TPS56624x 3-V to 16-V Input Voltage, 6-A Synchronous Buck Converter in a SOT-5X3 Package

1 Features

- Configured for a wide range of applications
 - 3-V to 16-V input voltage range
 - 0.6-V to 7-V output voltage range
 - 0.6-V reference voltage
 - ±1% reference accuracy at 25°C
 - ±1.5% reference accuracy at –40°C to 125°C
 - Integrated 27.7-mΩ and 14.8-mΩ R_DSON FET
 - 120-μA low quiescent current
 - 600-kHz switching frequency
 - Supports 95% large duty cycle operation
 - Precision EN threshold voltage
 - 1.39-ms fixed typical soft-start time
- Ease of use and small solution size
 - TPS566242 Eco-mode, TPS566247 FCCM mode at light loading
 - Part of a full P2P family including solutions for 4 A/5 A/6 A and FCCM/DCM operation
 - DCAP3™ control topology
 - Support start-up with pre-biased output
 - Non-latch for OV/OT /UVLO protection
 - Hiccup mode for UV protection
 - Cycle-by-cycle OC and NOC limit
 - 6-pin SOT563 package
- Create a custom design using the TPS566242 with the WEBENCH® Power Designer
- Create a custom design using the TPS566247 with the WEBENCH® Power Designer

2 Applications

- LCD TV, STB and DVR, streaming media player
- IP network camera, video doorbell, building security gateway
- WLAN/Wi-Fi access point, modem (cable/DSL/GFAST), solid state drive

3 Description

The TPS56624x is simple, easy-to-use, high performance, high efficiency synchronous buck converter with input voltage ranging from 3 V to 16 V and supports up to 6-A continuous current with a SOT563 package.

The TPS56624x uses DCAP3 topology to provide a fast transient response and to support low-ESR output capacitors with no requirement for external compensation. It has two grounds, GND and AGND, which should be connected together for optimal thermal performance. AGND also provides a good load and line regulation. It can support up to 95% duty operation.

The TPS566242 operates in Eco-mode, which maintains high efficiency during light loading. The TPS566247 operates in FCCM mode, which keeps the same frequency and lower output ripple during all load conditions. It integrates complete protection through OVP, OCP, UVLO, OTP, and UVP with hiccup. The device is available in 1.6-mm × 1.6-mm SOT563 package and has an optimized pinout for easy PCB layout. The junction temperature is specified from –40°C to 125°C.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE(1)</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS566242</td>
<td>SOT-5X3 (6)</td>
<td>1.60 mm × 1.60 mm</td>
</tr>
<tr>
<td>TPS566247</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change without notice.
Table of Contents

1 Features ..1
2 Applications ...1
3 Description ..1
4 Revision History ...2
5 Pin Configuration and Functions ..3
6 Specifications ...4
 6.1 Absolute Maximum Ratings ..4
 6.2 ESD Ratings ..4
 6.3 Recommended Operating Conditions4
 6.4 Thermal Information ...4
 6.5 Electrical Characteristics ..5
 6.6 Typical Characteristics ...7
7 Detailed Description ..10
 7.1 Overview ..10
 7.2 Functional Block Diagram ..10
 7.3 Feature Description ...11
 7.4 Device Functional Modes ..12
8 Application and Implementation ..14
 8.1 Application Information ..14
 8.2 Typical Application ...14
9 Power Supply Recommendations ...20
10 Layout ..20
 10.1 Layout Guidelines ..20
 10.2 Layout Example ..21
11 Device and Documentation Support22
 11.1 Device Support ..22
 11.2 Receiving Notification of Documentation Updates22
 11.3 Support Resources ...22
 11.4 Trademarks ..22
 11.5 Electrostatic Discharge Caution22
 11.6 Glossary ...22
12 Mechanical, Packaging, and Orderable Information23
 12.1 Tape and Reel Information ..23

Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2022</td>
<td>*</td>
<td>Advance Information</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

Figure 5-1. 6-Pin SOT563 DRL Package (Top View)

Table 5-1. Pin Functions

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin No.</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>1</td>
<td>I</td>
<td>Input voltage supply pin</td>
</tr>
<tr>
<td>SW</td>
<td>2</td>
<td>O</td>
<td>Switch node connection between high-side NFET and low-side NFET</td>
</tr>
<tr>
<td>GND</td>
<td>3</td>
<td>—</td>
<td>Ground pin source terminal of the low-side power NFET as well as the ground terminal for controller circuit</td>
</tr>
<tr>
<td>AGND</td>
<td>4</td>
<td>—</td>
<td>Ground of internal analog circuitry. Connect AGND to the GND plane.</td>
</tr>
<tr>
<td>EN</td>
<td>5</td>
<td>I</td>
<td>Enable input to converter. Driving EN high enables the converter.</td>
</tr>
<tr>
<td>FB</td>
<td>6</td>
<td>I</td>
<td>Converter feedback input. Connect to the output voltage with a feedback resistor divider.</td>
</tr>
</tbody>
</table>
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>VIN</td>
<td>–0.3</td>
<td>18</td>
</tr>
<tr>
<td>Input voltage</td>
<td>FB, EN</td>
<td>–0.3</td>
<td>6</td>
</tr>
<tr>
<td>Input voltage</td>
<td>AGND, PGND</td>
<td>–0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Output voltage</td>
<td>SW</td>
<td>–2</td>
<td>18</td>
</tr>
<tr>
<td>Output voltage</td>
<td>SW (< 20 ns)</td>
<td>–6.5</td>
<td>20</td>
</tr>
<tr>
<td>Operating junction temperature range, (T_J)</td>
<td></td>
<td>–40</td>
<td>150</td>
</tr>
<tr>
<td>Storage temperature, (T_{stg})</td>
<td></td>
<td>–55</td>
<td>150</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{(ESD)})</th>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(^{(1)})</td>
<td>±2000</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(^{(2)})</td>
<td>±500</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP157 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

\(^{(2)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>VIN</td>
<td>3</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>FB, EN</td>
<td>–0.1</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>AGND, PGND</td>
<td>–0.1</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>SW</td>
<td>–1</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>SW (< 20 ns)</td>
<td>–6</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Output current</td>
<td>IO</td>
<td>0</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>(T_J)</td>
<td></td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg})</td>
<td></td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>DRL (SOT-5X3)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA}) - Junction-to-ambient thermal resistance</td>
<td>131.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JA,\text{Effective}})(^{(2)}) - Junction-to-ambient thermal resistance on EVM board</td>
<td>51</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JC(top)}) - Junction-to-case (top) thermal resistance</td>
<td>45.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JB}) - Junction-to-board thermal resistance</td>
<td>16.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\Psi_{JT}) - Junction-to-top characterization parameter</td>
<td>0.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>(Y_{JB}) - Junction-to-board characterization parameter</td>
<td>16.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JC(bottom)}) - Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

\(^{(2)}\) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
(2) This $R_{\text{JA, effective}}$ is tested on TPS566242EVM board (4 layer, copper thickness of top and bottom layer are 2-oz, and copper thickness of internal GND is 1 oz) at $V_{\text{IN}} = 12 \, \text{V}$, $V_{\text{OUT}} = 5 \, \text{V}$, $I_{\text{OUT}} = 6 \, \text{A}$, $T_A = 25^\circ\text{C}$.

6.5 Electrical Characteristics

$T_J = -40^\circ\text{C}$ to 125°C, $V_{\text{IN}} = 12 \, \text{V}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT SUPPLY VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input voltage range</td>
<td>3</td>
<td>16</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{VIN}</td>
<td>VIN supply current</td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>No load, $V_{\text{EN}} = 5 , \text{V}$, $V_{\text{FB}} = 0.65 , \text{V}$, non-switching, ECO version</td>
<td>120</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>No load, $V_{\text{EN}} = 5 , \text{V}$, $V_{\text{FB}} = 0.65 , \text{V}$, non-switching, FCCM version</td>
<td>400</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{INSN}</td>
<td>VIN shutdown current</td>
<td></td>
<td>2</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>No load, $V_{\text{EN}} = 0 , \text{V}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVLO</td>
<td>UVLO undervoltage lockout</td>
<td>2.75</td>
<td>2.92</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>UVLO</td>
<td>Wake-up VIN voltage</td>
<td>2.6</td>
<td>2.72</td>
<td>2.9</td>
<td>V</td>
</tr>
<tr>
<td>UVLO</td>
<td>Shutdown VIN voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEEDBACK VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{REF}</td>
<td>FB voltage</td>
<td>594</td>
<td>600</td>
<td>609</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{REF}</td>
<td>591</td>
<td>600</td>
<td>609</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$T_J = -40^\circ\text{C}$ to 125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{\text{DS(ON)HI}}$</td>
<td>High-side MOSFET $R_{\text{DS(ON)}}$</td>
<td>27.7</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$, $V_{\text{VIN}} \geq 5 , \text{V}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$, $V_{\text{VIN}} = 3 , \text{V}$</td>
<td>29.6</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>$R_{\text{DS(ON)LO}}$</td>
<td>Low-side MOSFET $R_{\text{DS(ON)}}$</td>
<td>14.8</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$, $V_{\text{VIN}} \geq 5 , \text{V}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$, $V_{\text{VIN}} = 3 , \text{V}$</td>
<td>15.8</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>$I_{\text{OCL_LS}}$</td>
<td>Overcurrent threshold</td>
<td>6</td>
<td>7.4</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Valley current set point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{NOCL}</td>
<td>Negative overcurrent threshold</td>
<td>2</td>
<td>3.4</td>
<td>4.2</td>
<td>A</td>
</tr>
<tr>
<td>DUTY CYCLE and FREQUENCY CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{SW}</td>
<td>Switching frequency</td>
<td>600</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$, $V_{\text{VOUT}} = 3.3 , \text{V}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{\text{ON(MIN)}}$</td>
<td>Minimum on time</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{\text{OFF(MIN)}}$</td>
<td>Minimum off time</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>$V_{\text{FB}} = 0.5 , \text{V}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOGIC THRESHOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{EN(ON)}}$</td>
<td>EN threshold high level</td>
<td>1.07</td>
<td>1.18</td>
<td>1.33</td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{EN(OFF)}}$</td>
<td>EN threshold low level</td>
<td>0.95</td>
<td>1</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>V_{ENHYST}</td>
<td>EN hysteresis</td>
<td>180</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>R_{ENP}</td>
<td>EN pulldown resistor</td>
<td>2</td>
<td></td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>SOFT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SS}</td>
<td>Internal soft-start time</td>
<td>1.39</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>OUTPUT UNDervoltage and OVERvoltage PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OVP}</td>
<td>OVP trip threshold</td>
<td>115%</td>
<td>120%</td>
<td>125%</td>
<td></td>
</tr>
<tr>
<td>I_{VPDLY}</td>
<td>OVP prop deglitch</td>
<td>24</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{UVP}</td>
<td>UVP trip threshold</td>
<td>55%</td>
<td>60%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>I_{UVPDLY}</td>
<td>UVP prop deglitch</td>
<td>256</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ\text{C}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{UPDEL}</td>
<td>Output hiccup delay relative to SS time</td>
<td>256</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>UVP detect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{UVPEN}</td>
<td>Output hiccup enable delay relative to SS time</td>
<td>13</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td>UVP detect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{OTP}</td>
<td>OTP trip threshold</td>
<td>155</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Copyright © 2022 Texas Instruments Incorporated

Product Folder Links: **TPS566242 TPS566247**
6.5 Electrical Characteristics (continued)

$T_J = -40^\circ C$ to $125^\circ C$, $V_{IN} = 12$ V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{TOTP}_{\text{HSY}}^{(2)}$</td>
<td>OTP hysteresis</td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Specified by design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not production tested</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Specified by design
(2) Not production tested
$V_{IN} = 12 \text{ V (unless otherwise noted)}$

Figure 6-1. TPS566242 Quiescent Current

Figure 6-2. TPS566247 Quiescent Current

Figure 6-3. Enable On Threshold Voltage

Figure 6-4. Enable Off Threshold Voltage

Figure 6-5. Low-Side $R_{DS(ON)}$

Figure 6-6. High-Side $R_{DS(ON)}$
Figure 6-7. V_{REF} Voltage

Figure 6-8. Frequency vs Input Voltage at 6-A Loading

Figure 6-9. TPS566247 Frequency vs Loading

Figure 6-10. TPS566242 Frequency vs Loading

Figure 6-11. TPS566242 Efficiency at 0.6 V$_{\text{OUT}}$ with a 0.82-μH Inductor

Figure 6-12. TPS566247 Efficiency at 0.6 V$_{\text{OUT}}$ with a 0.82-μH Inductor
Figure 6-13. TPS566242 Efficiency at 1.05 V_{OUT} with a 1-μH Inductor

Figure 6-14. TPS566247 Efficiency at 1.05 V_{OUT} with a 1-μH Inductor

Figure 6-15. TPS566242 Efficiency at 3.3 V_{OUT} with a 2.2-μH Inductor

Figure 6-16. TPS566247 Efficiency at 3.3 V_{OUT} with a 2.2-μH Inductor

Figure 6-17. TPS566242 Efficiency at 5 V_{OUT} with a 2.2-μH Inductor

Figure 6-18. TPS566247 Efficiency at 5 V_{OUT} with a 2.2-μH Inductor
7 Detailed Description

7.1 Overview

The TPS56624x is a 6-A integrated FET and BST pin synchronous step-down buck converter that operates from 3-V to 16-V input voltage (V_IN), and 0.6-V to 7-V output voltage. This device also integrates the BST pin in an internal IC and adds one AGND pin. The devices employ D-CAP3™ topology that provides fast transient response with no external compensation components and an accurate feedback voltage. The proprietary D-CAP3 mode enables low external component count, ease of design, and optimization of the power design for cost, size, and efficiency. The topology provides a seamless transition between CCM operating mode at higher load condition and DCM operation at lighter load condition.

The Eco-mode version allows the TPS566242 to maintain high efficiency at light load. The FCCM version allows the TPS566247 to maintain a fixed switching frequency and lower output voltage ripple. The TPS56624x is able to adapt to both low equivalent series resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-low ESR ceramic capacitors.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 PWM Operation and D-CAP3 Control

The main control loop of the buck is an adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP3 mode control. The D-CAP3 mode control combines adaptive on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. The TPS56624x also includes an error amplifier that makes the output voltage very accurate.

At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after an internal one-shot timer expires. This one-shot duration is set proportional to the output voltage, V_{OUT}, and is inversely proportional to the converter input voltage, V_{IN}, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit is added to reference voltage to emulate the output ripple, enabling the use of very low-ESR output capacitors such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation is required for D-CAP3 control topology.

7.3.2 Eco-Mode Control

The TPS56624x is designed with advanced Eco-mode to maintain high light load efficiency. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load current further decreases, the converter runs into discontinuous conduction mode. The on time is kept almost the same as it was in continuous conduction mode so that it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional to the load current, and keeps the light load efficiency high. The transition point to the light load operation $I_{OUT(LL)}$ current can be calculated in Equation 1.

$$I_{OUT(LL)} = \frac{1}{2 \times L \times f_{SW}} \times \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN}}$$ \hspace{1cm} (1)

7.3.3 Soft Start and Pre-Biased Soft Start

The TPS56624x has an internal fixed soft start. The EN default status is low. When the EN pin becomes high, the internal soft-start function begins ramping up the reference voltage to the PWM comparator. If the output capacitor is pre-biased at start-up, the device initiates switching and starts ramping up only after the internal reference voltage becomes greater than the feedback voltage, V_{FB}. This scheme makes sure that the converter ramps up smoothly into the regulation point.

7.3.4 Overvoltage Protection

The TPS56624x has the overvoltage protection feature. When the output voltage becomes higher than OVP threshold, the OVP is triggered in which the de-glitch time is 24 μs. Both the high-side MOSFET driver and the low-side MOSFET driver are turned off. When the overvoltage condition is removed, the device returns to switching.

7.3.5 Large Duty Operation

The TPS56624x can support large duty operations up to 95% by smoothly dropping down the switching frequency. When $V_{IN} / V_{OUT} < 1.6$ and V_{FB} is lower than internal V_{REF}, the switching frequency is allowed to smoothly drop to make TON extended to implement the large duty operation and improve the performance of the load transient performance. Please refer frequency test waveform in Figure 6-18. The minimum switching frequency is limited to about 200 kHz.
7.3.6 Current Protection and Undervoltage Protection

The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored during the OFF state by measuring the low-side FET drain-to-source voltage. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.

During the on time of the high-side FET switch, the switch current increases at a linear rate determined by the following:

- \(V_{\text{IN}} \)
- \(V_{\text{OUT}} \)
- On time
- Output inductor value

During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current, \(I_{\text{OUT}} \). If the monitored valley current is above the OCL level, the converter maintains a low-side FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent switching cycles, the on time is set to a fixed value and the current is monitored in the same manner.

There are some important considerations for this type of overcurrent protection. The load current is higher than the overcurrent threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being limited, the output voltage tends to fall as the demanded load current can be higher than the current available from the converter, which can cause the output voltage to fall. When the FB voltage falls below the UVP threshold voltage, the UVP comparator detects it and the device shuts down after the UVP delay time (typically 256 µs) and restarts after the hiccup wait time (typically 13 ms).

When the overcurrent condition is removed, the output voltage returns to the regulated value.

The TPS566247 is a FCCM mode part. In this mode, the device has negative inductor current at light loading. The device has NOC (negative overcurrent) protection to avoid too large negative current. NOC protection detects the valley of inductor current. When the valley value of inductor current exceeds the NOC threshold, the IC turns off the low side then turns on the high side. When the NOC condition is removed, the device returns to normal switching.

Because the TPS566247 is a FCCM mode port, if the inductance is so small that the device trigger NOC, it will cause output voltage to be higher than target value. The minimum inductance is identified as Equation 2.

\[
L = \frac{V_{\text{out}} \times (1 - \frac{V_{\text{out}}}{V_{\text{in}}})}{2 \times \text{Frequency} \times \text{NOC}_{\text{min}}}
\]

(2)

7.3.7 Undervoltage Lockout (UVLO) Protection

UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage, the device is shut off. This protection is non-latching.

7.3.8 Thermal Shutdown

The device monitors the temperature of itself. If the temperature exceeds the threshold value, the device is shut off. This is a non-latch protection.

7.4 Device Functional Modes

7.4.1 Eco-Mode Operation

The TPS566242 operates in Eco-mode, which maintains high efficiency at light loading. As the output current decreases from heavy load conditions, the inductor current is also reduced and eventually comes to a point where the rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load current further decreases, the converter runs into discontinuous conduction mode. The on
time is kept almost the same as it was in continuous conduction mode so that it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional to the load current, and keeps the light load efficiency high.

7.4.2 FCCM Mode Control

The TPS566247 operates in forced CCM (FCCM) mode, which keeps the converter operating in continuous current mode during light load conditions and allows the inductor current to become negative. During FCCM mode, the switching frequency (FSW) is maintained at an almost constant level over the entire load range, which is suitable for applications requiring tight control of the switching frequency and output voltage ripple at the cost of lower efficiency under light load.
8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The device is typical buck DC/DC converters. It is typically used to convert a higher DC voltage to a lower DC voltage with a maximum available output current of 6 A. The following design procedure can be used to select component values for the TPS56624x. Alternately, the WEBENCH® software can be used to generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of components when generating a design. This section presents a simplified discussion of the design process.

8.2 Typical Application

The application schematic in Figure 8-1 was developed to meet the requirements in Table 8-1. This circuit is available as the evaluation module (EVM). The sections provide the design procedure.

Figure 8-1 shows the TPS56624x 12-V input, 1.05-V output converter schematic.
8.2.1 Design Requirements

Table 8-1 shows the design parameters for this application.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Example Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td>3 to 16 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>1.05 V</td>
</tr>
<tr>
<td>Transient response, 2.5-A load step</td>
<td>ΔVout = ±5%</td>
</tr>
<tr>
<td>Output ripple voltage</td>
<td>20 mV</td>
</tr>
<tr>
<td>Output current rating</td>
<td>6 A</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>600 kHz</td>
</tr>
</tbody>
</table>

8.2.2 Detailed Design Procedure

8.2.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPS566242 device with the WEBENCH® Power Designer.

Click here to create a custom design using the TPS566247 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V\text{IN})\text{IN}, output voltage (V\text{OUT}), and output current (I\text{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.2.2 Output Voltage Resistors Selection

The output voltage is set with a resistor divider from the output node to the FB pin. TI recommends to use 1% tolerance or better divider resistors. Start by using Equation 3 to calculate V\text{OUT}.

To improve efficiency at very light loads, consider using larger value resistors because too high of resistance will be more susceptible to noise and voltage errors from the FB input current will be more noticeable. It is suggested to use a 10-kΩ resistor for R2 to start the design.

\[
V_{\text{OUT}} = 0.6 \times (1 + \frac{R_1}{R_2})
\]

(3)

8.2.2.3 Output Filter Selection

The LC filter used as the output filter has a double pole at Equation 4. In this equation, C\text{OUT} should use its effective value after derating, not its nominal value.

\[
f_p = \frac{1}{2\pi\sqrt{L_{\text{OUT}} \times C_{\text{OUT}}}}
\]

(4)

For any control topology that is compensated internally, there is a range of the output filter it can support. At low frequency, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a −40 dB per decade rate and the phase drops has a 180 degree drop. The internal ripple generation network...
introduces a high-frequency zero that reduces the gain roll off from –40 dB to –20 dB per decade and leads the 90 degree phase boost. The internal ripple injection high-frequency zero is about 66 kHz. The inductor and capacitor selected for the output filter is recommended such that the double pole is located about 20 kHz, so that the phase boost provided by this high-frequency zero provides adequate phase margin for the stability requirement. The crossover frequency of the overall system should usually be targeted to be less than one-third of the switching frequency (FSW).

Table 8-2. Recommended Component Values

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>R1 (kΩ)</th>
<th>R2 (kΩ)</th>
<th>TYP L1 (μH)</th>
<th>Typical COUT (μF)</th>
<th>CFF (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0</td>
<td>10.0</td>
<td>0.82</td>
<td>4 × 22</td>
<td>—</td>
</tr>
<tr>
<td>1.05</td>
<td>7.5</td>
<td>10.0</td>
<td>1/1.5</td>
<td>4 × 22</td>
<td>—</td>
</tr>
<tr>
<td>1.8</td>
<td>20.0</td>
<td>10.0</td>
<td>1.5</td>
<td>4 × 22</td>
<td>10-470</td>
</tr>
<tr>
<td>2.5</td>
<td>95.0</td>
<td>30.0</td>
<td>2.2</td>
<td>4 × 22</td>
<td>10-470</td>
</tr>
<tr>
<td>3.3</td>
<td>135.0</td>
<td>30.0</td>
<td>2.2</td>
<td>4 × 22</td>
<td>10-470</td>
</tr>
<tr>
<td>5</td>
<td>220.0</td>
<td>30.0</td>
<td>2.2/3.3</td>
<td>4 × 22</td>
<td>10-470</td>
</tr>
<tr>
<td>7</td>
<td>320.0</td>
<td>30.0</td>
<td>3.3</td>
<td>4 × 22</td>
<td>10-470</td>
</tr>
</tbody>
</table>

The inductor peak-to-peak ripple current, peak current, and RMS current are calculated using Equation 5, Equation 6, and Equation 7. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current.

\[
I_{p-p} = \frac{V_{OUT}}{V_{IN(MAX)}} \times \frac{V_{IN(MAX)} - V_{OUT}}{L_O \times f_{SW}}
\]
(5)

\[
I_{PEAK} = I_O + \frac{I_{p-p}}{2}
\]
(6)

\[
I_{LO(RMS)} = \sqrt{I_O^2 + \frac{1}{12}I_{p-p}^2}
\]
(7)

For this design example, the calculated peak current is 6.8 A and the calculated RMS current is 6.02 A. The inductor used is WE744311100 with 8-A saturation current and 15-A rated current.

The capacitor value and ESR determines the amount of output voltage ripple. The TPS56624x are intended for use with ceramic or other low-ESR capacitors. Use Equation 8 to determine the required RMS current rating for the output capacitor.

\[
I_{CO(RMS)} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{\sqrt{12} \times V_{IN} \times L_O \times f_{SW}}
\]
(8)

For this design, four Murata GRM21BR61A226ME44L 22-μF output capacitors are used. The typical ESR is 2 mΩ each. The calculated RMS current is 0.47 A and each output capacitor is rated for 4 A.

8.2.2.4 Input Capacitor Selection

The TPS56624x requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. TI recommends a ceramic capacitor over 10 μF for the decoupling capacitor. An additional 0.1-μF capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage rating needs to be greater than the maximum input voltage.
8.2.3 Application Curves

The following data is tested with $V_{\text{IN}} = 12 \, \text{V}$, $V_{\text{OUT}} = 1.05 \, \text{V}$, $T_A = 25^\circ \text{C}$, unless otherwise specified.

Figure 8-2. TPS566242 Frequency vs Loading

Figure 8-3. TPS566247 Frequency vs Loading

Figure 8-4. TPS566242 Load Regulation vs Loading

Figure 8-5. TPS566247 Load Regulation vs Loading

Figure 8-6. TPS566242 Line Regulation vs V_{IN} with 6-A Loading

Figure 8-7. TPS566247 Line Regulation vs Loading with 6-A Loading
Figure 8-8. TPS566242 Output Voltage Ripple with 0.01-A Loading

Figure 8-9. TPS566247 Output Voltage Ripple with 0.01-A Loading

Figure 8-10. Output Voltage Ripple with 6-A Loading

Figure 8-11. Start-Up Through EN, I_{OUT} = 6 A

Figure 8-12. Shutdown Through EN, I_{OUT} = 6 A

Figure 8-13. Start-Up with V_{IN} Rising, I_{OUT} = 6 A
Figure 8-14. Start-Up with V_{IN} Falling, $I_{OUT} = 6\, A$

Figure 8-15. TPS566242 Transient Response with 0.6 A to 5.4 A by 2.5-A/μs Load Step

Figure 8-16. TPS566242 Transient Response with 0.1 A to 6 A by 2.5-A/μs Load Step

Figure 8-17. TPS566247 Transient Response with 0.6 A to 5.4 A by 2.5-A/μs Load Step

Figure 8-18. TPS566247 Transient Response with 0.1 A to 6 A by 2.5-A/μs Load Step

Figure 8-19. TPS566242 Normal Operation to Output Hard Short
9 Power Supply Recommendations

The TPS56624x are designed to operate from input supply voltages in the range of 3 V to 16 V. Buck converters require the input voltage to be higher than the output voltage for proper operation.

10 Layout

10.1 Layout Guidelines

- VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also an advantage from the view point of heat dissipation.
- The input capacitor and output capacitor should be placed as close to the device as possible to minimize trace impedance.
- Provide sufficient vias for the input capacitor and output capacitor.
- Keep the SW trace as physically short and wide as practical to minimize radiated emissions.
- Do not allow switching current to flow under the device.
- A separate VOUT path should be connected to the upper feedback resistor.
- Make a Kelvin connection to the GND pin for the feedback path.
- Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has ground shield.
- The trace of the FB node should be as small as possible to avoid noise coupling.
- The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its trace impedance.
10.2 Layout Example

Figure 10-1. Suggested Layout
11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer
TI’S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.1.2 Development Support
11.1.2.1 Custom Design With WEBENCH® Tools
Click here to create a custom design using the TPS566242 device with the WEBENCH® Power Designer.
Click here to create a custom design using the TPS566247 device with the WEBENCH® Power Designer.
1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time
pricing and component availability.

In most cases, these actions are available:
• Run electrical simulations to see important waveforms and circuit performance
• Run thermal simulations to understand board thermal performance
• Export customized schematic and layout into popular CAD formats
• Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

11.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For
change details, review the revision history included in any revised document.

11.3 Support Resources
TI E2E™ support forums are an engineer’s go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.

11.4 Trademarks
D-CAP3™ and TI E2E™ are trademarks of Texas Instruments.
WEBENCH® is a registered trademark of Texas Instruments.
All trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.

11.6 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12.1 Tape and Reel Information

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS566242DRLR</td>
<td>ACTIVE</td>
<td>6</td>
<td>4000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.0</td>
<td>1.8</td>
<td>0.75</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS566247DRLR</td>
<td>ACTIVE</td>
<td>6</td>
<td>4000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.0</td>
<td>1.8</td>
<td>0.75</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS565242DRLR</td>
<td>ACTIVE</td>
<td>6</td>
<td>4000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.0</td>
<td>1.8</td>
<td>0.75</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS565247DRLR</td>
<td>ACTIVE</td>
<td>6</td>
<td>4000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.0</td>
<td>1.8</td>
<td>0.75</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS566242DRLR</td>
<td>ACTIVE</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS566247DRLR</td>
<td>ACTIVE</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS565242DRLR</td>
<td>ACTIVE</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS565247DRLR</td>
<td>ACTIVE</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated