1 Features
- Real Buck or Boost Operation with Automatic and Seamless Transition Between Buck and Boost Operation
- 2.3 V to 5.5 V Input Voltage Range
- 1.0V to 5.5V Output Voltage Range
- 2 A Continuous Output Current : $V_{\text{IN}} \geq 2.5 \text{ V}, V_{\text{OUT}} = 3.5 \text{ V}$
- Efficiency up to 96%
- 2.5MHz Typical Switching Frequency
- 35-µA Operating Quiescent Current
- Integrated Soft Start
- Power Save Mode
- True Shutdown Function
- Output Capacitor Discharge Function
- Over-Temperature Protection and Over-Current Protection
- Wide Capacitance Selection
- Small 2.1 mm x 2.1 mm, 25-pin WCSP

2 Applications
- Cellular Phones, Smart Phones
- Tablets PC
- PC and Smart Phone accessories
- Point of Load Regulation
- Battery Powered Applications

3 Description
The TPS63027 is a high efficiency, low quiescent current buck-boost converters suitable for application where the input voltage is higher or lower than the output. Output currents can go as high as 2 A in boost mode and as high as 4 A in buck mode. The maximum average current in the switches is limited to a typical value of 4.5 A. The TPS63027 regulates the output voltage over the complete input voltage range by automatically switching between buck or boost mode depending on the input voltage ensuring a seamless transition between modes. The buck-boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller using synchronous rectification to obtain highest efficiency. At low load currents, the converter enters Power Save Mode to maintain high efficiency over the complete load current range. There is a PFM/PWM pin that allows the user to choose between automatic PFM/PWM mode operation and forced PWM operation. During PWM mode a fixed-frequency of typically 2.5 MHz is used. The output voltage is programmable using an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is disconnected from the battery. The device is packaged in a 25-pin WCSP package measuring 2.1 mm x 2.1 mm.

4 Typical Application

![Efficiency vs Output Current](chart_url)
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description ... 1
4 Typical Application ... 1
5 Revision History .. 2
6 Device Comparison Table .. 3
7 Pin Configuration and Functions 3
8 Specifications .. 4
 8.1 Absolute Maximum Ratings 4
 8.2 ESD Ratings .. 4
 8.3 Recommended Operating Conditions 4
 8.4 Thermal Information ... 4
 8.5 Electrical Characteristics ... 5
 8.6 Timing Requirements .. 6
 8.7 Typical Characteristics ... 6
9 Detailed Description .. 7
 9.1 Overview ... 7
 9.2 Functional Block Diagram ... 7
 9.3 Feature Description ... 7
 9.4 Device Functional Modes 9
10 Application and Implementation 12
 10.1 Application Information 12
 10.2 Typical Applications ... 12
11 Power Supply Recommendations 18
12 Layout ... 18
 12.1 Layout Guidelines .. 18
 12.2 Layout Example ... 18
13 Device and Documentation Support 19
 13.1 Device Support .. 19
 13.2 Documentation Support ... 19
 13.3 Receiving Notification of Documentation Updates 19
 13.4 Community Resources .. 19
 13.5 Trademarks .. 19
 13.6 Electrostatic Discharge Caution 19
 13.7 Glossary .. 19
14 Mechanical, Packaging, and Orderable Information 19

5 Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2016</td>
<td>*</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
6 Device Comparison Table

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS63027</td>
<td>Adjustable</td>
</tr>
</tbody>
</table>

7 Pin Configuration and Functions

YFF Package
DSBGA 25-Pin
Top View

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Supply voltage for power stage</td>
</tr>
<tr>
<td>AVIN</td>
<td>Supply voltage for control stage</td>
</tr>
<tr>
<td>L1</td>
<td>Connection for Inductor</td>
</tr>
<tr>
<td>EN</td>
<td>Enable input. Set high to enable and low to disable. It must not be left floating</td>
</tr>
<tr>
<td>GND</td>
<td>Power Ground</td>
</tr>
<tr>
<td>MODE</td>
<td>PFM/PWM Mode selection. Set HIGH for PFM mode, set LOW for forced PWM mode. It must not be left floating</td>
</tr>
<tr>
<td>AGND</td>
<td>Analog Ground</td>
</tr>
<tr>
<td>L2</td>
<td>Connection for Inductor</td>
</tr>
<tr>
<td>VOUT</td>
<td>Buck-Boost converter output</td>
</tr>
<tr>
<td>FB</td>
<td>Voltage feedback of adjustable version, must be connected to VOUT on fixed output voltage versions</td>
</tr>
</tbody>
</table>
8 Specifications

8.1 Absolute Maximum Ratings
over junction temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Voltage (^{(2)})</th>
<th>VIN, L1, L2, EN, VINA, PFM/PWM, VOUT, FB</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input current</td>
<td>Continuos average current into L1 (^{(3)})</td>
<td>0.3</td>
<td>2.7</td>
<td>A</td>
</tr>
<tr>
<td>Operating junction temperature, (T_J)</td>
<td></td>
<td>-40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, (T_{stg})</td>
<td></td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground pin.
(3) Maximum continuous average input current 3.5 A, under those condition do not exceed 105°C for more than 25% operating time.

8.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{(ESD)})</th>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±500</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>(V_{IN})</th>
<th>Input voltage</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OUT})</td>
<td>Output voltage</td>
<td>1</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(T_A)</td>
<td>Operating ambient temperature</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>(T_J)</td>
<td>Operating virtual junction temperature</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) Refer to the Application and Implementation section for further information

8.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TPS63027</th>
<th>YFF (DSBGA)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JUA})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>62.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUC\text{(top)}})</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>0.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUB})</td>
<td>Junction-to-board thermal resistance</td>
<td>10.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JT})</td>
<td>Junction-to-top characterization parameter</td>
<td>0.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JB})</td>
<td>Junction-to-board characterization parameter</td>
<td>10.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUC\text{(bot)}})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
8.5 Electrical Characteristics

$V_{IN} = 2.3$ V to 5.5 V, $T_J = -40^\circ$C to +125°C, typical values are at $T_A = 25^\circ$C (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input voltage range</td>
<td>2.3</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{IN,LOAD}$</td>
<td>Minimum input voltage to turn on into full load</td>
<td>$I_{OUT} = 2$ A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>Continuous output current$^{(1)}$</td>
<td>$V_{IN} \geq 2.5$ V, $V_{OUT} = 3.3$ V</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent current, V_{IN}</td>
<td>$I_{OUT} = 0$ mA, $EN = V_{IN} = 3.6$ V, $V_{OUT} = 3.3$ V $T_J = -40^\circ$C to +85°C, not switching (PFM Mode)</td>
<td>35</td>
<td>70</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quiescent current, V_{OUT}</td>
<td>$I_{OUT} = 0$ mA, $EN = V_{IN} = 3.6$ V, $V_{OUT} = 3.3$ V $T_J = -40^\circ$C to +85°C, not switching (PFM Mode)</td>
<td>12</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{SD}</td>
<td>Shutdown current</td>
<td>$EN = low$, $T_J = -40^\circ$C to +85°C</td>
<td>0.1</td>
<td>2</td>
<td>μA</td>
</tr>
<tr>
<td>UVLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Undervoltage lockout threshold</td>
<td>V_{IN} falling</td>
<td>1.6</td>
<td>1.7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Undervoltage lockout hysteresis</td>
<td>60</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal shutdown</td>
<td>Temperature rising</td>
<td>140</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal shutdown hysteresis</td>
<td>20</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOGIC SIGNALS EN, PFM/PWM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IH}</td>
<td>High-level input voltage</td>
<td>$V_{IN} = 2.3$ V to 5.5 V</td>
<td>1.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low-level input voltage</td>
<td>$V_{IN} = 2.3$ V to 5.5 V</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input leakage current</td>
<td>$EN = GND$ or V_{IN}</td>
<td>0.01</td>
<td>0.2</td>
<td>μA</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output voltage range</td>
<td>$V_{IN} = 3.6$ V, $I_{OUT} = 100$ mA</td>
<td>1</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback regulation voltage</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback voltage accuracy</td>
<td>PWM mode</td>
<td>–1%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback voltage accuracy$^{(2)}$</td>
<td>PFM mode</td>
<td>–1%</td>
<td>1.3%</td>
<td>3%</td>
</tr>
<tr>
<td>$I_{PWM/PFM}$</td>
<td>Output current to enter PFM mode</td>
<td>$V_{IN} = 3$ V; $V_{OUT} = 3.3$ V</td>
<td>350</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{FB}</td>
<td>Feedback input bias current</td>
<td>$V_{FB} = 0.8$ V</td>
<td>10</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>$R_{DS,ON(Buck)}$</td>
<td>High-side FET on-resistance</td>
<td>$V_{IN} = 3$ V; $V_{OUT} = 3.3$ V</td>
<td>48</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>$R_{DS,ON(Boost)}$</td>
<td>Low-side FET on-resistance</td>
<td>$V_{IN} = 3$ V; $V_{OUT} = 3.3$ V</td>
<td>56</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>$R_{DS,ON(Buck)}$</td>
<td>High-side FET on-resistance</td>
<td>$V_{IN} = 3$ V; $V_{OUT} = 3.3$ V</td>
<td>33</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>$R_{DS,ON(Boost)}$</td>
<td>Low-side FET on-resistance</td>
<td>$V_{IN} = 3$ V; $V_{OUT} = 3.3$ V</td>
<td>56</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Average input current limit$^{(3)}$</td>
<td>$V_{IN} = 3$ V; $V_{OUT} = 3.3$ V $T_J = 65^\circ$C to 125°C</td>
<td>3.5</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>f_{SW}</td>
<td>Switching frequency</td>
<td>2.5</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{ON,DISC}$</td>
<td>Discharge ON-resistance</td>
<td>$EN = low$</td>
<td>120</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line regulation</td>
<td>$V_{IN} = 2.8$ V to 5.5 V, $I_{OUT} = 2$ A</td>
<td>7.4</td>
<td>mV/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load regulation</td>
<td>$V_{IN} = 3.6$ V, $I_{OUT} = 0$ A to 2 A</td>
<td>5</td>
<td>mV/A</td>
<td></td>
</tr>
</tbody>
</table>

$^{(1)}$ For minimum output current in a specific working point see Figure 6 and Equation 1 trough Equation 4.

$^{(2)}$ Conditions: $L = 1 \mu$H, $C_{OUT} = 2 \times 22 \mu$F.

$^{(3)}$ For variation of this parameter with input voltage and temperature see Figure 6.
8.6 Timing Requirements

$V_{IN} = 2.3\ \text{V to } 5.5\ \text{V}$, $T_J = -40^\circ\text{C to } +125^\circ\text{C}$, typical values are at $T_A = 25^\circ\text{C}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{SS}</td>
<td>Soft-start time</td>
<td>$V_{OUT} = EN = \text{low to high, Buck mode } V_{IN} = 3.6\ \text{V}, V_{OUT} = 3.3\ \text{V}, I_{OUT} = 2\ \text{A}$</td>
<td>450</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_d</td>
<td>Start up delay</td>
<td>$V_{OUT} = EN = \text{low to high, Boost mode } V_{IN} = 2.8\ \text{V}, V_{OUT} = 3.3\ \text{V}, I_{OUT} = 2\ \text{A}$</td>
<td>700</td>
<td>μs</td>
</tr>
</tbody>
</table>

8.7 Typical Characteristics

- **Figure 1.** High Side FET On-Resistance vs Input Voltage
- **Figure 2.** Quiescent Current vs Input Voltage
9 Detailed Description

9.1 Overview
The TPS63027 uses 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible operating conditions. This enables the device to keep high efficiency over the complete input voltage and output power range. To regulate the output voltage at all possible input voltage conditions, the device automatically switches from buck operation to boost operation and back as required by the configuration. It always uses one active switch, one rectifying switch, one switch is held on, and one switch held off. Therefore, it operates as a buck converter when the input voltage is higher than the output voltage, and as a boost converter when the input voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are switching at the same time. Keeping one switch on and one switch off eliminates their switching losses. The RMS current through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses. Controlling the switches this way allows the converter to always keep higher efficiency.

The device provides a seamless transition from buck to boost or from boost to buck operation.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Undervoltage Lockout (UVLO)
To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. UVLO shuts down the device at low input voltages to ensure proper operation. See electrical characteristics table for the dedicated values.
Feature Description (continued)

9.3.2 Output Discharge Function

When the device is disabled by pulling enable low and the supply voltage is still applied, the internal transistor use to discharge the output capacitor is turned on, and the output capacitor is discharged until UVLO is reached. This means, if there is no supply voltage applied the output discharge function is also disabled. The transistor which is responsible of the discharge function, when turned on, operates like an equivalent 120-Ω resistor, ensuring typically less than 10ms discharge time for 20-µF output capacitance and a 3.3 V output.

9.3.3 Thermal Shutdown

The device goes into thermal shutdown once the junction temperature exceeds typically 140°C with a 20°C hysteresis.

9.3.4 Softstart

To minimize inrush current and output voltage overshoot during start up, the device has a Softstart. At turn on, the input current raises monotonic until the output voltage reaches regulation. During Softstart, the input current follows the current ramp charging the internal Softstart capacitor. The device smoothly ramps up the input current bringing the output voltage to its regulated value even if a large capacitor is connected at the output.

The Softstart time is measured as the time from when the EN pin is asserted to when the output voltage has reached 90% of its nominal value. There is a delay time from when the EN pin is asserted to when the device starts the switching activity. The Softstart time depends on the load current, the input voltage, and the output capacitor. The Softstart time in boost mode is longer then the time in buck mode.

The inductor current is able to increase and always assure a soft start unless a real short circuit is applied at the output.

9.3.5 Short Circuit Protection

The TPS63027 provides short circuit protection to protect itself and the application. When the output voltage does not increase above 1.2V, the device assumes a short circuit at the output and limits the input current to 4 A.
9.4 Device Functional Modes

9.4.1 Control Loop Description

The controller circuit of the device is based on an average current mode topology. The average inductor current is regulated by a fast current regulator loop which is controlled by a voltage control loop. Figure 3 shows the control loop.

The non inverting input of the transconductance amplifier, \(g_{mv}\), is assumed to be constant. The output of \(g_{mv}\) defines the average inductor current. The inductor current is reconstructed by measuring the current through the high side buck MOSFET. This current corresponds exactly to the inductor current in boost mode. In buck mode the current is measured during the on time of the same MOSFET. During the off time, the current is reconstructed internally starting from the peak value at the end of the on time cycle. The average current and the feedback from the error amplifier \(g_{mc}\) forms the correction signal \(g_{mc}\). This correction signal is compared to the buck and the boost sawtooth ramp giving the PWM signal. Depending on which of the two ramps the \(g_{mc}\) output crosses either the Buck or the Boost stage is initiated. When the input voltage is close to the output voltage, one buck cycle is always followed by a boost cycle. In this condition, no more than three cycles in a row of the same mode are allowed. This control method in the buck-boost region ensures a robust control and the highest efficiency.
Device Functional Modes (continued)

9.4.2 Power Save Mode Operation

Depending on the load current, in order to provide the best efficiency over the complete load range, the device works in PWM mode at load currents of typically 350mA or higher. At lighter loads, the device switches automatically into Power Save Mode to reduce power consumption and extend battery life. The MODE pin is used to select between the two different operation modes. To enable Power Save Mode, the MODE pin must be set HIGH.

During Power Save Mode, the part operates with a reduced switching frequency and lowest supply current to maintain high efficiency. The output voltage is monitored with a comparator at every clock cycle by the thresholds comp low and comp high. When the device enters Power Save Mode, the converter stops operating and the output voltage drops. The slope of the output voltage depends on the load and the output capacitance. When the output voltage reaches the comp low threshold, at the next clock cycle the device ramps up the output voltage again, by starting operation. Operation can last for one or several pulses until the comp high threshold is reached. At the next clock cycle, if the load is still lower than about 350mA, the device switches off again and the same operation is repeated. Instead, if at the next clock cycle, the load is above 350mA, the device automatically switches to PWM mode.

In order to keep high efficiency in PFM mode, there is only one comparator active to keep the output voltage regulated. The AC ripple in this condition is increased, compared to the PWM mode. The amplitude of this voltage ripple is typically 30 mV pk-pk, with 2-µF effective output capacitance. In order to avoid a critical voltage drop when switching from 0A to full load, the output voltage in PFM mode is typically 1.3% above the nominal value in PWM mode. This is called Dynamic Voltage Positioning and allows the converter to operate with a small output capacitor and still have a low absolute voltage drop during heavy load transients.

Power Save Mode is disabled by setting the MODE pin LOW.
Device Functional Modes (continued)

9.4.3 Current Limit

The current limit variation depends on the difference between the input and output voltage. The maximum current limit value is at the highest difference.

Given the curves provided in Figure 6, it is possible to calculate the output current reached in boost mode, using Equation 1 and Equation 2 and in buck mode using Equation 3 and Equation 4.

\[
\text{Duty Cycle Boost } \quad D = \frac{V_{\text{OUT}} - V_{\text{IN}}}{V_{\text{OUT}}} \tag{1}
\]

\[
\text{Output Current Boost } \quad I_{\text{out}} = \eta \times I_{\text{in}}(1-D) \tag{2}
\]

\[
\text{Duty Cycle Buck } \quad D = \frac{V_{\text{OUT}}}{V_{\text{IN}}} \tag{3}
\]

\[
\text{Output Current Buck } \quad I_{\text{out}} = \frac{(\eta \times I_{\text{in}})}{D} \tag{4}
\]

where

- \(\eta \) = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)
- \(I_{\text{in}} \) = Minimum average input current (Figure 6)

9.4.4 Supply and Ground

The TPS63027 provides two input pins (VIN and AVIN) and two ground pins (GND and AGND).

The VIN pin supplies the input power, while the AVIN pin provides voltage for the control circuits. A similar approach is used for the ground pins. AGND and GND are used to avoid ground shift problems due to the high currents in the switches. The reference for all control functions is the AGND pin. The power switches are connected to GND. Both grounds must be connected on the PCB at only one point, ideally, close to the AGND pin.

9.4.5 Device Enable

The device starts operation when the EN pin is set high. The device enters shutdown mode when the EN pin is set low. In shutdown mode, the regulator stops switching, all internal control circuitry is switched off, and the load is disconnected from the input.
10 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The TPS63027 are high efficiency, low quiescent current buck-boost converters suitable for application where the input voltage is higher, lower or equal to the output. Output currents can go as high as 2A in boost mode and as high as 5A in buck mode. The maximum average current in the switches is limited to a typical value of 4.5 A.

10.2 Typical Applications

10.2.1 Design Requirements

The design guideline provides a component selection to operate the device within the recommended operating conditions.

Table 1 shows the list of components for the Application Characteristic Curves.

Table 1. Components for Application Characteristic Curves

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1 μH, 8.75A, 13mΩ, SMD</td>
<td>XAL4020-102MEB, Coilcraft</td>
</tr>
<tr>
<td>C1</td>
<td>10 μF 6.3V, 0603, X5R ceramic</td>
<td>Standard</td>
</tr>
<tr>
<td>C2</td>
<td>47 μF 6.3V, 0603, X5R ceramic</td>
<td>Standard</td>
</tr>
<tr>
<td>R1</td>
<td>510kΩ</td>
<td>Standard</td>
</tr>
<tr>
<td>R2</td>
<td>150kΩ</td>
<td>Standard</td>
</tr>
</tbody>
</table>

(1) See Third-Party Products Disclaimer
10.2.2 Detailed Design Procedure
The first step is the selection of the output filter components. To simplify this process Table 2 outlines possible inductor and capacitor value combinations.

10.2.2.1 Output Filter Design

Table 2. Matrix of Output Capacitor and Inductor Combinations

<table>
<thead>
<tr>
<th>NOMINAL OUTPUT CAPACITOR VALUE [µF]</th>
<th>2x22</th>
<th>47</th>
<th>66</th>
<th>88</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.680</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1.0</td>
<td>+ (3)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1.5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -30%.
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by 20% and -50%.
(3) Typical application. Other check mark indicates recommended filter combinations

10.2.2.2 Inductor Selection
The inductor selection is affected by several parameter like inductor ripple current, output voltage ripple, transition point into Power Save Mode, and efficiency. See Table 3 for typical inductors.

Table 3. List of Recommended Inductors

<table>
<thead>
<tr>
<th>INDUCTOR VALUE</th>
<th>COMPONENT SUPPLIER</th>
<th>SIZE (LxWxH mm)</th>
<th>Isat/DCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µH</td>
<td>Coilcraft XAL4020-102ME</td>
<td>4 X 4 X 2.10</td>
<td>4.5A/10mΩ</td>
</tr>
<tr>
<td>1 µH</td>
<td>Toko, DFE322512C</td>
<td>3.2 X 2.5 X 1.2</td>
<td>4.7A/34mΩ</td>
</tr>
<tr>
<td>1 µH</td>
<td>TDK, SPM4012</td>
<td>4.4 X 4.1 X 1.2</td>
<td>4.1A/38mΩ</td>
</tr>
<tr>
<td>1 µH</td>
<td>Wuerth, 74438334010</td>
<td>3 X 3 X 1.2</td>
<td>6.6A/42.10mΩ</td>
</tr>
<tr>
<td>0.6 µH</td>
<td>Coilcraft XFL4012-601ME</td>
<td>4 X 4 X 1.2</td>
<td>5A/17.40mΩ</td>
</tr>
<tr>
<td>0.68µH</td>
<td>Wuerth,744383340068</td>
<td>3 X 3 X 1.2</td>
<td>7.7A/36mΩ</td>
</tr>
</tbody>
</table>

(1) See Third-Party Products Desclaimer

For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses. Especially at high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors, the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value, the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for the inductor in steady state operation is calculated using Equation 6. Only the equation which defines the switch current in boost mode is shown, because this provides the highest value of current and represents the critical current value for selecting the right inductor.

\[
D = \frac{V_{OUT} \cdot V_{IN}}{V_{OUT}}
\]

\[
I_{PEAK} = \frac{I_{OUT}}{\eta \times (1 - D)} + \frac{V_{IN} \times D}{2 \times f \times L}
\]

where

• D = Duty Cycle in Boost mode
• f = Converter switching frequency (typical 2.5MHz)
• L = Inductor value
• \(\eta\) = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)

Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current of the inductor needed. It's recommended to choose an inductor with a saturation current 20% higher than the value calculated using Equation 6. Possible inductors are listed in Table 3.
10.2.2.3 Capacitor Selection

10.2.2.3.1 Input Capacitor
At least a 10μF input capacitor is recommended to improve line transient behavior of the regulator and EMI behavior of the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the VIN and PGND pins of the IC is recommended. This capacitance can be increased without limit. If the input supply is located more than a few inches from the TPS63027 converter additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 μF is a typical choice.

10.2.2.3.2 Output Capacitor
For the output capacitor, use of a small ceramic capacitors placed as close as possible to the VOUT and PGND pins of the IC is recommended. The recommended effective output capacitance value is 20 μF with a variance as outlined in Table 2. This translates into a 44μF nominal capacitor (6.3V rated) for output voltages up to 3.5V.

There is also no upper limit for the output capacitance value. Larger capacitors causes lower output voltage ripple as well as lower output voltage drop during load transients.

10.2.2.4 Setting The Output Voltage
When the adjustable output voltage version TPS63027 is used, the output voltage is set by an external resistor divider. The resistor divider must be connected between VOUT, FB and GND. When the output voltage is regulated properly, the typical value of the voltage at the FB pin is 800 mV. The current through the resistive divider should be about 10 times greater than the current into the FB pin. The typical current into the FB pin is 0.1 μA, and the voltage across the resistor between FB and GND, R_2, is typically 800 mV. Based on these two values, the recommended value for R_2 should be lower than 180 kΩ, in order to set the divider current at 4μA or higher. It is recommended to keep the value for this resistor in the range of 180kΩ. From that, the value of the resistor connected between VOUT and FB, R_1, depending on the needed output voltage (V_{OUT}), can be calculated using Equation 7:

$$R_1 = R_2 \times \left(\frac{V_{OUT}}{V_{FB}} - 1 \right)$$ \hspace{1cm} (7)
10.2.3 Application Curves

Figure 6. Average Input Current vs Input Voltage

Figure 7. Maximum Output Current for a 4A Load

Figure 8. Efficiency vs Output Current

Figure 9. Output Voltage vs Output Current

Figure 10. Output Voltage Ripple in Buck-Boost Mode, VIN = 3.6 V, VOUT = 3.5 V, no Load

Figure 11. Switching Waveforms in Boost Mode, VIN = 3.0 V, VOUT = 3.5 V, 1-A Load
Figure 12. Switching Waveforms in Buck Mode, VIN = 4.3 V, VOUT = 3.5 V, 1-A Load

Figure 13. Switching Waveforms in Buck-Boost Mode, VIN = 3.55 V, VOUT = 3.5 V, 1-A Load

Figure 14. Load Transient Response Boost Mode, VIN = 3.0 V, VOUT = 3.5 V

Figure 15. Load Transient Response Buck Mode, VIN = 4.3 V, VOUT = 3.5 V

Figure 16. Load Transient Response, VIN = 3.5 V, VOUT = 3.5 V, PFM Mode

Figure 17. Line Sweep Response, VOUT = 3.5 V, 2-A Load
Figure 18. Line Transient Response, VOUT = 3.5 V, 1-A Load

Figure 19. Start Up After Enable, VIN = 3.7 V, VOUT = 3.5 V, no Load

Figure 20. Start Up After Enable, VIN = 3.7 V, VOUT = 3.5 V, 1-A Load
11 Power Supply Recommendations

The TPS63027 device family has no special requirements for its input power supply. The input power supply’s output current needs to be rated according to the supply voltage, output voltage and output current of the TPS63027.

12 Layout

12.1 Layout Guidelines

The PCB layout is an important step to maintain the high performance of the TPS63027 devices.

- Place input and output capacitors as close as possible to the IC. Traces need to be kept short. Routing wide and direct traces to the input and output capacitor results in low trace resistance and low parasitic inductance.
- Use a common-power GND
- Use separate traces for the supply voltage of the power stage; and, the supply voltage of the analog stage.
- The sense trace connected to FB is signal trace. Keep these traces away from L1 and L2 nodes.

12.2 Layout Example

![Figure 21. TPS63027 Layout](image-url)
13 Device and Documentation Support

13.1 Device Support

13.1.1 Third-Party Products Disclaimer
TI’s publication of information regarding third-party products or services does not constitute an endorsement regarding the suitability of such products or services or a warranty, representation or endorsement of such products or services, either alone or in combination with any TI product or service.

13.2 Documentation Support

13.2.1 Related Documentation
For related documentation see the following:

13.3 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.4 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI’s views; see TI’s Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.5 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

13.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.7 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS63027YFFR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YFF</td>
<td>25</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>TPS 63027</td>
<td></td>
</tr>
<tr>
<td>TPS63027YFFT</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YFF</td>
<td>25</td>
<td>250</td>
<td>RoHS & Green</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>TPS 63027</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp: The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material: Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

- **Reel Diameter**
- **Reel Width (W1)**

TAPE DIMENSIONS

- **A0** Dimension designed to accommodate the component width
- **B0** Dimension designed to accommodate the component length
- **K0** Dimension designed to accommodate the component thickness
- **W** Overall width of the carrier tape
- **P1** Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Sprocket Holes**
- **User Direction of Feed**
- **Pocket Quadrants**

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS63027YFFR</td>
<td>DSBGA</td>
<td>YFF</td>
<td>25</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.18</td>
<td>2.18</td>
<td>0.81</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS63027YFFT</td>
<td>DSBGA</td>
<td>YFF</td>
<td>25</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>2.18</td>
<td>2.18</td>
<td>0.81</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS63027YFFR</td>
<td>DSBGA</td>
<td>YFF</td>
<td>25</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS63027YFFT</td>
<td>DSBGA</td>
<td>YFF</td>
<td>25</td>
<td>250</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated