TPS563249 17-V, 3-A, Constant 1.4-MHz Synchronous Step-Down Voltage Regulator

1 Features
- 3-A Converter Integrated 70-mΩ and 30-mΩ FETs
- D-CAP3™ Mode Control with Fast Transient Response
- Input Voltage Range: 4.5 V to 17 V
- Output Voltage Range: 0.6 V to 7 V
- Forced Continuous Conduction Mode
- Constant 1.4-MHz Switching Frequency
- Low Shutdown Current Less than 10 µA
- 1% Feedback Voltage Accuracy (25°C)
- Startup from Pre-Biased Output Voltage
- Cycle-by-Cycle Overcurrent Limit
- Hiccup-mode Overcurrent Protection
- Non-Latch UVP and TSD Protections
- Fixed Soft Start: 1.7 ms

2 Applications
- Broadband Modem
- Access Point Networks
- Wireless Routers
- Surveillance
- TV, Set-Top Boxes

3 Description
The TPS563249 is a simple, easy-to-use, 3 A synchronous step-down converter in SOT-23 package.

The device is optimized to operate with minimum external component counts and also optimized to achieve low standby current.

This switching regulator employs D-CAP3 mode control providing a fast transient response and supporting both low-equivalent series resistance (ESR) output capacitors such as specialty polymer and ultra-low ESR ceramic capacitors with no external compensation components.

TPS563249 operates in Forced Continuous Conduction Mode (FCCM), which maintains fixed 1.4 MHz switching frequency during light load operation and eliminates system interference. The TPS563249 is available in a 6-pin 1.6-mm × 2.9-mm SOT (DDC) package, and specified from a −40°C to 125°C junction temperature.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS563249</td>
<td>SOT-23-TIN (6)</td>
<td>1.60 mm × 2.90 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

TPS563249 Efficiency

Efficiency at 12V input

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description .. 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics 5
 6.6 Typical Characteristics .. 6
7 Detailed Description ... 9
 7.1 Overview ... 9
 7.2 Functional Block Diagram 9
 7.3 Feature Description ... 9

8 Application and Implementation 12
 8.1 Application Information 12
 8.2 Typical Application ... 12
9 Power Supply Recommendations 16
10 Layout ... 17
 10.1 Layout Guidelines .. 17
 10.2 Layout Example .. 17
11 Device and Documentation Support 18
 11.1 Receiving Notification of Documentation Updates 18
 11.2 Community Resources 18
 11.3 Trademarks ... 18
 11.4 Electrostatic Discharge Caution 18
 11.5 Glossary .. 18
12 Mechanical, Packaging, and Orderable Information 18

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2018</td>
<td>*</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>SW</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>VBST</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>VFB</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>VIN</td>
<td>3</td>
<td>I</td>
</tr>
</tbody>
</table>

DETEAE

Enable input control. Active high and must be pulled up to enable the device.

Ground pin Source terminal of low-side power NFET as well as the ground terminal for controller circuit. Connect sensitive VFB to this GND at a single point.

Switch node connection between high-side NFET and low-side NFET.

Supply input for the high-side NFET gate drive circuit. Connect 0.1 μF capacitor between VBST and SW pins.

Converter feedback input. Connect to output voltage with feedback resistor divider.

Input voltage supply pin. The drain terminal of high-side power NFET.
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Input voltage</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>–0.3</td>
<td>19</td>
<td>V</td>
</tr>
<tr>
<td>VBST</td>
<td>–0.3</td>
<td>24.5</td>
<td>V</td>
</tr>
<tr>
<td>VBST (10 ns transient)</td>
<td>–0.3</td>
<td>26.5</td>
<td>V</td>
</tr>
<tr>
<td>VBST (vs SW)</td>
<td>–0.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>VFB</td>
<td>–0.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>SW</td>
<td>–2</td>
<td>19</td>
<td>V</td>
</tr>
<tr>
<td>SW (10 ns transient)</td>
<td>–3.5</td>
<td>21</td>
<td>V</td>
</tr>
<tr>
<td>EN</td>
<td>–0.3</td>
<td>(V_{IN} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature, (T_J)</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, (T_{stg})</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{(ESD)}) Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>(±2000)</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>(±500)</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>(V_{IN}) Supply input voltage range</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN EN Input voltage range</td>
<td>–0.1</td>
<td>V_{IN}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(T_J) Operating junction temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TPS563249</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDC (SOT)</td>
<td>UNIT</td>
</tr>
<tr>
<td>6 PINS</td>
<td></td>
</tr>
<tr>
<td>(R_{JA}) Junction-to-ambient thermal resistance</td>
<td>117.1</td>
</tr>
<tr>
<td>(R_{JC(top)}) Junction-to-case (top) thermal resistance</td>
<td>57.3</td>
</tr>
<tr>
<td>(R_{JB}) Junction-to-board thermal resistance</td>
<td>31.2</td>
</tr>
<tr>
<td>(\psi_{JT}) Junction-to-top characterization parameter</td>
<td>11.2</td>
</tr>
<tr>
<td>(\psi_{JB}) Junction-to-board characterization parameter</td>
<td>31.3</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

$T_J = -40^\circ\text{C}$ to 125°C, $V_{IN} = 12$ V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{VIN(SDN)}$</td>
<td>Shutdown supply current</td>
<td>2.5</td>
<td>10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>LOGIC THRESHOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ENH}</td>
<td>Enable threshold Rising</td>
<td>1.27</td>
<td>1.34</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{ENL}</td>
<td>Enable threshold Falling</td>
<td>1.08</td>
<td>1.15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R_{EN}</td>
<td>EN pin resistance to GND $V_{EN} = 1$ V</td>
<td>800</td>
<td>1000</td>
<td>1200</td>
<td>kΩ</td>
</tr>
<tr>
<td>V_{FB} VOLTAGE AND DISCHARGE RESISTANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>FB voltage</td>
<td>594</td>
<td>600</td>
<td>606</td>
<td>mV</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>FB input current $V_{FB} = 0.7$ V</td>
<td>588</td>
<td>600</td>
<td>612</td>
<td>mV</td>
</tr>
<tr>
<td>MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{DS(on)h}$</td>
<td>High-side switch resistance $T_J = 25^\circ$C</td>
<td>70</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>$R_{DS(on)l}$</td>
<td>Low-side switch resistance $T_J = 25^\circ$C</td>
<td>30</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>CURRENT LIMIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{ocl_source}</td>
<td>High side FET source Current limit</td>
<td>5.5</td>
<td>6.3</td>
<td>7.1</td>
<td>A</td>
</tr>
<tr>
<td>I_{ocl_sink}</td>
<td>Low side FET sink Current limit</td>
<td>3.1</td>
<td>3.9</td>
<td>4.7</td>
<td>A</td>
</tr>
<tr>
<td>I_{ocl_source}</td>
<td>Low side FET source Current limit</td>
<td>1.1</td>
<td>1.7</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>THERMAL SHUTDOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{SDN}</td>
<td>Thermal shutdown threshold$^{(1)}$</td>
<td>160</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Shutdown temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hysteresis</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON-TIME TIMER CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{ON(MIN)}$</td>
<td>Minimum on time$^{(1)}$ $V_{IN} = 12$ V, load = 3 A</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$I_{OFF(MIN)}$</td>
<td>Minimum off time</td>
<td>250</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SOFT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{ss}</td>
<td>Soft-start time</td>
<td></td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td>Internal soft-start time</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENCY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{SW}</td>
<td>Switching frequency</td>
<td>1250</td>
<td>1400</td>
<td>1550</td>
<td>kHz</td>
</tr>
<tr>
<td>OUTPUT UNDERVOLTAGE PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{UVP}</td>
<td>Output UVP threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hiccup detect (H > L)</td>
<td>65%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{UVPDL}</td>
<td>UVP propagation delay</td>
<td></td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>t_{HIC}</td>
<td>UVP protection Hiccup Time before restart</td>
<td></td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wake up VIN voltage</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Shutdown VIN voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hysteresis VIN voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^{(1)}$ Not production tested.
6.6 Typical Characteristics

$V_{IN} = 12\,V$ (unless otherwise noted)

Figure 1. Shutdown Current vs Junction Temperature

Figure 2. VFB Voltage vs Junction Temperature

Figure 3. EN Rising threshold vs Junction Temperature

Figure 4. EN Falling threshold vs Junction Temperature

Figure 5. High-Side $R_{ds(On)}$ vs Junction Temperature

Figure 6. Low-Side $R_{ds(On)}$ vs Junction Temperature
Typical Characteristics (continued)

$V_{\text{IN}} = 12$ V (unless otherwise noted)

Figure 7. Dropout for 3.3 V Output Voltage

Figure 8. Dropout for 5 V Output Voltage

Figure 9. Efficiency vs Output Current, $V_{\text{OUT}} = 0.9$ V

Figure 10. Efficiency vs Output Current, $V_{\text{OUT}} = 1.05$ V

Figure 11. Efficiency vs Output Current, $V_{\text{OUT}} = 1.2$ V

Figure 12. Efficiency vs Output Current, $V_{\text{OUT}} = 1.5$ V
Typical Characteristics (continued)

$V_{IN} = 12\, V$ (unless otherwise noted)

Figure 13. Efficiency vs Output Current, $V_{OUT} = 1.8\, V$

1.8 V Efficiency \(L = 1\, \mu H \) (Wurth:744311100)

Figure 14. Efficiency vs Output Current, $V_{OUT} = 2.5\, V$

2.5 V Efficiency \(L = 1\, \mu H \) (Wurth:744311100)

Figure 15. Efficiency vs Output Current, $V_{OUT} = 3.3\, V$

3.3 V Efficiency \(L = 1.5\, \mu H \) (Wurth:744311150)

Figure 16. Efficiency vs Output Current, $V_{OUT} = 5\, V$

5 V Efficiency \(L = 1.5\, \mu H \) (Wurth:744311150)
7 Detailed Description

7.1 Overview
The TPS563249 is a 3-A synchronous step-down converter. The proprietary D-CAP3 mode control supports low ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic capacitors without complex external compensation circuits. The fast transient response of D-CAP3 mode control can reduce the output capacitance required to meet a specific level of performance.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Adaptive On-Time Control and PWM Operation
The main control loop of the TPS563249 is adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP3 mode control. The D-CAP3 mode control combines adaptive on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.

At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP3 mode control.
7.3.2 Soft Start and Pre-Biased Soft Start

The TPS563249 has an internal 1.7-ms soft-start. When the EN pin becomes high, the internal soft-start function begins ramping up the reference voltage to the PWM comparator.

If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the internal reference voltage becomes greater than the feedback voltage V_{FB}. This scheme ensures that the converters ramp up smoothly into regulation point.

7.3.3 Current Protection

There are three kinds of current protection in TPS563249: High-side FET source current limit, low-side FET source current limit, and low-side FET sink current limit.

The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.

During the on time of the low-side FET switch, the inductor current flow through low-side FET and decreases linearly. The average value of the inductor current is the load current I_{OUT}. If the monitored current is above the low-side FET source current limit level, the converter maintains low-side FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until the current cross the low-side FET source current limit level. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.

There are some important considerations for this type of over-current protection. The load current is higher than the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP threshold voltage, the UVP comparator detects it. And then, the device will shut down after the UVP delay time (typically 0.36 ms) and re-start after the hiccup time (typically 25 ms).

When the over current condition is removed, the output voltage returns to the regulated value.

During the on time of the high-side FET switch, the inductor current flow through high-side FET and increases at a linear rate determined by V_{IN}, V_{OUT}, the on-time and the output inductor value. The switch current is compared with high-side FET source current limit after a short blanking time. If the cross-limit event detected before the one shot timer expires, the high-side FET is turn off immediately, and is not allowed on in the following 1 µS period.

TPS563249 works in Forced Continuous Conduction Mode (FCCM). To support light load operation, the current flowing through low-side FET is allowed to be negative, which means the current flow from drain to source of low-side FET. This negative current is compared with low-side FET sink current limit to prevent device from being over-current damaged. Once the sink current cross limit, the low-side FET is turn off immediately. Both high-side FET and low-side FET will keep off until the VFB voltage falls below reference voltage.

7.3.4 Undervoltage Lockout (UVLO) Protection

UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage, the device is shut off. This protection is non-latching.

7.3.5 Thermal Shutdown

The device monitors the temperature of itself. If the temperature exceeds the thermal shutdown threshold value (typically 160°C), the device will shut off. This is a non-latch protection. The device will resume normal working once the temperature return below the recovery threshold value (typically 135°C).
7.4 Device Functional Modes

7.4.1 Normal Operation

When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the TPS563249 can operate in the continuous conduction mode (CCM) at a fixed frequency of 1.4 MHz. If EN pin is driven by a control signal, the required power on sequence is that applying input voltage at VIN pin firstly, then pull EN pin high. Be sure that the EN pin voltage isn't higher than VIN pin voltage. If EN pin is not used, it can be tied to VIN pin directly.

7.4.2 Standby Operation

TPS563249 can be placed in standby by asserting the EN pin low.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
The device is a typical step-down DC-DC converter. It is typically used to convert a higher dc voltage to a lower dc voltage with a maximum available output current of 3 A. The following design procedure can be used to select component values for the TPS563249. Alternately, the WEBENCH® software may be used to generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of components when generating a design. This section presents a simplified discussion of the design process.

8.2 Typical Application
The application schematic in Figure 17 was developed to meet the previous requirements. This circuit is available as the evaluation module (EVM). The sections provide the design procedure.

Figure 17 shows the TPS563249 6.5-V to 17-V input, 3.3-V output converter schematic.

Figure 17. 3.3-V/3-A Reference Design
Typical Application (continued)

8.2.1 Design Requirements

Table 1 shows the design parameters for this application.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td>6.5 to 17 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>3.3 V</td>
</tr>
<tr>
<td>Transient response, 1.5-A load step</td>
<td>$\Delta V_{OUT} = \pm 5%$</td>
</tr>
<tr>
<td>Input ripple voltage</td>
<td>400 mV</td>
</tr>
<tr>
<td>Output ripple voltage</td>
<td>100 mV</td>
</tr>
<tr>
<td>Output current rating</td>
<td>3 A</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>1.4 MHz</td>
</tr>
</tbody>
</table>

8.2.2 Detailed Design Procedure

8.2.2.1 Output Voltage Resistors Selection

The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1% tolerance or better divider resistors. Start by using Equation 1 to calculate V_{OUT}.

Too high of resistance is more susceptible to noise, and voltage errors from the VFB input current is more noticeable.

$$V_{OUT} = 0.6 \times (1 + \frac{R1}{R2})$$

(1)

8.2.2.2 Output Filter Selection

The LC filter used as the output filter has double pole at:

$$f_p = \frac{1}{2\pi \sqrt{L_{OUT} \times C_{OUT}}}$$

(2)

At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a -40 dB per decade rate and the phase drops rapidly. D-CAP3 introduces a high frequency zero that reduces the gain roll off to -20 dB per decade and increases the phase to 90° one decade above the zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of Equation 2 is located below the high frequency zero but close enough that the phase boost provided by the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 2.

<table>
<thead>
<tr>
<th>OUTPUT VOLTAGE (V)</th>
<th>R1 (kΩ)</th>
<th>R2 (kΩ)</th>
<th>L1 (µH)</th>
<th>C8 + C9 (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.65</td>
<td>10.0</td>
<td>0.33</td>
<td>0.56</td>
</tr>
<tr>
<td>1.05</td>
<td>7.5</td>
<td>10.0</td>
<td>0.33</td>
<td>0.56</td>
</tr>
<tr>
<td>1.2</td>
<td>10</td>
<td>10.0</td>
<td>0.47</td>
<td>0.68</td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
<td>10.0</td>
<td>0.47</td>
<td>0.82</td>
</tr>
<tr>
<td>1.8</td>
<td>20</td>
<td>10.0</td>
<td>0.56</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>31.6</td>
<td>10.0</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>3.3</td>
<td>45.3</td>
<td>10.0</td>
<td>0.82</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>73.2</td>
<td>10.0</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>6.5</td>
<td>97.6</td>
<td>10.0</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 3, Equation 4, and Equation 5. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current.

\[
I_{L\text{p}\text{-}P} = \frac{V_{\text{OUT}}}{V_{\text{IN}(\text{MAX})}} \times \frac{V_{\text{IN}(\text{MAX})} - V_{\text{OUT}}}{L_o \times f_{SW}}
\]

\[
I_{\text{PEAK}} = I_o + \frac{I_{L\text{p}\text{-}P}}{2}
\]

\[
I_{L\text{O}(\text{RMS})} = \sqrt{I_o^2 + \frac{1}{12}I_{L\text{p}\text{-}P}^2}
\]

For this design example, the calculated peak current is 3.63 A and the calculated RMS current is 3.02 A. The inductor used is a WE 744311150 with a rated current of 11 A.

The capacitor value and ESR determines the amount of output voltage ripple. The TPS563249 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 10 µF to 44 µF. Use Equation 6 to determine the required RMS current rating for the output capacitor.

\[
I_{C\text{O}(\text{RMS})} = \frac{V_{\text{OUT}} \times (V_{\text{IN}} - V_{\text{OUT}})}{\sqrt{12} \times V_{\text{IN}} \times L_o \times f_{SW}}
\]

For this design one Murata GRM31CR61A226KE19 22-µF output capacitor is used. The typical ESR is 2 mΩ. The calculated RMS current is 0.365 A and output capacitor is rated for 4 A.

8.2.2.3 Input Capacitor Selection

The TPS563249 requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An additional 0.1-µF capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage rating needs to be greater than the maximum input voltage.

8.2.2.4 Bootstrap Capacitor Selection

A 0.1-µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. TI recommends to use a ceramic capacitor.

8.2.2.5 Dropout

With a constant 1.4-MHz switching frequency, there is a minimum input voltage limit for a given output voltage to be regulated. This is due to the minimum off time limit. If the input voltage less than the minimum input voltage limit, the output voltage drops accordingly, which is called dropout condition. Figure 7 and Figure 8 show the typical dropout curve for 3.3 V and 5 V output voltage with 3 A and 1.5 A load respectively. Equation 7 can be used to estimate this minimum input voltage limit.

\[
V_{\text{IN}(\text{MIN})} = \frac{V_{\text{OUT}}}{F_{SW}} + (R_{\text{dil}} + R_L) \times I_o \times (t_{\text{off (min)}} - t_d1 - t_d2) + (V_d + R_L \times I_o) \times (t_d1 + t_d2) + \frac{1}{F_{SW}} - t_{\text{off (min)}} (R_{\text{dsh}} + R_L) \times I_o
\]

where

- \(V_{\text{OUT}} \) = target output voltage
- \(F_{SW} \) = maximum switching frequency including tolerance
- \(t_{\text{off (min)}} \) = minimum off time including tolerance
- \(R_{\text{dil}} \) = low side FET on resistance
- \(R_{\text{dsh}} \) = high side FET on resistance
- \(R_L \) = inductor DC resistance
- \(I_o \) = maximum load current
- \(t_d1 \) = dead time between high side FET off and low side FET on, 15nS typical
- \(t_d2 \) = dead time between low side FET off and high side FET on, 10nS typical
- \(V_d \) = forward voltage of low side FET body diode

(7)
8.2.3 Application Curves

\[T_A = 25^\circ C, \ V_{IN} = 12 \ V \] (unless otherwise noted)

![Graph of Load Regulation](image1)

![Graph of Line Regulation](image2)

![Graph of Efficiency](image3)

![Graph of Input Voltage Ripple](image4)

![Graph of Output Voltage Ripple](image5)
9 Power Supply Recommendations

TPS563249 is designed to operate from input supply voltage in the range of 4.5 V to 17 V. Buck converters require the input voltage to be higher than the output voltage for proper operation.
10 Layout

10.1 Layout Guidelines

1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of advantage from the view point of heat dissipation.
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize trace impedance.
3. Provide sufficient vias for the input capacitor and output capacitor.
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.
5. Do not suggest routing SW copper under the device.
6. A separate VOUT path should be connected to the upper feedback resistor.
7. Make a Kelvin connection to the GND pin for the feedback path.
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has ground shield.
9. The trace of the VFB node should be as small as possible to avoid noise coupling.
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its trace impedance.

10.2 Layout Example

Figure 30. Example Layout
11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

D-CAP3, E2E are trademarks of Texas Instruments.
WEBENCH is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — *TI Glossary.*
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PINS</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS563249DDCR</td>
<td>ACTIVE</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>TPS563249DDCT</td>
<td>ACTIVE</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>250</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>249</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS
- Reel Diameter
- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

TAPE DIMENSIONS
- Cavity
- A0
- B0
- K0
- W

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
- Pocket Quadrants
- Sprocket Holes
- User Direction of Feed

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS563249DDCR</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS563249DDCT</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS563249DDCT</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS563249DDCR</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS563249DDCT</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS563249DDCT</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated