TPS54325 4.5-V to 18-V, 3-A Output Synchronous Step Down Switcher with Integrated FET

1 Features

- D-CAP2™ Mode Enables Fast Transient Response
- Low Output Ripple and Allows Ceramic Output Capacitor
- Wide V_CC Input Voltage Range: 4.5 V to 18 V
- Wide V_IN Input Voltage Range: 2.0 V to 18 V
- Output Voltage Range: 0.76 V to 5.5 V
- Highly Efficient Integrated FET’s Optimized for Lower Duty Cycle Applications – 120 mΩ (High Side) and 70 mΩ (Low Side)
- High Efficiency, less than 10 µA at shutdown
- High Initial Bandgap Reference Accuracy
- Adjustable Soft Start
- Pre-Biased Soft Start
- 700-kHz Switching Frequency (f_SW)
- Cycle By Cycle Over Current Limit
- Power Good Output

2 Applications

- Wide Range of Applications for Low Voltage System
 - Digital TV Power Supply
 - High Definition Blu-ray Disc™ Players
 - Networking Home Terminal
 - Digital Set Top Box (STB)

3 Description

The TPS54325 device is an adaptive on-time D-CAP2™ mode synchronous buck converter. The TPS54325 device enables system designers to complete the suite of various end equipment's power bus regulators with a cost effective, low component count, low standby current solution.

The main control loop for the TPS54325 uses the D-CAP2™ mode control which provides a very fast transient response with no external components. The TPS54325 also has a proprietary circuit that enables the device to adapt to both low equivalent series resistance (ESR) output capacitors, such as POSCAP or SP-CAP, and ultra-low ESR ceramic capacitors. The device operates from 4.5-V to 18-V VCC input, and from 2.0-V to 18-V VIN input power supply voltage. The output voltage can be programmed between 0.76 V and 5.5 V. The device also features an adjustable slow start time and a power good function. The TPS54325 is available in the 14 pin HTSSOP package, and designed to operate from −40°C to 85°C.

4 Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description .. 1
4 Simplified Schematic .. 1
5 Revision History ... 2
6 Pin Configuration and Functions 3
7 Specifications .. 4
 7.1 Absolute Maximum Ratings 4
 7.2 Handling Ratings .. 4
 7.3 Thermal Information .. 4
 7.4 Recommended Operating Conditions 5
 7.5 Electrical Characteristics 5
 7.6 Typical Characteristics 7
8 Detailed Description .. 8
 8.1 Overview .. 8
 8.2 Functional Block Diagram 8
 8.3 Feature Description .. 9

9 Application and Implementation 11
 9.1 Application Information 11
 9.2 Typical Application ... 11

10 Power Supply Recommendations 15

11 Layout ... 16
 11.1 Layout Guidelines .. 16
 11.2 Layout Example .. 16
 11.3 Thermal Considerations 17

12 Device and Documentation Support 18
 12.1 Device Support .. 18
 12.2 Documentation Support 18
 12.3 Trademarks ... 18
 12.4 Electrostatic Discharge Caution 18
 12.5 Glossary ... 18

13 Mechanical, Packaging, and Orderable Information 18

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (January 2014) to Revision F Page

• Added, updated, or renamed the following sections: Device Information Table, Application and Implementation; Power Supply Recommendations; Layout; Device and Documentation Support; Mechanical, Packaging, and Ordering Information 1

Changes from Revision D (January 2012) to Revision E Page

• Changed text in the Bootstrap Capacitor Selection from "between the VREG5 to GND pin for proper operation" to "between the VBST to SW pin for proper operation." ... 13

Changes from Revision C (July 2011) to Revision D Page

• Removed (SWIFT™) from the data sheet title .. 1
• Added conditions to Typical Characteristics .. 7

Changes from Revision B (March 2011) to Revision C Page

• Changed EN high-level input voltage from min of 2.0 V to min of 1.6 V .. 5
• Changed EN low-level input voltage from max of 0.48 V to max of 0.4 V .. 5

Changes from Original (May 2009) to Revision A Page

• Changed T_A, for the current limit, I_{oc}, From: 25°C to −40°C To: 85°C and 3.5 A was added at the MIN value 6
6 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO</td>
<td>I</td>
<td>Connect to output of converter. This terminal is used for On-Time Adjustment.</td>
</tr>
<tr>
<td>VFB</td>
<td>I</td>
<td>Converter feedback input. Connect with feedback resistor divider.</td>
</tr>
<tr>
<td>VREG5</td>
<td>O</td>
<td>5.5 V power supply output. A capacitor (typical 1μF) should be connected to GND.</td>
</tr>
<tr>
<td>SS</td>
<td>I</td>
<td>Soft-start control. An external capacitor should be connected to GND.</td>
</tr>
<tr>
<td>GND</td>
<td>O</td>
<td>Signal ground pin</td>
</tr>
<tr>
<td>PG</td>
<td>O</td>
<td>Open drain power good output</td>
</tr>
<tr>
<td>EN</td>
<td>I</td>
<td>Enable control input</td>
</tr>
<tr>
<td>PGND1, PGND2</td>
<td>I</td>
<td>Ground returns for low-side MOSFET. Also serve as inputs of current comparators. Connect PGND and GND strongly together near the IC.</td>
</tr>
<tr>
<td>SW1, SW2</td>
<td>O</td>
<td>Switch node connection between high-side NFET and low-side NFET. Also serve as inputs to current comparators.</td>
</tr>
<tr>
<td>VBST</td>
<td>O</td>
<td>Supply input for high-side NFET gate driver (boost terminal). Connect capacitor from this pin to respective SW1, SW2 terminals. An internal PN diode is connected between VREG5 to VBST pin.</td>
</tr>
<tr>
<td>VIN</td>
<td>I</td>
<td>Power input and connected to high side NFET drain</td>
</tr>
<tr>
<td>VCC</td>
<td>I</td>
<td>Supply input for 5 V internal linear regulator for the control circuitry</td>
</tr>
<tr>
<td>PowerPAD™</td>
<td>—</td>
<td>Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Should be connected to PGND.</td>
</tr>
</tbody>
</table>
7 Specifications

7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN}, V_{CC}, EN)</td>
<td>−0.3</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>(V_{BST})</td>
<td>−0.3</td>
<td>26</td>
<td>V</td>
</tr>
<tr>
<td>(V_{BST (vs SW1, SW2)})</td>
<td>−0.3</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{FB}, V_{O}, SS, PG)</td>
<td>−0.3</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>SW1, SW2</td>
<td>−3</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>SW1, SW2 (10 ns transient)</td>
<td>−3</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>(V_{BST})</td>
<td>−0.3</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>(P_{GND1}, P_{GND2})</td>
<td>−0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>(V_{FB})</td>
<td>−0.3</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{O})</td>
<td>−0.2</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td>(T_J)</td>
<td>−40</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{stg})</td>
<td>−55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(V_{(ESD)}) (ESD)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(^{(1)})</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(^{(2)})</td>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>PWP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA})</td>
<td>55.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUC(top)})</td>
<td>51.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUB})</td>
<td>26.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JT})</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>(\psi_{ JB})</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td>(R_{JUC(bot)})</td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
7.4 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DC}</td>
<td>Supply input voltage range</td>
<td>4.5</td>
<td></td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Power input voltage range</td>
<td>2</td>
<td></td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>V_I</td>
<td>Input voltage range</td>
<td>V_{BST}</td>
<td>-0.1</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>V_{BST}</td>
<td></td>
<td>V_{BST}</td>
<td>-0.1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>V_{BST} (vs SW1, SW2)</td>
<td></td>
<td>-0.1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS, PG</td>
<td></td>
<td>-0.1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td></td>
<td>-0.1</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_O, V_{FB}</td>
<td></td>
<td>-0.1</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW1, SW2</td>
<td></td>
<td>-1.8</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW1, SW2 (10 ns transient)</td>
<td></td>
<td>-3</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{GND1}, P_{GND2}</td>
<td></td>
<td>-0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_O</td>
<td>Output voltage range</td>
<td>V_{REG5}</td>
<td>-0.1</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>I_O</td>
<td>Output current range</td>
<td>I_{VREG5}</td>
<td>0</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating free-air temperature</td>
<td>-40</td>
<td>85</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating junction temperature</td>
<td>-40</td>
<td>125</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

7.5 Electrical Characteristics
over operating free-air temperature range, V_{CC}, V_{IN} = 12 V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{VCC}</td>
<td>Operating - non-switching supply current</td>
<td>V_{CC} current, $T_A = 25°C$, $EN = 5 V$, $V_{FB} = 0.8 V$</td>
<td>850</td>
<td>1300</td>
<td>μA</td>
</tr>
<tr>
<td>I_{VCCSDN}</td>
<td>Shutdown supply current</td>
<td>V_{CC} current, $T_A = 25°C$, $EN = 0 V$</td>
<td>10</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>V_{ENH}</td>
<td>EN high-level input voltage</td>
<td>EN</td>
<td>1.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{ENL}</td>
<td>EN low-level input voltage</td>
<td>EN</td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>V_{FB} threshold voltage</td>
<td>$T_A = 25°C$, $V_O = 1.05 V$</td>
<td>757</td>
<td>765</td>
<td>773</td>
</tr>
<tr>
<td>I_{VFB}</td>
<td>V_{FB} input current</td>
<td>$V_{FB} = 0.8 V$, $T_A = 25°C$</td>
<td>0</td>
<td>±0.1</td>
<td>μA</td>
</tr>
<tr>
<td>R_{Dischg}</td>
<td>V_{Dischg} discharge resistance</td>
<td>$EN = 0 V$, $V_O = 0.5 V$, $T_A = 25°C$</td>
<td>50</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>V_{REG5}</td>
<td>V_{REG5} output voltage</td>
<td>$T_A = 25°C$, $6.0 V < V_{CC} < 18 V$, $0 < I_{VREG5} < 5 mA$</td>
<td>5.3</td>
<td>5.5</td>
<td>5.7</td>
</tr>
<tr>
<td>V_{VREG5}</td>
<td>V_{REG5} output voltage</td>
<td>$V_{CC} = 6 V$, $V_{REG5} = 4.0 V$, $T_A = 25°C$</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Line regulation</td>
<td>$6.0 V < V_{CC} < 18 V$, $I_{VREG5} = 5 mA$</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{LOAD}</td>
<td>Load regulation</td>
<td>$0 mA < I_{VREG5} < 5 mA$</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{VREG5}</td>
<td>Output current</td>
<td>$V_{CC} = 6 V$, $V_{REG5} = 4.0 V$, $T_A = 25°C$</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{DS(onh)}$</td>
<td>High side switch resistance</td>
<td>$25°C$, V_{BST}, SW1, SW2 = 5.5 V</td>
<td>120</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>$R_{DS(sonl)}$</td>
<td>Low side switch resistance</td>
<td>$25°C$</td>
<td>70</td>
<td></td>
<td>mΩ</td>
</tr>
</tbody>
</table>

(1) Not production tested.
Electrical Characteristics (continued)

over operating free-air temperature range, $V_{CC}, V_{IN} = 12$ V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT LIMIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{ocl}</td>
<td>Current limit $T_A = -40^°C$ to $85^°C$ (1)</td>
<td>3.5</td>
<td>4.1</td>
<td>5.5</td>
<td>A</td>
</tr>
<tr>
<td>THERMAL SHUTDOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{SDN}</td>
<td>Thermal shutdown threshold</td>
<td></td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Shutdown temperature (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hysteresis (1)</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>ON-TIME TIMER CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{ON}</td>
<td>On time $V_{IN} = 12$ V, $V_O = 1.05$ V</td>
<td>145</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{OFF(MIN)}$</td>
<td>Minimum off time $T_A = 25^°C$, $V_{FB} = 0.7$ V</td>
<td>260</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SOFT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SSC}</td>
<td>SS charge current $V_{SS} = 0$ V</td>
<td>1.4</td>
<td>2.0</td>
<td>2.6</td>
<td>μA</td>
</tr>
<tr>
<td>I_{SSD}</td>
<td>SS discharge current $V_{SS} = 0.5$ V</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>POWER GOOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{THPG}</td>
<td>PG threshold V_{FB} rising (good)</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{FB} falling (fault)</td>
<td></td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>I_{PG}</td>
<td>PG sink current $PG = 0.5$ V</td>
<td>2.5</td>
<td>5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OVP}</td>
<td>Output OVP trip threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OVP detect</td>
<td>115%</td>
<td>120%</td>
<td>125%</td>
<td></td>
</tr>
<tr>
<td>$T_{OVPDE}L$</td>
<td>Output OVP prop delay</td>
<td>5</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>V_{UVP}</td>
<td>Output UVP trip threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UVP detect</td>
<td>65%</td>
<td>70%</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hysteresis</td>
<td></td>
<td></td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>$T_{UVPDE}L$</td>
<td>Output UVP delay</td>
<td></td>
<td></td>
<td>0.25</td>
<td>ms</td>
</tr>
<tr>
<td>T_{UVPEN}</td>
<td>Output UVP enable delay</td>
<td></td>
<td></td>
<td>Relative to soft-start time</td>
<td>x 1.7</td>
</tr>
<tr>
<td>UVLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{UVLO}</td>
<td>UVLO threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wake up V_{REGS} voltage</td>
<td>3.45</td>
<td>3.70</td>
<td>3.95</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Hysteresis V_{REGS} voltage</td>
<td>0.15</td>
<td>0.25</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>
7.6 Typical Characteristics

VIN = 12 V, TA = 25°C (unless otherwise noted)

Figure 1. VCC Temperature vs Junction Temperature

Figure 2. VCC Shutdown Current vs Junction Temperature

Figure 3. Switching Frequency vs Output Current
8 Detailed Description

8.1 Overview
The TPS54325 is a 3-A synchronous step-down (buck) converter with two integrated N-channel MOSFETs. It operates using D-CAP2™ mode control. The fast transient response of D-CAP2™ control reduces the output capacitance required to meet a specific level of performance. Proprietary internal circuitry allows the use of low ESR output capacitors including ceramic and special polymer types.

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Soft Start and Pre-Biased Soft Start

The TPS54325 has an adjustable soft start. When the EN pin becomes high, 2.0-μA current begins charging the capacitor which is connected from the SS pin to GND. Smooth control of the output voltage is maintained during start up. The equation for the slow start time is shown in Equation 1. VFB voltage is 0.765 V and SS pin source current is 2 μA.

\[
T_{ss(ms)} = \frac{C_6(nF) \cdot V_{ref} \cdot I_{ss(μA)}}{2}
\]

The TPS54325 contains a unique circuit to prevent current from being pulled from the output during startup in the condition the output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft start becomes greater than feedback voltage (V_{FB})), the controller slowly activates synchronous rectification by starting the first low side FET gate driver pulses with a narrow on-time. It then increments that on-time on a cycle-by-cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter. This scheme prevents the initial sinking of the pre-bias output, and ensure that the out voltage (V_O) starts and ramps up smoothly into regulation and the control loop is given time to transition from pre-biased start-up to normal mode operation.

8.3.2 Power Good

The TPS54325 has power-good output. The power-good function is activated after soft start has finished. If the output voltage becomes within -10% of the target value, internal comparators detect power good state and the power good signal becomes high. R_{PG} resister value ,which is connected between PG and VREG5, is required from 20 kΩ to 150 kΩ. If the feedback voltage goes under 15% of the target value, the power good signal becomes low after 10 μs internal delay.

8.3.3 Output Discharge Control

The TPS54325 discharges the output when EN is low, or the controller is turned off by the protection functions (OVP, UVP, UVLO and thermal shutdown). The device discharges outputs using an internal 50-Ω MOSFET which is connected to VO and PGND. The internal low-side MOSFET is not turned on during the output discharge operation to avoid the possibility of causing negative voltage at the output.

8.3.4 Current Protection

The output over-current protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored by measuring the low-side FET switch voltage between the SW pin and GND. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.

During the on time of the high-side FET switch, the switch current increases at a linear rate determined by \(V_{IN} - V_{OUT} \), the on-time and the output inductor value. During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current I_{out}. If the measured voltage is above the voltage proportional to the current limit, Then , the device constantly monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-side on-time.

The converter maintains the low-side switch on until the measured voltage is below the voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.

There are some important considerations for this type of over-current protection. The load current one half of the peak-to-peak inductor current higher than the over-current threshold. Also when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. This may cause the output under-voltage protection circuit to be activated. When the over current condition is removed, the output voltage will return to the regulated value. This protection is non-latching.
Feature Description (continued)

8.3.5 Overvoltage and Undervoltage Protection

The TPS54325 monitors a resistor divided feedback voltage to detect over and under voltage. When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes high and the circuit latches the high-side MOSFET driver turns off and the low-side MOSFET turns on.

When the feedback voltage becomes lower than 70% of the target voltage, the UVP comparator output goes high and an internal UVP delay counter begins. After 250 μs, the device latches off both internal top and bottom MOSFET. This function is enabled approximately 1.7 x soft-start time.

8.3.6 UVLO Protection

The TPS54325 has under voltage lock out protection (UVLO) that monitors the voltage of \(V_{\text{REG5}} \) pin. When the \(V_{\text{REGS}} \) voltage is lower than UVLO threshold voltage, the TPS54325 is shut off. This is non-latch protection.

8.3.7 Thermal Shutdown

The TPS54325 monitors the temperature of itself. If the temperature exceeds the threshold value (typically 150°C), the device is shut off. This is non-latch protection.

8.4 Device Functional Modes

8.4.1 PWM Operation

The main control loop of the TPS54325 is an adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP2™ mode control. D-CAP2™ mode control combines constant on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.

At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot timer is set by the converter input voltage , vin, and the output voltage , vo, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to the reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2™ mode control.

8.4.2 PWM Frequency and Adaptive On-Time Control

TPS54325 uses an adaptive on-time control scheme and does not have a dedicated on board oscillator. The TPS54325 runs with a pseudo-constant frequency of 700 kHz by using the input voltage and output voltage to set the on-time one-shot timer. The on-time is inversely proportional to the input voltage and proportional to the output voltage, therefore, when the duty ratio is \(V_{\text{OUT}}/V_{\text{IN}} \), the frequency is constant.

8.4.3 Operation with VIN < 4.5 V

The device is recommended to operate with input voltages above 4.5 V. The typical VIN UVLO threshold is 3.7 V and the device can operate at input voltages down to the UVLO voltage. At input voltages below the actual UVLO voltage, the device does not switch. If the EN pin is externally pulled up or left floating, the device becomes active when the VIN pin passes the UVLO threshold. Switching begins when the slow-start sequence is initiated.

8.4.4 Operation With EN Control

The enable threshold voltage is 1.6 V (typical). With the EN pin is held below that voltage, the device is disabled and switching is inhibited even if the VIN pin is above the UVLO threshold. The IC quiescent current is reduced in this state. If the EN voltage increases above the threshold while the VIN pin is above the UVLO threshold, the device becomes active. Switching is then enabled and the slow-start sequence is initiated.
9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS54325 device is typically used as a step-down converter, which converts a voltage in the range of 4.5 V to 18 V to a lower voltage. WEBENCH software is available to aid in the design and analysis of circuits.

9.2 Typical Application

![Figure 4. Schematic Diagram for Design Example](image)

9.2.1 Design Requirements

To begin the design process, know the application parameters listed in Table 1:

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td></td>
<td>5</td>
<td></td>
<td>17</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>1.05</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>(V_i = 12 \text{ V}, I_o = 1 \text{ A})</td>
<td>700</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Output current</td>
<td></td>
<td>0</td>
<td></td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Output ripple voltage</td>
<td>(V_i = 12 \text{ V}, I_{out} = 3 \text{ A})</td>
<td>9</td>
<td></td>
<td></td>
<td>mVpp</td>
</tr>
<tr>
<td>Efficiency</td>
<td>(V_i = 12 \text{ V}, V_{out} = 3.3 \text{ V}, I_{out} = 1.2 \text{ A})</td>
<td>91%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.2.2 Detailed Design Procedure

9.2.2.1 Output Voltage Resistors Selection

The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use 1% tolerance or better divider resistors. Start by using Equation 2 and Equation 3 to calculate V_{OUT}.

To improve efficiency at very light loads consider using larger value resistors, too high of resistance will be more susceptible to noise and voltage errors from the VFB input current will be more noticeable.

For output voltage from 0.76 V to 2.5 V:

$$V_{OUT} = 0.765 \times \left(1 + \frac{R1}{R2} \right)$$ \hspace{1cm} (2)

For output voltage over 2.5 V:

$$V_{OUT} = (0.763 + 0.0017 \times V_{OUT}) \times \left(1 + \frac{R1}{R2} \right)$$

where

- V_{OUT_SET} = Target V_{OUT} voltage \hspace{1cm} (3)

9.2.2.2 Output Filter Selection

The output filter used with the TPS54325 is an LC circuit. This LC filter has double pole at:

$$F_p = \frac{1}{2\pi \sqrt{L_{OUT} \times C_{OUT}}}$$ \hspace{1cm} (4)

At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the TPS54325. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off at a -40 dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that reduces the gain roll off to -20 dB per decade and increases the phase to 90 degrees one decade above the zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole of Equation 4 is located below the high frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 2.

Table 2. Recommended Component Values

<table>
<thead>
<tr>
<th>OUTPUT VOLTAGE (V)</th>
<th>R1 (kΩ)</th>
<th>R2 (kΩ)</th>
<th>C4 (pF)(^{(1)})</th>
<th>L1 (µH)</th>
<th>C8 + C9 (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.81</td>
<td>22.1</td>
<td></td>
<td>1.5</td>
<td>22 - 68</td>
</tr>
<tr>
<td>1.05</td>
<td>8.25</td>
<td>22.1</td>
<td></td>
<td>1.5</td>
<td>22 - 68</td>
</tr>
<tr>
<td>1.2</td>
<td>12.7</td>
<td>22.1</td>
<td></td>
<td>1.5</td>
<td>22 - 68</td>
</tr>
<tr>
<td>1.8</td>
<td>30.1</td>
<td>22.1</td>
<td>10 - 22</td>
<td>2.2</td>
<td>22 - 68</td>
</tr>
<tr>
<td>2.5</td>
<td>49.9</td>
<td>22.1</td>
<td>10 - 22</td>
<td>2.2</td>
<td>22 - 68</td>
</tr>
<tr>
<td>3.3</td>
<td>73.2</td>
<td>22.1</td>
<td>10 - 22</td>
<td>2.2</td>
<td>22 - 68</td>
</tr>
<tr>
<td>5</td>
<td>121</td>
<td>22.1</td>
<td>10 - 22</td>
<td>3.3</td>
<td>22 - 68</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Optional

For higher output voltages at or above 1.8 V, additional phase boost can be achieved by adding a feed forward capacitor (C4) in parallel with R1.

The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 5, Equation 6 and Equation 7. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current.
Use 700 kHz for \(f_{SW} \). Make sure the chosen inductor is rated for the peak current of Equation 6 and the RMS current of Equation 7.

\[
Ilp - p = \frac{V_{OUT} \cdot V_{IN(max)} - V_{OUT}}{L_o \cdot f_{SW}}
\]

\[
I_{peak} = I_o + \frac{Ilp - p}{2}
\]

\[
I_{Lo(RMS)} = \sqrt{I_o^2 + \frac{1}{12} Ilp \cdot p^2}
\]

For this design example, the calculated peak current is 3.47 A and the calculated RMS current is 3.01 A. The inductor used is a TDK SPM6530-1R5M100 with a peak current rating of 11.5 A and an RMS current rating of 11 A.

The capacitor value and ESR determines the amount of output voltage ripple. The TPS54325 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 22 \(\mu \)F to 68 \(\mu \)F. Use Equation 8 to determine the required RMS current rating for the output capacitor.

\[
I_{CO(RMS)} = \frac{V_{OUT} \cdot (V_{IN} - V_{OUT})}{\sqrt{12 \cdot V_{IN} \cdot L_o \cdot f_{SW}}}
\]

For this design two TDK C3216X5R0J226M 22-\(\mu \)F output capacitors are used. The typical ESR is 2 m\(\Omega \) each. The calculated RMS current is 0.271 A and each output capacitor is rated for 4 A.

9.2.2.3 Input Capacitor Selection

The TPS54325 requires an input decoupling capacitor, and a bulk capacitor is needed depending on the application. A ceramic capacitor over 10-mF is recommended for the decoupling capacitor. An additional 0.1-\(\mu \)F capacitor from pin 14 to ground is recommended to improve the stability of the over-current limit function. The capacitor voltage rating needs to be greater than the maximum input voltage.

9.2.2.4 Bootstrap Capacitor Selection

A 0.1-\(\mu \)F ceramic capacitor must be connected between the VBST to SW pin for proper operation. Using a ceramic capacitor is recommended.
9.2.3 Application Curves

Figure 5. Efficiency vs Output Current

\(V_O = 3.3 \text{ V}, 2.5 \text{ V}, \text{ and } 1.8 \text{ V} \)

Figure 6. Load Regulation,
1.05-V Output Voltage vs Output Current

Figure 7. Line Regulation,
1.05-V Output Voltage vs Input Voltage

Figure 8. Switching Frequency vs Input Voltage

Figure 9. Load Transient Response

Figure 10. Output Voltage Ripple
10 Power Supply Recommendations

The device is designed to operate from an input-voltage supply range between 4.5 V and 18 V. This input supply should be well regulated. If the input supply is located more than a few inches from the converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of 100 μF is a typical choice.
11 Layout

11.1 Layout Guidelines

1. Keep the input switching current loop as small as possible.
2. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the feedback pin of the device.
3. Keep analog and non-switching components away from switching components.
4. Make a single point connection from the signal ground to power ground.
5. Do not allow switching current to flow under the device.
6. Keep the pattern lines for VIN and PGND broad.
7. Exposed pad of device must be connected to PGND with solder.
8. VREG5 capacitor should be placed near the device, and connected PGND.
9. Output capacitor should be connected to a broad pattern of the PGND.
10. Voltage feedback loop should be as short as possible, and preferably with ground shield.
11. Lower resistor of the voltage divider which is connected to the VFB pin should be tied to SGND.
12. Providing sufficient via is preferable for VIN, SW and PGND connection.
13. PCB pattern for VIN, SW, and PGND should be as broad as possible.
14. If VIN and VCC is shorted, VIN and VCC patterns need to be connected with broad pattern lines.
15. VIN Capacitor should be placed as near as possible to the device.

11.2 Layout Example

Figure 13. PCB Layout
11.3 Thermal Considerations

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be connected to an external heatsink. The thermal pad must be soldered directly to the printed board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD™ package and how to use the advantage of its heat dissipating abilities, refer to:

- PowerPAD™ Made Easy (SLMA004).
- PowerPAD™ Thermally Enhanced Package, (SLMA002).

The exposed thermal pad dimensions for this package are shown in Figure 14.
12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.1.2 Development Support

• WEBENCH
• For SWIFT™ Power Products Documentation, see http://www.ti.com/swift

12.2 Documentation Support

12.2.1 Related Documentation

• Absolute Maximum Ratings for Soldering (SNOA549).
• PowerPAD™ Made Easy (SLMA004).
• PowerPAD™ Thermally Enhanced Package (SLMA002).
• Semiconductor and IC Package Thermal Metrics (SPRA953).

12.3 Trademarks

D-CAP2, PowerPAD are trademarks of Texas Instruments.
Blu-ray Disc is a trademark of Blu-ray Disc.
All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Pkg Drawing</th>
<th>Pkg Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54325PWP</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>14</td>
<td>90</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>-40 to 85</td>
<td>Level-2-260C-1 YEAR</td>
<td>PS54325</td>
</tr>
<tr>
<td>TPS54325PWPR</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>14</td>
<td>2000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>-40 to 85</td>
<td>Level-2-260C-1 YEAR</td>
<td>PS54325</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- ** OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "--" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TPS54325:

- Automotive: TPS54325-Q1

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

REEL DIMENSIONS

- **Reel Diameter**
- **Reel Width (W1)**

TAPE DIMENSIONS

- **K0**: Dimension designed to accommodate the component thickness
- **B0**: Dimension designed to accommodate the component length
- **A0**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Pocket Quadrants**
- **Sprocket Holes**
- **User Direction of Feed**

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54325PWPR</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54325PWPR</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>14</td>
<td>2000</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
</tbody>
</table>
TUBE

- T - Tube height
- W - Tube width
- B - Alignment groove width

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Name</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>T (µm)</th>
<th>B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54325PWP</td>
<td>PWP</td>
<td>HTSSOP</td>
<td>14</td>
<td>90</td>
<td>530</td>
<td>10.2</td>
<td>3600</td>
<td>3.5</td>
</tr>
<tr>
<td>TPS54325PWP</td>
<td>PWP</td>
<td>HTSSOP</td>
<td>14</td>
<td>90</td>
<td>530</td>
<td>10.2</td>
<td>3600</td>
<td>3.5</td>
</tr>
</tbody>
</table>
This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.
MECHANICAL DATA

PWP (R-PDSO-G14) PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

PWP (R-PDSO-G14) PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

www.ti.com
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

Exposed tie strap features may not be present.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated