

TPS796-Q1 Automotive, Ultra-Low-Noise, High-PSRR, Fast, RF, 1A Low-Dropout **Linear Regulator**

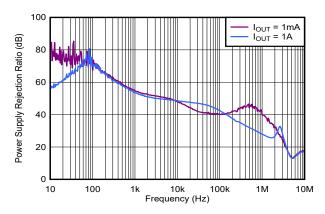
1 Features

- AEC-Q100 qualified for automotive applications:
 - Temperature grade 1: –40°C to +125°C, T_A
- 1A low-dropout regulator with enable
- High PSRR (53dB at 10kHz)
- Low-noise:
 - 54μV_{RMS} (legacy chip)
 - 78µV_{RMS} (new chip)
- Stable with a 1µF ceramic capacitor
- Excellent load, line transient response
- Very low dropout voltage:
 - 220mV (typ) TPS79633-Q1
- SOT-223-6 package

2 Applications

- Medium- and short-range radar
- Automotive head units
- Telematics control units
- Hybrid instrument clusters

3 Description


The TPS796-Q1 low-dropout (LDO), low-power, linear voltage regulator features high power-supply rejection ratio (PSRR), ultra-low-noise, fast start-up, and excellent line and load transient responses. This device is stable with a small 1µF ceramic capacitor on the output.

The low output noise and great PSRR performance make the device designed to power-sensitive analog loads. The TPS796-Q1 is a flexible device for post regulation because this device supports an input voltage range from 2.7V to 5.5V.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
TPS796-Q1	DCQ (SOT-223, 6)	6.5mm × 7.06mm

- For more information, see the Mechanical, Packaging, and Orderable Information.
- The package size (length × width) is a nominal value and includes pins, where applicable.

PSRR vs Frequency

Table of Contents

1 Features	7 Application and Im
2 Applications1	7.1 Application Infor
3 Description	7.2 Typical Applicati
4 Pin Configuration and Functions3	7.3 Power Supply R
5 Specifications4	7.4 Layout
5.1 Absolute Maximum Ratings4	8 Device and Docum
5.2 ESD Ratings4	8.1 Device Nomenc
5.3 Recommended Operating Conditions5	8.2 Receiving Notific
5.4 Thermal Information5	8.3 Support Resour
5.5 Electrical Characteristics6	8.4 Trademarks
5.6 Typical Characteristics7	8.5 Electrostatic Dis
6 Detailed Description13	8.6 Glossary
6.1 Overview	9 Revision History
6.2 Functional Block Diagrams13	10 Mechanical, Pack
6.3 Feature Description14	Information
6.4 Device Functional Modes16	

7 Application and Implementation	17
7.1 Application Information	. 17
7.2 Typical Application	22
7.3 Power Supply Recommendations	
7.4 Layout	23
8 Device and Documentation Support	
8.1 Device Nomenclature	25
8.2 Receiving Notification of Documentation Updates	25
8.3 Support Resources	25
8.4 Trademarks	
8.5 Electrostatic Discharge Caution	25
8.6 Glossary	
9 Revision History	25
10 Mechanical, Packaging, and Orderable	
Information	26

4 Pin Configuration and Functions

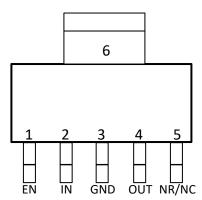


Figure 4-1. DCQ Package, 6-Pin SOT-223 (Top View)

Table 4-1. Pin Functions

PIN				
NAME	SOT223 (DCQ)	TYPE	DESCRIPTION	
NR/NC	5	_	oise-reduction pin (legacy chip). Connecting an external capacitor to this pin bypasses oise generated by the internal band gap, improves power-supply rejection and reduces ttput noise. No connect pin (new chip). This pin is not internally connected. Connect to ND or leave floating.	
EN	1	Input	nable pin. Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts be regulator into shutdown mode. EN can be connected to IN if not used.	
GND	3, Tab	_	vice GND. Connect GND and TAB to the same ground on the board.	
IN	2	Input	nput pin. For best performance, place the nominal recommended value or larger ceramic apacitor from IN to GND; see the <i>Recommended Operating Conditions</i> table. Place the aput capacitor as close to the input of the device as possible.	
OUT	4	Output	Regulated output. A 1µF or greater capacitor is required from OUT to ground for stability. Place the output capacitor as close to output of the device as possible; see the <i>Recommended Operating Conditions</i> table.	

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
	Supply, V _{IN} (New chip)	-0.3	6.5	
Voltage	Supply, V _{IN} (Legacy chip)	-0.3	6	V
	Enable, V _{EN}	-0.3	V _{IN} + 0.3	
	Output, V _{OUT}	-0.3	6	
Current	Output, I _{OUT}	Internally	limited	
Temperature	Operating junction, T _J	-40	150	°C
remperature	Storage, T _{stg}	-65	150	C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±500	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
VIN	Input supply voltage (legacy chip)	2.7	5.5	V
VIN	Input supply voltage (new chip)	2.7	6.0	V
C _{IN}	Input capacitor	2.2		
C _{OUT}	Output capacitor	1 ⁽¹⁾	200	μF
I _{OUT}	Output current	0	1	Α
V	Enable voltage (legacy chip)	0	5.5	\ <u>'</u>
V _{EN}	Enable voltage (new chip)	0	6.0]
F _{EN}	Enable toggle frequency (new chip)		10	kHz
Tj	Junction Temperature	-40	125	°C

⁽¹⁾ The minimum effective capacitance is 0.47 μ F.

5.4 Thermal Information

			TPS796-Q1		
	THERMAL METRIC(1)	DCQ (S	DCQ (SOT223-6)		
		6 PINS (2)	6 PINS (3)		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	70.4	71.1	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	70	41.6	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	N/A	8.8	°C/W	
ΨЈТ	Junction-to-top characterization parameter	6.8	3.5	°C/W	
ΨЈВ	Junction-to-board characterization parameter	30.1	8.5	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	6.3	6	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Packae Thermal Metrics application report.

⁽²⁾ Legacy chip.

⁽³⁾ New chip.

5.5 Electrical Characteristics

at operating temperature range (T_J = -40° C to +125°C), V_{EN} = V_{IN}, V_{IN} = V_{OUT(nom)} + 1 V ⁽¹⁾, I_{OUT} = 1 mA, and C_{OUT} = 10μ F and C_{NR} = 0.01μ F(Legacy Chip only), unless otherwise noted. All typical values at T_J = 25° C.

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
I + V-14		Legacy chip		2.7		5.5	.,	
V_{IN}	Input Voltage	New chip		2.7		6.0	V	
I _{OUT}	Continuous output current			0		1	Α	
V _{OUT}	Output accuracy	Fixed V _{OUT} < 5V	$0 \mu A \le I_{OUT} \le 1 A,$ $V_{OUT(nom)} + 1 V \le V_{IN} \le 5.5$ $V^{(1)}$	-2.0		2.0	%	
ΔV _{OUT} /ΔVIN	Line regulation	$V_{OUT} + 1 V \le V_{IN} \le 5.5 V$			0.05	0.12	%/V	
ΔV _{OUT} /ΔΙ _{OUT}	Load regulation	0 μA ≤ I _{OUT} ≤ 1 A			5		mV	
V _{DO}	Dropout voltage	V _{IN} = V _{OUT} - 0.1V, I _{OUT} = 1A			220	325	mV	
I _{CL}	Output current limit	V _{OUT} = 0 (legacy chip)		2.4		4.2	Α	
I _{CL}	Output current limit	V _{IN} = V _{OUT(nom)} + 1.25 V or 2.0 V _{OUT} = 0.9 x V _{OUT(nom)} (new c		1.04		1.65	Α	
I _{SC}	Short-circuit current limit	V _{OUT} = 0 (new chip only)			550		mA	
I _{GND}	Ground current	0μA ≤ I _{OUT} ≤ 1A (legacy chip)			265	385	μA	
I _{GND}	Ground current	0μA ≤ I _{OUT} ≤ 1A (new chip)			700	1100	μA	
I _{SHDN}	Shutdown current	$V_{EN} = 0 \text{ V}, 2.7 \text{ V} \le V_{IN} \le 5.5 \text{ V}$			0.07	1	μΑ	
		f = 100 Hz, I _{OUT} = 10mA (lega	cy chip)		59			
		f = 100 Hz, I _{OUT} = 10mA (new chip)			64			
		f = 100 Hz, I _{OUT} = 1A (legacy chip)			54			
Denn	Power supply rejection ratio	f = 100 Hz, I _{OUT} = 1A (new chip)			74		٩D	
PSRR	Power-supply rejection ratio	f = 10 kHz, I _{OUT} = 1A (legacy chip)			53		dB	
		f = 10 kHz, I _{OUT} = 1A (new chip)			49			
		f = 100 kHz, I _{OUT} = 1A (legacy chip)			42			
		f = 100 kHz, I _{OUT} = 1A (new chip)			42			
		BW = 100Hz to 100kHz, I _{OUT} = 1A	C _{NR} = 0.001 μF		54		- μV _{RMS}	
			C _{NR} = 0.0047 µF		46			
V_n	Output noise voltage		C _{NR} = 0.01 µF		41			
* n	Output Holoo Voltago		C _{NR} = 0.1 µF		40			
		BW = 10Hz to 100kHz, I _{OUT} = 1A	new chip (10		78		μV_{RMS}	
		$R_L = 3\Omega$, $C_{OUT} = 1 \mu F$	C _{NR} = 0.001 µF		50			
t _{str}	Time, start-up	$R_L = 3\Omega$, $C_{OUT} = 1 \mu F$	C _{NR} = 0.0047 µF		75		μs	
		$R_L = 3\Omega$, $C_{OUT} = 1 \mu F$	C _{NR} = 0.01 µF		110			
t _{str}	Time, start-up	$R_L = 3\Omega$, $C_{OUT} = 1 \mu F$	new chip		550		μs	
I _{EN}	Enable pin current	V _{EN} = 0 V		-1		1	μA	
R _{PULLDOWN}	Pulldown resistance	V _{IN} = 3.3V (new chip only)			100		Ω	
V	LIVI O throok -1-1	V _{IN} rising (legacy chip) V _{IN} rising (new chip)		2.25		2.65	V	
V_{UVLO}	UVLO threshold			1.28		1.62		
M	LIVI O hyeteresis	V _{IN} hysteresis (legacy chip) V _{IN} hysteresis (new Chip)			100			
V _{UVLO(HYST)}	UVLO hysteresis				130			
\/	High-level enable input	2.7V ⁽¹⁾ ≤ V _{IN} ≤ 5.5V (legacy ch	nip)	1.7		V _{IN}		
V _{EN(HI)}	voltage	$2.7V^{(1)} \le V_{IN} \le 5.5V$ (new chip)		0.85		V _{IN}	V	
\/	Low-level enable input	$2.7V^{(1)} \le V_{\text{IN}} \le 5.5V \text{ (legacy chip)}$				0.7		
$V_{EN(LOW)}$	voltage	$2.7V^{(1)} \le V_{IN} \le 5.5V \text{ (new chip)}$				0.425		

⁽¹⁾ Minimum $V_{IN} = V_{OUT} + 1V$ or 2.7V, whichever is greater.

5.6 Typical Characteristics

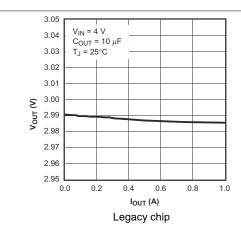


Figure 5-1. TPS79630-Q1 Output Voltage vs Output Current

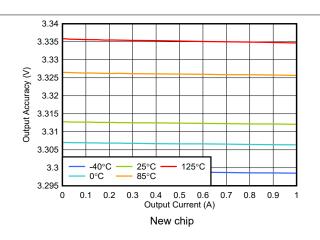


Figure 5-2. TPS79633-Q1 Output Voltage vs Output Current

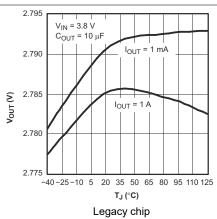


Figure 5-3. TPS79628-Q1 Output Voltage vs Junction Temperature

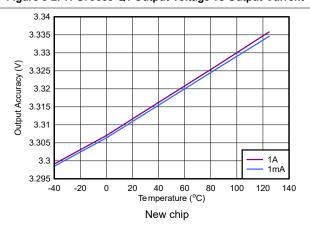


Figure 5-4. TPS79633-Q1 Output Voltage vs Junction Temperature

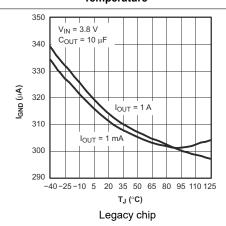


Figure 5-5. TPS79628-Q1 Ground Current vs Junction Temperature

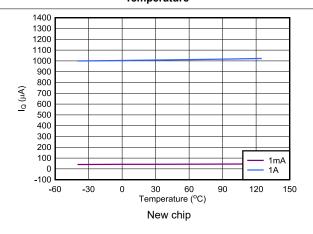


Figure 5-6. TPS79633-Q1 Ground Current vs Junction Temperature

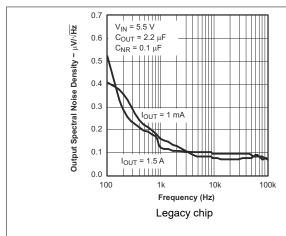


Figure 5-7. TPS79630-Q1 Output Spectral Noise Density vs Frequency

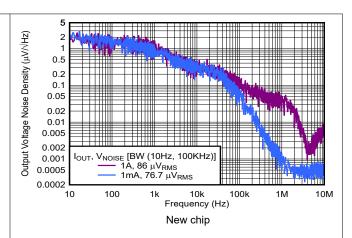


Figure 5-8. TPS79633-Q1 Output Spectral Noise Density vs Frequency

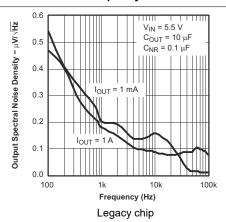


Figure 5-9. TPS79630-Q1 Output Spectral Noise Density vs Frequency

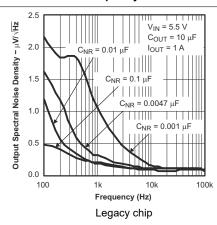


Figure 5-10. TPS79630-Q1 Output Spectral Noise Density vs Frequency

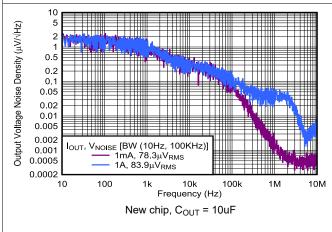


Figure 5-11. TPS79633-Q1 Output Spectral Noise Density vs Frequency

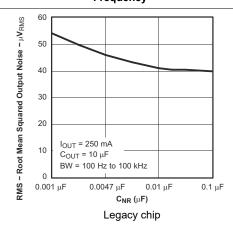


Figure 5-12. TPS79630-Q1 Root Mean Squared Output Noise vs Bypass Capacitance

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

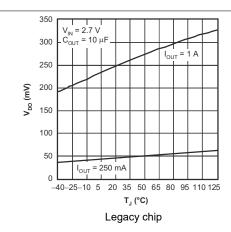


Figure 5-13. TPS79628-Q1 Dropout Voltage vs Junction Temperature

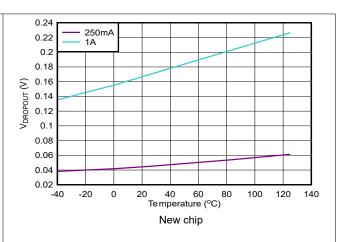


Figure 5-14. TPS79633-Q1 Dropout Voltage vs Junction Temperature

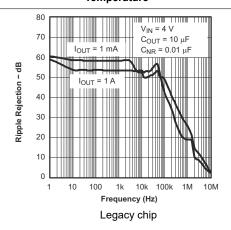


Figure 5-15. TPS79630-Q1 Ripple Rejection vs Frequency

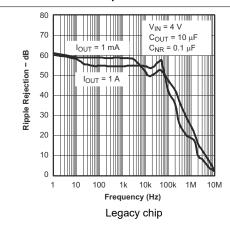


Figure 5-16. TPS79630-Q1 Ripple Rejection vs Frequency

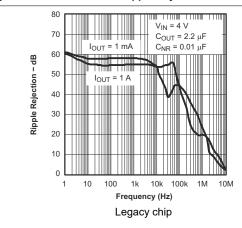


Figure 5-17. TPS79630-Q1 Ripple Rejection vs Frequency

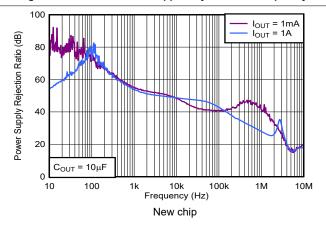
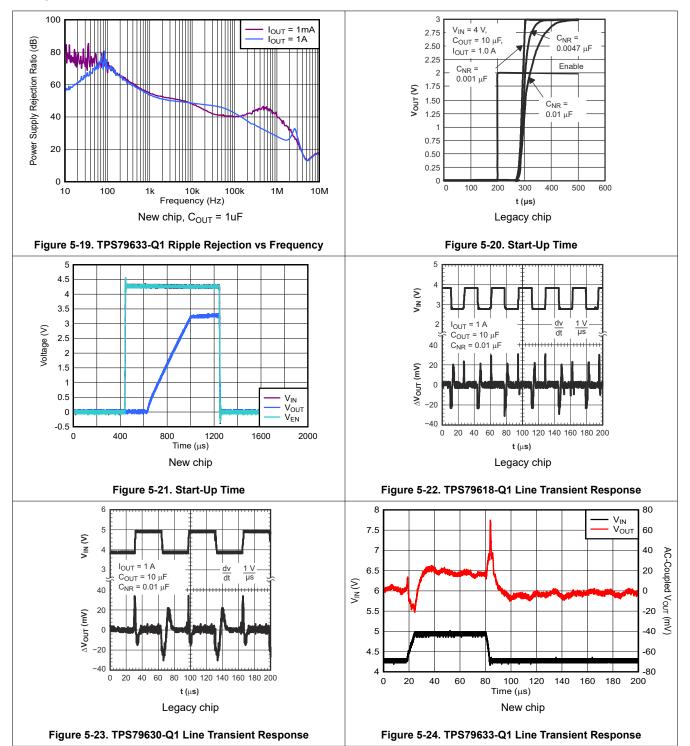
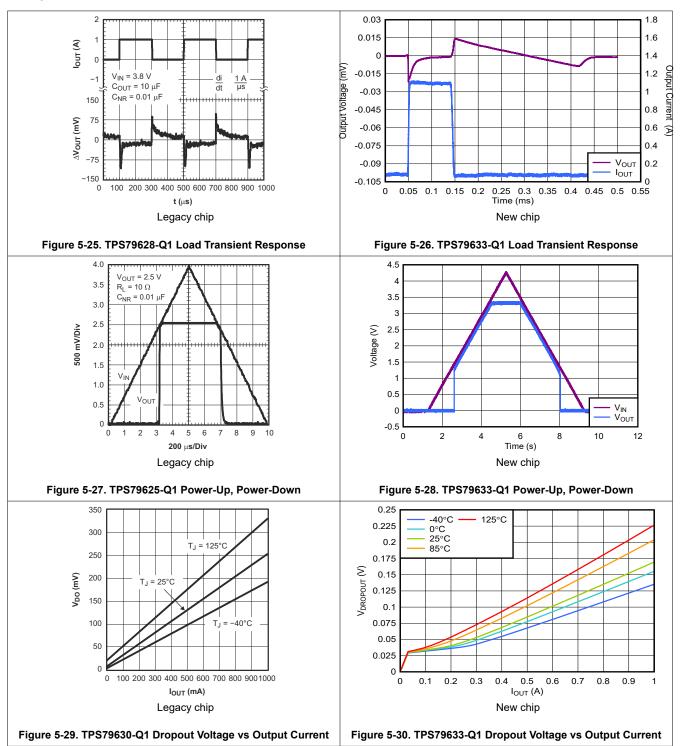



Figure 5-18. TPS79633-Q1 Ripple Rejection vs Frequency



Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

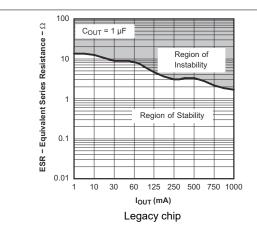


Figure 5-31. TPS79630-Q1 Typical Regions of Stability Equivalent Series Resistance (ESR) vs Output Current

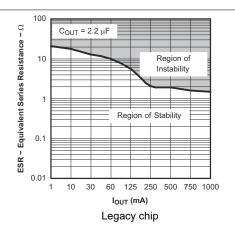


Figure 5-32. TPS79630-Q1 Typical Regions of Stability Equivalent Series Resistance (ESR) vs Output Current

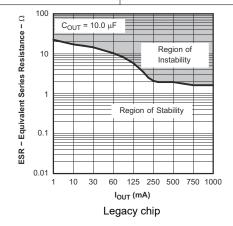


Figure 5-33. TPS79630-Q1 Typical Regions of Stability Equivalent Series Resistance (ESR) vs Output Current

Product Folder Links: TPS796-Q1

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

6 Detailed Description

6.1 Overview

The TPS796-Q1 is an ultra low-dropout, high PSRR, high-accuracy linear voltage regulator that is optimized for excellent transient performance. These characteristics make the device designed for most automotive applications. This regulator offers foldback current limit, output enable, active discharge, undervoltage lockout (UVLO), and thermal protection.

6.2 Functional Block Diagrams

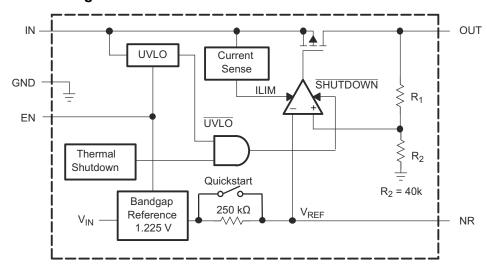


Figure 6-1. Functional Block Diagram (Legacy Chip)

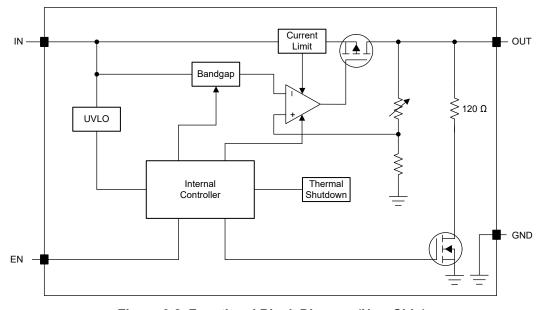


Figure 6-2. Functional Block Diagram (New Chip)

6.3 Feature Description

6.3.1 Undervoltage Lockout (UVLO)

The TPS796-Q1 uses an undervoltage lockout (UVLO) circuit that disables the output until the input voltage is greater than the rising UVLO voltage. This circuit verifies that the device does not exhibit any unpredictable behavior when the supply voltage is lower than the operational range of the internal circuitry, V_{IN(min)}.

6.3.2 Shutdown

The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed $V_{EN(high)}$. Turn off the device by forcing the EN pin to drop below the maximum EN pin low-level input voltage (see *Electrical Characteristics* table). If shutdown capability is not required, connect EN to IN.

6.3.3 Active Discharge (New Chip)

The device has an internal pulldown MOSFET that connects an R_{PULLDOWN} resistor to ground when the device is disabled to actively discharge the output voltage. The active discharge circuit is activated by the enable pin.

Do not rely on the active discharge circuit to discharge the output voltage after the input supply has collapsed because reverse current can possibly flow from the output to the input. This reverse current flow can cause damage to the device especially when a large output capacitor is used. Limit reverse current to no more than 5% of the device rated current for a short period of time.

6.3.4 Thermal Protection

Thermal protection disables the output when the junction temperature rises to approximately 165°C, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit can cycle on and off. This cycling limits regulator dissipation, protecting the device from damage as a result of overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heat sink. For reliable operation, junction temperature must be limited to 125°C maximum. To estimate the margin of safety in a complete design (including heat sink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions.

The TPS793 internal protection circuitry is designed to protect against overload conditions. This circuitry is not intended to replace proper heat sinking. Continuously running the TPS793 into thermal shutdown degrades device reliability.

6.3.5 Regulator Protection

The TPS796-Q1 PMOS-pass transistor has a built-in back diode that conducts reverse current when the input voltage drops below the output voltage (for example, during power-down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage operation is anticipated, use external limiting as appropriate.

The legacy chip features internal current limiting and thermal protection. During normal operation, the TPS796-Q1 limits output current to approximately 2.8A. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. Although current limiting is designed to prevent gross device failure, care must be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds approximately +165°C, thermal-protection circuitry shuts the device down. When the device has cooled down to below approximately +140°C, regulator operation resumes.

The new chip features an internal current limit circuit that protects the regulator during transient high-load current faults or shorting events. The current limit is a hybrid brick-wall-foldback scheme. The current limit transitions from a brickwall scheme to a foldback scheme at the foldback voltage ($V_{FOLDBACK}$). In a high-load current fault with the output voltage above $V_{FOLDBACK}$, the brick-wall scheme limits the output current to the current limit (I_{CL}). When the voltage drops below $V_{FOLDBACK}$, a foldback current limit activates that scales back the current as the output voltage approaches GND. When the output is shorted, the device supplies a typical current called the short-circuit current limit (I_{SC}). I_{CL} and I_{SC} are listed in the *Electrical Characteristics* table.

For this device, $V_{FOLDBACK} = 0.4 \times VOUT(NOM)$.

Figure 6-3 shows a diagram of the foldback current limit.

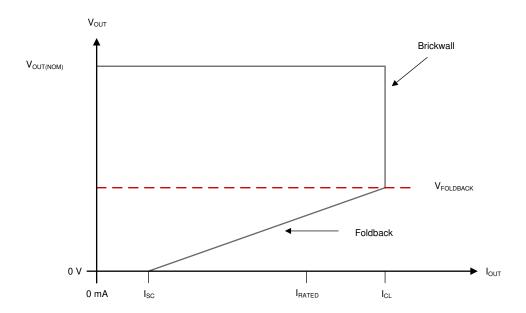


Figure 6-3. Foldback Current Limit

6.4 Device Functional Modes

6.4.1 Normal Operation

The device regulates to the nominal output voltage under the following conditions:

- The input voltage is at least as high as V_{IN(min)}.
- · The input voltage is greater than the nominal output voltage added to the dropout voltage.
- The enable voltage is greater than V_{EN(min)}.
- The output current is less than the current limit.
- The device junction temperature is less than the maximum specified junction temperature.

6.4.2 Dropout Operation

If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode of operation, the output voltage is the same as the input voltage minus the dropout voltage. The transient performance of the device is significantly degraded because the pass transistor is in the linear region and no longer controls the current through the LDO. Line or load transients in dropout can result in large output voltage deviations.

6.4.3 Disabled

The device is disabled under the following conditions:

- The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising threshold.
- The device junction temperature is greater than the thermal shutdown temperature.
- · The input voltage is less than UVLO_{falling}.

Table 6-1 shows the conditions that lead to the different modes of operation.

Table 6-1. Device Functional Mode Comparison

OPERATING MODE	PARAMETER					
OPERATING WIODE	V _{IN}	V _{EN}	I _{OUT}	T _J		
Normal mode	$V_{IN} > V_{OUT(nom)} + V_{DO}$ and $V_{IN} > V_{IN(min)}$	$V_{EN} > V_{EN(high)}$	I _{OUT} < I _{LIM}	T _J < 125°C		
Dropout mode	$V_{IN(min)} < V_{IN} < V_{OUT(nom)} + V_{DO}$	$V_{EN} > V_{EN(high)}$	_	T _J < 125°C		
Disabled mode (any true condition disables the device)	V _{IN} < UVLO _{falling}	V _{EN} < V _{EN(low)}	_	T _J > 165°C ⁽¹⁾		

(1) Approximate value for thermal shutdown.

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The TPS796-Q1 low-dropout (LDO) regulator is optimized for use in noise-sensitive equipment. The device features extremely low dropout voltages, high PSRR, low output noise, low quiescent current and enable input to reduce supply currents when the regulator is turned off.

A typical application circuit is shown in Figure 7-1 and Figure 7-2.

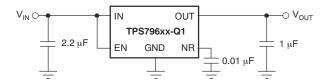


Figure 7-1. Typical Application Circuit (Legacy Chip)

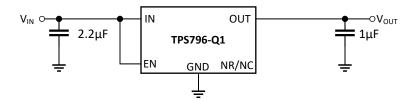


Figure 7-2. Typical Application (New Chip)

7.1.1 Exiting Dropout

Some applications have transients that place the LDO into dropout, such as slower ramps on V_{IN} during start-up. As with other LDOs, the output can overshoot on recovery from these conditions. A ramping input supply causes an LDO to overshoot on start-up, as shown in Figure 7-3, when the slew rate and voltage levels are in the correct range. Use an enable signal to avoid this condition.

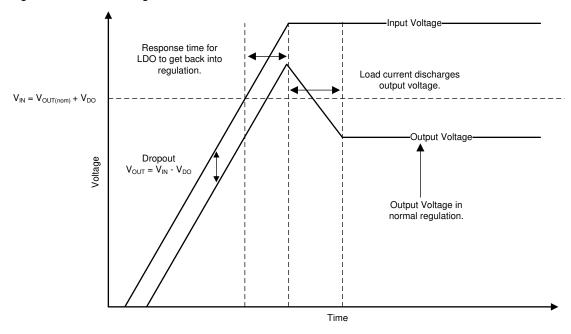


Figure 7-3. Start-Up Into Dropout

Line transients out of dropout can also cause overshoot on the output of the regulator. These overshoots are caused by the error amplifier having to drive the gate capacitance of the pass transistor and bring the gate back to the correct voltage for proper regulation. Figure 7-4 illustrates what is happening internally with the gate voltage and how overshoot can be caused during operation. When the LDO is placed in dropout, the gate voltage (V_{GS}) is pulled all the way down to ground to give the pass transistor the lowest on-resistance as possible. However, if a line transient occurs when the device is in dropout, the loop is not in regulation and can cause the output to overshoot until the loop responds and the output current pulls the output voltage back down into regulation. If these transients are not acceptable, then continue to add input capacitance in the system until the transient is slow enough to reduce the overshoot.

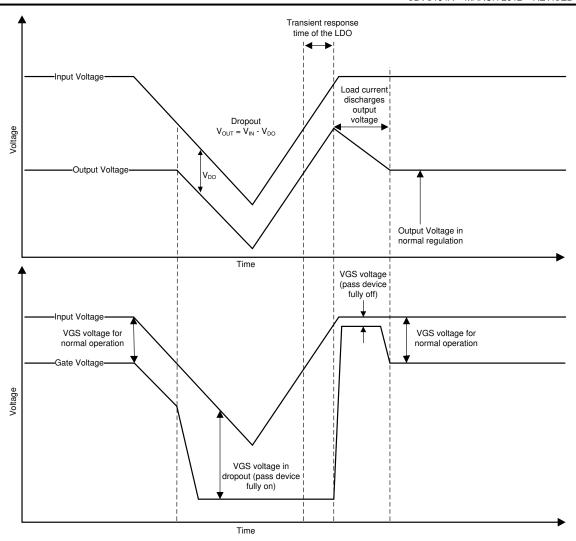


Figure 7-4. Line Transients From Dropout

7.1.2 External Capacitor Requirements

An input capacitor of $1.0\mu F$ (new chip) or $2.2\mu F$ (legacy chip) or larger ceramic input capacitor, connected between IN and GND, close to the TPS796-Q1, is required for stability and improves transient response, noise rejection, and ripple rejection. A higher-value input capacitor can be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source.

As with most LDO regulators, the TPS796-Q1 requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitor is $1\mu F$. Any $1\mu F$ or larger ceramic capacitor is suitable.

The internal voltage reference is a key source of noise in an LDO regulator. The TPS796-Q1 (legacy chip) has an NR pin that is connected to the voltage reference through a $250k\Omega$ internal resistor. The $250k\Omega$ internal resistor, in conjunction with an external bypass capacitor connected to the NR pin, creates a low-pass filter to reduce the voltage reference noise and, therefore, the noise at the regulator output. For the regulator to operate properly, the current flow out of the NR pin must be at a minimum, because any leakage current creates an IR drop across the internal resistor, thus creating an output error. Therefore, the bypass capacitor must have minimal leakage current. The bypass capacitor must be no more than $0.1\mu\text{F}$ to verify that the capacitor is fully charged during the quick-start time provided by the internal switch shown in the *Functional Block Diagrams*.

For example, the TPS796-Q1 exhibits $40\mu V_{RMS}$ of output voltage noise using a $0.1\mu F$ ceramic bypass capacitor and a $10\mu F$ ceramic output capacitor. The output starts up slower as the bypass capacitance increases because of the RC time constant at the bypass pin that is created by the internal $250k\Omega$ resistor and external capacitor.

7.1.3 Board Layout Recommendation to Improve PSRR and Noise Performance

To improve ac measurements such as PSRR, output noise, and transient response, design the board with separate ground planes for V_{IN} and V_{OUT} , with each ground plane connected only at the ground pin of the device. In addition, the ground connection for the bypass capacitor must connect directly to the ground pin of the device.

7.1.4 Regulator Mounting

The tab of the SOT-223-6 package is electrically connected to ground. For best thermal performance, solder the tab of the surface-mount version directly to the printed circuit board (PCB) copper area. Increasing the copper area improves heat dissipation.

Solder pad footprint recommendations for the devices are presented in the *Solder Pad Recommendations for Surface-Mount Devices* application note, available for download from the TI web site (www.ti.com).

Product Folder Links: TPS796-Q1

Copyright © 2025 Texas Instruments Incorporated

7.1.5 Thermal Information

7.1.5.1 Power Dissipation

Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must be as free as possible of other heat-generating devices that cause added thermal stresses.

As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference and load conditions. Equation 1 calculates P_D :

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
(1)

Note

Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low dropout of the device allows for maximum efficiency across a wide range of output voltages.

The primary heat conduction path for the package is through the thermal pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area contains an array of plated vias that conduct heat to any inner plane areas or to a bottom-side copper plane.

The power dissipation through the device determines the junction temperature (T_J) for the device. Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance $(R_{\theta JA})$ of the combined PCB and device package and the temperature of the ambient air (T_A) , according to Equation 2. The equation is rearranged for output current in Equation 3.

$$T_{J} = T_{A} = (R_{\theta JA} \times P_{D}) \tag{2}$$

$$I_{OUT} = (T_J - T_A) / [R_{\theta,JA} \times (V_{IN} - V_{OUT})]$$
(3)

Unfortunately, this thermal resistance ($R_{\theta JA}$) is highly dependent on the heat-spreading capability built into the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The $R_{\theta JA}$ recorded in the *Thermal Information* table is determined by the JEDEC standard, PCB, and copper-spreading area, and is only used as a relative measure of package thermal performance. For a well-designed thermal layout, $R_{\theta JA}$ is actually the sum of the RTE package junction-to-case (bottom) thermal resistance ($R_{\theta JCbot}$) plus the thermal resistance contribution by the PCB copper.

7.1.5.2 Estimating Junction Temperature

The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics are determined to be significantly independent of the copper-spreading area. The key thermal metrics (Ψ_{JT}) and (Ψ_{JB}) are used in accordance with Equation 4 and are given in the *Electrical Characteristics* table.

$$\Psi_{JT}: T_J = T_T + \Psi_{JT} \times P_D$$

$$\Psi_{JB}: T_J = T_B + \Psi_{JB} \times P_D$$
(4)

where:

- P_D is the power dissipated as explained in the *Power Dissipation* section
- T_T is the temperature at the center-top of the device package
- T_B is the PCB surface temperature measured 1mm from the device package and centered on the package edge

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

7.2 Typical Application

A typical application circuit is shown in Figure 7-5.

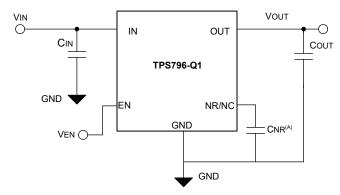


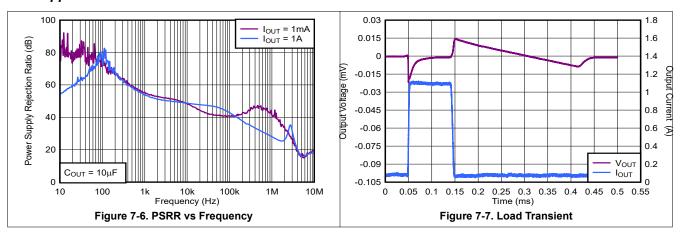
Figure 7-5. Typical Application Circuit

Note

 C_{NR} is not required. The TPS796-Q1 (new chip) has an NC (no connect) pin instead; keeping a C_{NR} does not impact device performance.

7.2.1 Design Requirements

Table 7-1 summarizes the design requirement for this application.


Table 7-1. Design Parameters

PARAMETER	VALUE
Input voltage	4.05V
Output voltage	3.3V, ± 2%
Output load	600mA
Maximum ambient temperature	85°C

7.2.2 Detailed Design Procedure

For this design example, the 3.3-V, fixed-version device is selected. The device is powered of a DC/DC converter connected to a battery. A 750-mV headroom between V_{IN} and V_{OUT} is used to keep the device within the dropout voltage specification and to make sure the device stays in regulation under all load and temperature conditions for this design.

7.2.3 Application Curves

7.3 Power Supply Recommendations

The TPS796-Q1 is designed to operate from an input voltage supply range between 2.7 V and 5.5 V. The input voltage range provides adequate headroom for the device to have a regulated output. This input supply is well-regulated and stable. If the input supply is noisy, additional input capacitors with low ESR can help improve the output noise performance.

7.4 Layout

7.4.1 Layout Guidelines

For best overall performance, place all circuit components on the same side of the circuit board and as near as practical to the respective LDO pin connections. Place ground return connections to the input and output capacitor, and to the LDO ground pin as close to each other as possible, connected by a wide, component-side, copper surface. To avoid negative system performance, do not use vias and long traces to the input and output capacitors.

A low ESL capacitor combined with low trace inductance limits the total inductance present on the output and optimizes the high-frequency PSRR. To improve performance, use a ground reference plane, either embedded in the PCB or placed on the bottom side of the PCB opposite the components. This reference plane serves to verify accuracy of the output voltage, shield noise, and behaves similar to a thermal plane to spread (or sink) heat from the LDO device when connected to the GND tab. In most applications, this ground plane is necessary to meet thermal requirements.

7.4.2 Layout Examples

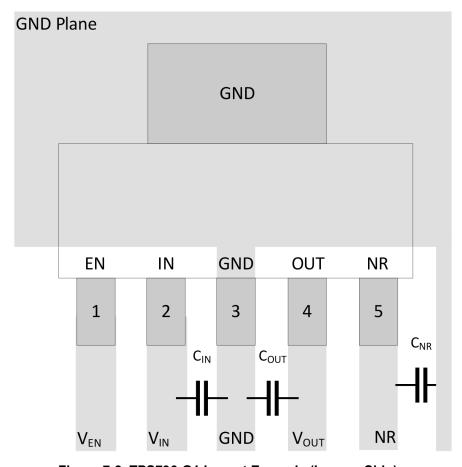


Figure 7-8. TPS796-Q1 Layout Example (Legacy Chip)

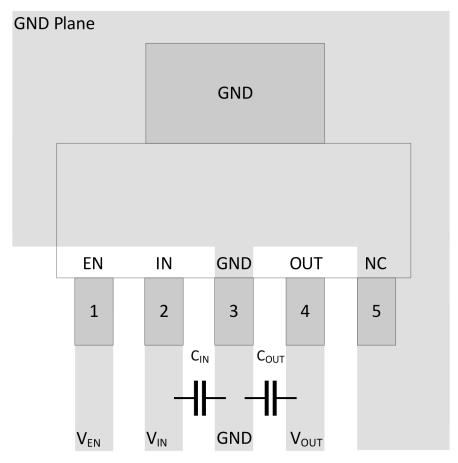


Figure 7-9. TPS796-Q1 Layout Example (New Chip)

8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

8.1 Device Nomenclature

Table 8-1. Available Options

PRODUCT ⁽¹⁾	DESCRIPTION
TPS79633 Qyyy zM3 Q1	Q indicates that this device is a grade-1 device in accordance with the AEC-Q100 standard. yyy is the package designator. z is the package quantity M3 is a suffix designator for the devices that only use the latest manufacturing flow (CSO:RFB). Devices without this suffix ship with the legacy chip (CSO:DLN) or the new chip (CSO:RFB). The reel packaging label provides CSO information to distinguish which chip is used. Q1 indicates that this device is an automotive grade (AEC-Q100) device.

⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Copyright © 2025 Texas Instruments Incorporated

TPS796-Q1

SBVS154A - MARCH 2012 - REVISED JUNE 2025

•	Changed TPS796xx-Q1 to TPS796-Q1 and terminal to pin throughout document	1
•	Changed automotive-specific Features bullets	1
•	Changed Applications section	1
•	Changed Terminal Functions title to Pin Configuration and Functions and added Type column to Pin	
	Functions table	3
•	Added NC pin description to pin 5 for new chip	3
•	Added new silicon curves to Typical Characteristics section	<mark>7</mark>
•	Added new silicon block diagrams to Functional Block Diagrams section	13
•	Deleted reference to DRB package	21
	Added Device Nomenclature section	

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TPS79633QDCQRM3Q1	Active	Production	SOT-223 (DCQ) 6	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	S79633Q
TPS79633QDCQRQ1	Active	Production	SOT-223 (DCQ) 6	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	79633Q
TPS79633QDCQRQ1.A	Active	Production	SOT-223 (DCQ) 6	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	79633Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

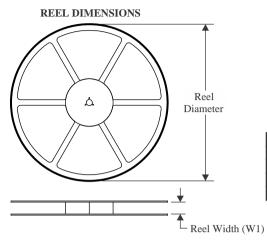
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

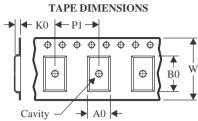
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

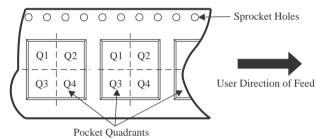
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

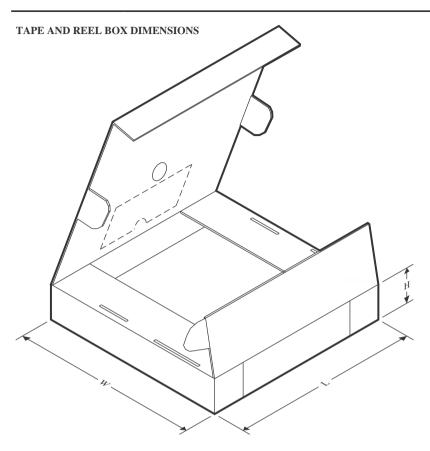

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Sep-2025


TAPE AND REEL INFORMATION

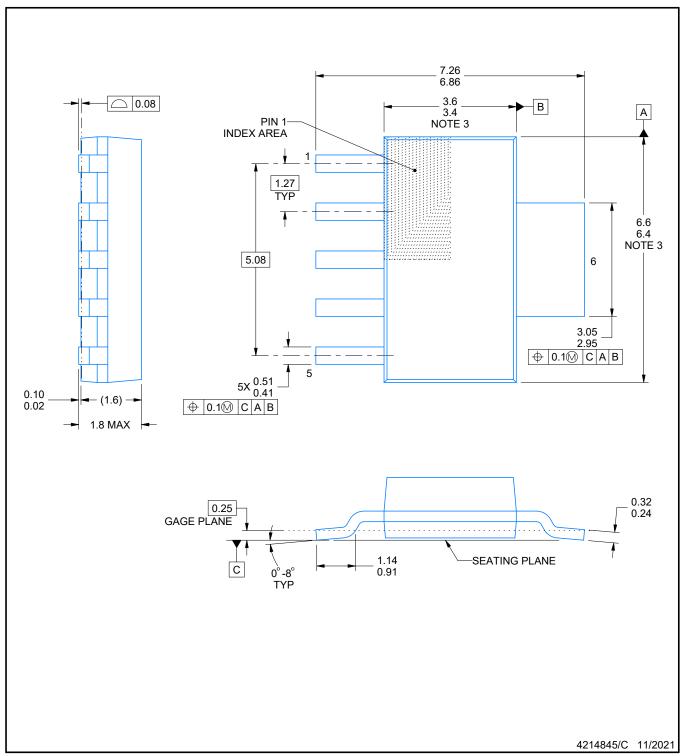
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS79633QDCQRM3Q1	SOT-223	DCQ	6	2500	330.0	12.4	7.05	7.4	1.9	8.0	12.0	Q3
TPS79633QDCQRQ1	SOT-223	DCQ	6	2500	330.0	12.4	6.8	7.3	1.88	8.0	12.0	Q3

www.ti.com 1-Sep-2025

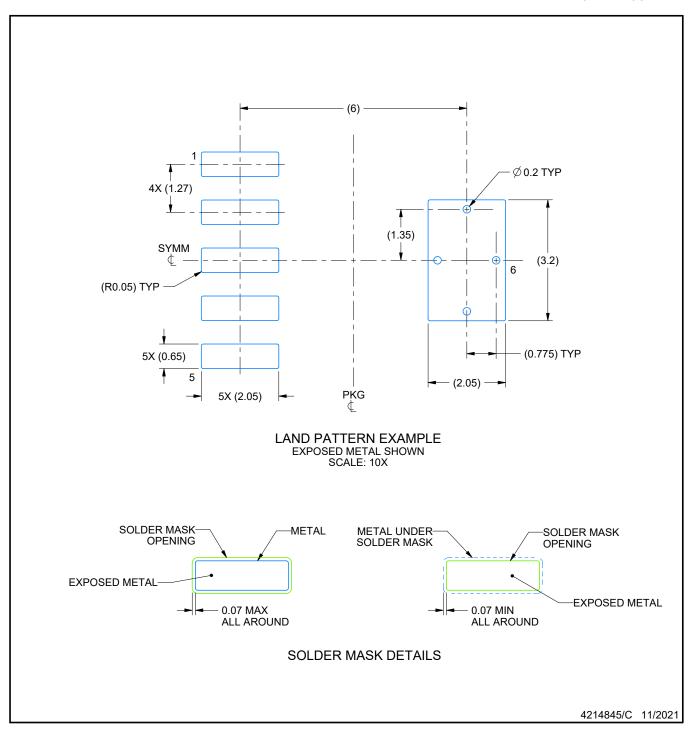


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS79633QDCQRM3Q1	SOT-223	DCQ	6	2500	340.0	340.0	38.0	
TPS79633QDCQRQ1	SOT-223	DCQ	6	2500	346.0	346.0	29.0	

PLASTIC SMALL OUTLINE

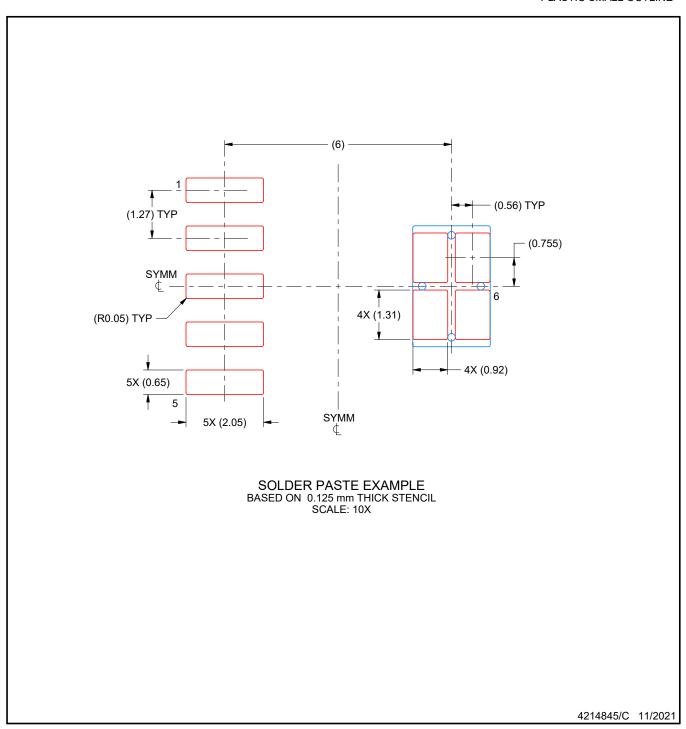
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025