TPS65216 Power Management IC (PMIC) With 4 DC/DC Converters, 1 LDO, and Integrated Power Sequencing

1 Device Overview

1.1 Features

- Three Adjustable Step-Down Converters With Integrated Switching FETs (DCDC1, DCDC2, and DCDC3):
- DCDC1: 1.1-V Default, up to 1.8 A
- DCDC2: 1.1-V Default, up to 1.8 A
- DCDC3: 1.2-V Default, up to 1.8 A
- VIN Range From 3.6 V to 5.5 V
- Adjustable Output Voltage Range 0.85 V to 1.675 V (DCDC1 and DCDC2)
- Adjustable Output Voltage Range 0.9 V to 3.4 V (DCDC3)
- Power Save Mode at Light Load Current
- 100\% Duty Cycle for Lowest Dropout
- Active Output-Discharge When Disabled
- One Adjustable Buck-Boost Converter With Integrated Switching FETs (DCDC4):
- DCDC4: 3.3-V Default, up to 1.6 A
- VIN Range from 3.6 V to 5.5 V
- Adjustable Output Voltage Range from 1.175 V to 3.4 V
- Active Output-Discharge When Disabled
- Adjustable General-Purpose LDO (LDO1)
- LDO1: 1.8-V Default up to 400 mA
- VIN Range from 1.8 V to 5.5 V
- Adjustable Output Voltage Range from 0.9 V to 3.4 V
- Active Output-Discharge When Disabled
- High-Voltage Load Switch (LS) With $100-\mathrm{mA}$ or 500-mA Selectable Current Limit
- VIN Range From 1.8 V to 10 V
- 500-m Ω (Max) Switch Impedance
- Supervisor With Built-in Supervisor Function Monitors
- DCDC1, DCDC2 $\pm 4 \%$ Tolerance
- DCDC3, DCDC4 $\pm 5 \%$ Tolerance
- LDO1 $\pm 5 \%$ Tolerance
- Protection, Diagnostics, and Control:
- Undervoltage Lockout (UVLO)
- Always-on Push-Button Monitor
- Overtemperature Warning and Shutdown
- $I^{2} \mathrm{C}$ Interface (Address 0x24) (See Timing Requirements for $\mathrm{I}^{2} \mathrm{C}$ Operation at 400 kHz)

1.2 Applications

- Grid Infrastructure
- Human-Machine Interface (HMI)
- Industrial Automation
- Electronic Point of Sale (ePOS)
- Test and Measurement
- Industrial Communications
- Backplane I/O
- Connected Industrial Drives

1.3 Description

The TPS65216 is a single chip, power-management IC (PMIC) specifically designed to support the AMIC110, AMIC120, AM335x, and AM437x line of processors in line-powered (5 V) applications. The device is characterized across a $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range, making it suitable for various industrial applications.

The TPS65216 is specifically designed to provide power management for all the functionalities of the AMIC110, AMIC120, AM335x, and AM437x. The DC/DC converters DCDC1 through DCDC4 are intended to power the core, MPU, DDR memory, and $3.3-\mathrm{V}$ analog and I/O, respectively. LDO1 provides the $1.8-\mathrm{V}$ analog and I/O for the processor. GPIO2 allows for warm reset of the DCDC1 and DCDC2 converters. The $I^{2} \mathrm{C}$ interface allows the user to enable and disable all voltage regulators, the load switch, and GPIOs. Additionally, UVLO and supervisor voltage thresholds, power-up sequence, and power-down sequence can be programmed through $I^{2} \mathrm{C}$. Interrupts for overtemperature, overcurrent, and undervoltage can be monitored as well. The supervisor monitors DCDC1 through DCDC4 and LDO1. The supervisor has two settings, one for typical undervoltage tolerance (STRICT $=0 \mathrm{~b}$), and one for tight undervoltage and overvoltage tolerances (STRICT = 1b). A power-good signal indicates proper regulation of the five voltage regulators.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Three hysteretic step-down converters are targeted at providing power for the processor core, MPU, and DDRx memory. The default output voltages for each converter can be adjusted through the $\mathrm{I}^{2} \mathrm{C}$ interface. DCDC1 and DCDC2 feature dynamic voltage scaling to provide power at all operating points of the processor. DCDC1 and DCDC2 also have programmable slew rates to help protect processor components. DCDC3 remains powered while the processor is in sleep mode to maintain power to DDRx memory.
The TPS65216 device is available in a 48-pin VQFN package ($6 \mathrm{~mm} \times 6 \mathrm{~mm}, 0.4-\mathrm{mm}$ pitch).

Device Information ${ }^{(1)}$			
PART NUMBER	PACKAGE	BODY SIZE (NOM)	
TPS65216	VQFN (48)	$6.00 \mathrm{~mm} \times 6.00 \mathrm{~mm}$	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

1.4 Simplified Schematic

Figure 1-1. Simplified Schematic

Table of Contents

1 Device Overview 1
1.1 Features 1
1.2 Applications 1
1.3 Description 1
1.4 Simplified Schematic 3
2 Revision History 4
3 Pin Configuration and Functions 5
3.1 Pin Functions 5
4 Specifications 7
4.1 Absolute Maximum Ratings 7
4.2 ESD Ratings 7
4.3 Recommended Operating Conditions 8
4.4 Thermal Information 8
4.5 Electrical Characteristics $\underline{9}$
4.6 Timing Requirements 15
4.7 Typical Characteristics 17
5 Detailed Description 18
5.1 Overview 18
5.2 Functional Block Diagram 19
5.3 Feature Description $\underline{20}$
5.4 Device Functional Modes 38
5.5 Register Maps 40
6 Application and Implementation 81
6.1 Application Information 81
6.2 Typical Application 82
7 Power Supply Recommendations 85
8 Layout 85
8.1 Layout Guidelines 85
8.2 Layout Example 86
9 Device and Documentation Support 87
9.1 Device Support 87
9.2 Documentation Support 87
9.3 Receiving Notification of Documentation Updates 87
9.4 Support Resources 87
9.5 Trademarks 87
9.6 Electrostatic Discharge Caution 88
9.7 Glossary 88
10 Mechanical, Packaging, and Orderable Information 88
10.1 Package Option Addendum 89

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Original (October 2018) to Revision A Page

TPS65216

3 Pin Configuration and Functions

Figure 3-1 shows the 48-pin RSL Plastic Quad Flatpack No-Lead.

		\square	-		$\underset{\vdots}{\underset{\Sigma}{\Sigma}}$		N O O Z		~		¢	9	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { a } \\ & \underline{z} \end{aligned}$		
	\bigcirc		1 ¢ ¢		$\begin{gathered} \hline 1 \\ \llcorner 1 \\ \text { \& } \end{gathered}$	$$		$\begin{array}{c\|} \hline \text { I } \\ \text { ㄴ } \\ \text { 〒 } \end{array}$	$\begin{array}{cc} \hline 1 \\ \hline-1 \end{array}$	$\begin{gathered} \hline \text { I } \\ \llcorner 1 \\ \circ \end{gathered}$	$\begin{array}{ll} 1 \\ \hline & 1 \\ \text { 융 } \end{array}$	$\begin{gathered} \hline 1 \\ \llcorner 1 \\ \infty \end{gathered}$	$\begin{array}{ll} \hline 1 \\ \wedge & 1 \\ \hat{m} \end{array}$		
IN_DCDC1	--1 1													36	IN_BIAS
SDA	--12		1									1		35	INT_LDO
			1									1			
SCL	-1 3		1									1		34	N/C
			1									1			
LDO1	--1 4		1									1		33	GND
			1									1			
IN_LDO1	--15		1									1		32	GND
			1									1			
IN_LS	--1 6		1									1		31	GND
			,				Ther	mal				1			
LS	--17		1				Pa					1		30	GND
			1									1			
PGOOD	- - 8		1									1		29	N/C
			I									1			
AC_DET	--19		1									1		28	N/C
			1									1			
nPFO	--- 10		1									1		27	GND
			1									1			
GPIO1	--- 11													26	GPIO2
IN_DCDC4	---1 12													25	GND
			\square	$\stackrel{\square}{\square}$	$\stackrel{\square}{\bullet}$	\wedge	$\stackrel{\infty}{\sim}$	๑๐	-	$\bar{\sim}$	N	N	~		
		-1	11	-1	1 -1	-1		-1	-1	-1	11	-1	1		
		$\stackrel{\varangle}{\triangleleft}$	$\underset{ \pm}{\infty}$	$\begin{aligned} & \text { U } \\ & \text { O} \\ & \text { O} \end{aligned}$	$\frac{\overline{1}}{\square}$	$\begin{aligned} & \vec{山} \\ & \omega \\ & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & Z \end{aligned}$	$\frac{0}{z}$	$\underset{\sim}{\mathrm{O}}$	$\underset{\sim}{\mathrm{O}}$	$\underset{\sim}{\mathrm{O}}$	$\underset{\sim}{\mathrm{O}}$	\sum_{0}^{2}		cale

Figure 3-1. 48-Pin RSL VQFN With Exposed Thermal Pad (Top View, $6 \mathrm{~mm} \times 6 \mathrm{~mm} \times 1 \mathrm{~mm}$ With $0.4-\mathrm{mm}$ Pitch)

3.1 Pin Functions

Pin Functions

| PIN | | DYPE | |
| :--- | :---: | :---: | :--- | :--- |
| NO. | NAME | | |
| 1 | IN_DCDC1 | P | Input supply pin for DCDC1. |
| 2 | SDA | I/O | Data line for the I ${ }^{2}$ C interface. Connect to pullup resistor. |
| 3 | SCL | I | Clock input for the I²C interface. Connect to pullup resistor. |
| 4 | LDO1 | O | Output voltage pin for LDO1. Connect to capacitor. |
| 5 | IN_LDO1 | P | Input supply pin for LDO1. |
| 6 | IN_LS | P | Input supply pin for the load switch. |
| 7 | LS | O | Output voltage pin for the load switch. Connect to capacitor. |
| 8 | PGOOD | O | Power-good output (configured as open drain). Pulled low when either DCDC1-4 or LDO1 are out of
 regulation. Load switch does not affect PGOOD pin. |
| 9 | AC_DET | I | AC monitor input and enable for DCDC1-4, LDO1 and load switch. See Section 5.4.1 for details. Tie pin to
 IN_BIAS if not used. |

Pin Functions (continued)

PIN		TYPE	DESCRIPTION
NO.	NAME		
10	nPFO	0	Power-fail comparator output, deglitched (open drain). Pin is pulled low when PFI input is below power-fail threshold.
11	GPIO1	I/O	General-purpose, open-drain output. See Section 5.3.1.11 for more information.
12	IN_DCDC4	P	Input supply pin for DCDC4.
13	L4A	P	Switch pin for DCDC4. Connect to inductor.
14	L4B	P	Switch pin for DCDC4. Connect to inductor.
15	DCDC4	P	Output voltage pin for DCDC4. Connect to capacitor.
16	PFI	1	Power-fail comparator input. Connect to resistor divider.
17	DC34_SEL	1	Power-up default selection pin for DCDC3 or DCDC4. Power-up default is programmed by a resistor connected to ground. See Section 5.3.1.10 for resistor options.
18	N/C	-	No connect. Leave pin floating.
19	N/C	-	No connect. Leave pin floating.
20	GND	-	Connect pin to ground.
21	GND		
22	GND		
23	GND		
24	GND		
25	GND		
26	GPIO2	I/O	Pin can be configured as warm reset (negative edge) for DCDC1 and DCDC2 or as a general-purpose, opendrain output. See Section 5.3.1.11 for more details.
27	GND	-	Connect pin to ground.
28	N/C	-	No connect. Leave pin floating.
29	N/C		
30	GND	-	Connect pin to ground.
31	GND		
32	GND		
33	GND		
34	N/C	-	No connect. Leave pin floating.
35	INT_LDO	P	Internal bias voltage. Connect to a $1-\mu \mathrm{F}$ capacitor. TI does not recommended connecting any external load to this pin.
36	IN_BIAS	P	Input supply pin for reference system.
37	IN_DCDC3	P	Input supply pin for DCDC3.
38	L3	P	Switch pin for DCDC3. Connect to inductor.
39	FB3	1	Feedback voltage pin for DCDC3. Connect to output capacitor.
40	nWAKEUP	0	Signal to SOC to indicate a power on event (active low, open-drain output).
41	FB2	1	Feedback voltage pin for DCDC2. Connect to output capacitor.
42	L2	P	Switch pin for DCDC2. Connect to inductor.
43	IN_DCDC2	P	Input supply pin for DCDC2.
44	PB	1	Push-button monitor input. Typically connected to a momentary switch to ground (active low). See Section 5.4.1 for details.
45	nINT	0	Interrupt output (active low, open drain). Pin is pulled low if an interrupt bit is set. The pin returns to $\mathrm{Hi}-\mathrm{Z}$ state after the bit causing the interrupt has been read. Interrupts can be masked.
46	PWR_EN	1	Power enable input for DCDC1-4, LDO1 and load switch. See Section 5.4.1 for details.
47	FB1	1	Feedback voltage pin for DCDC1. Connect to output capacitor.
48	L1	P	Switch pin for DCDC1. Connect to inductor.
-	Thermal Pad	P	Power ground and thermal relief. Connect to ground plane.

4 Specifications

4.1 Absolute Maximum Ratings

Operating under free-air temperature range (unless otherwise noted). ${ }^{(1)}$

		MIN	MAX	UNIT
Supply voltage	IN_BIAS, IN_LDO1, IN_DCDC1, IN_DCDC2, IN_DCDC3, IN_DCDC4	-0.3	7	V
	IN_LS	-0.3	11.2	
Input voltage	All pins unless specified separately	-0.3	7	V
Output voltage	All pins unless specified separately	-0.3	7	V
Sink current	PGOOD, nWAKEUP, nINT, nPFO, SDA, GPIO1, GPIO2		6	mA
Operating ambient temperature		-40	105	${ }^{\circ} \mathrm{C}$
Junction temperature		-40	125	${ }^{\circ} \mathrm{C}$
Storage temperature		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

4.2 ESD Ratings

			VALUE	UNIT
	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	± 2000	V
ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ${ }^{(2)}$	± 500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).

		MIN	NOM MAX	UNIT
Supply voltage, IN_BIAS		3.6	5.5	V
Input voltage for DCDC1, DCDC2, DCDC3, and DCDC4		3.6	5.5	V
Input voltage for LDO1		1.8	5.5	V
Input voltage for LS		1.8	10	V
Output voltage for DCDC1		0.85	1.675	V
Output voltage for DCDC2		0.85	1.675	V
Output voltage for DCDC3		0.9	3.4	V
Output voltage for DCDC4		1.175	3.4	V
Output voltage for LDO1		0.9	3.4	V
Output current for DCDC1, DCDC2, and DCDC3		0	1.8	A
Output current for DCDC4	VIN_DCDC4 $=2.8 \mathrm{~V}$		1	A
	VIN_DCDC4 $=3.6 \mathrm{~V}$		1.3	
	VIN_DCDC4 $=5 \mathrm{~V}$		1.6	
Output current for LDO1		0	400	mA
Output current for LS	VIN_LS > 2.3 V	0	900	mA
	VIN_LS $\leq 2.3 \mathrm{~V}$	0	475	

4.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		TPS65216	UNIT
		RSL (VQFN)	
		48 PINS	
$\mathrm{R}_{\theta \mathrm{\theta JC} \text { (top) }}$	Junction-to-case (top)	17.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board	5.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal resistance, junction-to-ambient. JEDEC 4-layer, high-K board.	30.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-package top	0.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ψ_{JB}	Junction-to-board	5.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(bot) }}$	Junction-to-case (bottom)	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

4.5 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted).

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted).

(1) $500-\mu \mathrm{F}$ of remote capacitance can be supported for DCDC1 and DCDC2.

TPS65216
www.ti.com

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted).

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted).

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	High-side FET on resistance	$\mathrm{V}_{\text {IN_DCDC3 }}=3.6 \mathrm{~V}$	IN_DCDC4 to L4A		166		$m \Omega$
			L4B to DCDC4		149		
	Low-side FET on resistance	$\mathrm{V}_{\text {IN_DCDC3 }}=3.6 \mathrm{~V}$	L4A to GND		142	190	
			L4B to GND		144	190	
$\mathrm{l}_{\text {LIMIT }}$	Average switch current limit	$\mathrm{V}_{\text {IN }}$ DCDC4 $4=3.6 \mathrm{~V}$			3000		mA
V_{PG}	Power-good threshold	$\mathrm{V}_{\text {OUT }}$ falling	STRICT $=0 \mathrm{~b}$	88.5\%	90\%	91.5\%	
			STRICT $=1 \mathrm{~b}$	95\%	95.5\%	96\%	
	Hysteresis	$\mathrm{V}_{\text {OUt }}$ rising	STRICT $=0 \mathrm{~b}$	3.8\%	4.1\%	4.4\%	
			STRICT $=1 \mathrm{~b}$		0.25\%		
	Deglitch	$\mathrm{V}_{\text {OUT }}$ falling	STRICT $=0 \mathrm{~b}$		1		ms
			STRICT $=1 \mathrm{~b}$		50		$\mu \mathrm{s}$
		$V_{\text {Out }}$ rising	STRICT $=0 \mathrm{~b}$		10		$\mu \mathrm{s}$
			STRICT $=1 \mathrm{~b}$		10		$\mu \mathrm{s}$
	Time-out	Occurs at enable register write (regis	d after DCDC4		5		ms
Vov	Overvoltage detection threshold	$\mathrm{V}_{\text {OUT }}$ rising, STRICT $=1 \mathrm{~b}$		104\%	104.5\%	105\%	
	Hysteresis	$\mathrm{V}_{\text {OUT }}$ falling, STRICT $=1 \mathrm{~b}$			0.25\%		
	Deglitch	$\mathrm{V}_{\text {OUT }}$ rising, STRICT $=1 \mathrm{~b}$			50		$\mu \mathrm{s}$
$\mathrm{I}_{\text {INRUSH }}$	Inrush current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN} \text { DCDC4 }}=3.6 \mathrm{~V} \\ & \leq 100 \mu \mathrm{~F} \end{aligned}$	$5.5 \mathrm{~V} ; 40 \mu \mathrm{~F} \leq \mathrm{C}_{\text {OUt }}$			500	mA
$\mathrm{R}_{\text {DIS }}$	Discharge resistor			150	250	350	Ω
L	Nominal inductor value	See Table 6-2.		1.2	1.5	2.2	$\mu \mathrm{H}$
	Tolerance			-30\%		30\%	
Cout	Output capacitance value	Ceramic, X5R or X7R, see Table 6-3.		40	80	100	$\mu \mathrm{F}$

TPS65216
www.ti.com

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted).

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
LDO1 (1.8-V LDO)							
$\mathrm{V}_{\text {IN_LDO1 }}$	Input voltage range	$\mathrm{V}_{\text {IN_BIAS }}>\mathrm{V}_{\text {UVLO }}$		1.8		5.5	V
I_{Q}	Quiescent current	No load			35		$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$	Output voltage range	Adjustable through $\mathrm{I}^{2} \mathrm{C}$		0.9		3.4	V
	DC accuracy	$\mathrm{V}_{\text {OUT }}+0.2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V} ; 0 \mathrm{~A} \leq \mathrm{l}_{\text {OUT }} \leq 200 \mathrm{~mA}$		-2\%		2\%	
lout	Output current range	$\mathrm{V}_{\text {IN_LDO1 }}-\mathrm{V}_{\text {DO }}=\mathrm{V}_{\text {OUT }}$		0		200	mA
		$\mathrm{V}_{\text {IN_LDO1 }}>2.7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V}$		0		400	
l LIMIT	Short circuit current limit	Output shorted to GND		445	550		mA
V_{DO}	Dropout voltage	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$				200	mV
V_{PG}	Power-good threshold	$\mathrm{V}_{\text {OUT }}$ falling	STRICT $=0 \mathrm{~b}$	86\%	90\%	94\%	
			STRICT $=1 \mathrm{~b}$	95\%	95.5\%	96\%	
		Hysteresis, $\mathrm{V}_{\text {OUT }}$ rising	STRICT $=0 \mathrm{~b}$	3\%	4\%	5\%	
			STRICT $=1 \mathrm{~b}$		0.25\%		
	Deglitch	$\mathrm{V}_{\text {OUt }}$ falling	STRICT $=0 \mathrm{~b}$		1		ms
			STRICT $=1 \mathrm{~b}$		50		$\mu \mathrm{s}$
		V ${ }_{\text {OUT }}$ rising	STRICT $=0 \mathrm{~b}$		10		$\mu \mathrm{s}$
			STRICT $=1 \mathrm{~b}$		10		$\mu \mathrm{s}$
	Time-out				5		ms
V_{OV}	Overvoltage detection threshold	$\mathrm{V}_{\text {OUT }}$ rising, STRICT $=1 \mathrm{~b}$		104\%	104.5\%	105\%	
	Hysteresis	$\mathrm{V}_{\text {OUT }}$ falling, STRICT $=1 \mathrm{~b}$			0.25\%		
	Deglitch	$\mathrm{V}_{\text {OUT }}$ rising, STRICT $=1 \mathrm{~b}$			50		$\mu \mathrm{s}$
		$\mathrm{V}_{\text {OUT }}$ falling, STRICT $=1 \mathrm{~b}$			1		ms
$\mathrm{R}_{\text {DIS }}$	Discharge resistor			150	250	380	Ω
C OUT	Output capacitance value	Ceramic, X5R or X7R			22	100	$\mu \mathrm{F}$
LOAD SWITCH							
VIN_LS	Input voltage range	$\mathrm{V}_{\text {IN_BIAS }}>\mathrm{V}_{\text {UVLO }}$		1.8		10	V
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Static on resistance	$\mathrm{V}_{\mathrm{IN} \text { Ls }}=9 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}$, over full temperature range				440	
		$\mathrm{V}_{\mathrm{IN} \text { Ls }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$, over full temperature range				526	
		$\mathrm{V}_{\text {IN }} \mathrm{Ls}=2.8 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}$, over full temperature range				656	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN_LS }}=1.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$, over full temperature range				910	
ILIMIt	Short circuit current limit	$\mathrm{V}_{\mathrm{IN} \text { LS }}>2.3 \mathrm{~V}$, Output shorted to GND	LSILIM[1:0] = 00b	98		126	mA
			LSILIM[1:0] = 01b	194		253	
			LSILIM[1:0] = 10b	475		738	
			LSILIM[1:0] = 11b	900		1234	
		$\mathrm{V}_{\mathrm{IN} \text { LS }} \leq 2.3 \mathrm{~V}$, Output shorted to GND	LSILIM[1:0] = 00b	98		126	
			LSILIM[1:0] = 01b	194		253	
			LSILIM[1:0] = 10b	475		738	
$\mathrm{t}_{\text {BLANK }}$	Interrupt blanking time	Output shorted to GND until interrupt is triggered.			15		ms
$\mathrm{R}_{\text {DIS }}$	Internal discharge resistor at output ${ }^{(2)}$	LSDCHRG = 1		650	1000	1500	Ω
Tots	Overtemperature shutdown ${ }^{(3)}$			125	132	139	${ }^{\circ} \mathrm{C}$
	Hysteresis				10		${ }^{\circ} \mathrm{C}$

(2) Discharge function disabled by default.
(3) Switch is temporarily turned OFF if input voltage drops below UVLO threshold.

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP
COUT	Nominal output capacitance value	Ceramic, X5R or X7R, see Table 6-3.	1	100

I/O LEVELS AND TIMING CHARACTERISTICS

${ }^{P} G_{\text {DLY }}$	PGOOD delay time	PGDLY[1:0] = 00b		10	ms
		PGDLY[1:0] = 01b		20	
		PGDLY[1:0] = 10b		50	
		PGDLY[1:0] = 11b		150	
t_{DG}	Deglitch time	PB input	Rising edge	100	ms
			Falling edge	50	ms
		AC_DET input	Rising edge	100	$\mu \mathrm{s}$
			Falling edge	10	ms
		PWR_EN input	Rising edge	10	ms
			Falling edge	100	$\mu \mathrm{s}$
		GPIO1	Rising edge	1	ms
			Falling edge	1	ms
		GPIO2	Rising edge	5	$\mu \mathrm{s}$
			Falling edge	5	$\mu \mathrm{s}$
$\mathrm{t}_{\text {RESET }}$	Reset time	PB input held low	TRST $=0 \mathrm{~b}$	8	s
			TRST $=1 \mathrm{~b}$	15	
$\mathrm{V}_{1 \mathrm{H}}$	High level input voltage	SCL, SDA, GPIO1, and GPIO2		1.3	V
		AC_DET, PB		$\begin{array}{r} 0.66 \times \\ \text { IN_BIAS } \end{array}$	
		PWR_EN		1.3	
$\mathrm{V}_{\text {IL }}$	Low level input voltage	SCL, SDA, PWR GPIO2	PB, GPIO1, and	0	V
$\mathrm{V}_{\text {OL }}$	Low level output voltage	nWAKEUP, nINT, SDA, PGOOD, GPIO1, and GPIO2; $I_{\text {IINK }}=2 \mathrm{~mA}$		0	V
		nPFO; $\mathrm{I}_{\text {IINK }}=2 \mathrm{~mA}$		0	
$\mathrm{V}_{\text {PFI }}$	Power-fail comparator threshold	Input falling		800	mV
	Hysteresis	Input rising		40	mV
	Accuracy			-4\%	
	Deglitch	Input falling		25	$\mu \mathrm{s}$
		Input rising		10	ms
ldC34_SEL	DC34_SEL bias current	Enabled only at pow		10	$\mu \mathrm{A}$
V ${ }_{\text {DC34_SEL }}$	DCDC3 and DCDC4 power-up default selection thresholds	Threshold 1		100	mV
		Threshold 2		163	
		Threshold 3		275	
		Threshold 4		400	
		Threshold 5		575	
		Threshold 6		825	
		Threshold 7		1200	

TPS65216
www.ti.com

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{R}_{\text {DC34_SEL }}$	DCDC3 and DCDC4 power-up default selection resistor values	Setting 0	0	0	7.7	k Ω
		Setting 1		12.1		
		Setting 2		20		
		Setting 3	30.9	31.6	32.3	
		Setting 4		45.3		
		Setting 5				
		Setting 6		95.3		
		Setting 7		150		
$\mathrm{I}_{\text {BIAS }}$	Input bias current	SCL, SDA, GPIO1 ${ }^{(4)}$, $\mathrm{GPIO}^{(4)} ; \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$
		PB, AC_DET, PFI; $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$			500	nA
liEAK	Pin leakage current	nINT, nWAKEUP, nPFO, PGOOD, PWR_EN, GPIO1 ${ }^{(5)}$, GPIO2 ${ }^{(5)}$ $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$			500	nA
OSCILLATOR						
$f_{\text {OSC }}$	Oscillator frequency		2400			kHz
	Frequency accuracy	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	-12\%		12\%	
OVERTEMPERATURE SHUTDOWN						
Tots	Overtemperature shutdown	Increasing junction temperature	135	145	155	${ }^{\circ} \mathrm{C}$
	Hysteresis	Decreasing junction temperature		20		
Twarn	High-temperature warning	Increasing junction temperature	90	100	110	${ }^{\circ} \mathrm{C}$
	Hysteresis	Decreasing junction temperature		15		

(4) Configured as input.
(5) Configured as output.

4.6 Timing Requirements

[^0]Timing Requirements (continued)

			MIN	NOM	MAX	UNIT
$t_{\text {BUF }}$	Bus free time between STOP and START condition	SCL $=100 \mathrm{kHz}$	4.7			$\mu \mathrm{s}$
		SCL $=400 \mathrm{kHz}$	1.3			
t_{SP}	Pulse width of spikes which must be suppressed by the input filter	SCL $=100 \mathrm{kHz}$	- $^{(2)}$		- ${ }^{(2)}$	ns
		SCL $=400 \mathrm{kHz}$	0		50	
C_{b}	Capacitive load for each bus line	SCL $=100 \mathrm{kHz}$			400	pF
		SCL $=400 \mathrm{kHz}$			400	

(2) The inputs of $\mathrm{I}^{2} \mathrm{C}$ devices in Standard-mode do not require spike suppression.

TPS65216

4.7 Typical Characteristics

At $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Figure 4-1. DCDC1 Accuracy

Figure 4-3. DCDC3 Accuracy

$\mathrm{V}_{\text {OUT }}=1.1 \mathrm{~V}$
Figure 4-2. DCDC2 Accuracy

Figure 4-4. DCDC4 Accuracy

5 Detailed Description

5.1 Overview

The TPS65216 provides three step-down converters three general-purpose I/Os, one buck-boost converter, one load switch, and one LDO. The system can be supplied by a regulated $5-\mathrm{V}$ supply. The device is characterized across a $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range, which makes it suitable for various industrial applications.
The $I^{2} \mathrm{C}$ interface provides comprehensive features for using TPS65216. All rails, the load switch, and GPIOs can be enabled and disabled. Voltage thresholds for the UVLO and supervisor can be customized. Power-up and power-down sequences can also be programmed through $I^{2} \mathrm{C}$. Interrupts for overtemperature, overcurrent, and undervoltage can be monitored for the load-switch.

The integrated voltage supervisor monitors DCDC 1-4 and LDO1. It has two settings; the standard settings only monitor for undervoltage, while the strict settings implement tight tolerances on both undervoltage and overvoltage. A power-good signal is provided to report the regulation state of the five rails.
The three hysteretic step-down converters can each supply up to 1.8 A of current. The default output voltages for each converter can be adjusted through the $I^{2} \mathrm{C}$ interface. DCDC1 and DCDC2 features dynamic voltage scaling with an adjustable slew rate. The step-down converters operate in a low power mode at light load, and can be forced into power mode (PWM) operation for noise sensitive applications.

TPS65216
www.ti.com

5.2 Functional Block Diagram

5.3 Feature Description

5.3.1 Wake-Up and Power-Up and Power-Down Sequencing

The TPS65216 has a predefined power-up and power-down sequence, which does not change in a typical application. The user can define custom sequences with $I^{2} \mathrm{C}$. The power-up sequence is defined by a series of ten strobes and nine delay times. Each output rail is assigned to a strobe to determine the order of enabling rails. A single rail is assigned to only one strobe, but multiple rails can be assigned to the same strobe. The delay times between strobes are between 2 ms and 5 ms .

5.3.1.1 Power-Up Sequencing

When the power-up sequence initiates, STROBE 1 occurs, and any rail assigned to this strobe is enabled. After a delay time of DLY1, STROBE 2 occurs and the rail assigned to this strobe is powered up. The sequence continues until all strobes occur and all DLYx times execute. Strobe assignments and delay times are defined in the SEQx registers, and are changed under $I^{2} \mathrm{C}$ control. The power-up sequence executes if one of the following events occurs:

- From the OFF state:
- The push-button (PB) is pressed (falling edge on PB) or
- The AC_DET pin is pulled low (falling edge) or
- The PWR_EN is asserted (driven to high-level) or
- The main power is connected (IN_BIAS) and AC_DET is grounded and
- The device is not in undervoltage lockout (UVLO) or overtemperature shutdown (OTS).
- From the PRE_OFF state:
- The PB is pressed (falling edge on PB) or
- The AC_DET pin is pulled low (falling edge) or
- The PWR_EN is asserted (driven to high-level) and
- The device is not in UVLO or OTS.
- From the SUSPEND state:
- The PB is pressed (falling edge on PB) or
- The AC_DET pin is pulled low (falling edge) or
- The PWR_EN pin is pulled high (level sensitive) and
- The device is not in UVLO or OTS.

When a power-up event is detected, the device enters a WAIT_PWR_EN state and triggers the power-up sequence. The device remains in WAIT_PWR_EN as long as the PWR_EN and either the PB or AC_DET pin are held low. If both, the PB and AC_DET return to logic-high state and the PWR_EN pin has not been asserted within 20 s of entering WAIT_PWR_EN state, the power-down sequence is triggered and the device returns to OFF state. Once PWR_EN is asserted, the device advances to ACTIVE state, which is functionally equivalent to WAIT_PWR_EN. However, the AC_DET pin is ignored and power-down is controlled by the PWR_EN pin only.
Rails not assigned to a strobe (SEQ $=0000 \mathrm{~b}$) are not affected by power-up and power-down sequencing and remain in their current ON or OFF state regardless of the sequencer. A rail can be enabled and disabled at any time by setting the corresponding enable bit in the ENABLEx register, with the exception that the ENABLEx register cannot be accessed while the sequencer is active. Enable bits always reflect the current enable state of the rail. For example, the sequencer sets and resets the enable bits for the rails under its control.

NOTE

The power-up sequence is defined by strobes and delay times, and can be triggered by the PB, AC_DET (not shown, same as PB), or PWR_EN pin.

TPS65216

STROBE 1 STROBE 2 STROBE 3 STROBE 4 STROBE 5 STROBE 6 STROBE $7 \quad$ STROBE 8 STROBE 9 STROBE 10 $S E Q=0001 b \quad S E Q=0010 b \quad S E Q=0011 b \quad S E Q=0100 b \quad S E Q=0101 b \quad S E Q=0110 b S E Q=0111 b \quad S E Q=1000 b \quad S E Q=1001 b \quad S E Q=1010 b$ Push-button deglitch time is not shown.

Figure 5-1. Power-Up Sequences from OFF or SUSPEND State; PB is Power-Up Event

Figure 5-2. Power-Up Sequences from SUSPEND State; PWR_EN is Power-Up Event

STROBE 1 STROBE 2 STROBE 3 STROBE 4 STROBE 5 STROBE 6 STROBE $7 \quad$ STROBE 8 STROBE 9 STROBE 10 $S E Q=0001 b S E Q=0010 b \quad S E Q=0011 b \quad S E Q=0100 b \quad S E Q=0101 b \quad S E Q=0110 b S E Q=0111 b \quad S E Q=1000 b \quad S E Q=1001 b \quad S E Q=1010 b$

Figure 5-3. Power-Up Sequences from RECOVERY State

5.3.1.2 Power-Down Sequencing

By default, the power-down sequence follows the reverse of the power-up sequence. When the powerdown sequence is triggered, STROBE 10 occurs and any rail assigned to STROBE 10 is shut down and its discharge circuit is enabled. After a delay time of DLY9, STROBE 9 occurs and any rail assigned to it is shut down and its discharge circuit is enabled. The sequence continues until all strobes occur and all DLYx times execute. The DLYx times are extended by a factor of $10 x$ to provide ample time for discharge, and preventing output voltages from crossing during shut-down. The DLYFCTR bit is applied globally to all power-down delay times. Regardless of the DLYx and DLYFCTR settings, the PMIC enters OFF, SUSPEND, or RECOVERY state 500 ms after the power-down sequence initiates, to ensure that the discharge circuits remain enabled for a minimum of 150 ms before the next power-up sequence starts.

A power-down sequence executes if one of the following events occurs:

- The device is in the WAIT_PWR_EN state, the PB and AC_DET pins are high, PWR_EN is low, and the 20 -s timer has expired.
- The device is in the ACTIVE state and the PWR_EN pin is pulled low.
- The device is in the WAIT_PWR_EN, ACTIVE, or SUSPEND state and the push-button is held low for $>8 \mathrm{~s}(15 \mathrm{~s}$ if TRST $=1 \mathrm{~b})$.
- A fault occurs in the device (OTS, UVLO, PGOOD failure).

When transitioning from ACTIVE to SUSPEND state, the rails not controlled by the power-down sequencer maintains the same ON/OFF state in SUSPEND state that it had in ACTIVE state. This allows for the selected power rails to remain powered up when in the SUSPEND state.
When transitioning to the OFF or RECOVERY state, rails not under sequencer control are shut-down as follows:

- DCDC1, DCDC2, DCDC3, DCDC4, and LDO1 shut down at the beginning of the power-down sequence, if not under sequencer control ($\mathrm{SEQ}=0 \mathrm{~b}$).
- LS shuts down as the state machine enters an OFF or RECOVERY state; 500 ms after the powerdown sequence is triggered.

If the supply voltage on IN _BIAS drops below 2.5 V , the digital core is reset and all power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4, and LDO1). The amount of time the discharge circuitry remains active is a function of the INT_LDO hold up time (see Section 5.3.1.5 for more details).

5.3.1.3 Strobe 1 and Strobe 2

STROBE 1 and STROBE 2 are special strobes that are not used in the TPS65216 device, but STROBE 1 and STROBE 2 are still executed for power-up. The power-up sequence starts at STROBE 3 after DLY1 and DLY2 timers. The power-down sequence ends at STROBE 3.

STROBE 10 STROBE 9 STROBE 8 STROBE 7 STROBE 6 STROBE 5 STROBE $4 \quad$ STROBE $3 \quad$ STROBE 2 STROBE 1 $S E Q=1010 b \quad S E Q=1001 b \quad S E Q=1000 b \quad S E Q=0111 b \quad S E Q=0110 b \quad S E Q=0101 b \quad S E Q=0100 b \quad S E Q=0011 b \quad S E Q=0010 b S E Q=0001 b$

Figure 5-4. Power-Down Sequences to OFF State; PWR_EN is Power-Down Event

Figure 5-5. Power-Down Sequences to SUSPEND State;

PWR_EN is Power-Down Event

STROBE 10 STROBE 9 STROBE 8 STROBE 7 STROBE 6 STROBE 5 STROBE 4 STROBE 3 $S E Q=1010 b S E Q=1001 b \quad S E Q=1000 b \quad S E Q=0111 b \quad S E Q=0110 b \quad S E Q=0101 b \quad S E Q=0100 b \quad S E Q=0011 b$ STROBE2 and STROBE1 are not shown.

Figure 5-6. Power-Down Sequences to RECOVERY State;
TSD or UV is Power-Down Event

5.3.1.4 Supply Voltage Supervisor and Power-Good (PGOOD)

Power-good (PGOOD) is an open-drain output of the built-in voltage supervisor that monitors DCDC1, DCDC2, DCDC3, DCDC4, and LDO1. The output is Hi-Z when all enabled rails are in regulation and driven low when one or more rails encounter a fault which brings the output voltage outside the specified tolerance range. In a typical application PGOOD drives the reset signal of the SOC.
The supervisor has two modes of operation, controlled by the STRICT bit. With the STRICT bit set to 0 , all enabled rails of the five regulators are monitored for undervoltage only with relaxed thresholds and deglitch times. With the STRCT bit set to 1, all enabled rails of the five regulators are monitored for undervoltage and overvoltage with tight limits and short deglitch times. Table 5-1 summarizes these details.

Table 5-1. Supervisor Characteristics Controlled by the STRICT Bit

PARAMETER		STRICT = 0b (TYP)	STRICT = 1b (TYP)
Undervoltage monitoring	Threshold (output falling)	90%	96.5% (DCDC1 and DCDC2)
	Deglitch (output falling)	1 ms	$50 \mu \mathrm{~s}$
	Deglitch (output rising)	$10 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
Overvoltage monitoring	Threshold (output falling)	N / A	103.5% (DCDC1 and DCDC2) 104.5% (DCDC3, DCDC4, and LDO1)
	Deglitch (output falling)	N / A	1 ms
	Deglitch (output rising)	N / A	$50 \mu \mathrm{~s}$

Figure 5-7. Definition of Undervoltage, Overvoltage Thresholds, Hysteresis, and Deglitch Times
The following rules apply to the PGOOD output:

- The power-up default state for THE PGOOD is low. When all rails are disabled, the PGOOD output is driven low.
- Only enabled rails are monitored. Disabled rails are ignored.
- Power-good monitoring of a particular rail starts 5 ms after the rail is enabled and is continuously monitored thereafter. This allows the rail to power-up.
- The PGOOD is delayed by PGDLY time after the sequencer is finished and the last rail is enabled.
- If an enabled rail is continuously outside the monitoring threshold for longer than the deglitch time, then the PGOOD is pulled low, and all rails are shut-down following the power-down sequence. PGDLY does not apply.

TPS65216

- Disabling a rail manually by resetting the DCx_EN or LDO1_EN bit has no effect on the PGOOD pin. If all rails are disabled, the PGOOD is driven low as the last rail is disabled.
- If the power-down sequencer is triggered, PGOOD is driven low.
- The PGOOD is driven low in the SUSPEND state, regardless of the number of rails that are enabled.

Figure 5-8 shows a typical power-up sequence and PGOOD timing.

Figure 5-8. Typical Power-Up Sequence of the Main Output Rails

5.3.1.5 Internal LDO (INT_LDO)

The internal LDO provides a regulated voltage to the internal digital core and analog circuitry. The internal LDO has a nominal output voltage of 2.5 V and can support up to 10 mA of external load.

When system power fails, the UVLO comparator triggers the power-down sequence. If system power drops below, the digital core is reset and all remaining power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4 and LDO1).

The internal LDO reverse blocks to prevent the discharging of the output capacitor ($\mathrm{C}_{\text {INT_LDO }}$) on the INT_LDO pin. The remaining charge on the INT_LDO output capacitor provides a supply for the power rail discharge circuitry to ensure the outputs are discharged to ground even if the system supply has failed. The amount of hold-up time specified in Section 4.5 is a function of the output capacitor value ($\mathrm{C}_{\text {INT_LDO }}$) and the amount of external load on the INT_LDO pin, if any. The design allows for enough hold-up time to sufficiently discharge DCDC1-4, and LDO1 to ensure proper processor power-down sequencing.

Figure 5-9. Internal LDO and UVLO Sensing

5.3.1.6 Current Limited Load Switch

The TPS65216 provides a current limited load switch with individual enable control. The load switch provides the following control and diagnostic features:

- The ON or OFF state of the switch is controlled by the corresponding LS_EN bit in the ENABLE register.
- The load switch can only be controlled through $\mathrm{I}^{2} \mathrm{C}$ communication. The sequencer has no control over the load switch.
- The load switch has an active discharge function, disabled by default, and enabled through the LSDCHRG bit. When enabled, the switch output is discharged to ground whenever the switch is disabled.
- When the PFI input drops below the power-fail threshold (the power-fail comparator trips), the load switch is automatically disabled to shed system load. This function must be individually through the corresponding LSnPFO bit. The switch does not turn back on automatically as the system voltage recovers, and must be manually re-enabled.
- An interrupt (LS_I) issues whenever the load switch actively limits the output current, such as when the output load exceeds the current limit value. The switch remains ON and provides current to the load according to the current-limit setting.
- The load switch has a local overtemperature sensor which disables the switch if the power dissipation and junction temperature exceeds safe operating value. The switch automatically recovers once the temperature drops below the OTS threshold value minus hysteresis. The LS_F (fault) interrupt bit is set while the switch is held OFF by the OTS function.
The load switch (LS) is a non-reverse blocking, medium-voltage (< 10 V), low-impedance switch that can be used to provide $1.8-\mathrm{V}$ to $10-\mathrm{V}$ power to an auxiliary port. LS has four selectable current limit values that are selectable through LSILIM[1:0].

Figure 5-10. Typical Application of Load Switch

5.3.1.7 LDO1

LDO1 is a general-purpose LDO intended to provide power to analog circuitry on the SOC. LDO1 has an input voltage range from 1.8 V to 5.5 V , and can be connected either directly to the system power or the output of a DCDC converter. The output voltage is programmable in the range of 0.9 V to 3.4 V with a default of 1.8 V . LDO1 supports up to 200 mA at the minimum specified headroom voltage, and up to 400 mA at the typical operating condition of $\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN_LDO1 }}>2.7 \mathrm{~V}$.

5.3.1.8 UVLO

Depending on the slew rate of the input voltage into the IN_BIAS pin, the power rails of TPS 65216 will be enabled at either $\mathrm{V}_{\text {ULvo }}$ or $\mathrm{V}_{\text {ULVo }}+\mathrm{V}_{\mathrm{HYS}}$.

If the slew rate of the IN_BIAS voltage is greater than $30 \mathrm{~V} / \mathrm{s}$, then TPS 65216 will power up at $\mathrm{V}_{\text {ULvo }}$. Once the input voltage rises above this level, the input voltage may drop to the $\mathrm{V}_{\text {uvlo }}$ level before the PMIC shuts down. In this scenario, if the input voltage were to fall below $\mathrm{V}_{\text {uvLo }}$ but above 2.55 V , the input voltage would have to recover above $\mathrm{V}_{\text {UvLo }}$ in less than 5 ms for the device to remain active.

If the slew rate of the IN_BIAS voltage is less than $30 \mathrm{~V} / \mathrm{s}$, then TPS65216 will power up at $\mathrm{V}_{\text {ULvo }}+\mathrm{V}_{\text {Hys }}$. Once the input voltage rises above this level, the input voltage may drop to the $\mathrm{V}_{\text {uvlo }}$ level before the PMIC shuts down. In this scenario, if the input voltage were to fall below $\mathrm{V}_{\text {UVLo }}$ but above 2.5 V , the input voltage would have to recover above $\mathrm{V}_{\text {UVLO }}+\mathrm{V}_{\text {HYs }}$ in less than 5 ms for the device to remain active.
In either slew rate scenario, if the input voltage were to fall below 2.5 V , the digital core is reset and all remaining power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4 and LDO1).

Figure 5-11. Definition of UVLO and Hysteresis
After the UVLO triggers, the internal LDO blocks current flow from its output capacitor back to the IN_BIAS pin, allowing the digital core and the discharge circuits to remain powered for a limited amount of time to properly shut-down and discharge the output rails. The hold-up time is determined by the value of the capacitor connected to INT_LDO. See Section 5.3.1.5 for more details.

5.3.1.9 Power-Fail Comparator

The power-fail comparator notifies the system host if the system supply voltage drops and the system is at risk of shutting down. The comparator has an internal $800-\mathrm{mV}$ threshold and the trip-point is adjusted by an external resistor divider.

By default, the power-fail comparator has no impact on any of the power rails or the load switch. The load switch can be configured to be disabled when the PFI comparator trips to shed system load and extend hold-up time. The power-fail comparator also triggers the power-down sequencer, such that all or selective rails power-down when the system voltage fails. To tie the power-fail comparator into the power-down sequence, the OFFnPFO bit in the CONTROL register must be set to 1 .

The power-fail comparator cannot be monitored by software, such that no interrupt or status bit is associated to this function.

Figure 5-12. Power-Fail Comparator Simplified Circuit and Timing Diagram

5.3.1.10 DCDC3 and DCDC4 Power-Up Default Selection

Figure 5-13. Left: Flow Chart for Selecting DCDC Power-Up Default Voltage Right: Comparator Circuit

Table 5-2. Power-Up Default Values of DCDC3 and DCDC4

RSEL [K Ω]			POWER-UP DEFAULT	
MIN	TYP	MAX	DCDC3[5:0]	DCDC4[5:0]
0	0	7.7	Programmed default (1.2 V)	Programmed default (3.3 V)
	12.1		0×12 (1.35 V)	Programmed default (3.3 V)
	20		0x18 (1.5 V)	Programmed default (3.3 V)
30.9	31.6	32.3	$0 \times 1 \mathrm{~F}(1.8 \mathrm{~V})$	Programmed default (3.3 V)
	45.3		0x3D (3.3 V)	0x01 (1.2 V)
			Programmed default (1.2 V)	$0 \times 07(1.35 \mathrm{~V})$
	95.3		Programmed default (1.2 V)	0x0D (1.5 V)
	150	Tied to INT_LDO	Programmed default (1.2 V)	0x14 (1.8 V)

TPS65216
www.ti.com

5.3.1.11 I/O Configuration

The device has two GPIO pins, which are configured as follows:

- GPIO1:
- General-purpose, open-drain output is controlled by the GPO1 user bit or sequencer.
- GPIO2:
- General-purpose, open-drain output id controlled by the GPO2 user bit or sequencer.
- Reset input-signal for DCDC1 and DCDC2.

Table 5-3. GPIO1 Configuration

GPO1 (USER BIT)	GPIO1 $(\mathbf{I} / \mathbf{O P I N)}$	COMMENTS
0	0	Open-drain output, driving low
1	HiZ	Open-drain output, HiZ

Table 5-4. GPIO2 Configuration

DC12_RST (EEPROM)	GPO2 (USER BIT)	GPIO2 $(\mathbf{I / O ~ P I N) ~}$	COMMENTS
0	0	0	Open-drain output, driving low
0	1	HiZ	Open-drain output, HiZ
1	X	Active low	GPIO2 is DCDC1 and DCDC2 reset input signal to PMIC (active low). See Section 5.3.1.11.1 for details.

5.3.1.11.1 Using GPIO2 as Reset Signal to DCDC1 and DCDC2

The GPIO2 is an edge-sensitive reset input to the PMIC, when the DC12_RST bit set to 1 . The reset signal affects DCDC1 and DCDC2 only, so that only those two registers are reset to the power-up default whenever GPIO2 input transitions from high to low, while all other registers maintain their current values. DCDC1 and DCDC2 transition back to the default value following the SLEW settings, and are not power cycled. This function recovers the processor from reset events while in low-power mode.

Figure 5-14. I/O Pin Logic

5.3.1.12 Push Button Input (PB)

The PB pin is a CMOS-type input used to power-up the PMIC. Typically, the PB pin is connected to a momentary switch to ground and an external pullup resistor. The power-up sequence is triggered if the PB input is held low for 600 ms .

Figure 5-15. Left: Typical PB Input Circuit
Right: Push-Button Input (PB) Deglitch and Power-Up Timing
In ACTIVE mode, the TPS65216 monitors the PB input and issues an interrupt when the pin status changes, such as when it drops below or rises above the PB input-low or input-high thresholds. The interrupt is masked by the PBM bit in the INT_MASK1 register.

Figure 5-16. PB Input-Low or Input-High Thresholds

NOTE

Interrupts are issued whenever the PB pin status changes. The PB_STATE bit reflects the current status of the PB input. nWAKEUP is pulled low for $150 \mu \mathrm{~s}$ on every falling edge of PB.

5.3.1.12.1 Signaling PB-Low Event on the nWAKEUP Pin

In ACTIVE state, the nWAKEUP pin is pulled low for five $32-\mathrm{kHz}$ clock cycles (approximately $150 \mu \mathrm{~s}$) whenever a falling edge on the PB input is detected. This allows the host processor to wakeup from DEEP SLEEP mode of operation. It is recommended to pull-up the nWAKEUP pin to a I/O power supply through a pull-up resistor. For nWAKEUP to function properly in the SUSPEND state, this pin must be pulled up to a power supply that is disconnected from the sequencer before entering SUSPEND. .

5.3.1.12.2 Push Button Reset

If the PB input is pulled low for $8 \mathrm{~s}(15 \mathrm{~s}$ if TRST $=1 \mathrm{~b}$) or longer, then all rails are disabled, and the device enters the RECOVERY state. The device powers up automatically after the 500 ms power-down sequence is complete, regardless of the state of the PB input. Holding the PB pin low for $8 \mathrm{~s}(15 \mathrm{~s}$ if TRST $=1 \mathrm{~b})$, only turns off the device temporarily and forces a system restart, and is not a power-down function. If the PB is held low continuously, the device power-cycles in 8 -s and 15 -s intervals.

5.3.1.13 AC_DET Input (AC_DET)

The AC_DET pin is a CMOS-type input used in three different ways to control the power-up of the PMIC:

- In a battery operated system, AC_DET is typically connected to an external battery charger with an open-drain power-good output pulled low when a valid charger supply is connected to the system. A falling edge on the AC_DET pin causes the PMIC to power up.
- In a non-portable system, the AC_DET pin may be shorted to ground and the device powers up whenever system power is applied to the chip.
- If none of the above behaviors are desired, AC_DET may be tied to system power (IN_BIAS). Powerup is then controlled through the push-button input or PWR_EN input.

(A)

(B)

(C)
A. Portable Systems
B. Non-portable Systems
C. Disabled

Figure 5-17. AC_DET Pin Configurations

Figure 5-18. AC_DET Input Deglitch and Power-Up Timing (Portable Systems)

InsTRUMENTS
TPS65216
www.ti.com

In ACTIVE state, the TPS65216 monitors the AC_DET input and issues an interrupt when the pin status changes, such as when it drops below or rises above the AC_DET input-low or input-high thresholds. The interrupt is masked by the ACM bit in the INT_MASK1 register.

Figure 5-19. AC_STATE Pin

NOTE

Interrupts are issued whenever the AC_DET pin status changes. The AC_STATE bit reflects the current status of the AC_DET input.

5.3.1.14 Interrupt Pin (INT)

The interrupt pin signals any event or fault condition to the host processor. Whenever a fault or event occurs in the device, the corresponding interrupt bit is set in the INT register, and the open-drain output is pulled low. The INT pin is released (returns to Hi-Z state) and fault bits are cleared when the host reads the INT register. If a failure persists, the corresponding INT bit remains set and the INT pin is pulled low again after a maximum of $32 \mu \mathrm{~s}$.
The MASK register masks events from generating interrupts. The MASK settings affect the INT pin only, and have no impact on the protection and monitor circuits.

5.3.1.15 $I^{2} C$ Bus Operation

The TPS65216 hosts a slave $I^{2} \mathrm{C}$ interface (address 0×24) that supports data rates up to 400 kbps , autoincrement addressing. ${ }^{(1)}$

Figure 5-20. Subaddress in $I^{2} C$ Transmission
The $I^{2} \mathrm{C}$ bus is a communications link between a controller and a series of slave terminals. The link is established using a two-wired bus consisting of a serial clock signal (SCL) and a serial data signal (SDA). The serial clock is sourced from the controller in all cases where the serial data line is bi-directional for data communication between the controller and the slave terminals. Each device has an open drain output to transmit data on the serial data line. An external pullup resistor must be placed on the serial data line to pull the drain output high during data transmission.
Data transmission initiates with a start bit from the controller as shown in Figure 5-22. The start condition is recognized when the SDA line transitions from high to low during the high portion of the SCL signal. Upon reception of a start bit, the device receives serial data on the SDA input and checks for valid address and control information. If the appropriate slave address is set for the device, the device issues an acknowledge pulse and prepares to receive register address and data. Data transmission is completed by either the reception of a stop condition or the reception of the data word sent to the device. A stop condition is recognized as a low to high transition of the SDA input during the high portion of the SCL signal. All other transitions of the SDA line must occur during the low portion of the SCL signal. An acknowledge issues after the reception of valid slave address, register-address, and data words. The $I^{2} \mathrm{C}$ interfaces an auto-sequence through the register addresses, so that multiple data words can be sent for a given $I^{2} C$ transmission. Reference Figure 5-21 and Figure 5-22 for details.

Top: Master Writes Data to Slave Bottom: Master Reads Data from Slave

Figure 5-21. ${ }^{2} \mathrm{C}$ Data Protocol
(1) Note: The SCL duty cycle at 400 kHz must be $>40 \%$.

Figure 5-22. $1^{2} \mathrm{C}$ Protocol and Transmission Timing $I^{2} \mathrm{C}$ Start Stop and Acknowledge Protocol

Figure 5-23. $I^{2} C$ Protocol and Transmission Timing $1^{2} C$ Data Transmission Timing

5.4 Device Functional Modes

5.4.1 Modes of Operation

Figure 5-24. Modes of Operation Diagram

5.4.2 OFF

In OFF mode, the PMIC is completely shut down with the exception of a few circuits to monitor the AC_DET, PWR_EN, and PB input. All power rails are turned off and the registers are reset to their default values. The $I^{2} C$ communication interface is turned off. This is the lowest-power mode of operation. To exit OFF mode $\mathrm{V}_{\text {IN_biAs }}$ must exceed the UVLO threshold and one of the following wake-up events must occur:

- The PB input is pulled low.
- THE AC_DET input is pulled low.
- The PWR_EN input is pulled high.

To enter OFF state, ensure that all power rails are assigned to the sequencer, then pull the PWR_EN pin low. Additionally, if the OFFnPFO bit is set to 1 b and the PFI input falls below the power fail threshold the device transitions to the OFF state. If a PGOOD or OTS fault occurs while in the ACTIVE state, TPS65216 will transition to the RESET state.

5.4.3 ACTIVE

This is the typical mode of operation when the system is up and running. All DCDC converters, LDOs, and load switch are operational and can be controlled through the $I^{2} \mathrm{C}$ interface. After a wake-up event, the PMIC enables all rails controlled by the sequencer and pulls the nWAKEUP pin low to signal the event to the host processor. The device only enters ACTIVE state if the host asserts the PWR_EN pin within 20 s after the wake-up event. Otherwise it will enter OFF state. The nWAKEUP pin returns to HiZ mode after the PWR_EN pin is asserted. ACTIVE state can also be directly entered from SUSPEND state by pulling the PWR_EN pin high. See SUSPEND state description for details. To exit ACTIVE mode, the PWR_EN pin must be pulled low.

5.4.4 SUSPEND

SUSPEND state is a low-power mode of operation intended to support system standby. Typically all power rails are turned off with the exception of any rail with an SEQ register set to Oh. To enter SUSPEND state, pull the PWR_EN pin low. All power rails controlled by the power-down sequencer are shut down, and after 500 ms the device enters SUSPEND state. All rails not controlled by the power-down sequencer will maintain state. Note that all register values are reset as the device enters the SUSPEND state. The device enters ACTIVE state after it detects a wake-up event as described in the previous sections.

5.4.5 RESET

The TPS65216 can be reset by holding the PB pin low for more than 8 or 15 s , depending on the value of the TRST bit. All rails are shut down by the sequencer and all register values reset to their default values. Rails not controlled by the sequencer are shut down additionally. Note that the RESET function powercycles the device and only temporarily shuts down the output rails. Resetting the device does not lead to OFF state. If the PB_IN pin is kept low for an extended amount of time, the device continues to cycle between ACTIVE and RESET state, entering RESET every 8 or 15 s .

The device is also reset if a PGOOD or OTS fault occurs. The TPS65216 remains in the recovery state until the fault is removed, at which time it transitions back to the ACTIVE state.

5.5 Register Maps

5.5.1 Password Protection

Registers $0 \times 11 \mathrm{~h}$ through $0 \times 26 \mathrm{~h}$ are protected against accidental write by a 8 -bit password. The password must be written prior to writing to a protected register and automatically resets to $0 \times 00 \mathrm{~h}$ after the next $1^{2} \mathrm{C}$ transaction, regardless of the register accessed or transaction type (read or write). The password is required for write access only and is not required for read access.

To write to a protected register:

1. Write the address of the destination register, XORed with the protection password ($0 \times 7 \mathrm{Dh}$), to the PASSWORD register ($0 \times 10 \mathrm{~h}$).
2. Write the data to the password protected register.
3. If the content of the PASSWORD register is XORed, with an address send that matches 0x7Dh, then the data transfers to the protected register. Otherwise, the transaction is ignored. In either case the PASSWORD register resets to 0×00 after the transaction.
The cycle must be repeated for any other register that is Level1 write protected.

5.5.2 FLAG Register

The FLAG register contains a bit for each power rail and GPO to keep track of the enable state of the rails while the system is suspended. The following rules apply to the FLAG register:

- The power-up default value for any flag bit is 0 .
- Flag bits are read-only and cannot be written to.
- Upon entering a SUSPEND state, the flag bits are set to same value as their corresponding ENABLE bits. Rails and GPOs enabled in a SUSPEND state have flag bits set to 1 , while all other flag bits are set to 0 . Flag bits are not updated while in the SUSPEND state or when exiting the SUSPEND state.
- The FLAG register is static in WAIT_PWR_EN and ACTIVE state. The FLAG register reflects the enable state of DCDC1, DCDC2, DCDC3, DCDC4, and LDO1; and, reflects the enable state of GPO1, GPO2, and GPO3 during the last SUSPEND state.
The host processor reads the FLAG register to determine if the system powered up from the OFF or SUSPEND state. In the SUSPEND state, typically the DDR memory is kept in self refresh mode and therefore the DC3_FLG or DC4_FLG bits are set.

5.5.3 TPS65216 Registers

Table 5-5 lists the memory-mapped registers for the TPS65216. All register offset addresses not listed in Table 5-5 should be considered as reserved locations and the register contents should not be modified.

Table 5-5. TPS65216 Registers

SUBADDRESS	ACRONYM	REGISTER NAME	R/W	PASSWORD PROTECTED	SECTION
0×00	CHIPID	CHIP ID	R	No	Go
0x01	INT1	INTERRUPT 1	R	No	Go
0x02	INT2	INTERRUPT 2	R	No	Go
0x03	INT_MASK1	INTERRUPT MASK 1	R/W	No	Go
0×04	INT_MASK2	INTERRUPT MASK 2	R/W	No	Go
0x05	STATUS	STATUS	R	No	Go
0x06	CONTROL	CONTROL	R/W	No	Go
0x07	FLAG	FLAG	R	No	Go
0×10	PASSWORD	PASSWORD	R/W	No	Go
0x11	ENABLE1	ENABLE 1	R/W	Yes	Go
0×12	ENABLE2	ENABLE 2	R/W	Yes	Go
0×13	CONFIG1	CONFIGURATION 1	R/W	Yes	Go
0×14	CONFIG2	CONFIGURATION 2	R/W	Yes	Go
0×15	CONFIG3	CONFIGURATION 3	R/W	Yes	Go
0×16	DCDC1	DCDC1 CONTROL	R/W	Yes	Go
0×17	DCDC2	DCDC2 CONTROL	R/W	Yes	Go
0×18	DCDC3	DCDC3 CONTROL	R/W	Yes	Go
0x19	DCDC4	DCDC4 CONTROL	R/W	Yes	Go
$0 \times 1 \mathrm{~A}$	SLEW	SLEW RATE CONTROL	R/W	Yes	Go
$0 \times 1 \mathrm{~B}$	LDO1	LDO1 CONTROL	R/W	Yes	Go
0x20	SEQ1	SEQUENCER 1	R/W	Yes	Go
0×21	SEQ2	SEQUENCER 2	R/W	Yes	Go
0×22	SEQ3	SEQUENCER 3	R/W	Yes	Go
0x23	SEQ4	SEQUENCER 4	R/W	Yes	Go
0×24	SEQ5	SEQUENCER 5	R/W	Yes	Go
0x25	SEQ6	SEQUENCER 6	R/W	Yes	Go
0x26	SEQ7	SEQUENCER 7	R/W	Yes	Go

Table 5-6 explains the common abbreviations used in this section.

Table 5-6. Common Abbreviations

Abbreviation	Description
R	Read
W	Write
R/W	Read and write capable
E2	Backed by EEPROM
h	Hexadecimal notation of a group of bits
b	Hexadecimal notation of a bit or group of bits
X	Do not care reset value

5.5.3.1 CHIPID Register (subaddress $=0 \times 00$) [reset $=0 \times 05]$

CHIPID is shown in Figure 5-25 and described in Table 5-7.
Return to Summary Table.
Figure 5-25. CHIPID Register

7	6	4	3	2	1
	CHIP		REV		
R-Oh	R-5h				

Table 5-7. CHIPID Register Field Descriptions

Bit	Field	Type	Reset	Description
7-3	CHIP	R	Oh	Chip ID: Oh = TPS65216 $1 \mathrm{~h}=$ Future use ... 1Fh = Future use
2-0	REV	R	5h	Revision code: $\begin{aligned} & 0 \mathrm{~h}=\text { Revision } 1.0 \\ & 1 \mathrm{~h}=\text { Revision } 1.1 \\ & 2 \mathrm{~h}=\text { Revision } 2.0 \\ & 3 \mathrm{~h}=\text { Revision } 2.1 \\ & 4 \mathrm{~h}=\text { Revision } 3.0 \\ & 5 \mathrm{~h}=\text { Revision } 4.0 \text { (D0) } \\ & 6 \mathrm{~h}=\text { Future use } \\ & 7 \mathrm{~h}=\text { Future use } \end{aligned}$

5.5.3.2 INT1 Register (subaddress $=0 \times 01$) [reset $=0 \times 00$]

INT1 is shown in Figure 5-26 and described in Table 5-8.
Return to Summary Table.
Figure 5-26. INT1 Register

7	6	5	4	3	1	0
RESERVED	VPRG	AC	PB	HOT	RESERVED	PRGC
R-00b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

Table 5-8. INT1 Register Field Descriptions

Bit	Field	Type	Reset	Description
7-6	RESERVED	R	00b	
5	VPRG	R	Ob	Programming voltage interrupt: $\mathrm{Ob}=$ No significance. $1 \mathrm{~b}=$ Input voltage is too low for programming power-up default values.
4	AC	R	Ob	AC_DET pin status change interrupt. Note: Status information is available in STATUS register. $\mathrm{Ob}=$ No change in status. $1 \mathrm{~b}=\mathrm{AC}$ _DET status change (AC_DET pin changed high to low or low to high).
3	PB	R	Ob	Push-button status change interrupt. Note: Status information is available in STATUS register $0 \mathrm{~b}=$ No change in status. $1 \mathrm{~b}=$ Push-button status change (PB changed high to low or low to high).
2	HOT	R	Ob	Thermal shutdown early warning: $\mathrm{Ob}=$ Chip temperature is below HOT threshold. $1 \mathrm{~b}=$ Chip temperature exceeds HOT threshold.
1	RESERVED	R	Ob	
0	PRGC	R	Ob	EEPROM programming complete interrupt: $\mathrm{Ob}=\mathrm{No}$ significance. 1b = Programming of power-up default settings has completed successfully.

5.5.3.3 INT2 Register (subaddress $=0 \times 02$) [reset $=0 \times 00$]

INT2 is shown in Figure 5-27 and described in Table 5-9.
Return to Summary Table.
Figure 5-27. INT2 Register

7	6	5	4	3	2	1
RESERVED	LS_F	RESERVED	RESERVED	LS_I	RESERVED	RESERVED
R-00b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

Table 5-9. INT2 Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	RESERVED	R	00b	
5	LS_F	R	0 b	Load switch fault interrupt: 0b = No fault. Switch is working normally. $1 \mathrm{~b}=$ Load switch exceeded operating temperature limit and is temporarily disabled.
4	RESERVED	R	0 b	
3	RESERVED	R	0 O	
2	LS_I	R	0 b	Load switch current-limit interrupt: 0b = Load switch is disabled or not in current limit. $1 \mathrm{~b}=$ Load switch is actively limiting the output current (output load is exceeding current limit value).
1	RESERVED	R	R	
0	RESERVED	R	Ob	

5.5.3.4 INT_MASK1 Register (subaddress = 0x03) [reset = 0x00]

INT_MASK1 is shown in Figure 5-28 and described in Table 5-10.
Return to Summary Table.
Figure 5-28. INT_MASK1 Register

7	6	5	4	2	1	0
7	VPRGM	ACM	PBM	HOTM	RESERVED	PRGCM
RESERVED	R-OOb	R/W-0b	R/W	R/W-0b	R/W-0b	R/W-0b
R-00	R/Ob					

Table 5-10. INT_MASK1 Register Field Descriptions

Bit	Field	Type	Reset	Description
7-6	RESERVED	R	00b	
5	VPRGM	R/W	0b	Programming voltage interrupt mask bit. Note: mask bit has no effect on monitoring function: $0 \mathrm{~b}=$ Interrupt is unmasked (interrupt event pulls nINT pin low). $1 \mathrm{~b}=$ Interrupt is masked (interrupt has no effect on nINT pin).
4	ACM	R/W	Ob	AC_DET interrupt masking bit: $0 \mathrm{~b}=$ Interrupt is unmasked (interrupt event pulls nINT pin low). $1 \mathrm{~b}=$ Interrupt is masked (interrupt has no effect on nINT pin). Note: mask bit has no effect on monitoring function.
3	PBM	R/W	0b	PB interrupt masking bit. Note: mask bit has no effect on monitoring function. $0 \mathrm{~b}=$ Interrupt is unmasked (interrupt event pulls nINT pin low). $1 \mathrm{~b}=$ Interrupt is masked (interrupt has no effect on nINT pin).
2	HOTM	R/W	Ob	HOT interrupt masking bit. Note: mask bit has no effect on monitoring function. $\begin{aligned} & 0 \mathrm{~b}=\text { Interrupt is unmasked (interrupt event pulls nINT pin low). } \\ & 1 \mathrm{~b}=\text { Interrupt is masked (interrupt has no effect on nINT pin). } \end{aligned}$
1	RESERVED	R/W	Ob	
0	PRGCM	R/W	0b	PRGC interrupt masking bit. Note: mask bit has no effect on monitoring function. $0 \mathrm{~b}=$ Interrupt is unmasked (interrupt event pulls nINT pin low). $1 \mathrm{~b}=$ Interrupt is masked (interrupt has no effect on nINT pin).

5.5.3.5 INT_MASK2 Register (subaddress = 0x04) [reset = 0x00]

INT_MASK2 is shown in Figure 5-29 and described in Table 5-11.
Return to Summary Table.
Figure 5-29. INT_MASK2 Register

7	6	5	4	3	1	0
RESERVED	LS_FM	RESERVED	RESERVED	LS_IM	RESERVED	RESERVED
R-00b	R/W-Ob	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

Table 5-11. INT_MASK2 Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	RESERVED	R	00 b	
5	LS_FM	R/W	0 b	LS fault interrupt mask bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). $1 \mathrm{~b}=$ Interrupt is masked (interrupt has no effect on nINT pin).
4	RESERVED	R/W	0 b	
3	RESERVED	R/W	0 b	
2	LS_IM	R/W	0 b	LS current-limit interrupt mask bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). $1 \mathrm{~b}=$ Interrupt is masked (interrupt has no effect on nINT pin).
1	RESERVED	R/W	0 D	
0	RESERVED	R/W	0 b	

5.5.3.6 STATUS Register (subaddress = 0x05) [reset = 00XXXXXXb]

Register mask: COh
STATUS is shown in Figure 5-30 and is described in Table 5-12.
Return to Summary Table.
Figure 5-30. STATUS Register

7	6	5	4	3	1	0
RESERVED	EE	AC_STATE	PB_STATE	STATE	RESERVED	
R-Ob	R-0b	R-X	R-X	R-X	R-X	

Table 5-12. STATUS Register Field Descriptions

Bit	Field	Type	Reset	Description
7	RESERVED	R	0b	
6	EE	R	0b	EEPROM status: $\mathrm{Ob}=$ EEPROM values have not been changed from factory default setting. $1 \mathrm{~b}=$ EEPROM values have been changed from factory default settings.
5	AC_STATE	R	X	AC_DET input status bit: $0 \mathrm{~b}=\mathrm{AC}$ _DET input is inactive (AC_DET input pin is high). $1 \mathrm{~b}=\mathrm{AC}$ _DET input is active (AC_DET input is low).
4	PB_STATE	R	X	PB input status bit: $\mathrm{Ob}=$ Push Button input is inactive (PB input pin is high). $1 \mathrm{~b}=$ Push Button input is active (PB input pin is low).
3-2	STATE	R	X	State machine STATE indication: Oh = PMIC is in transitional state. $1 \mathrm{~h}=$ PMIC is in WAIT_PWR_EN state. $2 \mathrm{~h}=$ PMIC is in ACTIVE state. $3 \mathrm{~h}=\mathrm{PMIC}$ is in SUSPEND state.
1-0	RESERVED	R	X	

5.5.3.7 CONTROL Register (subaddress $=0 \times 06$) [reset $=0 \times 00$]

CONTROL is shown in Figure 5-31 and described in Table 5-13.
Return to Summary Table.
Figure 5-31. CONTROL Register

7	6	4	3	2	1
	RESERVED		OFFnPFO	RESERVED	
	R-0000 00b	R/W-0b	R/W-0b		

Table 5-13. CONTROL Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-2$	RESERVED	R	0000 00b	
1	OFFnPFO	R/W	0 b	Power-fail shutdown bit: $0 \mathrm{~b}=$ nPFO has no effect on PMIC state. 1b $=$ All rails are shut down and PMIC enters OFF state when PFI comparator trips (nPFO is low).
0	RESERVED	R/W	0b	

5.5.3.8 FLAG Register (subaddress $=0 \times 07$) [reset $=0 \times 00$]

FLAG is shown in Figure 5-32 and described in Table 5-14.
Return to Summary Table.
Figure 5-32. FLAG Register

7	6	5	4	3	2	1	
GPO2_FLG	RESERVED	GPO1_FLG	LDO1_FLG	DC4_FLG	DC3_FLG	DC2_FLG	DC1_FLG
R-0b							

Table 5-14. FLAG Register Field Descriptions

Bit	Field	Type	Reset	Description
7	GPO2_FLG	R	0b	GPO2 Flag bit: Ob = Device powered up from OFF or SUSPEND state and GPO2 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and GPO2 was enabled while in SUSPEND.
6	RESERVED	R	0b	
5	GPO1_FLG	R	0b	GPO1 Flag bit: $\mathrm{Ob}=$ Device powered up from OFF or SUSPEND state and GPO1 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and GPO1 was enabled while in SUSPEND.
4	LDO1_FLG	R	0b	LDO1 Flag bit: Ob = Device powered up from OFF or SUSPEND state and LDO1 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and LDO1 was enabled while in SUSPEND.
3	DC4_FLG	R	0b	DCDC4 Flag bit: Ob = Device powered up from OFF or SUSPEND state and DCDC4 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and DCDC4 was enabled while in SUSPEND.
2	DC3_FLG	R	0b	DCDC3 Flag bit: Ob = Device powered up from OFF or SUSPEND state and DCDC3 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and DCDC3 was enabled while in SUSPEND.
1	DC2_FLG	R	0b	DCDC2 Flag bit: Ob = Device powered up from OFF or SUSPEND state and DCDC2 was disabled while in SUSPEND. $1 \mathrm{~b}=$ Device powered up from SUSPEND state and DCDC2 was enabled while in SUSPEND.
0	DC1_FLG	R	0b	DCDC1 Flag bit: Ob = Device powered up from OFF or SUSPEND state and DCDC1 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and GDCDC1PO3 was enabled while in SUSPEND.

5.5.3.9 PASSWORD Register (subaddress = 0x10) [reset = 0x00]

PASSWORD is shown in Figure 5-33 and described in Table 5-15.
Return to Summary Table.
Figure 5-33. PASSWORD Register

7	6	5	4	3	2	1	0
PWRD							
R/W-00h							

Table 5-15. PASSWORD Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	PWRD	R/W	$00 h$	Register is used for accessing password protected registers (see Section 5.5.1 for details). Breaking the freshness seal (see for details). Programming power-up default values (see for details). Read-back always yields 0x00.

5.5.3.10 ENABLE1 Register (subaddress = 0x11) [reset = 0x00]

ENABLE1 is shown in Figure 5-34 and described in Table 5-16.
Return to Summary Table.
Password protected.
Figure 5-34. ENABLE1 Register

| 7 | 6 | 5 | 4 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RESERVED | RESERVED | RESERVED | DC4_EN | DC3_EN | DC2_EN | DC1_EN |
| R-00b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b |

Table 5-16. ENABLE1 Register Field Descriptions

Bit	Field	Type	Reset	Description
7-6	RESERVED	R	00b	
5	RESERVED	R/W	Ob	
4	RESERVED	R/W	Ob	
3	DC4_EN	R/W	Ob	DCDC4 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. $\begin{aligned} & 0 b=\text { Disabled } \\ & 1 b=\text { Enabled } \end{aligned}$
2	DC3_EN	R/W	Ob	DCDC3 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. $\begin{aligned} & 0 \mathrm{~b}=\text { Disabled } \\ & 1 \mathrm{~b}=\text { Enabled } \end{aligned}$
1	DC2_EN	R/W	Ob	DCDC2 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. $\begin{aligned} & 0 \mathrm{~b}=\text { Disabled } \\ & 1 \mathrm{~b}=\text { Enabled } \end{aligned}$
0	DC1_EN	R/W	Ob	DCDC1 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. $\begin{aligned} & 0 \mathrm{~b}=\text { Disabled } \\ & 1 \mathrm{~b}=\text { Enabled } \end{aligned}$

5.5.3.11 ENABLE2 Register (subaddress = 0x12) [reset = 0x00]

ENABLE2 is shown in Figure 5-35 and described in Table 5-17.
Return to Summary Table.
Password protected.
Figure 5-35. ENABLE2 Register

7	6	5	4	3	2	1	
RESERVED	GPIO2	RESERVED	GPIO1	LS_EN	RESERVED	RESERVED	LDO1_EN
R-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	

Table 5-17. ENABLE2 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	RESERVED	R	0b	
6	GPIO2	R/W	0b	General purpose output 3 / reset polarity. Note: If DC12_RST bit (register 0×14) is set to 1 this bit has no function. $\begin{aligned} & \mathrm{Ob}=\text { GPIO2 output is driven low. } \\ & \mathrm{lb}=\text { GPIO2 output is HiZ. } \end{aligned}$
5	RESERVED	R/W	0b	
4	GPIO1	R/W	Ob	General purpose output 1. Note: If IO_SEL bit (register 0×13) is set to 1 this bit has no function. $\begin{aligned} & 0 \mathrm{~b}=\mathrm{GPO} 1 \text { output is driven low. } \\ & \mathrm{lb}=\mathrm{GPO} 1 \text { output is HiZ. } \end{aligned}$
3	LS_EN	R/W	Ob	Load switch (LS) enable bit. $\begin{aligned} & 0 b=\text { Disabled } \\ & 1 b=\text { Enabled } \end{aligned}$
2	RESERVED	R/W	0b	
1	RESERVED	R/W	0b	
0	LDO1_EN	R/W	0b	LDO1 enable bit. $\begin{aligned} & 0 \mathrm{~b}=\text { Disabled } \\ & 1 \mathrm{~b}=\text { Enabled } \end{aligned}$ Note: At power-up and down this bit is automatically updated by the internal power sequencer.

5.5.3.12 CONFIG1 Register (subaddress = 0x13) [reset = 0x4C]

CONFIG1 is shown in Figure 5-36 and described in Table 5-18.
Return to Summary Table.
Password protected.
Figure 5-36. CONFIG1 Register

| 7 | 6 | 5 | 4 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRST | RESERVED | RESERVED | PGDLY | STRICT | 0 |
| R/W-0b | R/W-1b | R/W-0b | R/W-01b | R/W-1b | R/W-00b |

Table 5-18. CONFIG1 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	TRST	R/W, E2	0b	Push-button reset time constant: $\begin{aligned} & 0 b=8 \mathrm{~s} \\ & 1 \mathrm{~b}=15 \mathrm{~s} \end{aligned}$
6	RESERVED	R/W	1b	
5	RESERVED	R/W	0b	
4-3	PGDLY	R/W, E2	01b	Power-Good delay. Note: Power-good delay applies to rising-edge only (power-up), not falling edge (power-down or fault). $\begin{aligned} & 00 \mathrm{~b}=10 \mathrm{~ms} \\ & 01 \mathrm{~b}=20 \mathrm{~ms} \\ & 10 \mathrm{~b}=50 \mathrm{~ms} \\ & 11 \mathrm{~b}=150 \mathrm{~ms} \end{aligned}$
2	STRICT	R/W, E2	1b	Supply Voltage Supervisor Sensitivity selection. See Section 4.5 for details. Ob = Power-good threshold (VOUT falling) has wider limits. Overvoltage is not monitored. 1b = Power-good threshold (VOUT falling) has tight limits. Overvoltage is monitored.
1-0	UVLO	R/W, E2	00b	UVLO setting $\begin{aligned} & 00 \mathrm{~b}=2.75 \mathrm{~V} \\ & 01 \mathrm{~b}=2.95 \mathrm{~V} \\ & 10 \mathrm{~b}=3.25 \mathrm{~V} \\ & 11 \mathrm{~b}=3.35 \mathrm{~V} \end{aligned}$

5.5.3.13 CONFIG2 Register (subaddress = 0x14) [reset = 0xC0]

CONFIG2 is shown in Figure 5-37 and described in Table 5-19.
Return to Summary Table.
Password protected.
Figure 5-37. CONFIG2 Register

7	6	5	4	2	1
DC12_RST	UVLOHYS	RESERVED	LSILIM	RESERVED	
R/W-1b	R/W-1b	R-00b	R/W-00b	R/W-00b	

Table 5-19. CONFIG2 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	DC12_RST	R/W, E2	1b	DCDC1 and DCDC2 reset-pin enable: $\mathrm{Ob}=$ GPIO2 is configured as general-purpose output. $1 \mathrm{~b}=$ GPIO2 is configured as warm-reset input to DCDC1 and DCDC2.
6	UVLOHYS	R/W, E2	1b	UVLO hysteresis: $\begin{aligned} & 0 \mathrm{~b}=200 \mathrm{mV} \\ & 1 \mathrm{~b}=400 \mathrm{mV} \end{aligned}$
5-4	RESERVED	R	00b	
3-2	LSILIM	R/W	00b	Load switch (LS) current limit selection: $\begin{aligned} & 00 \mathrm{~b}=100 \mathrm{~mA},(\mathrm{MIN}=98 \mathrm{~mA}) \\ & 01 \mathrm{~b}=200 \mathrm{~mA},(\mathrm{MIN}=194 \mathrm{~mA}) \\ & 10 \mathrm{~b}=500 \mathrm{~mA},(\mathrm{MIN}=475 \mathrm{~mA}) \\ & 11 \mathrm{~b}=1000 \mathrm{~mA},(\mathrm{MIN}=900 \mathrm{~mA}) \end{aligned}$ See the LS current limit specification in Section 4.5 for more details.
1-0	RESERVED	R/W	00b	

5.5.3.14 CONFIG3 Register (subaddress = 0x15) [reset = 0x0]

CONFIG3 is shown in Figure 5-38 and described in Table 5-20.
Return to Summary Table.
Password protected.
Figure 5-38. CONFIG3 Register

| 7 | 6 | 5 | 4 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RESERVED | LSnPFO | RESERVED | RESERVED | LSDCHRG | RESERVED | RESERVED |
| R-00b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b |

Table 5-20. CONFIG3 Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	RESERVED	R	00 b	
5	LSnPFO	R/W	0 b	Load switch power-fail disable bit: 0b = Load switch status is not affected by power-fail comparator. $1 \mathrm{~b}=$ Load switch is disabled if power-fail comparator trips (nPFO is low).
4	RESERVED	R/W	0 O	
3	RESERVED	R/W	0 b	
2	LSDCHRG	R/W	0 b	Load switch discharge enable bit: 0b = Active discharge is disabled. $1 \mathrm{~b}=$ Active discharge is enabled (load switch output is actively discharged when switch is OFF).
1	RESERVED	R/W	Ob	
0	RESERVED	R/W	Ob	

5.5.3.15 DCDC1 Register (offset $=0 \times 16$) [reset $=0 \times 99$]

DCDC1 is shown in Figure 5-39 and described in Table 5-21.
Return to Summary Table.
Note 1: This register is password protected. For more information, see Section 5.5.1.
Note 2: A 5 -ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the DCDC1 register.
Note 3: To change the output voltage of DCDC1, the GO bit or the GODSBL bit must be set to 1 b in register $0 \times 1 \mathrm{~A}$.

Figure 5-39. DCDC1 Register

7	6	5	4	3	2
PFM	RESERVED		DCDC1	1	
R/W-1b	R-0b	R/W-19h			

Table 5-21. DCDC1 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	PFM	R/W	1 b	Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. Ob = Disabled (forced PWM) $1 \mathrm{~b}=$ Enabled
6	RESERVED	R	0 b	

Table 5-21. DCDC1 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
5-0	DCDC1	R/W, E2	19h	
				DCDC1 output voltage setting:
				Oh $=0.850$
				$1 \mathrm{~h}=0.860$
				$2 \mathrm{~h}=0.870$
				$3 \mathrm{~h}=0.880$
				$4 \mathrm{~h}=0.890$
				$5 \mathrm{~h}=0.900$
				$6 \mathrm{~h}=0.910$
				$7 \mathrm{~h}=0.920$
				$8 \mathrm{~h}=0.930$
				$9 \mathrm{~h}=0.940$
				$\mathrm{Ah}=0.950$
				$\mathrm{Bh}=0.960$
				$\mathrm{Ch}=0.970$
				Dh $=0.980$
				Eh $=0.990$
				$\mathrm{Fh}=1.000$
				$10 \mathrm{~h}=1.010$
				$11 \mathrm{~h}=1.020$
				$12 \mathrm{~h}=1.030$
				$13 \mathrm{~h}=1.040$
				$14 \mathrm{~h}=1.050$
				$15 \mathrm{~h}=1.060$
				$16 \mathrm{~h}=1.070$
				$17 \mathrm{~h}=1.080$
				$18 \mathrm{~h}=1.090$
				$19 \mathrm{~h}=1.100$
				$1 \mathrm{Ah}=1.110$
				$1 \mathrm{Bh}=1.120$
				$1 \mathrm{Ch}=1.130$
				$1 \mathrm{Dh}=1.140$
				$1 \mathrm{Eh}=1.150$
				$1 \mathrm{Fh}=1.160$
				$20 \mathrm{~h}=1.170$
				$21 \mathrm{~h}=1.180$
				$22 \mathrm{~h}=1.190$
				$23 \mathrm{~h}=1.200$

Table 5-21. DCDC1 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
				$\begin{aligned} & 24 \mathrm{~h}=1.210 \\ & 25 \mathrm{~h}=1.220 \\ & 26 \mathrm{~h}=1.230 \\ & 27 \mathrm{~h}=1.240 \\ & 28 \mathrm{~h}=1.250 \\ & 29 \mathrm{~h}=1.260 \\ & 2 \mathrm{Ah}=1.270 \\ & 2 \mathrm{Bh}=1.280 \\ & 2 \mathrm{Ch}=1.290 \\ & 2 \mathrm{Dh}=1.300 \\ & 2 \mathrm{Eh}=1.310 \\ & 2 \mathrm{Fh}=1.320 \\ & 30 \mathrm{~h}=1.330 \\ & 31 \mathrm{~h}=1.340 \\ & 32 \mathrm{~h}=1.350 \\ & 33 \mathrm{~h}=1.375 \\ & 34 \mathrm{~h}=1.400 \\ & 35 \mathrm{~h}=1.425 \\ & 36 \mathrm{~h}=1.450 \\ & 37 \mathrm{~h}=1.475 \\ & 38 \mathrm{~h}=1.500 \\ & 39 \mathrm{~h}=1.525 \\ & 3 \mathrm{Ah}=1.550 \\ & 3 B \mathrm{~h}=1.575 \\ & 3 \mathrm{Ch}=1.600 \\ & 3 \mathrm{Dh}=1.625 \\ & 3 \mathrm{Eh}=1.650 \\ & 3 \mathrm{Fh}=1.675 \end{aligned}$

5.5.3.16 DCDC2 Register (subaddress = 0x17) [reset = 0x99]

DCDC2 is shown in Figure 5-40 and described in Table 5-22.
Return to Summary Table.
Note 1: This register is password protected. For more information, see Section 5.5.1.
Note 2: A 5 -ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the DCDC2 register.
Note 3: To change the output voltage of DCDC2, the GO bit or the GODSBL bit must be set to 1 b in register $0 \times 1 \mathrm{~A}$.

Figure 5-40. DCDC2 Register

7	6	5	4	3	2	1
PFM	RESERVED		DCDC2			
R/W-1b	R-Ob	R/W-19h				

Table 5-22. DCDC2 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	PFM	R/W	1 b	Pulse frequency modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. Ob = Disabled (forced PWM) $1 \mathrm{~b}=$ Enabled
6	RESERVED	R	0 b	

Table 5-22. DCDC2 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
5-0	DCDC2	R/W, E2	19h	
				DCDC2 output voltage setting:
				Oh = 0.850
				$1 \mathrm{~h}=0.860$
				$2 \mathrm{~h}=0.870$
				$3 \mathrm{~h}=0.880$
				$4 \mathrm{~h}=0.890$
				$5 \mathrm{~h}=0.900$
				$6 \mathrm{~h}=0.910$
				$7 \mathrm{~h}=0.920$
				$8 \mathrm{~h}=0.930$
				$9 \mathrm{~h}=0.940$
				$\mathrm{Ah}=0.950$
				$\mathrm{Bh}=0.960$
				$\mathrm{Ch}=0.970$
				Dh $=0.980$
				Eh $=0.990$
				$\mathrm{Fh}=1.000$
				$10 \mathrm{~h}=1.010$
				$11 \mathrm{~h}=1.020$
				$12 \mathrm{~h}=1.030$
				$13 \mathrm{~h}=1.040$
				$14 \mathrm{~h}=1.050$
				$15 \mathrm{~h}=1.060$
				$16 \mathrm{~h}=1.070$
				$17 \mathrm{~h}=1.080$
				$18 \mathrm{~h}=1.090$
				$19 \mathrm{~h}=1.100$
				$1 \mathrm{Ah}=1.110$
				$1 \mathrm{Bh}=1.120$
				$1 \mathrm{Ch}=1.130$
				$1 \mathrm{Dh}=1.140$
				$1 \mathrm{Eh}=1.150$
				$1 \mathrm{Fh}=1.160$
				$20 \mathrm{~h}=1.170$
				$21 \mathrm{~h}=1.180$
				$22 \mathrm{~h}=1.190$
				$23 \mathrm{~h}=1.200$

Table 5-22. DCDC2 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
				$24 \mathrm{~h}=1.210$
				$25 \mathrm{~h}=1.220$
				$26 \mathrm{~h}=1.230$
				$27 \mathrm{~h}=1.240$
				$28 \mathrm{~h}=1.250$
				$29 \mathrm{~h}=1.260$
				$2 \mathrm{Ah}=1.270$
				$2 \mathrm{Bh}=1.280$
				$2 \mathrm{Ch}=1.290$
				$2 \mathrm{Dh}=1.300$
				$2 \mathrm{Eh}=1.310$
				$2 \mathrm{Fh}=1.320$
				$30 \mathrm{~h}=1.330$
				$31 \mathrm{~h}=1.340$
				$32 \mathrm{~h}=1.350$
				$33 \mathrm{~h}=1.375$
				$34 \mathrm{~h}=1.400$
				$35 \mathrm{~h}=1.425$
				$36 \mathrm{~h}=1.450$
				$37 \mathrm{~h}=1.475$
				$38 \mathrm{~h}=1.500$
				$39 \mathrm{~h}=1.525$
				$3 \mathrm{Ah}=1.550$
				$3 \mathrm{Bh}=1.575$
				$3 \mathrm{Ch}=1.600$
				$3 \mathrm{Dh}=1.625$
				$3 \mathrm{Eh}=1.650$
				$3 \mathrm{Fh}=1.675$

5.5.3.17 DCDC3 Register (subaddress =0x18) [reset =0x8C]

DCDC3 is shown in Figure 5-41 and described in Table 5-23.
Return to Summary Table.
Note 1: This register is password protected. For more information, see Section 5.5.1.
Note 2: A 5 -ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the DCDC3 register.

NOTE

Power-up default may differ depending on RSEL value. See Section 5.3.1.10 for details.

Figure 5-41. DCDC3 Register

7	6	5	4	3	2	1
PFM	RESERVED		DCDC3			
R/W-1b	R-Ob		R/W-Ch			

Table 5-23. DCDC3 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	PFM	R/W	1 b	Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. Ob = Disabled (forced PWM) 1b = Enabled
6	RESERVED	R	0 D	

Table 5-23. DCDC3 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
5-0	DCDC3	R/W, E2	Ch	
				DCDC3 output voltage setting:
				Oh = 0.900
				$1 \mathrm{~h}=0.925$
				$2 \mathrm{~h}=0.950$
				$3 \mathrm{~h}=0.975$
				$4 \mathrm{~h}=1.000$
				$5 \mathrm{~h}=1.025$
				$6 \mathrm{~h}=1.050$
				$7 \mathrm{~h}=1.075$
				$8 \mathrm{~h}=1.100$
				$9 \mathrm{~h}=1.125$
				$\mathrm{Ah}=1.150$
				$\mathrm{Bh}=1.175$
				$\mathrm{Ch}=1.200$
				Dh $=1.225$
				Eh = 1.250
				$\mathrm{Fh}=1.275$
				$10 \mathrm{~h}=1.300$
				$11 \mathrm{~h}=1.325$
				$12 \mathrm{~h}=1.350$
				$13 \mathrm{~h}=1.375$
				$14 \mathrm{~h}=1.400$
				$15 \mathrm{~h}=1.425$
				$16 \mathrm{~h}=1.450$
				$17 \mathrm{~h}=1.475$
				$18 \mathrm{~h}=1.500$
				$19 \mathrm{~h}=1.525$
				$1 \mathrm{Ah}=1.550$
				$1 \mathrm{Bh}=1.600$
				$1 \mathrm{Ch}=1.650$
				$1 \mathrm{Dh}=1.700$
				$1 \mathrm{Eh}=1.750$
				$1 \mathrm{Fh}=1.800$
				$20 \mathrm{~h}=1.850$
				$21 \mathrm{~h}=1.900$
				$22 \mathrm{~h}=1.950$
				$23 \mathrm{~h}=2.000$

Table 5-23. DCDC3 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
				$24 \mathrm{~h}=2.050$
				$25 \mathrm{~h}=2.100$
				$26 \mathrm{~h}=2.150$
				$27 \mathrm{~h}=2.200$
				$28 \mathrm{~h}=2.250$
				$29 \mathrm{~h}=2.300$
				$2 \mathrm{Ah}=2.350$
				$2 \mathrm{Bh}=2.400$
				$2 \mathrm{Ch}=2.450$
				$2 \mathrm{Dh}=2.500$
				$2 \mathrm{Eh}=2.550$
				$2 \mathrm{Fh}=2.600$
				$30 \mathrm{~h}=2.650$
				$31 \mathrm{~h}=2.700$
				$32 \mathrm{~h}=2.750$
				$33 \mathrm{~h}=2.800$
				$34 \mathrm{~h}=2.850$
				$35 \mathrm{~h}=2.900$
				$36 \mathrm{~h}=2.950$
				$37 \mathrm{~h}=3.000$
				$38 \mathrm{~h}=3.050$
				$39 \mathrm{~h}=3.100$
				$3 \mathrm{Ah}=3.150$
				$3 \mathrm{Bh}=3.200$
				$3 \mathrm{Ch}=3.250$
				$3 \mathrm{Dh}=3.300$
				$3 \mathrm{Eh}=3.350$
				$3 \mathrm{Fh}=3.400$

5.5.3.18 DCDC4 Register (subaddress = 0x19) [reset = 0xB2]

DCDC4 is shown in Figure 5-42 and described in Table 5-24.
Return to Summary Table.
Note 1: This register is password protected. For more information, see Section 5.5.1.
Note 2: A 5 -ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the DCDC4 register.

NOTE

Power-up default may differ depending on RSEL value. See Section 5.3.1.10 for details. The Reserved setting should not be selected and the output voltage settings should not be modified while the converter is operating.

Figure 5-42. DCDC4 Register

7	6	5	4	3	2	1
PFM	RESERVED		DCDC4			
R/W-1b	R-0b	R/W-32h				

Table 5-24. DCDC4 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	PFM	R/W	1 b	Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. Ob = Disabled (forced PWM) $1 \mathrm{~b}=$ Enabled
6	RESERVED	R	0 b	

Table 5-24. DCDC4 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
5-0	DCDC4	R/W, E2	32h	
				DCDC4 output voltage setting:
				Oh = 1.175
				$1 \mathrm{~h}=1.200$
				$2 \mathrm{~h}=1.225$
				$3 \mathrm{~h}=1.250$
				$4 \mathrm{~h}=1.275$
				$5 \mathrm{~h}=1.300$
				$6 \mathrm{~h}=1.325$
				$7 \mathrm{~h}=1.350$
				$8 \mathrm{~h}=1.375$
				$9 \mathrm{~h}=1.400$
				$\mathrm{Ah}=1.425$
				$\mathrm{Bh}=1.450$
				$\mathrm{Ch}=1.475$
				Dh $=1.500$
				Eh $=1.525$
				$\mathrm{Fh}=1.550$
				$10 \mathrm{~h}=1.600$
				$11 \mathrm{~h}=1.650$
				$12 \mathrm{~h}=1.700$
				$13 \mathrm{~h}=1.750$
				$14 \mathrm{~h}=1.800$
				$15 \mathrm{~h}=1.850$
				$16 \mathrm{~h}=1.900$
				$17 \mathrm{~h}=1.950$
				$18 \mathrm{~h}=2.000$
				$19 \mathrm{~h}=2.050$
				$1 \mathrm{Ah}=2.100$
				$1 \mathrm{Bh}=2.150$
				$1 \mathrm{Ch}=2.200$
				$1 \mathrm{Dh}=2.250$
				$1 \mathrm{Eh}=2.300$
				$1 \mathrm{Fh}=2.3500$
				$20 \mathrm{~h}=2.400$
				$21 \mathrm{~h}=2.450$
				$22 \mathrm{~h}=2.500$
				$23 \mathrm{~h}=2.550$

Table 5-24. DCDC4 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
				$\begin{aligned} & 24 \mathrm{~h}=2.600 \\ & 25 \mathrm{~h}=2.650 \\ & 26 \mathrm{~h}=2.700 \\ & 27 \mathrm{~h}=2.750 \\ & 28 \mathrm{~h}=2.800 \\ & 29 \mathrm{~h}=2.850 \\ & 2 \mathrm{Ah}=2.900 \\ & 2 \mathrm{Bh}=2.950 \\ & 2 \mathrm{Ch}=3.000 \\ & 2 \mathrm{Dh}=3.050 \\ & 2 \mathrm{Eh}=3.100 \\ & 2 \mathrm{Fh}=3.150 \\ & 30 \mathrm{~h}=3.200 \\ & 31 \mathrm{~h}=3.250 \\ & 32 \mathrm{~h}=3.300 \\ & 33 \mathrm{~h}=3.350 \\ & 34 \mathrm{~h}=3.400 \\ & 35 \mathrm{~h}=\text { reserved } \\ & 36 \mathrm{~h}=\text { reserved } \\ & 37 \mathrm{~h}=\text { reserved } \\ & 38 \mathrm{~h}=\text { reserved } \\ & 39 \mathrm{~h}=\text { reserved } \\ & 3 \mathrm{Ah}=\text { reserved } \\ & 3 B \mathrm{~h}=\text { reserved } \\ & 3 \mathrm{Ch}=\text { reserved } \\ & 3 \mathrm{Dh}=\text { reserved } \\ & 3 E \mathrm{~h}=\text { reserved } \\ & 3 \mathrm{Fh}=\text { reserved } \end{aligned}$

5.5.3.19 SLEW Register (subaddress $=0 \times 1 \mathrm{~A}$) [reset $=0 \times 06$]

SLEW is shown in Figure 5-43 and described in Table 5-25.
Return to Summary Table.

NOTE

Slew-rate control applies to DCDC1 and DCDC2 only. If changing from a higher voltage to lower voltage while STRICT $=1$ and converters are in a no load state, PFM bit for DCDC1 and DCDC2 must be set to 0 .

Figure 5-43. SLEW Register

7	6	5	4	3	2	1
GO	GODSBL	RESERVED	SLEW			
R/W-0b	R/W-0b	R-000b	R/W-6h			

Table 5-25. SLEW Register Field Descriptions

Bit	Field	Type	Reset	Description
7	GO	R/W	Ob	Go bit. Note: Bit is automatically reset at the end of the voltage transition. $\mathrm{Ob}=\mathrm{No}$ change $1 \mathrm{~b}=$ Initiates the transition from present state to the output voltage setting currently stored in DCDC1 and DCDC2 register. SLEW setting does apply.
6	GODSBL	R/W	Ob	Go disable bit Ob = Enabled 1b = Disabled; DCDC1 and DCDC2 output voltage changes whenever set-point is updated in DCDC1 and DCDC2 register without having to write to the GO bit. SLEW setting does apply.
5-3	RESERVED	R	000b	
2-0	SLEW	R/W	6h	Output slew rate setting: Oh $=160 \mu \mathrm{~s} / \mathrm{step}(0.0625 \mathrm{mV} / \mu \mathrm{s}$ at 10 mV per step) $1 \mathrm{~h}=80 \mu \mathrm{~s} / \mathrm{step}(0.125 \mathrm{mV} / \mu \mathrm{s}$ at 10 mV per step) $2 \mathrm{~h}=40 \mu \mathrm{~s} / \mathrm{step}(0.250 \mathrm{mV} / \mu \mathrm{s}$ at 10 mV per step) $3 \mathrm{~h}=20 \mu \mathrm{~s} / \mathrm{step}(0.500 \mathrm{mV} / \mu \mathrm{s}$ at 10 mV per step) $4 \mathrm{~h}=10 \mu \mathrm{~s} / \mathrm{step}(1.0 \mathrm{mV} / \mu \mathrm{s}$ at 10 mV per step) $5 \mathrm{~h}=5 \mu \mathrm{~s} /$ step $(2.0 \mathrm{mV} / \mu \mathrm{s}$ at 10 mV per step) $6 \mathrm{~h}=2.5 \mu \mathrm{~s} / \mathrm{step}(4.0 \mathrm{mV} / \mu \mathrm{s}$ at 10 mV per step) $7 \mathrm{~h}=$ Immediate; slew rate is only limited by control loop response time. Note: The actual slew rate depends on the voltage step per code. Refer to DCDCx registers for details.

INSTRUMENTS

5.5.3.20 LDO1 Register (subaddress $=0 \times 1 B$) [reset $=0 \times 1$ F]

LDO1 is shown in Figure 5-44 and described in Table 5-26.
Return to Summary Table.
Note 1: This register is password protected. For more information, see Section 5.5.1.
Note 2: A 5 -ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the LDO1 register.

Figure 5-44. LDO1 Register

7	6	4	3	2	1
RESERVED		LDO1			
R-00b	R/W-1Fh				

Table 5-26. LDO1 Register Field Descriptions

Bit	Field	Type	Reset	Description
7-6	RESERVED	R	00b	
5-0	LDO1	R/W, E2	1Fh	
				LDO1 output voltage setting:
				0h = 0.900
				$1 \mathrm{~h}=0.925$
				$2 \mathrm{~h}=0.950$
				$3 \mathrm{~h}=0.975$
				$4 \mathrm{~h}=1.000$
				$5 \mathrm{~h}=1.025$
				$6 \mathrm{~h}=1.050$
				$7 \mathrm{~h}=1.075$
				$8 \mathrm{~h}=1.100$
				$9 \mathrm{~h}=1.125$
				$\mathrm{Ah}=1.150$
				$\mathrm{Bh}=1.175$
				$\mathrm{Ch}=1.200$
				Dh $=1.225$
				Eh $=1.250$
				Fh $=1.275$
				$10 \mathrm{~h}=1.300$
				$11 \mathrm{~h}=1.325$
				$12 \mathrm{~h}=1.350$
				$13 \mathrm{~h}=1.375$
				$14 \mathrm{~h}=1.400$
				$15 \mathrm{~h}=1.425$
				$16 \mathrm{~h}=1.450$
				$17 \mathrm{~h}=1.475$
				$18 \mathrm{~h}=1.500$
				$19 \mathrm{~h}=1.525$

Table 5-26. LDO1 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
				$1 \mathrm{Ah}=1.550$
				$1 \mathrm{Bh}=1.600$
				$1 \mathrm{Ch}=1.650$
				$1 \mathrm{Dh}=1.700$
				$1 \mathrm{Eh}=1.750$
				$1 \mathrm{Fh}=1.800$
				$20 \mathrm{~h}=1.850$
				$21 \mathrm{~h}=1.900$
				$22 \mathrm{~h}=1.950$
				$23 \mathrm{~h}=2.000$
				$24 \mathrm{~h}=2.050$
				$25 \mathrm{~h}=2.100$
				$26 \mathrm{~h}=2.150$
				$27 \mathrm{~h}=2.200$
				$28 \mathrm{~h}=2.250$
				$29 \mathrm{~h}=2.300$
				$2 \mathrm{Ah}=2.350$
				$2 \mathrm{Bh}=2.400$
				$2 \mathrm{Ch}=2.450$
				$2 \mathrm{Dh}=2.500$
				$2 \mathrm{Eh}=2.550$
				$2 \mathrm{Fh}=2.600$
				$30 \mathrm{~h}=2.650$
				$31 \mathrm{~h}=2.700$
				$32 \mathrm{~h}=2.750$
				$33 \mathrm{~h}=2.800$
				$34 \mathrm{~h}=2.850$
				$35 \mathrm{~h}=2.900$
				$36 \mathrm{~h}=2.950$
				$37 \mathrm{~h}=3.000$
				$38 \mathrm{~h}=3.050$
				$39 \mathrm{~h}=3.100$
				$3 \mathrm{Ah}=3.150$
				$3 \mathrm{Bh}=3.200$
				$3 \mathrm{Ch}=3.250$
				$3 \mathrm{Dh}=3.300$
				$3 \mathrm{Eh}=3.350$
				$3 \mathrm{Fh}=3.400$

5.5.3.21 SEQ1 Register (subaddress $=0 \times 20$) [reset $=0 \times 00]$

SEQ1 is shown in Figure 5-45 and described in Table 5-27.
Return to Summary Table.
Password protected.
Figure 5-45. SEQ1 Register

7	6	5	4	3	2	0	
DLY8	DLY7	DLY6	DLY5	DLY4	DLY3	DLY2	DLY1
R/W-0b							

Table 5-27. SEQ1 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	DLY8	R/W, E2	0b	Delay8 (occurs after Strobe 8 and before Strobe 9.) $\begin{aligned} & 0 \mathrm{~b}=2 \mathrm{~ms} \\ & 1 \mathrm{~b}=5 \mathrm{~ms} \end{aligned}$
6	DLY7	R/W, E2	Ob	Delay7 (occurs after Strobe 7 and before Strobe 8.) $\begin{aligned} & 0 \mathrm{~b}=2 \mathrm{~ms} \\ & 1 \mathrm{~b}=5 \mathrm{~ms} \end{aligned}$
5	DLY6	R/W, E2	Ob	Delay 6 (occurs after Strobe 6 and before Strobe 7.) $\begin{aligned} & 0 \mathrm{~b}=2 \mathrm{~ms} \\ & 1 \mathrm{~b}=5 \mathrm{~ms} \end{aligned}$
4	DLY5	R/W, E2	Ob	Delay5 (occurs after Strobe 5 and before Strobe 6.) $\begin{aligned} & 0 \mathrm{~b}=2 \mathrm{~ms} \\ & 1 \mathrm{~b}=5 \mathrm{~ms} \end{aligned}$
3	DLY4	R/W, E2	0b	Delay4 (occurs after Strobe 4 and before Strobe 5.) $\begin{aligned} & 0 \mathrm{~b}=2 \mathrm{~ms} \\ & 1 \mathrm{~b}=5 \mathrm{~ms} \end{aligned}$
2	DLY3	R/W, E2	Ob	Delay3 (occurs after Strobe 3 and before Strobe 4.) $\begin{aligned} & 0 \mathrm{~b}=2 \mathrm{~ms} \\ & 1 \mathrm{~b}=5 \mathrm{~ms} \end{aligned}$
1	DLY2	R/W, E2	Ob	Delay2 (occurs after Strobe 2 and before Strobe 3.) $\begin{aligned} & 0 \mathrm{~b}=2 \mathrm{~ms} \\ & 1 \mathrm{~b}=5 \mathrm{~ms} \end{aligned}$
0	DLY1	R/W, E2	Ob	Delay 1 (occurs after Strobe 1 and before Strobe 2.) $\begin{aligned} & 0 \mathrm{~b}=2 \mathrm{~ms} \\ & 1 \mathrm{~b}=5 \mathrm{~ms} \end{aligned}$

5.5.3.22 SEQ2 Register (subaddress $=0 \times 21$) [reset $=0 \times 00$]

SEQ2 is shown in Figure 5-46 and described in Table 5-28.
Return to Summary Table.
Password protected.
Figure 5-46. SEQ2 Register

7	6	5	4	3	2
DLYFCTR		RESERVED	1	0	
R/W -0b	R-000 000b	DLY9			

Table 5-28. SEQ2 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	DLYFCTR	R/W, E2	Ob	Power-down delay factor: $0 \mathrm{~b}=1 \mathrm{x}$
			$1 \mathrm{~b}=10 \mathrm{x}$ (delay times are multiplied by 10x during power-down.) Note: DLYFCTR has no effect on power-up timing.	
$6-1$	RESERVED	R	000000 b	
0	DLY9	R/W, E2	0 b	Delay9 (occurs after Strobe 9 and before Strobe 10.) $0 \mathrm{~b}=2 \mathrm{~ms}$ $1 \mathrm{~b}=5 \mathrm{~ms}$

5.5.3.23 SEQ3 Register (subaddress $=0 \times 22$) [reset $=0 \times 98]$

SEQ3 is shown in Figure 5-47 and described in Table 5-29.
Return to Summary Table.
Password protected.
Figure 5-47. SEQ3 Register

7	5	4	3	0	1
DC2_SEQ		DC1_SEQ			
R/W-9h	R/W-8h				

Table 5-29. SEQ3 Register Field Descriptions

Bit	Field	Type	Reset	Description
7-4	DC2_SEQ	R/W, E2	9h	DCDC2 enable STROBE: Oh = Rail is not controlled by sequencer. $1 \mathrm{~h}=$ Rail is not controlled by sequencer. $2 \mathrm{~h}=$ Rail is not controlled by sequencer. $3 \mathrm{~h}=$ Enable at STROBE 3. $4 \mathrm{~h}=$ Enable at STROBE 4. $5 \mathrm{~h}=$ Enable at STROBE 5. 6h = Enable at STROBE 6. $7 \mathrm{~h}=$ Enable at STROBE 7. $8 \mathrm{~h}=$ Enable at STROBE 8. 9h = Enable at STROBE 9. Ah = Enable at STROBE 10. $\mathrm{Bh}=$ Rail is not controlled by sequencer. $\mathrm{Ch}=$ Rail is not controlled by sequencer. $\mathrm{Dh}=$ Rail is not controlled by sequencer. Eh = Rail is not controlled by sequencer. $\mathrm{Fh}=$ Rail is not controlled by sequencer.

Table 5-29. SEQ3 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
3-0	DC1_SEQ	R/W, E2	8h	$\begin{aligned} & \text { DCDC1 enable STROBE: } \\ & \text { 0h = Rail is not controlled by sequencer. } \\ & 1 \mathrm{~h}=\text { Rail is not controlled by sequencer. } \\ & 2 \mathrm{~h}=\text { Rail is not controlled by sequencer. } \\ & 3 \mathrm{~h}=\text { Enable at STROBE } 3 . \\ & 4 \mathrm{~h}=\text { Enable at STROBE } 4 . \\ & 5 \mathrm{~h}=\text { Enable at STROBE } 5 . \\ & 6 \mathrm{~h}=\text { Enable at STROBE } 6 . \\ & 7 \mathrm{~h}=\text { Enable at STROBE } 7 . \\ & 8 \mathrm{~h}=\text { Enable at STROBE } 8 . \\ & 9 \mathrm{~h}=\text { Enable at STROBE } 9 . \\ & \mathrm{Ah}=\text { Enable at STROBE } 10 . \\ & \mathrm{Bh}=\text { Rail is not controlled by sequencer. } \\ & \mathrm{Ch}=\text { Rail is not controlled by sequencer. } \\ & \mathrm{Dh}=\text { Rail is not controlled by sequencer. } \\ & \text { Eh = Rail is not controlled by sequencer. } \\ & \text { Fh = Rail is not controlled by sequencer. } \end{aligned}$

5.5.3.24 SEQ4 Register (subaddress $=0 \times 23$) [reset $=0 \times 75]$

SEQ4 is shown in Figure 5-48 and described in Table 5-30.
Return to Summary Table.
Password protected.
Figure 5-48. SEQ4 Register

7	6	4	3	2	1
DC4_SEQ		DC3_SEQ			
R/W-7h	R/W-5h				

Table 5-30. SEQ4 Register Field Descriptions

Bit	Field	Type	Reset	Description
7-4	DC4_SEQ	R/W, E2	7h	DCDC4 enable STROBE: $\mathrm{Oh}=$ Rail is not controlled by sequencer. $1 \mathrm{~h}=$ Rail is not controlled by sequencer. $2 \mathrm{~h}=$ Rail is not controlled by sequencer. $3 \mathrm{~h}=$ Enable at STROBE 3. $4 \mathrm{~h}=$ Enable at STROBE 4. $5 \mathrm{~h}=$ Enable at STROBE 5. $6 \mathrm{~h}=$ Enable at STROBE 6. $7 \mathrm{~h}=$ Enable at STROBE 7. $8 \mathrm{~h}=$ Enable at STROBE 8. $9 \mathrm{~h}=$ Enable at STROBE 9. Ah = Enable at STROBE 10. $\mathrm{Bh}=$ Rail is not controlled by sequencer. $\mathrm{Ch}=$ Rail is not controlled by sequencer. $\mathrm{Dh}=$ Rail is not controlled by sequencer. Eh = Rail is not controlled by sequencer. $\mathrm{Fh}=$ Rail is not controlled by sequencer.

Table 5-30. SEQ4 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
3-0	DC3_SEQ	R/W, E2	5h	DCDC3 enable STROBE: $\mathrm{Oh}=$ Rail is not controlled by sequencer. $1 \mathrm{~h}=$ Rail is not controlled by sequencer. $2 \mathrm{~h}=$ Rail is not controlled by sequencer. $3 \mathrm{~h}=$ Enable at STROBE 3. $4 \mathrm{~h}=$ Enable at STROBE 4. $5 \mathrm{~h}=$ Enable at STROBE 5. $6 \mathrm{~h}=$ Enable at STROBE 6. $7 \mathrm{~h}=$ Enable at STROBE 7. $8 \mathrm{~h}=$ Enable at STROBE 8. $9 \mathrm{~h}=$ Enable at STROBE 9. Ah = Enable at STROBE 10. $\mathrm{Bh}=$ Rail is not controlled by sequencer. $\mathrm{Ch}=$ Rail is not controlled by sequencer. $\mathrm{Dh}=$ Rail is not controlled by sequencer. Eh = Rail is not controlled by sequencer. Fh = Rail is not controlled by sequencer.

Texas
InsTRUMENTS

5.5.3.25 SEQ5 Register (subaddress $=0 \times 24$) [reset $=0 \times 12]$

SEQ5 is shown in Figure 5-49 and described in Table 5-31.
Return to Summary Table.
Password protected.
Figure 5-49. SEQ5 Register

7	6	5	4
7	RESERVED	RESERVED	1
RESERVED	R/W-1h	R-Oh	RESERVED
R-Oh	R/W-2h		

Table 5-31. SEQ5 Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	RESERVED	R	oh	
$5-4$	RESERVED	R/W, E2	1h	
$3-2$	RESERVED	R	Oh	
$1-0$	RESERVED	R/W, E2	2h	

5.5.3.26 SEQ6 Register (subaddress $\mathbf{= 0 \times 2 5}$) [reset $=0 \times 63]$

SEQ6 is shown in Figure 5-50 and described in Table 5-32.
Return to Summary Table.
Password protected.
Figure 5-50. SEQ6 Register

7	6	5	4	3	2	1	0
Reserved				LDO1_SEQ			
R/W-6h				R/W-3h			

Table 5-32. SEQ6 Register Field Descriptions

Bit	Field	Type	Reset	Description
7-4	Reserved	R/W	6h	Reserved
3-0	LDO1_SEQ	R/W, E2	3h	LDO1 enable STROBE: $\mathrm{Oh}=$ Rail is not controlled by sequencer. $1 \mathrm{~h}=$ Rail is not controlled by sequencer. $2 \mathrm{~h}=$ Rail is not controlled by sequencer. $3 \mathrm{~h}=$ Enable at STROBE 3. $4 \mathrm{~h}=$ Enable at STROBE 4. $5 \mathrm{~h}=$ Enable at STROBE 5. $6 \mathrm{~h}=$ Enable at STROBE 6. $7 \mathrm{~h}=$ Enable at STROBE 7. $8 \mathrm{~h}=$ Enable at STROBE 8. 9h = Enable at STROBE 9. Ah = Enable at STROBE 10. $\mathrm{Bh}=$ Rail is not controlled by sequencer. $\mathrm{Ch}=$ Rail is not controlled by sequencer. $\mathrm{Dh}=$ Rail is not controlled by sequencer. Eh = Rail is not controlled by sequencer. $\mathrm{Fh}=$ Rail is not controlled by sequencer.

5.5.3.27 SEQ7 Register (subaddress $=0 \times 26$) [reset $=0 \times 03]$

SEQ7 is shown in Figure 5-51 and described in Table 5-33.
Return to Summary Table.
Password protected.
Figure 5-51. SEQ7 Register

7	5	4	3	2
GPO2_SEQ		1		
R/W-0h		GPO1_SEQ		

Table 5-33. SEQ7 Register Field Descriptions

Bit	Field	Type	Reset	Description
7-4	GPO2_SEQ	R/W, E2	Oh	GPO2 enable STROBE: Oh = Rail is not controlled by sequencer. $1 \mathrm{~h}=$ Rail is not controlled by sequencer. $2 \mathrm{~h}=$ Rail is not controlled by sequencer. $3 \mathrm{~h}=$ Enable at STROBE 3. $4 \mathrm{~h}=$ Enable at STROBE 4. $5 \mathrm{~h}=$ Enable at STROBE 5. $6 \mathrm{~h}=$ Enable at STROBE 6. $7 \mathrm{~h}=$ Enable at STROBE 7. $8 \mathrm{~h}=$ Enable at STROBE 8. $9 \mathrm{~h}=$ Enable at STROBE 9. Ah = Enable at STROBE 10. $\mathrm{Bh}=$ Rail is not controlled by sequencer. $\mathrm{Ch}=$ Rail is not controlled by sequencer. $\mathrm{Dh}=$ Rail is not controlled by sequencer. Eh = Rail is not controlled by sequencer. $\mathrm{Fh}=$ Rail is not controlled by sequencer.

Table 5-33. SEQ7 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
3-0	GPO1_SEQ	R/W, E2	3h	GPO1 enable STROBE: $\mathrm{Oh}=$ Rail is not controlled by sequencer. $1 \mathrm{~h}=$ Rail is not controlled by sequencer. $2 \mathrm{~h}=$ Rail is not controlled by sequencer. $3 \mathrm{~h}=$ Enable at STROBE 3. $4 \mathrm{~h}=$ Enable at STROBE 4. $5 \mathrm{~h}=$ Enable at STROBE 5. $6 \mathrm{~h}=$ Enable at STROBE 6. $7 \mathrm{~h}=$ Enable at STROBE 7. $8 \mathrm{~h}=$ Enable at STROBE 8. $9 \mathrm{~h}=$ Enable at STROBE 9. Ah = Enable at STROBE 10. $\mathrm{Bh}=$ Rail is not controlled by sequencer. $\mathrm{Ch}=$ Rail is not controlled by sequencer. $\mathrm{Dh}=$ Rail is not controlled by sequencer. Eh = Rail is not controlled by sequencer. $\mathrm{Fh}=$ Rail is not controlled by sequencer.

6 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

6.1 Application Information

The TPS65216 is designed to pair with various application processors. For detailed information on using TPS65216 with Sitara ${ }^{\text {TM }}$ AMIC110, AMIC120, AM335x or AM437x processors, refer to .Powering AMIC110, AMIC120, AM335x, and AM437x with TPS65216The typical application in Section 6.2 is based on and uses terminology consistent with the Sitara ${ }^{\top \mathrm{TM}}$ family of processors.

6.2 Typical Application

Figure 6-1. Typical Application Schematic

6.2.1 Design Requirements

Table 6-1 lists the design requirements.

Table 6-1. Design Parameters

	VOLTAGE	SEQUENCE
DCDC1	1.1 V	8
DCDC2	1.1 V	9
DCDC3	1.2 V	5
DCDC4	3.3 V	7
LDO1	1.8 V	3

6.2.2 Detailed Design Procedure

6.2.2.1 Output Filter Design

The step down converters (DCDC1, DCDC2, and DCDC3) on TPS65216 are designed to operate with effective inductance values in the range of 1 to $2.2 \mu \mathrm{H}$ and with effective output capacitance in the range of 10 to $100 \mu \mathrm{~F}$. The internal compensation is optimized to operate with an output filter of $\mathrm{L}=1.5 \mu \mathrm{H}$ and $\mathrm{C}_{\text {OUt }}=10 \mu \mathrm{~F}$.

The buck boost converter (DCDC4) on TPS65216 is designed to operate with effective inductance values in the range of 1.2 to $2.2 \mu \mathrm{H}$. The internal compensation is optimized to operate with an output filter of $\mathrm{L}=$ $1.5 \mu \mathrm{H}$ and $\mathrm{C}_{\text {OUt }}=47 \mu \mathrm{~F}$.

Larger or smaller inductor/capacitance values can be used to optimize performance of the device for specific operation conditions.

6.2.2.2 Inductor Selection for Buck Converters

The inductor value affects its peak to peak ripple current, the PWM to PFM transition point, the output voltage ripple, and the efficiency. The selected inductor must be rated for its DC resistance and saturation current. The inductor ripple current $(\Delta \mathrm{L})$ decreases with higher inductance and increases with higher V_{IN} or $\mathrm{V}_{\text {Out }}$. Equation 1 calculates the maximum inductor current ripple under static load conditions. The saturation current of the inductor should be rated higher than the maximum inductor current as calculated with Equation 2. This is recommended as during heavy load transient the inductor current will rise above the calculated value.

$$
\begin{aligned}
& \Delta \mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\text {OUT }} \times \frac{1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}}{\mathrm{L} \times f} \\
& \mathrm{I}_{\mathrm{Lmax}}=\mathrm{I}_{\text {OUTmax }}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}
\end{aligned}
$$

where

- $\mathrm{F}=$ Switching frequency
- $\mathrm{L}=$ Inductor value
- $\Delta L_{\mathrm{L}}=$ Peak-to-peak inductor ripple current
- $\mathrm{I}_{\mathrm{Lmax}}=$ Maximum inductor current

The following inductors have been used with the TPS65216 (see Table 6-2).
Table 6-2. List of Recommended Inductors

PART NUMBER	VALUE	SIZE $(\mathrm{mm})[\mathrm{L} \times \mathrm{W} \times \mathrm{H}]$	MANUFACTURER
INDUCTORS FOR DCDC1, DCDC2, DCDC3, DCDC4			

Table 6-2. List of Recommended Inductors (continued)

PART NUMBER	VALUE	SIZE $(\mathbf{m m})[\mathbf{L} \times \mathbf{W} \times \mathbf{H}]$	MANUFACTURER
SPM3012T-1R5M	$1.5 \mu \mathrm{H}, 2.8 \mathrm{~A}, 77 \mathrm{~m} \Omega$	$3.2 \times 3.0 \times 1.2$	TDK
IHLP1212BZER1R5M11	$1.5 \mu \mathrm{H}, 4.0 \mathrm{~A}, 28.5 \mathrm{~m} \Omega$	$3.6 \times 3.0 \times 2.0$	Vishay

6.2.2.3 Output Capacitor Selection

The hysteretic PWM control scheme of the TPS65216 switching converters allows the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires either an X7R or X5R dielectric.
At light load currents the converter operates in power save mode, and the output voltage ripple is dependent on the output capacitor value and the PFM peak inductor current. Higher output capacitor values minimize the voltage ripple in PFM Mode and tighten DC output accuracy in PFM mode.

The buck-boost converter requires additional output capacitance to help maintain converter stability during high load conditions. At least $40 \mu \mathrm{~F}$ of output capacitance is recommended and an additional $100-\mathrm{nF}$ capacitor can be added to further filter output ripple at higher frequencies.
Table 6-2 lists the recommended capacitors.
Table 6-3. List of Recommended Capacitors

PART NUMBER	VALUE	SIZE $(\mathbf{m m})[\mathbf{L} \times \mathbf{W} \times \mathbf{H}]$	MANUFACTURER
CAPACITORS FOR VOLTAGES UP TO 5.5 V ${ }^{(1)}$			
GRM188R60J105K	$1 \mu \mathrm{~F}$	$1608 / 0603(1.6 \times 0.8 \times 0.8)$	Murata
GRM21BR60J475K	$4.7 \mu \mathrm{~F}$	$2012 / 0805(2.0 \times 1.25 \times 1.25)$	Murata
GRM31MR60J106K	$10 \mu \mathrm{~F}$	$3216 / 1206(3.2 \times 1.6 \times 1.6)$	Murata
GRM31CR60J226K	$22 \mu \mathrm{~F}$	$3216 / 1206(3.2 \times 1.6 \times 1.6)$	Murata

(1) The DC bias effect of ceramic capacitors must be considered when selecting a capacitor.

6.2.3 Application Curves

at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 6-2. DCDC1/DCDC2 Efficiency

Figure 6-3. DCDC3 Efficiency
at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 6-4. DCDC3 Efficiency

Figure 6-5. DCDC4 Efficiency

7 Power Supply Recommendations

The device is designed to operate with an input voltage supply range between 3.6 V and 5.5 V . This input supply can be from an externally regulated supply. If the input supply is located more than a few inches from the TPS65216 additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of $47 \mu \mathrm{~F}$ is a typical choice.

8 Layout

8.1 Layout Guidelines

Follow these layout guidelines:

- The IN_X pins should be bypassed to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass capacitance is $4.7-\mu \mathrm{F}$ with a X 5 R or X 7 R dielectric.
- The optimum placement is closest to the $\operatorname{IN} _X$ pins of the device. Take care to minimize the loop area formed by the bypass capacitor connection, the $\operatorname{IN} _X$ pin, and the thermal pad of the device.
- The thermal pad should be tied to the PCB ground plane with a minimum of 25 vias. See Figure 8-2 for an example.
- The LX trace should be kept on the PCB top layer and free of any vias.
- The FBX traces should be routed away from any potential noise source to avoid coupling.
- DCDC4 Output capacitance should be placed immediately at the DCDC4 pin. Excessive distance between the capacitance and DCDC4 pin may cause poor converter performance.

8.2 Layout Example

Figure 8-1. Layout Recommendation

Figure 8-2. Thermal Pad Layout Recommendation

9 Device and Documentation Support

9.1 Device Support

9.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

9.2 Documentation Support

9.2.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Basic Calculation of a Buck Converter's Power Stage application report
- Texas Instruments, Design Calculations for Buck-Boost Converters application report
- Texas Instruments, Empowering Designs With Power Management IC (PMIC) for Processor Applications application report
- Texas Instruments, TPS65218EVM user's guide
- Texas Instruments, TPS65218 Power Management Integrated Circuit (PMIC) for Industrial Applications application report

9.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.4 Support Resources

TI E2E ${ }^{\text {TM }}$ support forums are an engineer's go-to source for fast, verified answers and design help straight from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.5 Trademarks

Sitara, E2E are trademarks of Texas Instruments.

9.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

NSTRUMENTS

10.1 Package Option Addendum

10.1.1 Packaging Information

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish ${ }^{(3)}$	MSL Peak Temp ${ }^{(4)}$	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking ${ }^{(5)}{ }^{(6)}$
TPS65216D0RSLR	ACTIVE	VQFN	RSL	48	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	TPS65216D0
TPS65216D0RSLT	ACTIVE	VQFN	RSL	48	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	TPS65216D0

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, $\mathrm{Tl} \mathrm{Pb}-\mathrm{Free}$ products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
(6) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10.1.2 Tape and Reel Information

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width

B0	Dimension designed to accommodate the component length

K0 \quad Dimension designed to accommodate the component thickness
W

P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	$\begin{aligned} & \text { Reel } \\ & \text { Width W1 } \\ & (\mathrm{mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{\mathrm{AO}}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { P1 } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
TPS65216D0RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
TPS65216D0RSLT	VQFN	RSL	48	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65216D0RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0
TPS65216D0RSLT	VQFN	RSL	48	250	210.0	185.0	35.0

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TPS65216DORSLR	ACTIVE	VQFN	RSL	48	2500	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0	Samples
TPS65216D0RSLT	ACTIVE	VQFN	RSL	48	250	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as " Pb -Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
TPS65216D0RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
TPS65216D0RSLT	VQFN	RSL	48	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65216D0RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0
TPS65216D0RSLT	VQFN	RSL	48	250	210.0	185.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

LAND PATTERN EXAMPLE
 EXPOSED METAL SHOWN
 SCALE: 12 X

SOLDER MASK DETAILS
NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

TeXas
 INSTRUMENTS

EXAMPLE STENCIL DESIGN
 VQFN - 1 mm max height

RSL0048B

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
EXPOSED PAD
70% PRINTED COVERAGE BY AREA
SCALE: 12X

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: (1) The SCL duty cycle at 400 kHz must be $>40 \%$.

