>
<th>R/W Access, NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3h</td>
<td>USER_DATA_03 (PHASE_CONFIG)</td>
<td>6+1 configuration, 0-2-4-1-3-5 order on channel A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| B4h | USER_DATA_04 (DVID_CONFIG) | DCLL up: 0.00 mΩ
DCLL down: 0.00 mΩ
ACLL up: 0.50 mΩ
ACLL down: 0.50 mΩ
Boot offset: 90mV
Dynamic offsets: 0 mV | DCLL up: 0.00 mΩ
DCLL down: 0.00 mΩ
ACLL up: 0.75 mΩ
ACLL down: 0.50 mΩ
Boot offset: 40mV
Dynamic offsets: 0 mV | 03 60 08
08 00 00h | 03 20 0C
08 00 00h | R/W, NVM |
| B7h | USER_DATA_07 (PHASE_SHED_CONFIG) | Phase shedding disabled | Phase shedding disabled | 30 08 44
44 44 44
44 2F FF | 48 2F FF
FF FF FF
FFh | R/W, NVM |
| B8h | USER_DATA_08 (AVSBUS_CONFIG) | 3-Wire AVSBus mode | | 01h | | R/W, NVM |
| BAh | USER_DATA_10 (ISHARE_CONFIG) | All phases = 1.0 KΩ | All phases = 1.0 KΩ | 04h all phases | 04h all phases | R/W, NVM |
| BBh | USER_DATA_11 (MFR_PROTECTION_CONFIG) | ISHARE warning: 50 mV
Fixed OVP channel A: 1.2 V
Fixed OVP channel B: 1.6 V
Powerstage fault response: Latch-off
Hiccup wait time: 25 ms | | 8C 99 00 00 02 55 00
00 00 00h | | R/W, NVM |
| BDh | USER_DATA_13 (MFR_CALIBRATION_CONFIG) | IIN shunt: 0.5 mΩ (analog gain: 20, digital gain = 80) | | 88 00 00 00 00 00
00 00 00h | | R/W, NVM |
| CDh | MFR_SPECIFIC_CD (MULTIFUNCTION_PIN_CONFIG_1) | Pin 43: BTSEN
Pin 19: BVR_EN | | | Default Settings | R/W, NVM |
<p>| CEh | MFR_SPECIFIC_CE (MULTIFUNCTION_PIN_CONFIG_2) | Pin 44: ATSEN | | | Default Settings | R/W, NVM |
| CFh | MFR_SPECIFIC_CF (SMBALERT_MASK_EXTENDED) | On-the-fly SMB_ALERT# Mask bits for bits in STATUS_EXTENDED | | | 00 00 00 00 00 00 00h | RW |
| D1h | MFR_SPECIFIC_D1 (READ_VOUT_MIN_MAX) | Peak logging function for output voltage telemetry | | | Current status | RW |
| D2h | MFR_SPECIFIC_D2 (READ_IOUT_MIN_MAX) | Peak logging function for output current telemetry | | | Current status | RW |
| D3h | MFR_SPECIFIC_D3 (READ_TEMPERATURE_MIN_MAX) | Peak logging function for temperature telemetry | | | Current status | RW |
| D4h | MFR_SPECIFIC_D4 (READ_MFR_VOUT) | Output voltage telemetry in SLINEAR11 format | | | Current status | R |
| D5h | MFR_SPECIFIC_D5 (READ_VIN_MIN_MAX) | Peak logging function for input voltage telemetry | | | Current status | RW |
| D6h | MFR_SPECIFIC_D6 READ_IIN_MIN_MAX | Peak logging function for input current telemetry | | | Current status | RW |</p>
<table>
<thead>
<tr>
<th>CMD Code</th>
<th>Command Name</th>
<th>Default Behavior Ch. A (PAGE = 0)</th>
<th>Default Behavior Ch. B (PAGE = 1)</th>
<th>Default Hex Ch. A</th>
<th>Default Hex Ch. B</th>
<th>R/W Access, NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7h</td>
<td>MFR_SPECIFIC_D7 (READ_PIN_MIN_MAX)</td>
<td>Peak logging function for input power telemetry</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
</tr>
<tr>
<td>D8h</td>
<td>MFR_SPECIFIC_D8 (READ_POUT_MIN_MAX)</td>
<td>Peak logging function for output power telemetry</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
</tr>
<tr>
<td>DAh</td>
<td>MFR_SPECIFIC_DA (READ_ALL)</td>
<td>Returns all telemetry data for the current channel</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>DBh</td>
<td>MFR_SPECIFIC_DB (STATUS_ALL)</td>
<td>Returns all status information for the current channel</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>DCb</td>
<td>MFR_SPECIFIC_DC (STATUS_PHASES)</td>
<td>Returns status information for phase-wise faults OCL and ISHARE</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>DDh</td>
<td>MFR_SPECIFIC_DD (STATUS_EXTENDED)</td>
<td>Returns status information for Manufacturer specific bits</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>E3h</td>
<td>MFR_SPECIFIC_E3 (VR_FAULT_CONFIG)</td>
<td>VR_FAULT# asserts only due to faults on channel A. OC and OT fault assert VR_FAULT#</td>
<td></td>
<td></td>
<td></td>
<td>RW, NVM</td>
</tr>
<tr>
<td>E4h</td>
<td>MFR_SPECIFIC_E4 (SYNC_CONFIG)</td>
<td>Closed loop frequency enabled for both channels</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
</tr>
<tr>
<td>EDh</td>
<td>MFR_SPECIFIC_ED (MISC_OPTIONS)</td>
<td>FCCM mode, both channels, PEC not required.</td>
<td></td>
<td></td>
<td></td>
<td>RW, NVM</td>
</tr>
<tr>
<td>EEh</td>
<td>MFR_SPECIFIC_EE (PIN_DETECT_OVERRIDE)</td>
<td>Pin detect enabled for ADDR and BOOT_CHA</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>EFh</td>
<td>MFR_SPECIFIC_EF (SLAVE_ADDRESS)</td>
<td>00h in NVM Given by pin-detection by default</td>
<td></td>
<td></td>
<td></td>
<td>RW, NVM</td>
</tr>
<tr>
<td>F0h</td>
<td>MFR_SPECIFIC_F0 (NVM_CHECKSUM)</td>
<td>CRC of NVM data bytes</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>F5h</td>
<td>MFR_SPECIFIC_F5 (USER_NVM_INDEX)</td>
<td>Index = 0 (auto-incrementing)</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
</tr>
<tr>
<td>F6h</td>
<td>MFR_SPECIFIC_F6 (USER_NVM_EXECUTE)</td>
<td>Raw NVM data bytes</td>
<td></td>
<td></td>
<td></td>
<td>RW, NVM</td>
</tr>
<tr>
<td>FAh</td>
<td>MFR_SPECIFIC_FA (NVM_LOCK)</td>
<td>NVM unlocked</td>
<td></td>
<td></td>
<td></td>
<td>RW, NVM</td>
</tr>
<tr>
<td>FBh</td>
<td>MFR_SPECIFIC_FB (MFR_WRITE_PROTECT)</td>
<td>No command groups write protected</td>
<td></td>
<td></td>
<td></td>
<td>RW, NVM</td>
</tr>
</tbody>
</table>
7.8.1.4 PMBus Command Descriptions

7.8.1.4.1 (00h) PAGE

Address: 00h
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: FFh
Updates Allowed: On-the-fly
Supported Values:
- 00h: Channel A
- 01h: Channel B
- FFh: Both channels

Description:
Selects which channel future PMBus commands address, in multi-channel devices.

7.8.1.4.2 (01h) OPERATION

Address: 01h
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: 00h
Updates Allowed: On-the-fly
Supported Values:
- 00h: Immediate Off, Margin None
- 40h: Soft-Off, Margin None
- 80h: On, Margin None
- 98h: On, Margin Low, Act on Faults
- A8h: On, Margin High, Act on Faults
- 94h: On, Margin Low, Ignore Faults
- A4h: On, Margin High, Ignore Faults
- B0h: On, AVSBus controls the output voltage

Other possible values not shown. See the Technical Reference Manual

Description:
The OPERATION command is used to enable or disable power conversion, in conjunction input from the enable pins, according to the configuration of the ON_OFF_CONFIG command.

7.8.1.4.3 (02h) ON_OFF_CONFIG

Address: 02h
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values:
- 03h: Always converting when power is present
- 16h: VREG pin only, Active High, Soft-Off
- 17h: VREG pin only, Active High, Immediate Off
- 18h: OPERATION command only

Other possible values not shown. See the Technical Reference Manual

Description:
The ON_OFF_CONFIG command configures the combination of enable pin input and serial bus commands needed to enable/disable power conversion.

7.8.1.4.4 (03h) CLEAR_FAULTS

Address: 03h
Transaction Type: Send Byte
Data Format: Data-less
Paged / Phased: Yes / No
Reset Value: N/A
Updates Allowed: On-the-fly
Supported Values: N/A

Description:
CLEAR_FAULTS is used to clear any fault bits that have been set. This command simultaneously clears all bits in all status registers in the selected PAGE. At the same time, the device releases its SMB_ALERT# signal output, if SMB_ALERT# is asserted. CLEAR_FAULTS is a write-only command with no data.

7.8.1.4.5 (04h) PHASE

Address: 04h
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: FFh
Updates Allowed: On-the-fly
Supported Values: FFh: Address all phases in the current PAGE
00h to 06h: Address individual phases. For example, 00h addresses Phase 1 (Order 0), and so on.
Description: Selects which phase future PMBus commands address within the active PAGE.

7.8.1.4.6 (05h) PAGE_PLUS_WRITE

Address: 05h
Transaction Type: Block Write
Data Format: Unsigned Binary (variable block length)
Paged / Phased: No
Reset Value: N/A
Updates Allowed: On-the-fly
Supported Values: Per command description.
Description: Utility to send PAGE along with a PMBus command write. See the Technical Reference Manual for more information.

7.8.1.4.7 (06h) PAGE_PLUS_READ

Address: 06h
Transaction Type: Block-Write-Block-Read Process Call
Data Format: Unsigned Binary (variable block size)
Paged / Phased: No / No
Reset Value: N/A
Updates Allowed: On-the-fly
Supported Values: Per command description.
Description: Utility to send a PAGE and a PMBus read in the same transaction. See the Technical Reference Manual for more information.

7.8.1.4.8 (10h) WRITE_PROTECT

Address: 10h
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 00h: Write protection disabled (all writeable commands are accessible)
20h: Disable writes to all commands except WRITE_PROTECT, OPERATION, PAGE, ON_OFF_CONFIG, and VOUT_COMMAND.
40h: Disable writes to all commands except WRITE_PROTECT, OPERATION and PAGE
80h: Disable writes to all commands except WRITE_PROTECT
Description: The WRITE_PROTECT command controls which commands are writeable by the PMBus host.

7.8.1.4.9 (15h) STORE_USER_ALL

Address: 15h
Transaction Type: Send Byte
Data Format: Data-less
Paged / Phased: No / No
Reset Value: N/A
Updates Allowed: Not recommended for on-the-fly-use, but not explicitly blocked
Supported Values: N/A
Description: The STORE_USER_ALL command instructs the PMBus device to copy the entire contents of the Operating Memory to the matching locations in the non-volatile User Store memory.

7.8.1.4.10 (16h) RESTORE_USER_ALL

Address: 16h
Transaction Type: Send Byte / N/A
Data Format: Data-less
Paged / Phased: No / No
Reset Value: N/A
The RESTORE_USER_ALL command instructs the PMBus device to copy the entire contents of the non-volatile User Store memory to the matching locations in the Operating Memory.

7.8.1.4.11 (19h) CAPABILITY

- **Address:** 19h
- **Transaction Type:** Read Byte
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** No / No
- **Reset Value:** D0h
- **Updates Allowed:** N/A
- **Supported Values:** D4h: PEC, 1MHz, SMB_ALERT, Supported, Linear format, AVSBus
- **Description:** This command provides a way for the host to determine the capabilities of this PMBus device.

7.8.1.4.12 (1Bh) SMBALERT_MASK_WORD

- **Address:** 1Bh (with CMD byte = 79h)
- **Transaction Type:** Block-Write-Block-Read Process Call
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:** One mask bit for each supported status bit
- **Description:** SMBALERT_MASK bits for the STATUS_WORD (upper byte of STATUS_BYTE) command.

7.8.1.4.13 (1Bh) SMBALERT_MASK_VOUT

- **Address:** 1Bh (with CMD byte = 7Ah)
- **Transaction Type:** Write Word / Block-Write-Block-Read Process Call
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:** One mask bit for each supported status bit
- **Description:** SMBALERT_MASK bits for the STATUS_VOUT command.

7.8.1.4.14 (1Bh) SMBALERT_MASK_IOUT

- **Address:** 1Bh (with CMD byte = 7Bh)
- **Transaction Type:** Write Word / Block-Write-Block-Read Process Call
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:** One mask bit for each supported status bit
- **Description:** SMBALERT_MASK bits for the STATUS_IOUT command.

7.8.1.4.15 (1Bh) SMBALERT_MASK_INPUT

- **Address:** 1Bh (with CMD byte = 7Ch)
- **Transaction Type:** Write Word / Block-Write-Block-Read Process Call
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** No / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:** One mask bit for each supported status bit
- **Description:** SMBALERT_MASK bits for the STATUS_INPUT command.
7.8.1.4.16 (1Bh) SMBALERT_MASK_TEMPERATURE
Address: 1Bh (with CMD byte = 7Dh)
Transaction Type: Write Word / Block-Write-Block-Read Process Call
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: One mask bit for each supported status bit
Description: SMBALERT_MASK bits for the STATUS_TEMPERATURE command.

7.8.1.4.17 (1Bh) SMBALERT_MASK_CML
Address: 1Bh (with CMD byte = 7Eh)
Transaction Type: Write Word / Block-Write-Block-Read Process Call
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: One mask bit for each supported status bit
Description: SMBALERT_MASK bits for the STATUS_CML command.

7.8.1.4.18 (1Bh) SMBALERT_MASK_MFR
Address: 1Bh (with CMD byte = 80h)
Transaction Type: Write Word / Block-Write-Block-Read Process Call
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: One mask bit for each supported status bit
Description: SMBALERT_MASK bits for the STATUS_MFR command.

7.8.1.4.19 (20h) VOUT_MODE
Address: 20h
Transaction Type: Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: 16h
Updates Allowed: Blocked during regulation
Supported Values: 16h: Linear Mode, Absolute, Exponent = -10
Description: Specifies the data format for all output voltage related commands.

7.8.1.4.20 (21h) VOUT_COMMAND
Address: 21h
Transaction Type: Write Word / Read Word
Data Format: ULINEAR16 (N = -10)
Paged / Phased: Yes / No
Reset Value: Channel A: NVM or Pinstrap depending on the setting of PIN_DETECT_OVERRIDE for BOOT_CHA
Channel B: NVM only.
Updates Allowed: on-the-fly
Supported Values: 0.000 to 1.870 V, VOUT_MAX ≤ 1.870 V
0.000 to 3.740 V, 1.870 < VOUT_MAX ≤ 3.740 V
0.000 to 5.500 V, VOUT_MAX > 3.74 V
LSB = 2^N per VOUT_MODE
Description: Updates the output voltage target for the controller when the OPERATION command is set to "Margin None."

7.8.1.4.21 (22h) VOUT_TRIM
Address: 22h
Transaction Type: Write Word / Read Word
7.8.1.4.22 (24h) VOUT_MAX

Address: 24h
Transaction Type: Write Word / Read Word
Data Format: ULINEAR16 (N = -10)
Paged / Phased: Yes / No
Reset Value: NVM

Initializes to 1.87 V / 3.74 V / 5.5 V when pinstrapping is used for channel A VBOOT. The next value greater than the chosen boot voltage is selected, e.g. 1.87 V for VBOOT = 0.85 V, and 3.74 V for VBOOT = 1.9 V.

Updates Allowed: On-the-fly
Supported Values: 0.000 V to 5.500 V
LSB = 2\text{th} per VOUT_MODE

Description: Sets an upper limit on the output voltage the unit can command regardless of any other commands or combinations.

7.8.1.4.23 (25h) VOUT_MARGIN_HIGH

Address: 25h
Transaction Type: Write Word / Read Word
Data Format: ULINEAR16 (N = -10)
Paged / Phased: Yes / No
Reset Value: 0.000 V

Supported Values: Same as VOUT_COMMAND.
LSB = 2\text{th} per VOUT_MODE

Description: Loads the unit with the voltage to which the output is to be changed when the OPERATION command is set to "Margin High."

7.8.1.4.24 (26h) VOUT_MARGIN_LOW

Address: 26h
Transaction Type: Write Word / Read Word
Data Format: ULINEAR16 (N = -10)
Paged / Phased: Yes / No
Reset Value: 0.000 V

Supported Values: Same as VOUT_COMMAND.
LSB = 2\text{th} per VOUT_MODE

Description: Loads the unit with the voltage to which the output is to be changed when the OPERATION command is set to "Margin Low."

7.8.1.4.25 (27h) VOUT_TRANSITION_RATE

Address: 27h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = -4)
Paged / Phased: Yes / No
Reset Value: Yes

Supported Values: 0.3125 to 40 mV/μs
See the Technical Reference Manual for all supported values.

Description: Sets the slew rate at which any output voltage changes during normal power conversion occur. The output voltage slew rate is slightly (nominally +5%) higher when the transition is commanded through PMBus vs. AVSBus.

7.8.1.4.26 (28h) VOUT_DROOP

Address: 28h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = -7)
7.8.1.4.27 (29h) VOUT_SCALE_LOOP

Address: 29h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = -3)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: Blocked during regulation
Supported Values: 1.000
0.500 (Recommended for output voltages greater than 3.000 V)
Description: Sets the scaling factor between the output voltage and the input voltage to the controller VSP, VSN pins.

7.8.1.4.28 (2Bh) VOUT_MIN

Address: 2Bh
Transaction Type: Write Word / Read Word
Data Format: ULINEAR16 (N = -10)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 0.000 to 5.500 V
LSB = 2² per VOUT_MODE
Description: Sets a lower limit on the output voltage the unit can command regardless of any other commands or combinations.

7.8.1.4.29 (33h) FREQUENCY SWITCH

Address: 33h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = 0)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 300 to 2000 kHz, 50 kHz steps to 1800 kHz, 100 kHz steps after.
Description: Sets the per-phase switching frequency for the controller.

7.8.1.4.30 (34h) POWER_MODE

CMD Address: 34h
Transaction Type: Write Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: Based on DPS_EN and AUTO_DCM bits in PHASE_SHED_CONFIG and MISC_OPTIONS.
Updates allowed: On-the-fly
Supported values: 00h: Maximum efficiency (auto DCM all phases, DPS enabled)
03h: Maximum power (FCCM all phases, DPS disabled)
04h: Mfr specific (auto DCM 1 phase, FCCM others, DPS enabled)
Description: Set the controller to different power modes.

7.8.1.4.31 (35h) VIN_ON

Address: 35h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = -2)
7.8.1.4.32 (38h) IOUT_CAL_GAIN

- **Address:** 38h
- **Transaction Type:** Write Word / Read Word
- **Data Format:** SLINEAR11 (N = -7)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:** 4.25 to 11.50 V, in 0.25 V steps
- **Description:** Sets the value of the input voltage, in Volts, at which the unit starts power conversion.

7.8.1.4.33 (39h) IOUT_CAL_OFFSET

- **Address:** 39h
- **Transaction Type:** Write Word / Read Word
- **Data Format:** SLINEAR11 (N = -3)
- **Paged / Phased:** Yes / Yes
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:** -4.000 to +3.750 A in 125 mA steps
- **Description:** Used to compensate for offset errors in the power stage for each individual phase, in amperes.

7.8.1.4.34 (40h) VOUT_OV_FAULT_LIMIT

- **Address:** 40h
- **Transaction Type:** Write Word / Read Word
- **Data Format:** ULINEAR16 (N = -10)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:** (VOUT_COMMAND + 32 mV) to (VOUT_COMMAND + 448 mV) in 32 mV steps

 LSB = 2^N per VOUT_MODE
- **Description:** Sets the value of the tracking overvoltage fault limit. Refer to MFR_PROTECTION_CONFIG to set the fixed overvoltage fault limit.

7.8.1.4.35 (41h) VOUT_OV_FAULT_RESPONSE

- **Address:** 41h
- **Transaction Type:** Write Byte / Read Byte
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:**
 - 00h: Ignore
 - 80h: Latch-Off immediately, require enable cycle to recover
 - B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time
- **Description:** Instructs the device on what action to take in response to an output overvoltage fault.

7.8.1.4.36 (42h) VOUT_OV_WARN_LIMIT

- **Address:** 42h
- **Transaction Type:** Write Word / Read Word
- **Data Format:** ULINEAR16 (N = -10)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:** (VOUT_COMMAND + 16 mV) to (VOUT_COMMAND + 448 mV) in 8 mV steps

 LSB = 2^N per VOUT_MODE
7.8.1.4.37 (43h) VOUT_UV_WARN_LIMIT

- **Address:** 43h
- **Transaction Type:** Write Word / Read Word
- **Data Format:** ULINEAR16 (N = -10)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:**

 (VOUT_COMMAND - 16 mV) to (VOUT_COMMAND - 448 mV) in 8 mV steps

 LSB = 2^N per VOUT_MODE

- **Description:** Sets the value of the output voltage at the sense or output pins that causes an output voltage high warning.

7.8.1.4.38 (44h) VOUT_UV_FAULT_LIMIT

- **Address:** 44h
- **Transaction Type:** Write Word / Read Word
- **Data Format:** ULINEAR16 (N = -10)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:**

 (VOUT_COMMAND - 32 mV) to (VOUT_COMMAND - 448 mV) in 32 mV steps

 LSB = 2^N per VOUT_MODE

- **Description:** Sets the value of the output voltage at the sense or output pins that causes an output voltage low warning.

7.8.1.4.39 (45h) VOUT_UV_FAULT_RESPONSE

- **Address:** 45h
- **Transaction Type:** Write Byte / Read Byte
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:**

 00h: Ignore

 80h: Latch-off immediately, require enable cycle to recover.

 B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.

 Other combinations are possible. See the Technical Reference Manual.

- **Description:** Sets the value of the tracking undervoltage fault limit.

7.8.1.4.40 (46h) IOUT_OC_FAULT_LIMIT

- **Address:** 46h
- **Transaction Type:** Write Word / Read Word
- **Data Format:** SLINEAR11 (N = 0)
- **Paged / Phased:** Yes / Yes
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:**

 0 to 1023 A per-page OCP in 1 A steps

 17 A to 130 A per-phase OCL (shared among all phases) in 3 A steps to 80 A, 5 A steps after

- **Description:** Sets the total page overcurrent protection threshold in amperes when written with PHASE = FFh.

 Sets the per-phase overcurrent limit in amperes when written with PHASE ≠ FFh.

7.8.1.4.41 (47h) IOUT_OC_FAULT_RESPONSE

- **Address:** 47h
- **Transaction Type:** Write Byte / Read Byte
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** Yes / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-fly
- **Supported Values:**

 00h: Ignore

 C0h: Latch-off immediately, require enable cycle to recover.

 F8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.

- **Description:** Instructs the device on what action to take in response to an output undervoltage fault.
7.8.1.42 (4Ah) IOUT_OC_WARN_LIMIT

Address: 4Ah
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = 0)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 0 to 1023 A in 1 A steps
Description: Sets the value of the output current, in amperes, that causes the over-current detector to indicate an over-current warning condition.

7.8.1.43 (4Fh) OT_FAULT_LIMIT

Address: 4Fh
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = 0)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 90°C to 160°C in 10°C steps
Description: Sets the value of the temperature limit, in degrees Celsius, that causes an over-temperature fault condition.

7.8.1.44 (50h) OT_FAULT_RESPONSE

Address: 50h
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values:
- 00h: Ignore
- 80h: Latch-off immediately, require enable cycle to recover
- B8h: Hiccup immediately, infinite retries, shutdown and restart after wait time.
- F8h: Hysteresis. Shutdown immediately and restart when the temperature falls.
Description: Instructs the device on what action to take in response to an Over temperature Fault.

7.8.1.45 (51h) OT_WARN_LIMIT

Address: 51h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = 0)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 90°C to 160°C in 10°C steps
Description: Sets the value of the temperature limit, in degrees Celsius, that causes an over-temperature warning.

7.8.1.46 (55h) VIN_OV_FAULT_LIMIT

Address: 55h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = 0)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 0.00 to 19.00 V in 1.0 V steps
Description: Sets the value, in Volts, of the input voltage that causes an input overvoltage fault.

7.8.1.47 (56h) VIN_OV_FAULT_RESPONSE

Address: 56h
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values:

- 00h: Ignore
- 80h: Latch-off immediately, require enable cycle to recover
- B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.

Description: Instructs the device on what action to take in response to an input overvoltage fault.

7.8.1.4.48 (57h) VIN_OV_WARN_LIMIT

Address: 57h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = 0)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 0.00 to 19.00 V in 1.0 V steps

Description: Sets the value, in Volts, of the input voltage that causes an input overvoltage warning.

7.8.1.4.49 (58h) VIN_UV_WARN_LIMIT

Address: 58h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = -2)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 4.00 to 11.25 V in 0.25 V steps

Description: Sets the value, in Volts, of the input voltage that causes an input undervoltage warning.

7.8.1.4.50 (59h) VIN_UV_FAULT_LIMIT

Address: 59h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = -2)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 4.00 to 11.25 V in 0.25 V steps

Description: Sets the value, in Volts, of the input voltage that causes an input undervoltage fault.

7.8.1.4.51 (5Ah) VIN_UV_FAULT_RESPONSE

Address: 5Ah
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values:

- 00h: Ignore
- 80h: Latch-off immediately, require enable cycle to recover
- B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.

Description: Instructs the device on what action to take in response to an input under-voltage fault.

7.8.1.4.52 (5Bh) IIN_OC_FAULT_LIMIT

Address: 5Bh
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11 (N = 0)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 4.0 to 128.0 A in 4 A steps
Description: Sets the value of the input current, in Amperes, that causes an Input Overcurrent Fault.

7.8.1.4.53 (5Ch) IIN_OC_FAULT_RESPONSE

Address: 5Ch
Transaction Type: Write Word / Read Word
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values:
00h: Ignore
C0h: Latch-off immediately, require enable cycle to recover
F8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time
Description: Instructs the device on what action to take in response to an input overcurrent fault.

7.8.1.4.54 (5Dh) IIN_OC_WARN_LIMIT

Address: 5Dh
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11(N = 0)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 4.0 to 128.0 A in 4 A steps
Description: Sets the value of the input current, in Amperes, that causes an Input Overcurrent warning.

7.8.1.4.55 (60h) TON_DELAY

Address: 60h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11(N = -1)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 0.0 to 127.5 ms in 0.5 ms steps
Description: Sets the time, in milliseconds, from when a start condition is received (as programmed by the ON_OFF_CONFIG command) until the output voltage starts to rise.

7.8.1.4.56 (61h) TON_RISE

Address: 61h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11(N = -2)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 0.00 to 31.75 ms in 0.25 ms steps
Note: This value used to calculate slew rate during boot only. Supported slew rates follow those of VOUT_TRANSITION_RATE.
Description: Sets the desired rise time of the output voltage, which allows the device to calculate the slew rate setting during bootup.

7.8.1.4.57 (62h) TON_MAX_FAULT_LIMIT

Address: 62h
Transaction Type: Write Word / Read Word
Data Format: SLINEAR11(N = -2)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values:
0.00 ms: function disabled.
0.00 to 31.75 ms in 0.25 ms steps
7.8.1.4.58 (63h) TON_MAX_FAULT_RESPONSE

Address:	63h
Transaction Type:	Write Byte / Read Byte
Data Format:	Unsigned Binary (1 byte)
Paged / Phased:	Yes / No
Reset Value:	NVM
Updates Allowed:	On-the-fly
Supported Values:	00h: Ignore, 80h: Latch-off immediately, require enable cycle to recover, B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time

Description:
Sets an upper limit, in milliseconds, on how long the unit can attempt to power up the output without reaching the undervoltage fault limit (including droop).

Description:
Instructs the device on what action to take in response to TON_MAX fault.

7.8.1.4.59 (64h) TOFF_DELAY

Address:	64h
Transaction Type:	Write Word / Read Word
Data Format:	SLINEAR11 (N = -1)
Paged / Phased:	Yes / No
Reset Value:	NVM
Updates Allowed:	On-the-fly
Supported Values:	0.0 to 127.5 ms in 0.5 ms steps

Description:
Sets the time, in milliseconds, from when a stop condition is received (as programmed by the ON_OFF_CONFIG command) until the unit stops transferring energy to the output.

7.8.1.4.60 (65h) TOFF_FALL

Address:	65h
Transaction Type:	Write Word / Read Word
Data Format:	SLINEAR11 (N = -2)
Paged / Phased:	Yes / No
Reset Value:	NVM
Updates Allowed:	On-the-fly
Supported Values:	0.00 to 31.75 ms in 0.25 ms steps

Note: This value used to calculate slew rate during soft-off only. Supported slew rates follow those of VOUT_TRANSITION_RATE.

Description:
Sets the desired fall time of the output voltage, which allows the device to calculate the slew rate setting during soft-off.

7.8.1.4.61 (6Bh) PIN_OP_WARN_LIMIT

Address:	6Bh
Transaction Type:	Write Word / Read Word
Data Format:	SLINEAR11 (N = +1)
Paged / Phased:	No / No
Reset Value:	NVM
Updates Allowed:	On-the-fly
Supported Values:	8.0 to 2044 W

Description:
Sets the value of the input power, in watts, that causes a warning that the input power is high.

7.8.1.4.62 (78h) STATUS_BYTE

Address:	78h
Transaction Type:	Write Byte / Read Byte
Data Format:	Unsigned Binary (1 byte)
Paged / Phased:	Yes / No
Reset Value:	Current Status
Updates Allowed:	On-the-fly
Supported Bits:	BUSY, OFF, VOUT_OV, IOUT_OC, VIN_UV, TEMP_CML, OTHER

Description:
Returns one byte of information with a summary of the most critical faults.
7.8.1.4.63 (79h) STATUS_WORD
Address: 79h
Transaction Type: Write Word / Read Word
Data Format: Unsigned Binary (2 bytes)
Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly
Supported Bits: VOUT, IOUT, INPUT, MFR, PGOOD, plus the STATUS_BYTE
Description: Returns two bytes of information with a summary of the most critical faults.

7.8.1.4.64 (7Ah) STATUS_VOUT
Address: 7Ah
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly
Supported Bits: VOUT_OVF, VOUT_OVW, VOUT_UVW, VOUT_UVF, VOUT_MINMAX, TON_MAX
Description: Returns one data byte with information about output voltage related faults and warnings.

7.8.1.4.65 (7Bh) STATUS_IOUT
Address: 7Bh
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly
Supported Bits: IOUT_OCF, IOUT_OCW, IOUT_UCF, CUR_SHAREF
Description: Returns one data byte with information about output current related faults and warnings.

7.8.1.4.66 (7Ch) STATUS_INPUT
Address: 7Ch
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: Current Status
Updates Allowed: On-the-fly
Supported Bits: VIN_OVF, VIN_OVW, VIN_UVW, VIN_UVF, LOW_VIN, IIN_OCF, IIN_OCW, PIN_OPW
Description: Returns one data byte with information about input voltage/current related faults and warnings.

7.8.1.4.67 (7Dh) STATUS_TEMPERATURE
Address: 7Dh
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly
Supported Bits: OTF, OTW
Description: Returns one data byte with information about temperature related faults and warnings.

7.8.1.4.68 (7Eh) STATUS_CML
Address: 7Eh
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
7.8.1.4.69 (80h) STATUS_MFR_SPECIFIC

- **Address:** 80h
- **Transaction Type:** Write Byte / Read Byte
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** Yes / No
- **Reset Value:** Current Status
- **Supported Bits:** POR, EXT, VR SETTLE, PH ERR, PS FLT
- **Description:** Returns one data byte with information about manufacturer-defined warnings and faults.

7.8.1.4.70 (88h) READ_VIN

- **Address:** 88h
- **Transaction Type:** Read Word
- **Data Format:** SLINEAR11 (variable exponent)
- **Paged / Phased:** Yes / No
- **Reset Value:** Current Status
- **Supported Range:** 0.000 V to 18.700 V
- **Description:** Returns the sensed input voltage in volts.

7.8.1.4.71 (89h) READ_IIN

- **Address:** 89h
- **Transaction Type:** Read Word
- **Data Format:** SLINEAR11 (variable exponent)
- **Paged / Phased:** Yes / No
- **Reset Value:** Current Status
- **Supported Range:**
 - -5.0 to +100.0 A
 - \((V_{\text{CSPP}}-V_{\text{VIN, CSN}}) \times G_{\text{IINSHUNT}} \leq 800 \text{ mV max}\)
- **Description:** Returns the sensed input current in amperes.

7.8.1.4.72 (8Bh) READ_VOUT

- **Address:** 8Bh
- **Transaction Type:** Read Word
- **Data Format:** ULINEAR16
- **Paged / Phased:** Yes / Yes
- **Reset Value:** Current Status
- **Supported Range:**
 - 0.00 to 3.74 V (VOUT_SCALE_LOOP = 1.0)
 - 0.00 to 6.00 V (VOUT_SCALE_LOOP = 0.5)
- **Description:** Returns the sensed output voltage in volts.

7.8.1.4.73 (8Ch) READ_IOUT

- **Address:** 8Ch
- **Transaction Type:** Read Word
- **Data Format:** SLINEAR11 (variable exponent)
- **Paged / Phased:** Yes / Yes
- **Reset Value:** Current Status
- **Supported Range:** Per Channel:
 - \((-10.0 \text{ to } +70.0 \text{ A}) \times N_{\text{phases}} \times (5.0 \text{ m}\Omega / \text{IOUT_GAIN}) + \sum(\text{IOUT_OFFSET})_{\text{phases}}\)
 - \((-10.0 \text{ to } +70.0 \text{ A}) \times (5.0 \text{ m}\Omega / \text{IOUT_GAIN}) + (\text{IOUT_OFFSET})_{\text{phases}}\)
- **Description:**
 - Returns the sensed output current in amperes.
 - Can be calibrated by IOUT_GAIN and IOUT_OFFSET.
 - Read with PHASE = FFh to read total page current.
 - Read with PHASE = 00h to read first phase (order 0) current, and so on.
7.8.1.4.74 (8Dh) READ_TEMPERATURE_1

- **Address:** 8Dh
- **Transaction Type:** Read Word
- **Data Format:** SLINEAR11 (variable exponent)
- **Paged / Phased:** Yes / No
- **Reset Value:** Current Status
- **Supported Range:** -40.0°C to 150.0°C
- **Description:** Returns the sensed power stage temperature in degrees Celsius.

7.8.1.4.75 (96h) READ_POUT

- **Address:** 96h
- **Transaction Type:** Read Word
- **Data Format:** SLINEAR11 (variable exponent)
- **Paged / Phased:** Yes / No
- **Reset Value:** Current Status
- **Supported Range:** Per READ_VOUT and READ_IOUT
- **Description:** Returns the sensed output power in Watts.

7.8.1.4.76 (97h) READ_PIN

- **Address:** 97h
- **Transaction Type:** Read Word
- **Data Format:** SLINEAR11 (variable exponent)
- **Paged / Phased:** Yes / No
- **Reset Value:** Current Status
- **Supported Range:** Per READ_VIN and READ_IIN
- **Description:** Returns the sensed input power in Watts.

7.8.1.4.77 (98h) PMBUS_REVISION

- **Address:** 98h
- **Transaction Type:** Read Byte
- **Data Format:** Unsigned Binary (1 byte)
- **Paged / Phased:** No / No
- **Reset Value:** 33h
- **Updates Allowed:** N/A
- **Supported Values:**
 - 33h: PMBus 1.3, Part I and II
- **Description:** Reads the revision of the PMBus to which the device is compatible.

7.8.1.4.78 (99h) MFR_ID

- **Address:** 99h
- **Transaction Type:** Write Block / Read Block
- **Data Format:** Unsigned Binary (3 bytes)
- **Paged / Phased:** No / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-Fly
- **Supported Values:**
 - 000000h to FFFFFFFh
 - Arbitrary NVM for user tracking purposes
- **Description:** 3 bytes of arbitrarily writeable non-volatile memory intended for manufacturer identification.

7.8.1.4.79 (9Ah) MFR_MODEL

- **Address:** 9Ah
- **Transaction Type:** Write Block / Read Block
- **Data Format:** Unsigned Binary (3 bytes)
- **Paged / Phased:** No / No
- **Reset Value:** NVM
- **Updates Allowed:** On-the-Fly
7.8.1.4.80 (9Bh) MFR_REVISION

Address: 9Bh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (3 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-Fly
Supported Values: 000000h to FFFFFFh
Arbitrary NVM for user tracking purposes.
Description: 3 bytes of arbitrarily writeable non-volatile memory intended for model identification.

7.8.1.4.81 (9Dh) MFR_DATE

Address: 9Dh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (3 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-Fly
Supported Values: 000000h to FFFFFFh
Arbitrary NVM for user tracking purposes.
Description: 3 bytes of arbitrarily writeable non-volatile memory intended for revision identification.

7.8.1.4.82 (ADh) IC_DEVICE_ID

Address: ADh
Transaction Type: Read Block
Data Format: Unsigned Binary (6 bytes)
Paged / Phased: No / No
Reset Value: 544953676000h
Updates Allowed: N/A
Supported Values: 544953676000h (TPS53676)
Description: Returns the part number of the device.

7.8.1.4.83 (AEh) ICDEVICE_REV

Address: AEh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (2 bytes)
Paged / Phased: No / No
Reset Value: Current Device Revision
Updates Allowed: N/A
Supported Values: Set by TI during device manufacturing.
Description: Returns device revision.

7.8.1.4.84 (B1h) USER_DATA_01 (COMPENSATION_CONFIG)

Address: B1h
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (8 bytes)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-Fly
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configures the control loop compensation parameters including AC load line, integration time constant, dynamic integration, compensating ramp, AC gain, integration gain.
7.8.1.4.85 (B2h) USER_DATA_02 (NONLINEAR_CONFIG)
Address: B2h
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (5 bytes)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configures the nonlinear controller parameters including minimum on time, minimum off time, leading edge blanking time, USR and OSR thresholds.

7.8.1.4.86 (B3h) USER_DATA_03 (PHASE_CONFIG)
Address: B3h
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (24 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: Blocked during regulation.
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configures phase assignments: Assign phases to channels, phase number, and firing position.

7.8.1.4.87 (B4h) USER_DATA_04 (DVID_CONFIG)
Address: B4h
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (6 bytes)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configures DVID options including dynamic AC and DC load lines.

7.8.1.4.88 (B7h) USER_DATA_07 (PHASE_SHED_CONFIG)
Address: B7h
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (13 bytes)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: on-the-fly
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configures phase add/drop functionality and thresholds.

7.8.1.4.89 (B8h) USER_DATA_08 (AVSBUS_CONFIG)
Address: B8h
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: on-the-fly
Supported Values: 00h: 2-wire AVSBus mode
01h: 3-wire AVSBus mode
Description: Configure 2-wire or 3-wire AVSBus mode

7.8.1.4.90 (BAh) USER_DATA_10 (ISHARE_CONFIG)
Address: BAh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (1 byte)
Paged / Phased: Yes / Yes
Description: Configure 2-wire or 3-wire AVSBus mode
Reset Value: NVM
Updates Allowed: on-the-fly
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configures the current sharing ratios for each phase for thermal balance management.

7.8.1.4.91 (BBh) USER_DATA_11 (MFR_PROTECTION_CONFIG)
Address: BBh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (10 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configures manufacturer-specific fault features like the fixed overvoltage protection, hiccup wait time, and current share warning.

7.8.1.4.92 (BDh) USER_DATA_13 (MFR_CALIBRATION_CONFIG)
Address: BDh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (15 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configures telemetry calibration features including input current sensing gain/offset.

7.8.1.4.93 (CDh) MFR_SPECIFIC_CD (MULTIFUNCTION_PIN_CONFIG_1)
Address: CDh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (32 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly (takes effect only after power on).
Supported Values: Refer to the technical reference manual.
Description: Change the function of multifunction pins.

7.8.1.4.94 (CEh) MFR_SPECIFIC_CD (MULTIFUNCTION_PIN_CONFIG_2)
Address: CEh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (31 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly (takes effect only after power on).
Supported Values: Refer to the technical reference manual.
Description: Change the function of multifunction pins.

7.8.1.4.95 (CFh) SMBALERT_MASK_EXTENDED
Address: CFh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (7 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: Refer to the technical reference manual.
Description: SMBALERT MASK bits for STATUS_EXTENDED bits
7.8.1.4.96 (D1h) READ_VOUT_MIN_MAX

Address: D1h
Transaction Type: Write Block / Read Block
Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)
Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ_VOUT.
Logging Control:
- 0000 0004h: Pause logging (min and max)
- 0000 0020h: Resume logging (min and max)
- 0000 0100h: Reset logs (min and max)
Description:
Returns maximum and minimum output voltage values logged since last reset.

7.8.1.4.97 (D2h) READ_IOUT_MIN_MAX

Address: D2h
Transaction Type: Write Block / Read Block
Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)
Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ_IOUT.
Logging Control:
- 0000 0004h: Pause logging (min and max)
- 0000 0020h: Resume logging (min and max)
- 0000 0100h: Reset logs (min and max)
Description:
Returns maximum and minimum output current values logged since last reset.

7.8.1.4.98 (D3h) READ_TEMPERATURE_MIN_MAX

Address: D3h
Transaction Type: Write Block / Read Block
Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)
Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ_TEMPERATURE_1.
Logging Control:
- 0000 0004h: Pause logging (min and max)
- 0000 0020h: Resume logging (min and max)
- 0000 0100h: Reset logs (min and max)
Description:
Returns maximum and minimum temperature values logged since last reset.

7.8.1.4.99 (D4h) READ_MFR_VOUT

Address: D4h
Transaction Type: Read Word
Data Format: SLINEAR11 (variable exponent)
Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Per READ_VOUT.
Supported Range:
- 0.00 to 3.74 V (VOUT_SCALE_LOOP = 1.0)
- 0.00 to 6.00 V (VOUT_SCALE_LOOP = 0.5)
Description:
Returns the sensed output voltage in volts.

7.8.1.4.100 (D5h) READ_VIN_MIN_MAX

Address: D5h
Transaction Type: Write Block / Read Block
Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)
Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ_VIN.
Logging Control:
- 0000 0004h: Pause logging (min and max)
- 0000 0020h: Resume logging (min and max)
- 0000 0100h: Reset logs (min and max)
Description:
Returns maximum and minimum input voltage values logged since last reset.
7.8.1.4.101 (D6h) READ_IIN_MIN_MAX

Address: D6h
Transaction Type: Write Block / Read Block
Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)
Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ_IIN.
Logging Control: 0000 0004h: Pause logging (min and max)
 0000 0020h: Resume logging (min and max)
 0000 0100h: Reset logs (min and max)
Description: Returns maximum and minimum input current values logged since last reset.

7.8.1.4.102 (D7h) READ_PIN_MIN_MAX

Address: D7h
Transaction Type: Write Block / Read Block
Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)
Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ_PIN.
Logging Control: 0000 0004h: Pause logging (min and max)
 0000 0020h: Resume logging (min and max)
 0000 0100h: Reset logs (min and max)
Description: Returns maximum and minimum input power values logged since last reset.

7.8.1.4.103 (D8h) READ_POUT_MIN_MAX

Address: D8h
Transaction Type: Write Block / Read Block
Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)
Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ_POUT.
Logging Control: 0000 0004h: Pause logging (min and max)
 0000 0020h: Resume logging (min and max)
 0000 0100h: Reset logs (min and max)
Description: Returns maximum and minimum output power values logged since last reset.

7.8.1.4.104 (DAh) READ_ALL

Address: DAh
Transaction Type: Read Block
Data Format: Unsigned Binary (14 bytes)
Paged / Phased: Yes / No
Reset Value: 0d
Updates Allowed: On-the-fly
Supported Values: Refer to the technical reference manual.
Description: Read all supported telemetry values in a single block to reduce bus utilization.

7.8.1.4.105 (DBh) STATUS_ALL

Address: DBh
Transaction Type: Read Block
Data Format: Unsigned Binary (18 bytes)
Paged / Phased: Yes / No
Reset Value: 0d
Updates Allowed: On-the-fly
Supported Values: Refer to the technical reference manual.
Description: Read all supported status registers in a single block to reduce bus utilization.
7.8.1.4.106 (DCh) STATUS_PHASES

Address: DCh
Transaction Type: Write Word / Read Word
Data Format: Unsigned Binary (2 bytes)
Paged / Phased: Yes / Yes
Reset Value: 0d
Updates Allowed: On-the-fly
Supported Values: Refer to the technical reference manual.
Description: Identify which phases have experienced a phased fault.

7.8.1.4.107 (DDh) STATUS_EXTENDED

Address: DDh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (7 bytes)
Paged / Phased: Yes / Yes
Reset Value: 0d
Updates Allowed: On-the-fly
Supported Values: Refer to the technical reference manual.
Description: Report non-standard status information which is not captured in STATUS_X registers or STATUS_PHASES.

7.8.1.4.108 (E0h) AVSBUS_LOG

Address: E0h
Transaction Type: Read Block
Data Format: Unsigned Binary (8 bytes)
Paged / Phased: No / No
Reset Value: 0d
Updates Allowed: On-the-fly
Supported Values: Refer to the technical reference manual.
Description: Return a log of recently received AVSBus transctions with a timestamp.

7.8.1.4.109 (E3h) MFR_SPECIFIC_E3 (VR_FAULT_CONFIG)

Address: E3h
Transaction Type: Write Word / Read Word
Data Format: Unsigned Binary (2 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly
Supported Values: Bit 0: Set to 1b to assert VR_FAULT# for channels A and B, 0 channel A only otherwise
Bit 1: Set to 1b to assert VR_FAULT# for overcurrent faults, 0 otherwise
Bit 2: Set to 1b to assert VR_FAULT# for overtemperature faults, 0 otherwise
Description: Configure the behavior of the VR_FAULT# pin.

7.8.1.4.110 (E4h) SYNC_CONFIG

Address: E4h
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (6 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: Blocked during regulation.
Supported Values: Refer to the technical reference manual.
Description: Configure phase synchronization and frequency control.

7.8.1.4.111 (EDh) MFR_SPECIFIC_ED (MISC_OPTIONS)

Address: EDh
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (5 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly
Supported Values: See the Technical Reference Manual for a complete register map.
Description: Configure miscellaneous options.

7.8.1.4.112 (EEh) MFR_SPECIFIC_EE (PIN_DETECT_OVERRIDE)
Address: EEh
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly (pin detection occurs on POR only).
Supported Values: Set bit 0 to 0b to derive channel A VBOOT from NVM. Set bit 1 to 0b to derive PMBus address from NVM.
Description: Configure whether the device follows pinstrapping or NVM settings for the parameters associated with the BOOT_CHA and ADDR pins.

7.8.1.4.113 (EFh) MFR_SPECIFIC_EF (SLAVE_ADDRESS)
Address: EFh
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: NVM or Pinstrap depending on the setting of PIN_DETECT_OVERRIDE for the ADDR pin
Updates Allowed: on-the-fly, only takes effect at power-on.
Supported Values: 00h to 7Fh (7 bit address right justified)
Description: Configure the PMBus slave address, when the PIN_DETECT_OVERRIDE command is configured to ignore the ADDR pinstrap detection.

7.8.1.4.114 (F0h) MFR_SPECIFIC_F0 (NVM_CHECKSUM)
Address: F0h
Transaction Type: Read Word
Data Format: Unsigned Binary (2 bytes)
Paged / Phased: No / No
Reset Value: Current Status
Updates Allowed: Only following NVM Store/Restore Operations
Supported Values: 0000h to FFFFh
Description: CRC16 of the internal NVM array. This can be used to verify proper NVM programming.

7.8.1.4.115 (F5h) MFR_SPECIFIC_F5 (USER_NVM_INDEX)
Address: F5h
Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)
Paged / Phased: No / No
Reset Value: 00h
Updates Allowed: On-the-fly (Auto-increments with USER_NVM_EXECUTE access)
Supported Values: 00h to 08h
Description: Used for batch-loading of NVM data via PMBus.

7.8.1.4.116 (F6h) MFR_SPECIFIC_F6 (USER_NVM_EXECUTE)
Address: F6h
Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (32 bytes)
Paged / Phased: No / No
Reset Value: Current NVM status
Updates Allowed: On-the-fly
Supported Values: All NVM bytes
With USER_NVM_INDEX = 0, this command writes/returns 9 bytes of identifying information, plus the first 23 bytes of NVM data
With USER_NVM_INDEX = 1 to 7, this command writes/returns the next 32 bytes of NVM data
With USER_NVM_INDEX = 8, this command writes the last NVM data bytes, and automatically performs an NVM Store operation.
Each time this command is accessed, USER_NVM_INDEX increments automatically.

7.8.1.4.117 (FAh) NVM_LOCK

Address: FAh
Transaction Type: Write Word / Read Word (when locked, this command does not read back the password value).
Data Format: Unsigned Binary (2 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 0000-FFFFh
Description: NVM password. Used to lock or unlock WRITE_PROTECT and MFR_WRITE_PROTECT commands, which in turn provide write protection.

7.8.1.4.118 (FBh) MFR_SPECIFIC_WRITE_PROTECT

Address: FBh
Transaction Type: Write Word / Read Word
Data Format: Unsigned Binary (2 bytes)
Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: Refer to the Technical Reference Manual for a bit map
Description: Provides additional resolution to WRITE_PROTECT, allowing different groups of commands to be write protected. Access to this command is controlled by NVM_LOCK.
7.8.2 AVSBus Interface

The TPS53676 device is designed to be compatible with the timing and physical layer electrical characteristics of the Power Management Bus (PMBus) Specification, part III (AVSBus) revision 1.3.1 available at http://pmbus.org. AVS_VDDIO and logic levels of 1.14 V to (VCC pin voltage, 3.6 V maximum) are supported. Clock operation up to 50 MHz is supported. TPS53676 requires approximately 14 ns (maximum) from a clock edge to a transition of the AVS_SDATA pin, and at very high-frequency operation, it may be necessary to increase the clock high time (t\text{high}) to compensate. Refer to the technical reference manual for more information.

The AVSBus communication interface is similar to the de-facto Serial Peripheral Interface (SPI) standard with the following configuration:

- No chip select (CSO#) pin is used. AVSBus is a point-to-point protocol.
- AVS_CLK idles LOW
- AVS_MDATA and AVS_SDATA idle HIGH
- A transmitter launches data on the rising edge of AVS_CLK
- A receiver captures data on the falling edge of AVS_CLK
- MSB transmitted first

Refer to to the PMBus specification revision 1.3.1, part III for more information.

To enable AVSBus control in the device:

- Ensure the AVSBUS EN CHA / AVSBUS EN CHB options in the MISC_OPTIONS PMBus command are set to 1b in NVM.
- Set the value of VOUT SRC CHA / VOUT SRC CHB to 10b in NVM. This setting in itself only sets the default value of the OPERATION command bits 5:2.
- Set the OPERATION[5:2] bits to 1100b to hand-off output voltage control to the AVSBus Interface.

Note

Transferring output voltage control from PMBus to AVSBus during power conversion causes the output voltage to transition to a low value, until the host issues the next AVSBus voltage command. Internal architecture limitations determine this behavior. As a result, while output voltage control may be changed without a power cycle, TI recommends that changes between PMBus and AVSBus control occur without power conversion being active.
7.8.2.1 AVSBus transaction types

Supported AVSBus Commands

The table below summarizes the AVS command transactions supported by TPS53676.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>0000b: Channel A</td>
<td>0b</td>
<td>0000b Voltage</td>
<td>00b: Read</td>
<td>Direct Format 1 mV per LSB</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>0000b: Channel A</td>
<td>0b</td>
<td>0001b Vout Transition Rate</td>
<td>00b: Read 01b: Write and hold 11b: Write and commit</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>0000b: Channel A</td>
<td>0b</td>
<td>0010b Read Current</td>
<td>00b: Read 01b: Write and hold 11b: Write and commit</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0000b: Channel A</td>
<td>0b</td>
<td>0011b Read Temperature</td>
<td>00b: Read 01b: Write and hold 11b: Write and commit</td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>0000b: Channel A</td>
<td>0b</td>
<td>0100b Voltage Reset</td>
<td>01b: Write and hold 11b: Write and commit</td>
<td></td>
</tr>
<tr>
<td>Power Mode</td>
<td>Not supported - Ack and do nothing.</td>
<td></td>
<td></td>
<td></td>
<td>Data-less. Use 0000h in AVS_MDATA frame</td>
</tr>
<tr>
<td>AVSBus Status</td>
<td>0000b: Channel A</td>
<td>0b</td>
<td>1110b Status</td>
<td>00b: Read</td>
<td>See register description. Write 1b to clear.</td>
</tr>
<tr>
<td>AVSBus Version Read</td>
<td>1111b: All channels</td>
<td>0b</td>
<td>1111b Version Read</td>
<td>00b: Read 01b: Write and hold 11b: Write and commit</td>
<td></td>
</tr>
</tbody>
</table>

Description Examples

- **Select [3:0]**
 - Channel A: 0000b
 - Channel B: 0001b
 - Broadcast: 1111b

- **Cmd Group [0]**
 - Standard: 0b, Direct Format: 1b

- **Cmd Type [3:0]**
 - Voltage: 0000b, Vout Transition Rate: 0001b, Read Current: 0010b, Read Temperature: 0011b, Voltage Reset: 0100b

- **Access Cmd[1:0]**
 - Read: 00b, Write and hold: 01b, Write and commit: 11b

- **Data Format [15:0]**
 - Direct Format 1 mV per LSB, 1 mV / µs per LSB, 0.1°C per LSB, 10 mA per LSB, 0.1°C per LSB

- **AVSBus Version Read**
 - TPS53676 v1.3.1 part III

TPS53676
SLUSDP0A – AUGUST 2019 – REVISED MAY 2021

www.ti.com

110 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TPS53676
AVSBus frame and sub-fields

The figures below describe the AVSBus frame structure.

AVS_MDATA

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (bits)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>Start condition 01b</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31:30</td>
<td>2</td>
<td>Read / Write</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29:28</td>
<td>2</td>
<td>0b: AVSBus standard commands</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1b: MFR Specific commands (none supported by TPS53676)</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26:23</td>
<td>4</td>
<td>0000b: Vout</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:19</td>
<td>4</td>
<td>0000b: Channel A</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:16</td>
<td>16</td>
<td>Read Transactions: FFFFh</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23:0</td>
<td>15</td>
<td>CRC of AVS_MDATA frame. Polynomial x^3 + x^1 + x^0</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:0</td>
<td>5</td>
<td>Bit 4: 1b if Vout is settled</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:0</td>
<td>3</td>
<td>Bit 3: 1b if any status warning bits are set</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:0</td>
<td>3</td>
<td>Bit 2: 1b is AVSBus has control of the output</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28:24</td>
<td>5</td>
<td>Bit 1: 1b if RESET# is LOW, 0b otherwise</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23:19</td>
<td>5</td>
<td>Bit 0: Set to 0b.</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:16</td>
<td>16</td>
<td>Writes: Don’t care</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26:23</td>
<td>16</td>
<td>Reads: Per command format</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:19</td>
<td>5</td>
<td>Reserved and set to 11111b</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:16</td>
<td>16</td>
<td>CRC of AVS_MDATA frame. Polynomial x^3 + x^1 + x^0</td>
</tr>
</tbody>
</table>

AVS_SDATA

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (bits)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ack</td>
<td>2</td>
<td>00b: Good CRC, valid data</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>Set to 0b always</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28:24</td>
<td>5</td>
<td>Bit 4: 1b if Vout is settled</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23:19</td>
<td>5</td>
<td>Bit 3: 1b if any status warning bits are set</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:16</td>
<td>16</td>
<td>Bit 2: 1b is AVSBus has control of the output</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:19</td>
<td>5</td>
<td>Bit 1: 1b if RESET# is LOW, 0b otherwise</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:16</td>
<td>16</td>
<td>Bit 0: Set to 0b.</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:19</td>
<td>5</td>
<td>Reserved and set to 11111b</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:16</td>
<td>16</td>
<td>CRC of AVS_SDATA frame. Polynomial x^3 + x^1 + x^0</td>
</tr>
</tbody>
</table>

Figure 7-38. AVSBus frame structure

Table 7-11.

<table>
<thead>
<tr>
<th>Frame index</th>
<th>Field</th>
<th>Length (bits)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVS_MDATA</td>
<td>S</td>
<td>2</td>
<td>Start condition 01b</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td>Cmd</td>
<td>2</td>
<td>Read / Write</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td>Cmd Group</td>
<td>1</td>
<td>0b: AVSBus standard commands</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td>Cmd Type</td>
<td>4</td>
<td>0000b: Vout</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td>Select</td>
<td>4</td>
<td>0000b: Channel A</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td>AVS_MDATA Data</td>
<td>16</td>
<td>Read Transactions: FFFFh</td>
</tr>
<tr>
<td>AVS_MDATA</td>
<td>AVS_MDATA CRC</td>
<td>3</td>
<td>CRC of AVS_MDATA frame. Polynomial x^3 + x^1 + x^0</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>Ack</td>
<td>2</td>
<td>00b: Good CRC, valid data</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>Reserved</td>
<td>1</td>
<td>Set to 0b always</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>StatusResp</td>
<td>5</td>
<td>Bit 4: 1b if Vout is settled</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>AVS_SDATA Data</td>
<td>16</td>
<td>Writes: Don’t care</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>Reserved</td>
<td>5</td>
<td>Reserved and set to 11111b</td>
</tr>
<tr>
<td>AVS_SDATA</td>
<td>AVS_SDATA CRC</td>
<td>3</td>
<td>CRC of AVS_SDATA frame. Polynomial x^3 + x^1 + x^0</td>
</tr>
</tbody>
</table>
7.8.2.2 Example AVSBus Frames

A few example AVSBus frames are listed below:

Example: Set the target voltage for channel A to 0.80 V

The AVS_MDATA frame 40 00 19 07h corresponds to:
- **Start = 01b** (Valid start condition)
- **Cmd = 00b** (Write and commit)
- **Cmd Group = 0b** (AVSBus standard commands)
- **Cmd Type = 0000b** (Vout)
- **Select = 0000b** (Channel A)
- **Data = 0000 0011 0010 0000b** (800d = 800 mV)
- **AVS_MDATA CRC = 111b** (Valid CRC for the preceding 29 bits)

The AVS_SDATA frame in response 04 FF FF FF FFh corresponds to:
- **Ack = 00b** (Good CRC, valid data)
- **Reserved = 0b**
- **StatusResp = 00100b** (AVSBus has control, No status bits, Vdone=0 due to new voltage command)
- **Data = 1111 1111 1111 1111b** (fill with 1’s for write)
- **AVS_SDATA CRC = 111b** (Valid CRC for the preceding 29 bits)

Example: Read the output current telemetry from channel A

The AVS_MDATA frame 71 07 FF F9h corresponds to:
- **Start = 01b** (Valid start condition)
- **Cmd = 11b** (Read)
- **Cmd Group = 0b** (AVSBus standard commands)
- **Cmd Type = 0010b** (Vout)
- **Select = 0000b** (Channel A)
- **Data = 1111 1111 1111 1111b** (fill with 1’s for read)
- **AVS_MDATA CRC = 001b** (Valid CRC for the preceding 29 bits)

The AVS_SDATA frame in response 14 10 86 F8h corresponds to:
- **Ack = 00b** (Good CRC, valid data)
- **Reserved = 0b**
- **StatusResp = 10100b** (Vdone=1, AVSBus has control, No status bits)
- **Data = 0001 0000 1000 0110b** (4230d = 42.3 A)
- **AVS_SDATA CRC = 000b** (Valid CRC for the preceding 29 bits)
7.8.2.3 Example AVSBus number format conversions
All AVSBus transactions use the DIRECT number format.

Example: Encode or decode output voltage targets (unsigned, 1 mV / LSB)
Encode 1.000 V = 1.0 V × (1 LSB / 1 mV) = 1000d = 03E8h
Decode 0400h = 1024d × (1 mV / LSB) = 1.024 V

Example: Decode output current telemetry (unsigned, 10 mA / LSB)
Decode 1043h = 4163d × (10 mA / LSB) = 41.63 A

Example: Decode power stage temperature telemetry (signed, 0.1°C / LSB)
Decode 0358h = 856d × (0.1°C / LSB) = 85.6°C
Decode FF62h = -158d × (0.1°C / LSB) = -15.8°C

Example: Encode or decode slew rate settings (unsigned, 1 mV/µs / LSB)
The 16 bit data value for slew rate is divided into 8 bits for Rising and 8 bits for falling slew rate.
Encode Rising = Falling = (5 mV/µs × [1 LSB / 1 mV/µs]) = 05 05h
Decode 0A 02h:
• Rising = 0Ah = 10d × (1 mV/µs / LSB) = 10 mV/µs
• Falling = 02h = 2d × (1 mV/µs / LSB) = 2 mV/µs
7.8.2.4 AVSBus fault and warning behavior

The TPS53676 AVSBus status register provides warning information only. During latch-off faults, and while power conversion is disabled, TPS53676 does not respond to AVSBus transactions. The AVSBus and PMBus status registers are independent. Clearing a warning condition through AVSBus does not affect the PMBus status registers.

TPS53676 supports AVS_SDATA interrupt notification as defined in the AVSBus specification. When any warning bit sets in the AVSBus status register, the device pulls the AVS_SDATA line low to notify the host of the warning condition. The AVS_SDATA line remains low until the host clears the condition through a write to the AVSBus status register.

Every AVS_SDATA frame contains a 5-bit summary (StatusResp) of the current device status:

- **Bit 4:** VDONE - 1b if the output voltage has reached its commanded target
- **Bit 3:** STATUS - 1b if any bits in the AVS Status register are set
- **Bit 2:** AVS_CTRL - 1b AVSBus has control of the output voltage
- **Bit 1:** MFR_SPEC_1- Set to 1b if the RESET# pin function is LOW
- **Bit 0:** MFR_SPEC_0- Set to 0b always.

The TPS53676 AVSBus status register is defined as follows:

- **Bit 15:** VDONE - set to 1b if the output voltage has reached its commanded target
- **Bit 14:** OCW - 1b if the output overcurrent warning has been latched
- **Bit 13:** UVW - 1b if the output undervoltage warning has been latched
- **Bit 12:** OTW - 1b if the output overtemperature warning has been latched
- **Bit 11:** OPW - 0b always. Not supported by TPS53676.
- **Bit 10:** Reserved - 0b always.
- **Bit 7:** OVW - 1b if the output overvoltage warning has been latched
- **Bit 6:** MINMAX - 1b if the output min/max warning has been latched
- **Bit 5:** ISHARE - 1b if a current share warning has been latched
- **Bit 4:** PHOCL - 1b if a per-phase OCL warning has been latched. Note this bit requires a PMBus CLEAR_FAULT and AVSBus status write to clear.
- **Bit 3:** VIN OVW - 1b if a input overvoltage warning has been latched
- **Bit 2:** VIN UVW - 1b if a input undervoltage warning has been latched
- **Bit 1:** IIN OCW - 1b if a input overcurrent has been latched
- **Bit 0:** Reserved - 0b always.
7.8.2.5 AVSBus Command Descriptions

7.8.2.5.1 (0h) AVSBus Output Voltage

Cmd Type: 0000b
Access: Read / Write
Data Format: Direct, 16-bits, 1 mV per LSB (unsigned)
Select: 0h: Channel A
 1h: Channel B
 Fh: Broadcast
Reset Value: Initialized based on VOUT COMMAND from PMBus
Supported Values: Values will be clamped to the values of VOUT_MIN and VOUT_MAX from PMBus
Description: Get or set the current output voltage target. Reading this command returns the voltage target, and not the measured value.

7.8.2.5.2 (1h) AVSBus Transition Rate

Cmd Type: 0001b
Access: Read / Write
Data Format: Direct, 16 bits, 1 mV/µs per LSB (unsigned)
8 MSB bits for rising transition rate, 8 LSB bits for falling transition rate
Select: 0h: Channel A
 1h: Channel B
 Fh: Broadcast
Reset Value: Initialized based on VOUT_TRANSITION_RATE from PMBus
Supported Values: 1 mV/µs to 40 mV/µs
Description: Get or set the current output slew rate. Rising and falling slew rates are independent. When commanded through AVSBus, the output voltage slew rate is slightly slower (nominally -5%) than when commanded through PMBus.

7.8.2.5.3 (2h) AVSBus Output Current

Cmd Type: 0010b
Access: Read
Data Format: Direct, 16 bits, 10 mA per LSB (unsigned)
Select: 0h: Channel A
 1h: Channel B
Reset Value: Current status
Supported Values: 0.0 to 327.67 A (MSB bit of AVSbus is always 0b).
Description: Returns the measured output current value for the channel.

7.8.2.5.4 (3h) AVSBus Temperature

Cmd Type: 0011b
Access: Read
Data Format: Direct, 16 bits, 0.1 °C per LSB (signed)
Select: 0h: Channel A
 1h: Channel B
Reset Value: Current status
Supported Values: -40.0 to 150.0 °C
Description: Returns the measured power stage temperature for the channel.

7.8.2.5.5 (4h) AVSBus Reset Voltage

Cmd Type: 0100b
Access: Write
Data Format: Data-less. Send 0000h in data field for AVS_MDATA field.
Select: 0h: Channel A
 1h: Channel B
 Fh: Broadcast
Reset Value: N/A
Supported Values: N/A
Description: Resets the selected channel to their VBOOT voltages, whether determined by NVM or pinstapping.

7.8.2.5.6 (5h) AVSBus Power Mode

Cmd Type: 0101b
Access: Read / Write
Data Format: Not supported.
Select: 0h: Channel A
 1h: Channel B
 Fh: Broadcast
Reset Value: 0000h
Supported Values: N/A
Description: Command is accessible, but TPS53676 takes no action based on writes.

7.8.2.5.7 (Eh) AVSBus Status

Cmd Type: 1110b
Access: Read / Write
Data Format: Not supported.
Select: 0h: Channel A
 1h: Channel B
 Fh: Broadcast
Reset Value: 0000h
Supported Values: Write 1b to clear.
Description: See AVSBus fault and warning behavior.

7.8.2.5.8 (Fh) AVSBus Version

Cmd Type: 1111b
Access: Read
Data Format: Direct, 16 bits, unsigned binary
Select: Fh: Broadcast
Reset Value: 0000h (v1.3.1 part III)
Supported Values: Write 1b to clear.
Description: Returns the supported AVSBus Version
8 Applications and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

8.2 Typical Application
8.2.1 Schematic

Figure 8-1. Controller Schematic
Figure 8-2. Powerstages Schematic (1/2)
Figure 8-3. Powerstages Schematic (2/2)
Figure 8-4. Output Capacitors Schematic
8.2.2 Design Requirements

The key requirements for this design are summarized below.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>Channel A</th>
<th>Channel B</th>
</tr>
</thead>
<tbody>
<tr>
<td>NΦ</td>
<td>Phase Number</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>V_in</td>
<td>Operating input voltage</td>
<td>10.8 V to 13.2 V</td>
<td></td>
</tr>
<tr>
<td>I_in</td>
<td>Input current</td>
<td>0 to 25 A</td>
<td></td>
</tr>
<tr>
<td>V_boot</td>
<td>Boot voltage</td>
<td>0.88 V</td>
<td>1.00 V</td>
</tr>
<tr>
<td>I_CC(max)</td>
<td>Maximum output current</td>
<td>250 A</td>
<td>30 A</td>
</tr>
<tr>
<td>I_CC(TDC)</td>
<td>Maximum Thermal DC current</td>
<td>200 A</td>
<td>20 A</td>
</tr>
<tr>
<td>I_CC(STEP)</td>
<td>Step transient current</td>
<td>140 A</td>
<td>10 A</td>
</tr>
<tr>
<td>R_LL</td>
<td>DC Load Line</td>
<td>0.0 mΩ</td>
<td>0.0 mΩ</td>
</tr>
<tr>
<td>TON_RISE</td>
<td>Output voltage rise time</td>
<td>1.25 ms</td>
<td>1.25 ms</td>
</tr>
<tr>
<td>TOFF_FALL</td>
<td>Output voltage fall time</td>
<td>1.25 ms</td>
<td>1.25 ms</td>
</tr>
<tr>
<td>T_MAX</td>
<td>Maximum temperature</td>
<td>100°C</td>
<td>100°C</td>
</tr>
<tr>
<td>SR_FAST</td>
<td>DVID slew rate</td>
<td>5 mV/μs</td>
<td>5 mV/μs</td>
</tr>
<tr>
<td>f_SW</td>
<td>Switching frequency</td>
<td>500 kHz</td>
<td>500 kHz</td>
</tr>
<tr>
<td>PMB_ADDR</td>
<td>PMBus address</td>
<td>96d / C0h</td>
<td></td>
</tr>
</tbody>
</table>

8.2.3 Detailed Design Procedure

The following steps illustrate the key components selection for the 0.88-V / 250-A, 1-V / 30-A ASIC application.

Inductor Selection

Smaller inductance yields better transient performance, but leads to higher ripple current and lower efficiency. Higher inductance has the opposite effect. It is common practice to limit the ripple current to between 20%-40% of maximum per-phase current for balanced performance. In this design example, 30% of the maximum per-phase current is used for channel A.

\[
\Delta I_{\text{Ripple(target)}} = \frac{I_{\text{CC(max)}}}{N_{\Phi}} \times 30\% = \frac{250\text{A}}{6\text{phases}} \times 0.3 = 12.5\text{A}
\]

\[
L_{\text{target}} = \frac{V_{\text{OUT}} \times (V_{\text{in(max)}} - V_{\text{OUT}})}{V_{\text{in(max)}} \times \Delta I_{\text{Ripple(target)}} \times f_{\text{SW}}} = \frac{0.88\text{V} \times (13.2\text{V} - 0.88\text{V})}{13.2\text{V} \times 12.5\text{A} \times 500\text{kHz}} = 0.131\mu\text{H}
\]

Considering the variation and derating of the inductance and a standard inductor value of 150nH with DCR 0.125 mΩ, is selected. Then use Equation 50 to re-calculate the actual output ripple.

\[
I_{\text{Ripple(actual)}} = \frac{V_{\text{OUT}} \times (V_{\text{in(max)}} - V_{\text{OUT}})}{V_{\text{in(max)}} \times f_{\text{SW}} \times l_{\text{actual}}} = \frac{0.88\text{V} \times (13.2\text{V} - 0.88\text{V})}{13.2\text{V} \times 1\Omega \times 500\text{kHz} \times 0.150\text{pF}} = 10.9\text{A}
\]

With same design procedure for channel B, a standard inductor value of 150 nH with DCR 0.125 mΩ from ITG is chosen.

Output Capacitor Selection

Generally, consider output ripple and output voltage deviation during load transient when selecting output capacitors.

When available, follow the output capacitance recommendation for the load ASIC reference design. With TPS53676 device, it is possible to meet the load transient with lower output capacitance due to the high-speed...
nature of DCAP+ control. **Output Capacitor Recommendations** is the output capacitance recommendation for the above rail specification.

<table>
<thead>
<tr>
<th>Capacitor location</th>
<th>Channel A</th>
<th>Channel B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk capacitors near power stages</td>
<td>12x 470 μF / 2.5V / 3mΩ ESR</td>
<td>2x 470 μF / 2.5V / 3mΩ ESR</td>
</tr>
<tr>
<td>Top side</td>
<td>24x 220 μF / 4V / X5R / 1206</td>
<td>4x 220 μF / 4V / X5R / 1206</td>
</tr>
<tr>
<td></td>
<td>18x 100 μF / 4V / X5R / 1206</td>
<td>3x 100 μF / 4V / X5R / 1206</td>
</tr>
<tr>
<td>Bottom side</td>
<td>24x 220 μF / 4V / X5R / 1206</td>
<td>4x 220 μF / 4V / X5R / 1206</td>
</tr>
<tr>
<td></td>
<td>18x 100 μF / 4V / X5R / 1206</td>
<td>3x 100 μF / 4V / X5R / 1206</td>
</tr>
<tr>
<td>Total output capacitance</td>
<td>19.8 mF</td>
<td>1874 μF</td>
</tr>
</tbody>
</table>

Select Per-Phase Valley Current Limit

The equation below shows the calculation of per-phase valley current limit based on maximum processor current, the operating phase number and per-phase current ripple Δ RIPPLE(actual):

For the channel A,

\[
I_{OCL} = K_{\text{margin}} \times \frac{I_{CC(\text{max})}}{N_{\Phi}} - \frac{\Delta I_{\text{RIPPLE}}}{2} = 1.25 \times \frac{250A}{6\text{phases}} - \frac{10.9A}{2} = 46.6A
\]

(51)

Where \(K_{\text{margin}} \) is the maximum operating margin factor. Choose 125% margin to avoid triggering current limit during load transient events. For this design, choose the 47A valley current limit for channel A.

\[
I_{\text{SAT(min)}} = I_{OCL} + \Delta I_{\text{RIPPLE}} = 47A + 10.9A = 57.9A
\]

(52)

The calculation above shows the minimum saturation current for inductor. Using same design procedure, the valley current limit for channel B is selected to be 26 A.

Set USR threshold to improve load transient performance

There are two levels of undershoot reduction (USR1, USR2) options. USR1 enables up to 3, 4, 5 or all normal phases and USR2 enables all available phases. To select the proper value, start with each USR threshold set to be disabled, and then systematically lower the threshold, enabling fast-phase-addition to meet the load transient requirement.

For this design, phase shedding is disabled. USR1 and USR2 are selected to be disabled for both channel A and channel B.

Input Current Sensing (Shunt/ Calculated lin/ Inductor DCR)

TPS53676 has three input current sensing options: shunt current sensing, calculated input current sensing and inductor DCR current sensing. Either option may be chosen for precision input current reporting.

Shunt current sensing

In this design, the external shunt resistor 0.5 mΩ ± 1%, 3 W, 4026 package is selected. Once properly calibrated, Input current reporting is within the tolerance target.

Calculated input current sensing

TPS53676 includes an option to impute input current for situations in which the addition of a shunt or input inductor is prohibitive. Connect pins 46 (VIN_CSNIN) and 47 (CSPIN) together, and place a minimum 1 μF effective capacitance bypass cap from pin 46 to GND, then connect pin 46 to input supply (12 V nominally) before input inductor. Configure the calculated input current option through the NVM settings in MFR_SPECIFIC_ED (MISC OPTIONS).
Inductor DCR Current Sensing

This section describes the procedure to determine an inductor DCR thermal compensation network design. The image below shows a typical DCR sensing circuit. From the equations below, when the time constant of the RC network is equal to the L/R time constant of the inductor, the capacitor voltage \(V_C \) across the \(C_{SENSE} \) capacitor can be used to obtain the inductor current. However, inductor windings have a positive temperature coefficient of approximately 3900 ppm/°C. So an NTC thermistor is used to cancel thermal variation from the inductor DCR.

The design goal is for the DCR value to be invariant with the temperature. Therefore, the voltage across sense capacitor would be only dependent on the inductor current over the temperature range of interest.

\[
C_{SENSE} \times R_{EQ} = \frac{L}{R_{DCR}} \tag{53}
\]

\[
I_{IN} \times R_{DCR} = V_{DCR} \tag{54}
\]

The equivalent resistance of the \(R_{SEQU} \), \(R_{NTC} \), \(R_{SERIES} \) and \(R_{PAR} \) values is given by \(R_{EQ} \). Use the equations below to derive the values of \(R_{SEQU} \), \(R_{NTC} \), \(R_{SERIES} \) and \(R_{PAR} \).

\[
R_{EQ} = \frac{R_{P_N}}{R_{P_N} + R_{SEQU}} \tag{55}
\]

\[
R_{P_N} = \frac{R_{PAR} \times (R_{NTC} + R_{SERIES})}{R_{PAR} + R_{NTC} + R_{SERIES}} \tag{56}
\]
Finally the value of β, given in the equation below, represents the effective current sense gain after thermal compensation. This value can be used as the sense element resistance to derive the PMBus settings as described in *Input current calibration (measured)*.

$$\beta = \frac{R_{DCR} \times R_P}{R_P + R_{SEQU}}$$

(58)

For this design, select thermistor RNTC as 1 kΩ, 5%, 0603, B-constant is 3650k, P/N: NCP18XQ102J03B from Murata. Select C_{SENSE} as 1 μF X7R or better dielectric (C0G preferred).

In order to solve the value of R_{SEQU}, R_{SERIES} and R_{PAR}, the β at three temperature points are set equal. Set $\beta = 0.15 \text{ mΩ}$ equally at temperature 0 °C, 25 °C and 75 °C. With the calculation, three resistors value can be found as $R_{SEQU} = 332 \Omega$, $R_{SERIES} = 432 \Omega$, $R_{PAR} = 1.40 \text{ kΩ}$.

![Figure 8-6. Inductor DCR sensing voltage over temperature](image)

TI offers an application note and excel spreadsheet to streamline input DCR network calculations. Contact your local field/sales representative to get a copy of the document.

Loop compensation design

- **5 mΩ**: Typical gain from power stage current sense
- **ACLL**: Programmable AC load line, provides direct output voltage feedback.
- **DCLL**: Programmable DC load line, provides adaptive voltage positioning
- **K_{DIV}**: Fixed scalar with value of 0.5
- **t_{INT}**: Programmable integration time constant, adjustable from 1μs to 16 μs (scale = 1 μs)
- **K_{INT}**: Programmable integration gain which can be adjustable from 0.5x, 1x, 1.5x, 2x
- **K_{AC}**: Programmable AC gain which is adjustable from 0.5x, 1x, 1.5x, 2x
- **V_{RAMP}**: Programmable ramp voltage which is adjustable from 80 mV to 320 mV (scale = 40 mV)

For this design, the optimal loop compensation values were derived by tuning. The final values are listed.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Channel A</th>
<th>Channel B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLL</td>
<td>0.0 mΩ</td>
<td>0.0 mΩ</td>
</tr>
<tr>
<td>ACLL</td>
<td>0.2 mΩ</td>
<td>0.5 mΩ</td>
</tr>
<tr>
<td>t_{INT}</td>
<td>1 μs</td>
<td>7 μs</td>
</tr>
<tr>
<td>K_{INT}</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>K_{AC}</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 8-3.
Select ADDR pin resistors

Based on the design requirements of PMBus address select the upper and lower ADDR pin resistors, R_{HA} and R_{LA} according to ADDR pin decoding.

<table>
<thead>
<tr>
<th>PMBus address</th>
<th>R_{HA}</th>
<th>R_{LA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>96d / C0h</td>
<td>110 kΩ</td>
<td>37.4 kΩ</td>
</tr>
</tbody>
</table>

Select the boot voltage V_{BOOT} for each channel

The boot voltage for channel A is determined by pinstrapping on the BOOT_CHA pin. Based on BOOT_CHA pinstrap decoding, select $R_{HB} = 20.0$ kΩ and $R_{LB} = 59.0$ kΩ to select 0.88 V as the channel A boot voltage.

The boot voltage for channel B is stored in NVM. Update the NVM value for VOUT_COMMAND to 1.0 V, and store the value to non-volatile memory.

8.2.4 Application Performance Plots

Figure 8-7. Soft-start channel A (0 ms TON_DELAY)

Figure 8-8. Shutdown (immediate off) channel A

Figure 8-9. Soft-stop channel A (0 ms TOFF_DELAY)

Figure 8-10. Steady-state PWM jitter channel A
Figure 8-11. AVS up transition channel A

Figure 8-12. AVS down transition channel A

Figure 8-13. Soft-start Channel B (0 ms TON_DELAY)

Figure 8-14. Shutdown (immediate off) channel B

Figure 8-15. Soft-stop channel B (0 ms TOFF_DELAY)

Figure 8-16. AVS transition up channel B
Figure 8-17. AVS transition down channel B

Figure 8-18. RESET# pin function
9 Power Supply Recommendations

The TPS53676 does not have strict power sequencing requirements. The VCC supply, power stage VDD 5V supply, VIN_CSNIN and CSPIN supplies may be safely powered up independently of each other, even if the VCC supply voltage is off and low-impedance. Do not raise pull-up voltages for open-drain pins AVR_RDY, BVR_RDY, SMB_ALRT#, SMB_DIO, VR_FAULT# before the VCC supply, or pull them to voltages above the VCC voltage during operation. Similarly, it is not recommended to pull the AVS_VDDIO supply above VCC, or pull the AVS_CLK, AVS_MDATA, AVS_SDATA pins above AVS_VDDIO. If system sequencing requirements mandate raising the pull-up voltages for these pins prior to VCC being established, limit the pin current to 1.0 mA to avoid damage to the device.

The minimum pull-up resistor value for open drain pins AVR_RDY, BVR_RDY, SMB_ALRT#, SMB_DIO, VR_FAULT# is limited by the allowable sinking current for the pin. The maximum pull-up resistor value is limited by the off-state leakage current for the pin, and the logic level of any downstream device using the pin as an input. The table below summarizes the allowable sinking current and off-state leakage for open drain IO pins.

<table>
<thead>
<tr>
<th>Open-drain Pin</th>
<th>Maximum Current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-state Sinking (mA)</td>
</tr>
<tr>
<td>AVR_RDY</td>
<td>25.0</td>
</tr>
<tr>
<td>BVR_RDY</td>
<td>25.0</td>
</tr>
<tr>
<td>SMB_ALRT#</td>
<td>20.0</td>
</tr>
<tr>
<td>SMB_DIO</td>
<td>20.0</td>
</tr>
<tr>
<td>VR_FAULT#</td>
<td>20.0</td>
</tr>
</tbody>
</table>

1. $T_J = 125^\circ$C

For input pins ACSPx, BCSPx, AVR_EN, BVR_EN, SYNC, RESET#, which exceed the VCC pin value during operation, during power-on or otherwise, include a series resistor of 10.0 kΩ or greater to limit the current into the pin.

It is safe to power-on the VDD 5V supply to TI smart power stage devices prior to TPS53676 VCC. TI smart power stage devices do not source any unsafe voltages or currents into TPS53676 ACSPx, BCSPx, ATSEN, BTSEN, APWMx, BPWMx pins when the VCC pin is not powered.

TI smart power stages (CSD95xx) provide hysteresis current on their PWM input pins to improve noise immunity. This current is active when the power stage is powered by 5V VDD and enabled, regardless of the status of VCC. When the VCC pin of TPS53676 is unpowered, this hysteresis current flows through the PWM pins, to ESD structures in the controller, causing the PWM pin voltage to float low, out of the tri-state window. This can cause the power stage device to switch its low-side power MOSFET on. As a result, in any case where the power stage VDD 5V power supply is enabled prior to VCC, supply, TI recommends to control the power stage enable pin to be low until both supply voltages are established.

TPS53676 voltage and current protections become active when the controller VCC supply is powered. TI recommends the VCC voltage be powered first, prior to power stage 5V, or VIN_CSNIN/CSPIN voltages. In general, TI recommends to assert the AVR_EN/BVR_EN pins last in the power sequence.

Other sequences are permissible, but may not be able to make use of the controller protection features. For example, if a board assembly issue causes the power input supply (e.g. nominally 12V supply) to charge the output voltage, the TPS53676 over-voltage protection can protect the load device by forcing the PWM pins low, causing the power stage devices to discharge the output voltage, but only if the VCC supply is established by the time the power input voltage rises.
10 Layout

Proper layout techniques are critical to power supply performance. The recommendations given in this document are meant to minimize risk and give the highest possibility of first pass success. Other layout designs are possible but may carry higher risk of performance issues. Contact your TI local field/sales representative for in-depth guidance and layout reviews.

The driverless controller architecture makes it easy to separate noisy driver interface lines from sensitive controller signals. Because the power stage is external to the device, all gate drive and switch node traces must be local to the inductor and power stages.

Controller Layout Guidelines
• Keep minimum 800 mil distance between the controller and the closest power stage
• Ensure the controller and all power stages must share a common ground plane
• Route CSPx /VREF differentially from controller to IOUT/REFIN pin of each power stages on a quiet inner layer. Alternately, create a small VREF copper plane between controller and power stages, and embed the CSPx traces inside VREF plane.
• PWMx must be routed on a different quiet inner layer and not on the same layer next to CSPx/VREF differential pairs.

Note
MOST IMPORTANT LAYOUT RECOMMENDATION: Must keep min 40mil clearance between 12Vin copper/vias/traces and sensitive analog interface lines.

Power stage layout guidelines
• Use the recommended land and via pattern for power stage footprint
• Make layer 2 on the PCB stack a solid ground plane
• Maximize the phase pitch between adjacent phases whenever possible to prevent any cross-coupling noise between devices (9 mm or higher is preferred)
• In cases where the phase pitch is tighter, adjust the controller phase firing order to minimize noise coupling between devices.
• The input voltage bypass capacitors require a minimum two vias per pad(for both Vin and GND)
• Place additional GND vias along the sides of device as space allows
• For multi-phase systems, ensure that the GND pour connects all phases.
• Connect the VOS pin feedback point to the inner edge of the inductor output pad.
• Place VDD and PVDD bypass capacitors directly next to pins on the same layer of the device.
Layout example

Figure 10-1. Controller layout example

Figure 10-2. CSP signal routing example

Figure 10-3. Power stage placement example
11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.3 Trademarks
AVSBus™, PMBus™, are trademarks of SMIF.
NexFET™, AutoBalance™, D-CAP+™, and TI E2E™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS53676RSLR</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RSL</td>
<td>48</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>NIPDAUAG</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>TPS 53676</td>
</tr>
<tr>
<td>TPS53676RSLT</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RSL</td>
<td>48</td>
<td>250</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>NIPDAUAG</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>TPS 53676</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
MECHANICAL DATA

RSL (S-PVQFN-N48) PLASTIC QUAD FLATPACK NO-LEAD

NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-Leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated