FEATURES

- D-CAP2™ Mode Enables Fast Transient Response
- Low Output Ripple and Allows Ceramic Output Capacitor
- Wide \(V_{CC} \) Input Voltage Range: 4.5 V to 18 V
- Wide \(V_{IN} \) Input Voltage Range: 2 V to 18 V
- Output Voltage Range: 0.76 V to 5.5 V
- Highly Efficient Integrated FET’s Optimized for Lower Duty Cycle Applications
 - 120 mΩ (High Side) and 70 mΩ (Low Side)
- High Efficiency, less than 10 μA at Shutdown
- Auto-Skip Eco-mode™ for High Efficiency at Light Load
- High Initial Bandgap Reference Accuracy
- Adjustable Soft Start
- Pre-Biased Soft Start
- 700-kHz Switching Frequency (\(f_{SW} \))
- Cycle-By-Cycle Overcurrent Limit
- Power Good Output

APPLICATIONS

- Wide Range of Applications for Low Voltage System
 - Digital TV Power Supply
 - High Definition Blu-ray Disc™ Players
 - Networking Home Terminal
 - Digital Set Top Box (STB)

DESCRIPTION

The TPS54326 is an adaptive on-time D-CAP2™ mode synchronous buck converter. The TPS54326 enables system designers to complete the suite of various end equipment’s power bus regulators with a cost effective, low component count, low standby current solution. The main control loop for the TPS54326 uses the D-CAP2™ mode control which provides a fast transient response with no external components. The adaptive on-time control supports seamless operation between PWM mode at heavy load condition and reduced frequency Eco-mode™ operation at light load for high efficiency.

The TPS54326 also has a proprietary circuit that enables the device to adapt to both low equivalent series resistance (ESR) output capacitors, such as POSCAP or SP-CAP, and ultra-low ESR ceramic capacitors. The device operates from 4.5-V to 18-V \(V_{CC} \) input, and from 2-V to 18-V \(V_{IN} \) input power supply voltage. The output voltage can be programmed between 0.76 V and 5.5 V. The device also features an adjustable slow start time and a power good function. The TPS54326 is available in the 14 pin HTSSOP or 16 pin QFN package, and designed to operate from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

D-CAP2, Eco-mode, PowerPAD are trademarks of Texas Instruments.
Blu-ray Disc is a trademark of Blu-ray Disc Association.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION\(^{(1)}\)

<table>
<thead>
<tr>
<th>(T_A)</th>
<th>PACKAGE(^{(2)})(^{(3)})</th>
<th>ORDERABLE PART NUMBER</th>
<th>PIN</th>
<th>TRANSPORT MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>−40°C to 85°C</td>
<td>PowerPAD™ (HTSSOP) – PWP</td>
<td>TPS54326PWP</td>
<td>14</td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPS54326PWPR</td>
<td></td>
<td>Tape and Reel</td>
</tr>
<tr>
<td></td>
<td>Plastic Quad Flat Pack (QFN)</td>
<td>TPS54326RGTT</td>
<td>16</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPS54326RGTR</td>
<td></td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

\(^{(2)}\) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

\(^{(3)}\) All package options have Cu NIPDAU lead/ball finish.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) \(^{(1)}\)

<table>
<thead>
<tr>
<th>(V_i) Input voltage range</th>
<th>(V_{IN}, V_{CC}, EN)</th>
<th>(-0.3) to (20)</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V_{BST})</td>
<td>(-0.3) to (26)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{BST (vs SW1, SW2)})</td>
<td>(-0.3) to (6.5)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{FB}, V_O, SS, PG)</td>
<td>(-0.3) to (6.5)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(SW1, SW2)</td>
<td>(-2) to (20)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(SW1, SW2 (10) ns transient)</td>
<td>(-3) to (20)</td>
<td>V</td>
</tr>
<tr>
<td>(V_O) Output voltage range</td>
<td>(V_{REG})</td>
<td>(-0.3) to (6.5)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(P_{GND1}, P_{GND2})</td>
<td>(-0.3) to (0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{diff}) Voltage from GND to POWERPAD</td>
<td>()</td>
<td>(-0.2) to (0.2)</td>
<td>V</td>
</tr>
<tr>
<td>ESD rating Electrostatic discharge</td>
<td>Human Body Model (HBM)</td>
<td>2</td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td>Charged Device Model (CDM)</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>(T_J) Operating junction temperature</td>
<td>()</td>
<td>(-40) to (150)</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg}) Storage temperature</td>
<td>()</td>
<td>(-55) to (150)</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL INFORMATION

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>(\text{TPS54326 PWP})</th>
<th>(\text{TPS54326 RGT})</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_JA) Junction-to-ambient thermal resistance</td>
<td>55.6</td>
<td>46.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\theta_{JCtop}) Junction-to-case (top) thermal resistance</td>
<td>51.3</td>
<td>58.1</td>
<td></td>
</tr>
<tr>
<td>(\theta_{JB}) Junction-to-board thermal resistance</td>
<td>26.4</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>(\psi_{JT}) Junction-to-top characterization parameter</td>
<td>1.8</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>(\psi_{JB}) Junction-to-board characterization parameter</td>
<td>20.6</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>(\theta_{JCbot}) Junction-to-case (bottom) thermal resistance</td>
<td>4.3</td>
<td>4.8</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{CC}})</td>
<td>4.5</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{IN}})</td>
<td>2</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{BST}})</td>
<td>-0.1</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{BST}}) (vs SW1, SW2)</td>
<td>-0.1</td>
<td>5.7</td>
<td>V</td>
</tr>
<tr>
<td>SS, PG</td>
<td>-0.1</td>
<td>5.7</td>
<td>V</td>
</tr>
<tr>
<td>EN</td>
<td>-0.1</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{O}}, V_{\text{FB}})</td>
<td>-0.1</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>SW1, SW2</td>
<td>-1.8</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>SW1, SW2 (10 ns transient)</td>
<td>-3</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(P_{\text{GND1}}, P_{\text{GND2}})</td>
<td>-0.1</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{O}})</td>
<td>-0.1</td>
<td>5.7</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{O}})</td>
<td>0</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>(T_{\text{A}})</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{\text{J}})</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{VCC}})</td>
<td>Operating - non-switching supply current</td>
<td>V_{\text{CC}} current, (T_{\text{A}} = 25^\circ \text{C}), EN = 5 V, (V_{\text{FB}} = 0.8) V</td>
<td>850</td>
<td>1300</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{VCCSDN}})</td>
<td>Shutdown supply current</td>
<td>V_{\text{CC}} current, (T_{\text{A}} = 25^\circ \text{C}), EN = 0 V</td>
<td>1.8</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>(V_{\text{ENH}})</td>
<td>EN high-level input voltage</td>
<td>EN</td>
<td>1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{ENL}})</td>
<td>EN low-level input voltage</td>
<td>EN</td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{FB}})</td>
<td>Voltage light load mode</td>
<td>(T_{\text{A}} = 25^\circ \text{C}, V_{\text{O}} = 1.05) V, (I_{\text{O}} = 10) mA</td>
<td>771</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(V_{\text{FB}})</td>
<td>Threshold voltage, continuous mode</td>
<td>(T_{\text{A}} = 25^\circ \text{C}, V_{\text{O}} = 1.05) V</td>
<td>757</td>
<td>765</td>
<td>773</td>
</tr>
<tr>
<td>(V_{\text{FB}})</td>
<td></td>
<td>(T_{\text{A}} = 0^\circ \text{C}) to 85°C, (V_{\text{O}} = 1.05) V</td>
<td>753</td>
<td>777</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{FB}})</td>
<td></td>
<td>(T_{\text{A}} = -40^\circ \text{C}) to 85°C, (V_{\text{O}} = 1.05) V</td>
<td>751</td>
<td>779</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{VFB}})</td>
<td>Input current</td>
<td>(V_{\text{FB}} = 0.8) V, (T_{\text{A}} = 25^\circ \text{C})</td>
<td>0</td>
<td>±0.1</td>
<td>µA</td>
</tr>
<tr>
<td>(R_{\text{Dischg}})</td>
<td>(V_{\text{O}}) discharge resistance</td>
<td>EN = 0 V, (V_{\text{O}} = 0.5) V, (T_{\text{A}} = 25^\circ \text{C})</td>
<td>50</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>(V_{\text{VREG5}})</td>
<td>Output voltage</td>
<td>(T_{\text{A}} = 25^\circ \text{C}, 6) V < (V_{\text{CC}} < 18) V, (0 < I_{\text{VREGS}} < 5) mA</td>
<td>5.3</td>
<td>5.5</td>
<td>5.7</td>
</tr>
<tr>
<td>(V_{\text{LNS}})</td>
<td>Line regulation</td>
<td>6 V < (V_{\text{CC}} < 18) V, (I_{\text{VREGS}} = 5) mA</td>
<td></td>
<td>20</td>
<td>mV</td>
</tr>
<tr>
<td>(V_{\text{LDS}})</td>
<td>Load regulation</td>
<td>0 mA < (I_{\text{VREGS}} < 5) mA</td>
<td>100</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(I_{\text{VREG5}})</td>
<td>Output current</td>
<td>(V_{\text{CC}} = 6) V, (V_{\text{REGS}} = 4) V, (T_{\text{A}} = 25^\circ \text{C})</td>
<td>70</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(R_{\text{DS(on)}})</td>
<td>High side switch resistance</td>
<td>25°C, (V_{\text{BST}}) · SW1, SW2 = 5.5 V</td>
<td>120</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>(R_{\text{DS(on)}})</td>
<td>Low side switch resistance</td>
<td>25°C</td>
<td>70</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>(I_{\text{cl}})</td>
<td>Current limit</td>
<td>(I_{\text{OUT}} = 1.5) µH</td>
<td>3.5</td>
<td>4.1</td>
<td>5.5</td>
</tr>
<tr>
<td>(T_{\text{SDN}})</td>
<td>Thermal shutdown threshold</td>
<td>Shutdown temperature</td>
<td>150</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Specified by Design (not production tested).
ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range, $V_{CC}, V_{IN} = 12V$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-TIME TIMER CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{ON} On time</td>
<td>$V_{IN} = 12V$, $V_O = 1.05V$</td>
<td></td>
<td>145</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$I_{OFF(MIN)}$ Minimum off time</td>
<td>$T_A = 25°C$, $V_{FB} = 0.7V$</td>
<td></td>
<td>260</td>
<td>310</td>
<td>ns</td>
</tr>
<tr>
<td>SOFT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SSC} SS charge current</td>
<td>$V_{SS} = 0V$</td>
<td>1.4</td>
<td>2</td>
<td>2.6</td>
<td>μA</td>
</tr>
<tr>
<td>I_{SSD} SS discharge current</td>
<td>$V_{SS} = 0.5V$</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>POWER GOOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{THPG} Threshold</td>
<td>V_{FB} rising (good)</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>V_{FB} falling (fault)</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{PG} Sink current</td>
<td>$PG = 0.5V$</td>
<td>2.5</td>
<td>5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OVP} Output OVP trip threshold</td>
<td>OVP detect</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td>%</td>
</tr>
<tr>
<td>I_{OVPDEL} Output OVP prop delay</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>V_{UVP} Output UVP trip threshold</td>
<td>UVP detect</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Hysteresis</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{UVPDEL} Output UVP delay</td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>I_{UVPEN} Output UVP enable delay</td>
<td>Relative to soft-start time</td>
<td>x 1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVLO Threshold</td>
<td>Wake up V_{REGS} voltage</td>
<td>3.55</td>
<td>3.8</td>
<td>4.05</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Hysteresis V_{REGS} voltage</td>
<td>0.23</td>
<td>0.35</td>
<td>0.47</td>
<td></td>
</tr>
</tbody>
</table>

DEVICE INFORMATION

PWP PACKAGE (TOP VIEW)

Copyright © 2009–2012, Texas Instruments Incorporated

Product Folder Link(s) : TPS54326
PIN FUNCTIONS

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO</td>
<td>1</td>
<td>Connect to output of converter. This pin is used for On-Time Adjustment.</td>
</tr>
<tr>
<td>VFB</td>
<td>2</td>
<td>Converter feedback input. Connect with feedback resistor divider.</td>
</tr>
<tr>
<td>VREG5</td>
<td>3</td>
<td>5.5 V power supply output. A capacitor (typical 1μF) should be connected to GND.</td>
</tr>
<tr>
<td>SS</td>
<td>4</td>
<td>Soft-start control. A external capacitor should be connected to GND.</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>Signal ground pin</td>
</tr>
<tr>
<td>PG</td>
<td>6</td>
<td>Open drain power good output</td>
</tr>
<tr>
<td>EN</td>
<td>7</td>
<td>Enable control pin</td>
</tr>
<tr>
<td>PGND1, PGND2</td>
<td>8, 9</td>
<td>Ground returns for low-side MOSFET. Also serve as inputs of current comparators. Connect PGND and GND strongly together near the IC.</td>
</tr>
<tr>
<td>SW1, SW2</td>
<td>10, 11</td>
<td>Switch node connection between high-side NFET and low-side NFET. Also serve as inputs to current comparators.</td>
</tr>
<tr>
<td>VBST</td>
<td>12</td>
<td>Supply input for high-side NFET gate driver (boost terminal). Connect capacitor from this pin to respective SW1, SW2 terminals. An internal PN diode is connected between VREG5 to VBST pin.</td>
</tr>
<tr>
<td>VIN</td>
<td>13, 14</td>
<td>Power input and connected to high side NFET drain</td>
</tr>
<tr>
<td>VCC</td>
<td>15</td>
<td>Supply input for 5 V internal linear regulator for the control circuitry</td>
</tr>
<tr>
<td>Exposed Thermal Pad or PowerPAD™</td>
<td>Back side, Back side</td>
<td>Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Should be connected to PGND.</td>
</tr>
</tbody>
</table>
OVERVIEW

The TPS54326 is a 3-A synchronous step-down (buck) converter with two integrated N-channel MOSFETs and Auto-Skip Eco-Mode™ to improve light load efficiency. It operates using D-CAP2™ mode control. The fast transient response of D-CAP2™ control reduces the output capacitance required to meet a specific level of performance. Proprietary internal circuitry allows the use of low ESR output capacitors including ceramic and special polymer types.

DETAILED DESCRIPTION

PWM Operation

The main control loop of the TPS54326 is an adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP2™ mode control. D-CAP2™ mode control combines constant on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.

A. Block diagram shown is for PWP 14 pin package. QFN 16 pin package block diagram is identical except for pin out.
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot timer is set by the converter input voltage \(V_{\text{IN}} \) and the output voltage \(V_{\text{O}} \), to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to the reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2™ mode control.

PWM Frequency and Adaptive On-Time Control

TPS54326 uses an adaptive on-time control scheme and does not have a dedicated on board oscillator. The TPS54326 runs with a pseudo-constant frequency of 700 kHz by using the input voltage and output voltage to set the on-time one-shot timer. The on-time is inversely proportional to the input voltage and proportional to the output voltage. The actual frequency may vary from 700 kHz depending on the off time, which is ended when the fed back portion of the output voltage falls to the \(V_{\text{FB}} \) threshold voltage.

Auto-Skip Eco-Mode™ Control

The TPS54326 is designed with Auto-Skip Eco-Mode™ to increase light load efficiency. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when its zero inductor current is detected. As the load current further decreases the converter run into discontinuous conduction mode. The on-time is kept almost the same as is was in the continuous conduction mode so that it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. The transition point to the light load operation \(I_{\text{OUT(LL)}} \) current can be calculated in Equation 1.

\[
I_{\text{OUT(LL)}} = \frac{1}{2 \cdot L \cdot f_{\text{WS}}} \cdot \frac{(V_{\text{IN}} - V_{\text{OUT}}) \cdot V_{\text{OUT}}}{V_{\text{IN}}}
\]

(1)

Soft Start and Pre-Biased Soft Start

The soft start function is adjustable. When the EN pin becomes high, 2-μA current begins charging the capacitor which is connected from the SS pin to GND. Smooth control of the output voltage is maintained during start up. The equation for the slow start time is shown in Equation 2. VFB voltage is 0.765 V and SS pin source current is 2 μA.

\[
T_{\text{SS(ms)}} = \frac{C_6(nF) \cdot V_{\text{ref}}}{I_{\text{SS(µA)}}} = \frac{C_6(nF) \cdot 0.765}{2}
\]

(2)

A unique circuit to prevent current from being pulled from the output during startup if the output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft start becomes greater than feedback voltage \(V_{\text{FB}} \)), the controller slowly activates synchronous rectification by starting the first low side FET gate driver pulses with a narrow on-time. It then increments that on-time on a cycle-by-cycle basis until it coincides with the time dictated by \((1-D) \), where D is the duty cycle of the converter. This scheme prevents the initial sinking of the pre-bias output, and ensure that the output voltage (VO) sarts and ramps up smoothly into regulation and the control loop is given time to transition from pre-biased start-up to normal mode operation.

Power Good

The power good function is activated after soft start has finished. The power good function becomes active after 1.7 times soft-start time. When the output voltage is within \(-10\%\) of the target value, internal comparators detect power good state and the power good signal becomes high. Rpg resister value, which is connected between PG and VREG5, is required from 20kΩ to 150kΩ. If the feedback voltage goes under 15% of the target value, the power good signal becomes low after a 10 ms internal delay.

Output Discharge Control

TPS54326 discharges the output when EN is low, or the controller is turned off by the protection functions (OVP, UVP, UVLO and thermal shutdown). The output is discharged by an internal 50-Ω MOSFET which is connected from VO to PGND. The internal low-side MOSFET is not turned on during the output discharge operation to avoid the possibility of causing negative voltage at the output.
Current Protection
The output over-current protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored by measuring the low-side FET switch voltage between the SW pin and GND. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.

During the on time of the high-side FET switch, the switch current increases at a linear rate determined by V_{in}, V_{out}, the on-time and the output inductor value. During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current I_{out}. If the measured voltage is above the voltage proportional to the current limit, then, the device constantly monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-side on-time.

The converter maintains the low-side switch on until the measured voltage is below the voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.

There are some important considerations for this type of over-current protection. The load current one half of the peak-to-peak inductor current higher than the over-current threshold. Also when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. This may cause the output under-voltage protection circuit to be activated. When the over current condition is removed, the output voltage will return to the regulated value. This protection is non-latching.

Over/Undervoltage Protection
The TPS54326 detects over and undervoltage conditions by monitoring the feedback voltage (V_{FB}). This function is enabled after approximately 1.7 times the soft-start time. When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes high and the circuit latches the high-side MOSFET driver turns off and the low-side MOSFET turns on. When the feedback voltage becomes lower than 70% of the target voltage, the UVP comparator output goes high and an internal UVP delay counter begins. After 250 μs, the device latches off both internal top and bottom MOSFET.

UVLO Protection
Undervoltage lock out protection (UVLO) monitors the voltage of the V_{REGS} pin. When the V_{REGS} voltage is lower than UVLO threshold voltage, the TPS54326 is shut off. This protection is non-latching.

Thermal Shutdown
Thermal protection is self-activating. If the junction temperature exceeds the threshold value (typically 150°C), the TPS54326 shuts off. This protection is non-latching.
TYPICAL CHARACTERISTICS
VIN = 12 V, T_A = 25°C (unless otherwise noted)

Figure 1. V_CC SUPPLY CURRENT vs. JUNCTION TEMPERATURE

Figure 2. V_CC SHUTDOWN CURRENT vs. JUNCTION TEMPERATURE

Figure 3. 1.05-V OUTPUT VOLTAGE vs. OUTPUT current

Figure 4. 1.05-V OUTPUT VOLTAGE vs. INPUT VOLTAGE
TYPICAL CHARACTERISTICS (continued)

VIN = 12 V, TA = 25°C (unless otherwise noted)

Figure 5. 1.05-V, 0-A TO 3-A LOAD TRANSIENT RESPONSE

Figure 6. START-UP WAVE FORM

Figure 7. EFFICIENCY vs. OUTPUT CURRENT (VIN = 12 V)

Figure 8. LIGHT LOAD EFFICIENCY vs. OUTPUT CURRENT

Copyright © 2009–2012, Texas Instruments Incorporated

Product Folder Link(s) : TPS54326
V\text{IN} = 12 \text{ V}, T_A = 25^\circ \text{C} \ (\text{unless otherwise noted})

Figure 9. SWITCHING FREQUENCY vs INPUT VOLTAGE

Figure 10. SWITCHING FREQUENCY vs OUTPUT CURRENT

Figure 11. VOLTAGE RIPPLE AT OUTPUT

Figure 12. VOLTAGE RIPPLE AT INPUT

Copyright © 2009–2012, Texas Instruments Incorporated

Product Folder Link(s) : TPS54326
DESIGN GUIDE

Step By Step Design Procedure

To begin the design process, the following application parameters must be known:

- Input voltage range
- Output voltage
- Output current
- Output voltage ripple
- Input voltage ripple

Figure 13 shows the schematic diagram for this design example.

Output Voltage Resistors Selection

The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use 1% tolerance or better divider resistors. Start by using Equation 3 and Equation 4 to calculate V_{OUT}.

To improve efficiency at light loads consider using larger value resistors, too high of resistance is more susceptible to noise and voltage errors from the VFB input current are more noticeable.

For output voltage from 0.76 V to 2.5 V:

$$V_{OUT} = 0.765 \left(1 + \frac{R_1}{R_2} \right) \quad (3)$$

For output voltage over 2.5 V:

$$V_{OUT} = (0.763 + 0.0017 \cdot V_{OUT}) \left(1 + \frac{R_1}{R_2} \right) \quad (4)$$

Where:

$V_{OUT_SET} = \text{Target } V_{OUT}$

Output Filter Selection

The output filter used with the TPS54326 is an LC circuit. This LC filter has double pole at:

\[
F_p = \frac{1}{2\pi \sqrt{L_{out} \times C_{out}}}
\]

(5)

At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the TPS54326. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off at a –40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that reduces the gain roll off to -20 dB per decade and increases the phase to 90 degrees one decade above the zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole of Equation 5 is located below the high frequency zero but close enough that the phase boost provided by the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 1.

Table 1. Recommended Component Values

<table>
<thead>
<tr>
<th>OUTPUT VOLTAGE (V)</th>
<th>R1 (kΩ)</th>
<th>R2 (kΩ)</th>
<th>C4 (pF)(1)</th>
<th>L1 (µH)</th>
<th>C4 + C5 (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.81</td>
<td>22.1</td>
<td>1.5</td>
<td>22 - 68</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>8.25</td>
<td>22.1</td>
<td>1.5</td>
<td>22 - 68</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>12.7</td>
<td>22.1</td>
<td>1.5</td>
<td>22 - 68</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>30.1</td>
<td>22.1</td>
<td>10 - 47</td>
<td>22 - 68</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>49.9</td>
<td>22.1</td>
<td>10 - 47</td>
<td>22 - 68</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>73.2</td>
<td>22.1</td>
<td>10 - 47</td>
<td>22 - 68</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>121</td>
<td>22.1</td>
<td>10 - 47</td>
<td>22 - 68</td>
<td></td>
</tr>
</tbody>
</table>

(1) Optional

For higher output voltages at or above 1.8 V, additional phase boost can be achieved by adding a feed forward capacitor (C4) in parallel with R1.

The inductor peak-to-peak ripple current, peak current, and RMS current are calculated using Equation 6, Equation 7, and Equation 8. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. Use 700 kHz for \(f_{SW}\).

\[
Ilp - p = \frac{V_{OUT} \cdot V_{IN(max)} - V_{OUT}}{L_{O} \cdot f_{SW}}
\]

(6)

\[
I_{peak} = I_{O} + \frac{Ilp - p}{2}
\]

(7)

\[
I_{Lo(RMS)} = \sqrt{I_o^2 + \frac{1}{12} (Ilp - p)^2}
\]

(8)

For this design example, the calculated peak current is 3.47 A and the calculated RMS current is 3.01 A. The inductor used is a TDK SPM6530-1R5M100 with a peak current rating of 11.5 A and an RMS current rating of 11 A.

The capacitor value and ESR determines the amount of output voltage ripple. The TPS54326 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 22 µF to 68 µF. Use Equation 9 to determine the required RMS current rating for the output capacitor.

\[
I_{CO(RMS)} = \frac{V_{OUT} \cdot (V_{IN} - V_{OUT})}{\sqrt{12 \cdot V_{IN} \cdot L_{O} \cdot f_{SW}}}
\]

(9)

For this design two TDK C3216X5R0J226M 22 µF output capacitors are used. The typical ESR is 2 mΩ each. The calculated RMS current is 0.271 A and each output capacitor is rated for 4 A.
Input Capacitor Selection

The TPS54326 requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. A ceramic capacitor over 10 μF is recommended for the decoupling capacitor. An additional 0.1 μF capacitor from pin 14 to ground is recommended. The capacitor voltage rating needs to be greater than the maximum input voltage.

Bootstrap Capacitor Selection

A 0.1 μF ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is recommended to use a ceramic capacitor.

VREG5 Capacitor Selection

A 1.0 μF ceramic capacitor must be connected between the VREG5 to GND pin for proper operation. It is recommended to use a ceramic capacitor.

THERMAL INFORMATION

The PWP 14 pin package incorporates an exposed PowerPAD™ and the QFN 16 pin package incorporates a similar exposed thermal pad. These exposed thermal pads are designed to be connected to an external heatsink. The thermal pad must be soldered directly to the printed board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD™ package and how to use the advantage of its heat dissipating abilities, see the Technical Brief, PowerPAD™ Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD™ Made Easy, Texas Instruments Literature No. SLMA004.

The exposed thermal pad dimensions for the PWP 14 pin and QFN 16 pin packages are shown in the Thermal Pad Mechanical Data section of this data sheet.
LAYOUT CONSIDERATIONS

The following layout guidelines are provided using the PWP 14 pin package as an example. The general guidelines and routing are also applicable to the QFN 16 pin package. Allowance should be made for the differences in the package pin configurations.

1. Keep the input switching current loop as small as possible.
2. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the feedback pin of the device.
3. Keep analog and non-switching components away from switching components.
4. Make a single point connection from the signal ground to power ground.
5. Do not allow switching current to flow under the device.
6. Keep the pattern lines for VIN and PGND broad.
7. Exposed pad of device must be connected to PGND with solder.
8. VREG5 capacitor should be placed near the device, and connected PGND.
9. Output capacitor should be connected to a broad pattern of the PGND.
10. Voltage feedback loop should be as short as possible, and preferably with ground shield.
11. Lower resistor of the voltage divider which is connected to the VFB pin should be tied to SGND.
12. Providing sufficient via is preferable for VIN, SW and PGND connection.
13. PCB pattern for VIN, SW, and PGND should be as broad as possible.
14. If VIN and VCC is shorted, VIN and VCC patterns need to be connected with broad pattern lines.
15. VIN Capacitor should be placed as near as possible to the device.

Figure 14. TPS54326 Layout
REVISION HISTORY

Changes from Original (October 2009) to Revision A

- Changed the data sheet From: Product Preview To: Production Data ... 1

Changes from Revision A (October 2009) to Revision B

- Changed the title to include Eco-Mode .. 1
- Changed features bullet to reference Eco-mode .. 1
- Added Eco-Mode text to the DESCRIPTION .. 1
- Added the QFN package to the DESCRIPTION ... 1
- Added the QFN package to the ORDERING INFORMATION table 2
- Added the RGT PACKAGE drawing .. 5
- Added the RGT 16 pin column to the PIN FUNCTIONS table 5
- Changed Functional Block Diagram .. 6
- Added text Note to the Functional Block Diagram ... 6
- Added Eco-Mode text to the OVERVIEW section ... 6
- Changed section title From: Light Load Mode Control To: Light Load Eco-Mode Control ... 7
- Added Eco-Mode to text in Light Load Eco-Mode Control section 7
- Added Note 1 to Table 1 .. 13
- Added text to the THERMAL INFORMATION section for the QFN package. .. 14
- Deleted figure "Thermal Pad Dimensions" .. 14

Changes from Revision B (June 2010) to Revision C

- Changed TPS54326PWPR tape and reel quantity From: 3000 To: 2000 2
- Added V_{CC}, V_{IN} = 12V to the condition statement in the Electrical Characteristics table ... 3

Changes from Revision C (October 2010) to Revision D

- Deleted quantities from Transport Media column ... 2
- Changed from –45°C to 85°C to –40°C to 85°C in Ordering Information 2
- Added Thermal Information table ... 2
- Added I_o row to the ROC table ... 3
- Changed Functional Block Diagram .. 6
- Changed section title From: Light Load Eco-Mode Control To: Auto-Skip Eco-Mode Control .. 7
- Added Auto-Skip to text in Auto-Skip Eco-Mode Control section 7
- Changed Equation 1 ... 7
- Changed Power Good section text ... 7
- Changed Current Protection section text ... 8
- Changed Design Guide information .. 12
- Changed Table 1 C4 values ... 13
Changes from Revision D (February 2011) to Revision E

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removed SWIFT from the data sheet title</td>
<td>1</td>
</tr>
<tr>
<td>Changed $V_{\text{EN, min}}$ value in ELECTRICAL CHARACTERISTICS from 2 V to 1.5 V</td>
<td>3</td>
</tr>
<tr>
<td>Changed Table 1 last column heading from $C8 + C9$ to $C4 + C5$</td>
<td>13</td>
</tr>
<tr>
<td>Deleted text from the Input Capacitor Selection section - "to improve the stability of the over-current limit function."</td>
<td>14</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54326PWP</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>14</td>
<td>90</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>PS54326</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS54326PWPR</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>14</td>
<td>2000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>PS54326</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS54326RGTR</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>54326</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS54326RGTT</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>54326</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead finish/Ball material** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and...
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

- Reel Diameter
- Reel Width (W1)

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>A0</th>
<th>Dimension designed to accommodate the component width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- Q1
- Q2
- Q3
- Q4

- Sprocket Holes
- User Direction of Feed
- Pocket Quadrants

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54326PWPR</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS54326RGTR</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TPS54326RGTT</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54326PWPR</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>14</td>
<td>2000</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
<tr>
<td>TPS54326RGTR</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>3000</td>
<td>335.0</td>
<td>335.0</td>
<td>25.0</td>
</tr>
<tr>
<td>TPS54326RGTT</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>250</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
TUBE

T - Tube height

W - Tube width

L - Tube length

B - Alignment groove width

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Name</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>T (µm)</th>
<th>B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54326PWP</td>
<td>PWP</td>
<td>HTSSOP</td>
<td>14</td>
<td>90</td>
<td>530</td>
<td>10.2</td>
<td>3600</td>
<td>3.5</td>
</tr>
<tr>
<td>TPS54326PWP</td>
<td>PWP</td>
<td>HTSSOP</td>
<td>14</td>
<td>90</td>
<td>530</td>
<td>10.2</td>
<td>3600</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
MECHANICAL DATA

PWP (R-PDSON-G14) PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com (http://www.ti.com).
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments
PWP (R-PDSO-G14) PowerPAD™ PLASTIC SMALL OUTLINE

Example Board Layout
Via pattern and copper pad size may vary depending on layout constraints

Increasing copper area will enhance thermal performance
(See Note D)

Stencil Openings
Based on a stencil thickness of .127mm (.005inch).
Reference table below for other solder stencil thicknesses

Solder Mask
Over Copper

4x1.5
12x0.65

Example Solder Mask Defined Pad
(See Note C, D)

3x1.5
2.46 3.4 5.6

Example Non Soldermask Defined Pad

6x0.33 5.0 2.31

Example Solder Mask Opening
(See Note F)

0.3
1.6
0.07
All Around

Pad Geometry

Center Power Pad Solder Stencil Opening

<table>
<thead>
<tr>
<th>Stencil Thickness</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1mm</td>
<td>2.5</td>
<td>2.65</td>
</tr>
<tr>
<td>0.127mm</td>
<td>2.31</td>
<td>2.46</td>
</tr>
<tr>
<td>0.152mm</td>
<td>2.15</td>
<td>2.3</td>
</tr>
<tr>
<td>0.178mm</td>
<td>2.05</td>
<td>2.15</td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com/ (http://www.ti.com). Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions](image)

NOTE:

A. All linear dimensions are in millimeters

⚠️ Exposed tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments
LAND PATTERN DATA

PWP (R-PDSO-G14) PowerPAD™ PLASTIC SMALL OUTLINE

Example Board Layout
Via pattern and copper pad size may vary depending on layout constraints.

Increasing copper area will enhance thermal performance (See Note D).

Stencil Openings
Based on a stencil thickness of .127mm (.005inch).
Reference table below for other solder stencil thicknesses.

Example Solder Mask Defined Pad (See Note C, D)

Example Non Soldermask Defined Pad

Example Solder Mask Opening (See Note F)

Center Power Pad Solder Stencil Opening

<table>
<thead>
<tr>
<th>Stencil Thickness</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1mm</td>
<td>2.5</td>
<td>2.65</td>
</tr>
<tr>
<td>0.127mm</td>
<td>2.31</td>
<td>2.46</td>
</tr>
<tr>
<td>0.152mm</td>
<td>2.15</td>
<td>2.3</td>
</tr>
<tr>
<td>0.178mm</td>
<td>2.05</td>
<td>2.15</td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com (http://www.ti.com). Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

4207609-2/W 09/15

Texas Instruments
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED. INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated