TPS7A30 –35-V, –200-mA, Ultralow-Noise, Negative Linear Regulator

1 Features
- Input Voltage Range: –3 V to –35 V
- Noise:
 - 14 μVRMS (20 Hz to 20 kHz)
 - 15.1 μVRMS (10 Hz to 100 kHz)
- Power-Supply Ripple Rejection:
 - 72 dB (120 Hz)
 - ≥ 55 dB (10 Hz to 700 kHz)
- Adjustable Output: –1.18 V to –33 V
- Maximum Output Current: 200 mA
- Dropout Voltage: 216 mV at 100 mA
- Stable with Ceramic Capacitors ≥ 2.2 μF
- CMOS Logic-Level-Compatible Enable Pin
- Built-In, Fixed, Current Limit and Thermal Shutdown Protection
- Packages: 8-Pin HVSSOP PowerPAD™ and 3-mm × 3-mm VSON
- Operating Temperature Range: –40°C to 125°C

2 Applications
- Supply Rails for Operational Amplifiers, DACs, ADCs, and Other High-Precision Analog Circuitry
- Audio
- Post DC-DC Converter Regulation and Ripple Filtering
- Test and Measurement
- RX, TX, and PA Circuitry
- Industrial Instrumentation
- Base Stations and Telecom Infrastructure
- –12-V and –24-V Industrial Buses

3 Description
The TPS7A30 series of devices are negative, high-voltage (–35 V), ultralow-noise (15.1 μVRMS, 72-dB PSRR) linear regulators that can source a maximum load of 200 mA.

These linear regulators include a CMOS logic-level-compatible enable pin and capacitor-programmable soft-start function that allows for customized power-management schemes. Other features include built-in current limit and thermal shutdown protection to safeguard the device and system during fault conditions.

The TPS7A30 family is designed using bipolar technology, and is ideal for high-accuracy, high-precision instrumentation applications where clean voltage rails are critical to maximize system performance. This design makes the device an excellent choice to power operational amplifiers, analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and other high-performance analog circuitry.

In addition, the TPS7A30 family of linear regulators is suitable for post dc-dc converter regulation. By filtering out the output voltage ripple inherent to dc-dc switching conversion, maximum system performance is provided in sensitive instrumentation, test and measurement, audio, and RF applications.

For applications that require positive and negative high-performance rails, consider TI's TPS7A49 family of positive high-voltage, ultralow-noise linear regulators.

Device Information(1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A30</td>
<td>HVSSOP (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>VSON (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Post DC-DC Converter Regulation for High-Performance Analog Circuitry

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (April 2015) to Revision D

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Added DRB package to document</td>
<td>1</td>
</tr>
<tr>
<td>• Added TI Design</td>
<td>1</td>
</tr>
<tr>
<td>• Changed Packages Features bullet</td>
<td>1</td>
</tr>
<tr>
<td>• Added VSON row to Device Information table</td>
<td>1</td>
</tr>
<tr>
<td>• Added DRB package to Pin Configuration and Functions section</td>
<td>4</td>
</tr>
<tr>
<td>• Changed EN pin description in Pin Functions table: updated voltage symbols</td>
<td>4</td>
</tr>
<tr>
<td>• Added DRB column to Thermal Information table</td>
<td>6</td>
</tr>
<tr>
<td>• Changed test conditions of last row in</td>
<td>\text{\textit{I}}_{\text{EN}}</td>
</tr>
<tr>
<td>• Changed title and y-axis of Figure 7 to Ground Current</td>
<td>9</td>
</tr>
<tr>
<td>• Changed y-axis of Figure 11 and Figure 12 to \textit{I}_0</td>
<td>9</td>
</tr>
<tr>
<td>• Changed \textit{V}_{\text{EN}} value of disabled mode in Table 1</td>
<td>16</td>
</tr>
<tr>
<td>• Changed first sentence of Application Information section</td>
<td>17</td>
</tr>
<tr>
<td>• Added Table 2 and respective description to Adjustable Operation section</td>
<td>17</td>
</tr>
<tr>
<td>• Deleted third sentence from Capacitor Recommendations section</td>
<td>17</td>
</tr>
<tr>
<td>• Changed third paragraph of Power for Precision Analog section</td>
<td>19</td>
</tr>
<tr>
<td>• Changed description of start-up time in Design Requirements section</td>
<td>20</td>
</tr>
<tr>
<td>• Changed Equation 3</td>
<td>20</td>
</tr>
<tr>
<td>• Changed Equation 8</td>
<td>21</td>
</tr>
<tr>
<td>• Changed fifth item in Do's and Don'ts section</td>
<td>23</td>
</tr>
<tr>
<td>• Changed Figure 40 footnote</td>
<td>25</td>
</tr>
<tr>
<td>• Changed 35°C to 45°C in Thermal Considerations section</td>
<td>26</td>
</tr>
</tbody>
</table>
Changes from Revision B (December 2013) to Revision C

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ... 1
- Changed document title ... 1
- Changed Thermal Information table; updated values ... 6
- Deleted Dissipation Ratings table .. 6
- Changed condition statement for Electrical Characteristics table ... 7
- Added footnote about measuring V_{REF} to Electrical Characteristics table ... 7
- Added V_{FB} parameter to Electrical Characteristics table ... 7
- Changed parametric symbol for current limit from I_{LM} to I_{CL} ... 7
- Changed C_{BYP} notation to C_{FF} throughout data sheet ... 7
- Changed condition statement for Typical Characteristics ... 8
- Changed Figure 14; changed notation for C_{BYP} to C_{FF} ... 9
- Changed Figure 16; changed notation for C_{BYP} to C_{FF} ... 9
- Changed Figure 18; changed notation for C_{BYP} to C_{FF} ... 9
- Changed Figure 32; changed C_{BYP} to C_{FF} ... 20

Changes from Revision A (March 2011) to Revision B

- Changed V_{REF} parameter typical specification in Electrical Characteristics table ... 7

Changes from Original (August 2010) to Revision A

- Switched colors for 10mA and 200mA curves in Figure 10 ... 8
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNC</td>
<td>7</td>
<td>— Do not connect. Do not route this pin to any electrical net, not even GND or IN.</td>
</tr>
<tr>
<td>EN</td>
<td>5</td>
<td>I This pin turns the regulator on or off. If (V_{EN} \geq V_{EN(+HI, min)}) or (V_{EN} \leq V_{EN(-HI, max)}), the regulator is enabled. If (V_{EN(+LO, max)} \geq V_{EN} \geq V_{EN(-LO, min)}), the regulator is disabled. The EN pin can be connected to IN, if not used.</td>
</tr>
<tr>
<td>FB</td>
<td>2</td>
<td>I This pin is the feedback pin that sets the output voltage of the device.</td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td>— Ground</td>
</tr>
<tr>
<td>IN</td>
<td>8</td>
<td>I Input supply</td>
</tr>
<tr>
<td>NC</td>
<td>3</td>
<td>— Not internally connected. This pin must either be left open or tied to GND.</td>
</tr>
<tr>
<td>NR/SS</td>
<td>6</td>
<td>— Noise reduction pin. Connecting an external capacitor to this pin filters the noise generated by the internal band gap. This capacitor allows RMS noise to be reduced to very low levels and also controls the soft-start function.</td>
</tr>
<tr>
<td>OUT</td>
<td>1</td>
<td>O Regulator output. A capacitor (\geq 2.2 \mu F) must be tied from this pin to ground to ensure stability.</td>
</tr>
<tr>
<td>PowerPAD</td>
<td>—</td>
<td>— Must either be left open or tied to GND. Solder to printed-circuit-board (PCB) plane to enhance thermal performance.</td>
</tr>
</tbody>
</table>
Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN pin to GND pin</td>
<td>–36</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>OUT pin to GND pin</td>
<td>–33</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>OUT pin to IN pin</td>
<td>–0.3</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>FB pin to GND pin</td>
<td>–2</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>FB pin to IN pin</td>
<td>–0.3</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>EN pin to IN pin</td>
<td>–0.3</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>EN pin to GND pin</td>
<td>–36</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>NR/SS pin to IN pin</td>
<td>–0.3</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>NR/SS pin to GND pin</td>
<td>–2</td>
<td>0.3</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current</th>
<th>Peak output</th>
<th>Internally limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Operating virtual junction, (T_J)</td>
<td>(–40)</td>
</tr>
<tr>
<td>Storage, (T_{stg})</td>
<td>(–65)</td>
<td>150</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{(ESD)})</th>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>(±1500)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>(±500)</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IN}})</td>
<td>–35</td>
<td>–3</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{EN}})</td>
<td>0</td>
<td>(V_{\text{IN}})</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OUT}})</td>
<td>(V_{\text{REF}})</td>
<td>33</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{OUT}})</td>
<td>0</td>
<td>200</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(T_J)</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>(C_{\text{IN}})</td>
<td>2.2</td>
<td>10</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>(C_{\text{OUT}})</td>
<td>2.2</td>
<td>10</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>(C_{\text{NR}})</td>
<td>0</td>
<td>10</td>
<td>nF</td>
<td></td>
</tr>
<tr>
<td>(C_{\text{FF}})</td>
<td>0</td>
<td>10</td>
<td>nF</td>
<td></td>
</tr>
<tr>
<td>(R_2)</td>
<td></td>
<td>237</td>
<td>kΩ</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TPS7A30 DGN (HVSSOP PowerPAD)</th>
<th>TPS7A30 DRB (VSON)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA})</td>
<td>63.4</td>
<td>47.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JAC(top)})</td>
<td>53</td>
<td>55.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JB})</td>
<td>37.4</td>
<td>23.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{J})</td>
<td>3.7</td>
<td>1.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JB})</td>
<td>37.1</td>
<td>23.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JCB(bot)})</td>
<td>13.5</td>
<td>7.0</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
6.5 Electrical Characteristics

At $T_J = -40^\circ$C to 125$^\circ$C, $|V_{IN}| = |V_{OUT(nom)}| + 1$ V or $|V_{IN}| = 3$ V (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1$ mA, $C_{IN} = 2.2$ μF, $C_{OUT} = 2.2$ μF, $C_{NR/SS} = 0$ nF, and the FB pin tied to OUT, unless otherwise noted. Typical values are at $T_A = 25^\circ$C.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input voltage</td>
<td>-35</td>
<td>-3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{REF}</td>
<td>Internal reference</td>
<td>$T_J = 25^\circ$C, $V_{NR/SS} = V_{REF}$</td>
<td>-1.202</td>
<td>-1.179</td>
<td>-1.166</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback voltage</td>
<td>-1.176</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output voltage range</td>
<td>$</td>
<td>V_{IN}</td>
<td>\geq</td>
<td>V_{OUT(nom)}</td>
</tr>
<tr>
<td></td>
<td>Nominal accuracy</td>
<td>$T_J = 25^\circ$C, $</td>
<td>V_{IN}</td>
<td>=</td>
<td>V_{OUT(nom)}</td>
</tr>
<tr>
<td></td>
<td>Overall accuracy</td>
<td>$</td>
<td>V_{OUT(nom)}</td>
<td>+ 1$ V $\leq</td>
<td>V_{IN}</td>
</tr>
<tr>
<td>$</td>
<td>V_{OUT}</td>
<td>/</td>
<td>V_{REF}</td>
<td>$</td>
<td>Line regulation</td>
</tr>
<tr>
<td>$</td>
<td>V_{OUT}</td>
<td>/(V_{OUT}+V_{IN})$</td>
<td>Load regulation</td>
<td>$T_J = 25^\circ$C, 1 mA $\leq I_{OUT} \leq 200$ mA</td>
<td>0.04</td>
</tr>
<tr>
<td>$</td>
<td>V_{DO}</td>
<td>$</td>
<td>Dropout voltage</td>
<td>$</td>
<td>V_{IN}</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>V_{IN}</td>
<td>= 95% V_{OUT(nom)}$, $I_{OUT} = 200$ mA</td>
<td>325</td>
<td>600</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Current limit</td>
<td>$V_{OUT} = 90% V_{OUT(nom)}$</td>
<td>220</td>
<td>330</td>
<td>500</td>
</tr>
<tr>
<td>I_{GND}</td>
<td>Ground current</td>
<td>$I_{OUT} = 0$ mA</td>
<td>55</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$I_{OUT} = 100$ mA</td>
<td>950</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SHDN}</td>
<td>Shutdown supply current</td>
<td>$V_{EN} = 0.4$ V</td>
<td>1</td>
<td>3</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{EN} = -0.4$ V</td>
<td>1</td>
<td>3</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{FB}</td>
<td>Feedback current</td>
<td>$I_{FB} > 0$ V flows into the device</td>
<td>14</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>I_{EN}</td>
<td>Enable current</td>
<td>$V_{EN} =</td>
<td>V_{IN}</td>
<td>=</td>
<td>V_{OUT(nom)}</td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = V_{EN} = -35$ V</td>
<td>0.51</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = -21$ V, $V_{EN} = 15$ V</td>
<td>0.5</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>$V_{EN(HI)}$</td>
<td>Positive enable high-level voltage</td>
<td>$T_J = -40^\circ$C to 125$^\circ$C</td>
<td>2</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$T_J = -40^\circ$C to 85$^\circ$C</td>
<td>1.8</td>
<td>15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{EN(LO)}$</td>
<td>Positive enable low-level voltage</td>
<td>0</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{EN(-HI)}$</td>
<td>Negative enable high-level voltage</td>
<td>V_{IN}</td>
<td>-2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{EN(-LO)}$</td>
<td>Negative enable low-level voltage</td>
<td>-0.4</td>
<td>0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{n}</td>
<td>Output noise voltage</td>
<td>$V_{IN} = -3$ V, $V_{OUT(nom)} = V_{REF}$, $C_{OUT} = 10$ μF, $C_{NR/SS} = 10$ nF, $BW = 10$ Hz to 100 kHz</td>
<td>15.1</td>
<td>μV RMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{OUT} = -6.2$ V, $V_{OUT(nom)} = -5$ V, $C_{OUT} = 10$ μF, $C_{NR/SS} = C_{FF(5)} = 10$ nF, BW = 10 Hz to 100 kHz</td>
<td>17.5</td>
<td>μV RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio</td>
<td>$V_{IN} = -6.2$ V, $V_{OUT(nom)} = -5$ V, $C_{OUT} = 10$ μF, $C_{NR/SS} = C_{FF(5)} = 10$ nF, $f = 120$ Hz</td>
<td>72</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>T_{SD}</td>
<td>Thermal shutdown temperature</td>
<td>Shutdown, temperature increasing</td>
<td>170</td>
<td>$^\circ$C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reset, temperature decreasing</td>
<td>150</td>
<td>$^\circ$C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{J}</td>
<td>Operating junction temperature range</td>
<td>-40</td>
<td>125</td>
<td>$^\circ$C</td>
<td></td>
</tr>
</tbody>
</table>

(1) At operating conditions, $V_{IN} \leq 0$ V, $V_{OUT(nom)} \leq V_{REF} \leq 0$ V. At regulation, $V_{IN} \leq V_{OUT(nom)} - |V_{DO}|$, $I_{OUT} > 0$ V flows from OUT to IN.

(2) V_{REF} is measured at the NR/SS pin.

(3) To ensure stability at no load conditions, a current from the feedback resistive network equal to or greater than 5 μA is required.

(4) $I_{FB} > 0$ V flows into the device.

(5) C_{FF} refers to a feed-forward capacitor connected to the FB and OUT pins.
6.6 Typical Characteristics

At $T_J = -40^\circ\text{C}$ to 125°C, $|V_{IN}| = |V_{OUT(nom)}| + 1\text{ V}$ or $|V_{IN}| = 3\text{ V}$ (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1\text{ mA}$, $C_{IN} = 2.2\ \mu\text{F}$, $C_{OUT} = 2.2\ \mu\text{F}$, $C_{NR/SS} = 0\ \text{nF}$, and $V_{OUT} = V_{FB}$, unless otherwise noted. Typical values are at $T_A = 25^\circ\text{C}$.

Figure 1. Feedback Voltage vs Input Voltage

Figure 2. Feedback Current vs Temperature

Figure 3. Ground Current vs Input Voltage

Figure 4. Ground Current vs Input Voltage

Figure 5. Ground Current vs Output Current

Figure 6. Enable Current vs Enable Voltage
Typical Characteristics (continued)

At $T_J = -40^\circ C$ to 125°C, $|V_{IN}| = |V_{OUT(nom)}| + 1 V$ or $|V_{IN}| = 3 V$ (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1$ mA, $C_{IN} = 2.2 \mu F$, $C_{OUT} = 2.2 \mu F$, $C_{NRSS} = 0$ nF, and $V_{OUT} = V_{FB}$, unless otherwise noted. Typical values are at $T_A = 25^\circ C$.

![Ground Current vs Input Voltage](image1)

![Shutdown Current vs Input Voltage](image2)

![Dropout Voltage vs Output Current](image3)

![Dropout Voltage vs Temperature](image4)

![Current Limit vs Input Voltage](image5)

![Current Limit vs Temperature](image6)
Typical Characteristics (continued)

At $T_J = -40^\circ C$ to 125°C, $|V_{IN}| = |V_{OUT(nom)}| + 1$ V or $|V_{IN}| = 3$ V (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1$ mA, $C_{IN} = 2.2$ μF, $C_{OUT} = 2.2$ μF, $C_{NR/SS} = 0$ nF, and $V_{OUT} = V_{FB}$, unless otherwise noted. Typical values are at $T_A = 25^\circ C$.

![Figure 13. Enable Threshold Voltage vs Temperature](image1)

![Figure 14. Power-Supply Rejection Ratio vs C_{OUT}](image2)

![Figure 15. Line Regulation](image3)

![Figure 16. Power-Supply Rejection Ratio vs $C_{NR/SS}$](image4)

![Figure 17. Load Regulation](image5)

![Figure 18. Power-Supply Rejection Ratio vs C_{FF}](image6)
Typical Characteristics (continued)

At $T_J = -40^\circ\text{C}$ to $125^\circ\text{C}, |V_{IN}| = |V_{OUT(nom)}| + 1\ \text{V}$ or $|V_{IN}| = 3\ \text{V}$ (whichever is greater), $V_{EN} = V_{IN}, I_{OUT} = 1\ \text{mA}, C_{IN} = 2.2\ \mu\text{F}, C_{OUT} = 2.2\ \mu\text{F}, C_{NR/SS} = 0\ \text{nF},$ and $V_{OUT} = V_{FB},$ unless otherwise noted. Typical values are at $T_A = 25^\circ\text{C}.$

![Figure 19. Capacitor-Programmable Soft-Start](image1)

![Figure 20. Capacitor-Programmable Soft-Start](image2)

![Figure 21. Capacitor-Programmable Soft-Start](image3)

![Figure 22. Capacitor-Programmable Soft-Start](image4)

![Figure 23. Line Transient Response](image5)

![Figure 24. Line Transient Response](image6)
Typical Characteristics (continued)

At $T_J = -40^\circ C$ to $125^\circ C$, $|V_{IN}| = |V_{OUT(nom)}| + 1 V$ or $|V_{IN}| = 3 V$ (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1 mA$, $C_{IN} = 2.2 \mu F$, $C_{OUT} = 2.2 \mu F$, $C_{NR/SS} = 0 nF$, and $V_{OUT} = V_{FB}$, unless otherwise noted. Typical values are at $T_A = 25^\circ C$.

Figure 25. Load Transient Response
7 Parameter Measurement Information

![Graph of Output Spectral Noise Density vs Output Current](image1)

Figure 26. Output Spectral Noise Density vs Output Current

<table>
<thead>
<tr>
<th>I<sub>OUT</sub></th>
<th>RMS NOISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mA</td>
<td>15.13</td>
</tr>
<tr>
<td>200mA</td>
<td>17.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C<sub>NR/SS</sub></th>
<th>RMS NOISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0nF</td>
<td>80.00</td>
</tr>
<tr>
<td>10nF</td>
<td>17.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V<sub>OUT(nom)</sub></th>
<th>RMS NOISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>−5V</td>
<td>17.50</td>
</tr>
<tr>
<td>−1.2V</td>
<td>15.13</td>
</tr>
</tbody>
</table>

![Graph of Output Spectral Noise Density vs C_{NR/SS}](image2)

![Graph of Output Spectral Noise Density vs V_{OUT(nom)}](image3)

7.1 Frequency Response

- **I_{OUT}**: 1mA, 200mA
- **C_{NR/SS}**: 0nF, 10nF
- **V_{OUT(nom)}**: −5V, −1.2V

Figure 26. Output Spectral Noise Density vs Output Current

Figure 27. Output Spectral Noise Density vs C_{NR/SS}

Figure 28. Output Spectral Noise Density vs V_{OUT(nom)}

Copyright © 2010–2015, Texas Instruments Incorporated
8 Detailed Description

8.1 Overview
The TPS7A30 family of devices are wide V_{IN}, low-noise, 150-mA linear regulators (LDOs). These devices feature an enable pin, programmable soft-start, current limiting, and thermal protection circuitry that allow the device to be used in a wide variety of applications. As bipolar-based devices, the TPS7A30 devices are ideal for high-accuracy, high-precision applications at higher voltages.

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Internal Current Limit

The fixed internal current limit of the TPS7A30 family helps protect the regulator during fault conditions. The maximum amount of current the device can source is the current limit (330 mA, typical), and is largely independent of the output voltage. For reliable operation, do not operate the device in current limit for extended periods of time.

8.3.2 Programmable Soft-Start

The NR/SS capacitor also functions as a soft-start capacitor to slow down the rise time of the output. The rise time of the output when using an NR/SS capacitor is governed by Equation 1. In Equation 1, t_{SS} is the soft-start time in milliseconds and $C_{NR/SS}$ is the capacitance at the NR pin in nanofarads. Figure 29 shows the relationship between the $C_{NR/SS}$ size and the start-up time without a C_{FF}.

$$t_{SS} (\text{ms}) = 0.9 \times C_{NR/SS} (\text{nF})$$

(1)

8.3.3 Enable Pin Operation

The TPS7A30 provides a dual-polarity enable pin (EN) that turns on the regulator when $|V_{EN}| > 2 \text{ V}$, whether the voltage is positive or negative, as shown in Figure 30.

This functionality allows for different system power management topologies:
- Connecting the EN pin directly to a negative voltage (such as V_{IN}).
- Connecting the EN pin directly to a positive voltage, such as the output of digital logic circuitry.

Copyright © 2010–2015, Texas Instruments Incorporated
8.4 Device Functional Modes

8.4.1 Normal Operation
The device regulates to the nominal output voltage under the following conditions:
- The input voltage is at least as high as the $V_{IN(min)}$.
- The input voltage magnitude is greater than the nominal output voltage magnitude added to the dropout voltage.
- $|V_{EN}| > |V_{(HI)}|$.
- The output current is less than the current limit.
- The device junction temperature is less than the maximum specified junction temperature.

8.4.2 Dropout Operation
If the input voltage magnitude is lower than the nominal output voltage magnitude plus the specified dropout voltage magnitude, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode of operation, the output voltage magnitude is the same as the input voltage magnitude minus the dropout voltage magnitude. The transient performance of the device is significantly degraded because the pass device (such as a bipolar junction transistor, or BJT) is in saturation and no longer controls the current through the LDO. Line or load transients in dropout can result in large output voltage deviations.

8.4.3 Disabled
The device is disabled under the following conditions:
- $|V_{EN}| < |V_{(HI)}|$.
- The device junction temperature is greater than the thermal shutdown temperature.

Table 1 shows the conditions that lead to the different modes of operation.

<table>
<thead>
<tr>
<th>OPERATING MODE</th>
<th>PARAMETER</th>
<th>V_{IN}</th>
<th>V_{EN}</th>
<th>I_{OUT}</th>
<th>T_J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>$</td>
<td>V_{IN}</td>
<td>> (</td>
<td>V_{OUT(nom)}</td>
<td>+</td>
</tr>
<tr>
<td>Dropout mode</td>
<td>$</td>
<td>V_{IN(min)}</td>
<td><</td>
<td>V_{IN}</td>
<td><</td>
</tr>
<tr>
<td>Disabled mode</td>
<td>(any true condition disables the device)</td>
<td>—</td>
<td>$</td>
<td>V_{EN}</td>
<td><</td>
</tr>
</tbody>
</table>
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information
The TPS7A30 belongs to a family of linear regulators that use an innovative bipolar process to achieve ultralow-noise. The TPS7A30 are bipolar-based devices and are therefore ideal for high-accuracy, high-performance analog applications at higher voltages.

9.1.1 Adjustable Operation
The TPS7A3001 has an output voltage range of –1.174 V to –33 V. The nominal output voltage of the device is set by two external resistors; see Figure 32.

\[R_1 = R_2 \left(\frac{V_{OUT}}{V_{FB(nom)}} - 1 \right), \quad \text{where} \quad \frac{|V_{FB(nom)}|}{R_2} > 5 \mu A \]

(2)

If greater voltage accuracy is required, take into account the output voltage offset contributions resulting from the feedback pin current and use 0.1% tolerance resistors. Table 2 shows the 1% resistor values for several different standard output voltages.

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>R_1 (kΩ)</th>
<th>R_2 (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–2.5</td>
<td>11.3</td>
<td>10</td>
</tr>
<tr>
<td>–5</td>
<td>32.4</td>
<td>10</td>
</tr>
<tr>
<td>–12</td>
<td>93.1</td>
<td>10</td>
</tr>
<tr>
<td>–15</td>
<td>118</td>
<td>10</td>
</tr>
<tr>
<td>–18</td>
<td>143</td>
<td>10</td>
</tr>
</tbody>
</table>

9.1.2 Capacitor Recommendations
Use low-equivalent series resistance (ESR) capacitors for the input, output, noise reduction, and feed-forward capacitors. Ceramic capacitors with X7R and X5R dielectrics are preferred. Ceramic X7R capacitors offer improved overtemperature performance, whereas ceramic X5R capacitors are the most cost-effective and are available in higher values.

NOTE
High-ESR capacitors can degrade PSRR.
9.1.2.1 Input and Output Capacitor Requirements

The TPS7A30 family of negative, high-voltage linear regulators achieve stability with a minimum input and output capacitance of 2.2 μF; however, TI highly recommends using a 10-μF capacitor to maximize ac performance.

9.1.2.2 Noise-Reduction and Feed-Forward Capacitor Requirements

Although noise-reduction and feed-forward capacitors (C_{NR/SS} and C_{FF}, respectively) are not needed to achieve stability, TI highly recommends using 10-nF capacitors to minimize noise and maximize ac performance.

For more information on C_{FF}, refer to application report, Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator (SBVA042). This application report explains the advantages of using C_{FF} (also known as C_{BYP}), and the problems that can occur when using this capacitor.

9.1.3 Maximum AC Performance

To maximize noise and PSRR performance, TI recommends including a 10-μF or higher input and output capacitors, and 10-nF noise-reduction and bypass capacitors; see Figure 32. The solution illustrated in Figure 32 delivers minimum noise levels of 15.1 μV_{RMS} and power-supply rejection levels above 55 dB from 10 Hz to 700 kHz; see Figure 18 and Figure 26.

9.1.4 Output Noise

The TPS7A30 provides low output noise when a noise-reduction capacitor (C_{NR/SS}) is used.

The noise-reduction capacitor serves as a filter for the internal reference. By using a 10-nF noise reduction capacitor, the output noise is reduced by approximately 80% (from 80 μV_{RMS} to 17 μV_{RMS}); see Figure 27.

The TPS7A30 low output voltage noise makes the device an ideal solution for powering noise-sensitive circuitry.

9.1.5 Power-Supply Rejection

The 10-nF noise-reduction capacitor greatly improves TPS7A30 power-supply rejection, achieving up to 20 dB of additional power-supply rejection for frequencies between 110 Hz and 400 kHz.

Additionally, ac performance can be maximized by adding a 10-nF bypass capacitor (C_{FF}) from the FB pin to the OUT pin. This capacitor greatly improves power-supply rejection at lower frequencies, for the band from 10 Hz to 200 kHz; see Figure 18.

The very high power-supply rejection of the TPS7A30 makes the device a good choice for powering high-performance analog circuitry (such as operational amplifiers, ADCs, DACs, and audio amplifiers).

9.1.6 Transient Response

As with any regulator, increasing the size of the output capacitor reduces overshoot and undershoot magnitude but increases duration of the transient response.

9.1.7 Post DC-DC Converter Filtering

Most of the time, the voltage rails available in a system do not match the voltage requirements for the system. These rails must be stepped up or down, depending on specific voltage requirements.

DC-DC converters are the preferred solution to step up or down a voltage rail when current consumption is not negligible. These converters offer high efficiency with minimum heat generation, but have one primary disadvantage: these converters introduce a high-frequency component (and the associated harmonics) in addition to the dc output signal.

This high-frequency component, if not filtered properly, degrades analog circuitry performance, reducing overall system accuracy and precision.

The TPS7A30 offers a wide-bandwidth, very-high power-supply rejection ratio. This specification makes the device ideal for post dc-dc converter filtering; see Figure 31. TI highly recommends using the maximum performance schematic illustrated in Figure 32. Also, verify that the fundamental frequency (and its first harmonic, if possible) is within the bandwidth of the regulator PSRR; see Figure 18.
9.1.8 Audio Applications

Audio applications are extremely sensitive to any distortion and noise in the audio band from 20 Hz to 20 kHz. This stringent requirement demands clean voltage rails to power critical high-performance audio systems.

The very-high power-supply rejection ratio (> 55 dB) and low noise at the audio band of the TPS7A30 maximize performance for audio applications; see Figure 18.

9.1.9 Power for Precision Analog

One of the primary TPS7A30 applications is to provide ultralow noise voltage rails to high-performance analog circuitry in order to maximize system accuracy and precision.

In conjunction with its positive counterpart, the TPS7A49xx family of positive high-voltage linear regulators, the TPS7A30 family of negative high voltage linear regulators provides ultralow noise positive and negative voltage rails to high-performance analog circuitry (such as operational amplifiers, ADCs, DACs, and audio amplifiers).

The low noise levels at high voltages, such as ±15 V, enables clean power rails for precision analog circuitry. This characteristic allows for high-performance analog solutions to optimize the voltage range, thus maximizing system accuracy.
9.2 Typical Application

9.2.1 Design Requirements

The design goals are \(V_{IN} = -3 \) V, \(V_{OUT} = -1.2 \) V, and \(I_{OUT} = 150 \) mA, maximum. The design must optimize transient response and meet a start-up time of 14 ms. The input supply comes from a supply on the same printed circuit board (PCB). The design circuit is shown in Figure 32.

The design space consists of \(C_{IN}, \ C_{OUT}, \ C_{NR/SS}, \ R_{1}, \) and \(R_{2}, \) at \(T_{A(max)} = 75^\circ C. \)

9.2.2 Detailed Design Procedure

The first step when designing with a linear regulator is to examine the maximum load current, along with the input and output voltage requirements, to determine if the device thermal and dropout voltage requirements can be met. At 150 mA, the input dropout voltage of the TPS7A30 family is a maximum of 600 mV overtemperature; therefore, the dropout headroom of 1.8 V is sufficient for operation over both input and output voltage accuracy. Dropout headroom is calculated as \(V_{IN} - V_{OUT} - V_{DO(max)} \), and must be greater than 0 V for reliable operation. \(V_{DO(max)} \) is the maximum dropout allowed, given worst-case load conditions.

The maximum power dissipated in the linear regulator is the maximum voltage dropped across the pass element from the input to the output, multiplied by the maximum load current. In this example, the maximum voltage drop across the pass element is \(|3 \text{ V} - 1.2 \text{ V}| \), resulting in \(V_{IN} - V_{OUT} = 1.8 \) V. The power dissipated in the pass element is calculated by taking this voltage drop multiplied by the maximum load current. For this example, the maximum power dissipated in the linear regulator is 0.273 W, and is calculated as Equation 3:

\[
P_D = (V_{IN} - V_{OUT}) \times I_{MAX} + (V_{IN})(I_Q)
\]

When the power dissipated in the linear regulator is known, the corresponding junction temperature rise can be calculated. To calculate the junction temperature rise above ambient, the power dissipated must be multiplied by the junction-to-ambient thermal resistance. This calculation gives the worst-case junction temperature; good thermal design can significantly reduce this number. For thermal resistance information, refer to the Thermal Information table. For this example, using the DGN package, the maximum junction temperature rise is calculated to be 17.3°C. The maximum junction temperature rise is calculated by adding the junction temperature rise to the maximum ambient temperature, which is 75°C for this example. For this example, the maximum junction temperature as 92.3°C. Keep in mind that the maximum junction temperature must be below 125°C for reliable device operation. Additional ground planes, added thermal vias, and air flow all help to lower the maximum junction temperature.

Use the following equations to select the rest of the components:

To ensure stability under no-load conditions, the current through the resistor network must be greater than 5 µA, as shown in Equation 4.

\[
\frac{V_{FB}}{R_2} > 5\mu A \rightarrow R_2 < 242.4 \text{ k}\Omega
\]

To set \(R_2 = 100 \text{ k}\Omega \) for a standard 1% value resistor, calculate \(R_1 \) as shown in Equation 5.

\[
R_1 = R_2 \left(\frac{V_{OUT}}{V_{REF(nom)}} - 1 \right) = 100 \text{ k}\Omega \left(\frac{1.2 \text{ V}}{1.176 \text{ V}} - 1 \right) = 2.04 \text{ k}\Omega
\]

Use a standard, 1%, 2.05-kΩ resistor for \(R_1. \)
Typical Application (continued)

Equation 6 calculates the start-up time, t_{SS}.

$$t_{SS} \text{ (ms)} = 0.9 \times C_{NR/SS} = 14 \text{ ms}$$

$$C_{SS} = 15 \text{ nF}$$

(6)

For the soft-start to dominate the start-up conditions, ideally place the start-up time as a result of the current limit at two decades below the soft-start time (at 140 µs). C_{OUT} must be at least 2.2 µF for stability, as shown in Equation 7 and Equation 8.

$$t_{SS(CL)} = V_{OUT} \left(\frac{C_{OUT}}{I_{CL(max)}} \right)$$

(7)

$$C_{OUT(max)} = t_{SS(CL)} \left(\frac{I_{CL(min)}}{V_{OUT}} \right) = 140 \mu s \times \frac{220 \text{ mA}}{2 \text{ V}} = 15.4 \mu F$$

(8)

For C_{IN}, assume that the –3-V supply has some inductance and is placed several inches away from the PCB. For this case, select a 2.2-µF ceramic input capacitor to ensure that the input impedance is negligible to the LDO control loop and to keep the physical size and cost of the capacitor low; this component is a common-value capacitor.

For better PSRR for this design, use a 10-µF input and output capacitor. To reduce the peaks from transients but slow down the recovery time, increase the output capacitor size or add additional output capacitors.
Typical Application (continued)

9.2.3 Application Curves

Figure 33. Capacitor-Programmable Soft-Start

Figure 34. Capacitor-Programmable Soft-Start

Figure 35. Line Transient Response

Figure 36. Line Transient Response

Figure 37. Load Transient Response
9.3 Do's and Don’ts

Place at least one low-ESR, 2.2-μF capacitor as close as possible to both the IN and OUT pins of the regulator to the GND pin.

Provide adequate thermal paths away from the device.

Do not place the input or output capacitor more than 10 mm away from the regulator.

Do not exceed the absolute maximum ratings.

Do not float the enable (EN) pin.

Do not resistively or inductively load the NR/SS pin.

10 Power Supply Recommendations

The input supply for the LDO must be within the recommended operating conditions (that is, between –3 V and –35 V). The input voltage must provide adequate headroom in order for the device to have a regulated output. If the input supply is noisy, additional input capacitors with low ESR can help improve the output noise performance.

The input and output supplies must also be bypassed with at least a 2.2-μF capacitor located near the input and output pins. There must be no other components located between these capacitors and the pins.
11 Layout

11.1 Layout Guidelines

Layout is a critical part of good power-supply design. There are several signal paths that conduct fast-changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power-supply performance. To help eliminate these problems, the IN pin must be bypassed to ground with a low ESR ceramic bypass capacitor with an X5R or X7R dielectric.

The GND pin must be tied directly to the PowerPAD under the device. The PowerPAD must be connected to any internal PCB ground planes using multiple vias directly under the device.

Equivalent series inductance (ESL) and equivalent series resistance (ESR) must be minimized to maximize performance and ensure stability. Every capacitor (C_{IN}, C_{OUT}, C_{NR/SS}, and C_{FF}) must be placed as close as possible to the device and on the same side of the PCB as the regulator itself.

Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use of vias and long traces is strongly discouraged because these circuits can negatively affect system performance, and can even cause instability.

11.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance

To improve ac performance (such as PSRR, output noise, and transient response), TI recommends designing the board with separate ground planes for V_{IN} and V_{OUT}, with each ground plane star-connected only at the GND pin of the device. In addition, the ground connection for the bypass capacitor must connect directly to the GND pin of the device.

11.2 Layout Examples

![Figure 38. PCB Layout Example](image-url)
Figure 39. PCB Layout Example Schematic

Figure 40. PCB Layout Example

NOTE: C_{IN} and C_{OUT} are size 1206 capacitors, and C_{NR}, R1, and R2 are size 0402.
11.3 Thermal Considerations

Thermal protection disables the output when the junction temperature rises to approximately 170°C, allowing the device to cool. When the junction temperature cools to approximately 150°C, the output circuitry is enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit can cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage as a result of overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, junction temperature must be limited to a maximum of 125°C. To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. For good reliability, thermal protection must trigger at least 45°C above the maximum expected ambient condition of any particular application. This configuration produces a worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.

The internal protection circuitry of the TPS7A30 is designed to protect against overload conditions. This circuitry is not intended to replace proper heatsinking. Continuously running the TPS7A30 into thermal shutdown degrades device reliability.

11.4 Power Dissipation

The ability to remove heat from the die is different for each package type, presenting different considerations in the PCB layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air. Performance data or JEDEC low- and high-K boards are provided in the Thermal Information table. Using heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat dissipating layers also improves the heatsink effectiveness.

Power dissipation depends on input voltage and load conditions. Power dissipation (P_D) can be approximated by the product of the output current times the voltage drop across the output pass element, as shown in Equation 9.

$$P_D = (V_{IN} - V_{OUT}) I_{OUT}$$ (9)
Power Dissipation (continued)

Estimating the junction temperature can be done by using the thermal metrics Ψ_{JT} and Ψ_{JB}, as discussed in the Thermal Information table. These metrics are a more accurate representation of the heat transfer characteristics of the die and the package than $R_{\theta JA}$. The junction temperature can be estimated with Equation 10.

\[
\begin{align*}
\Psi_{JT}: \quad & T_J = T_T + \Psi_{JT} \cdot P_D \\
\Psi_{JB}: \quad & T_J = T_B + \Psi_{JB} \cdot P_D
\end{align*}
\]

where

- P_D is the power dissipation given by Equation 9,
- T_T is the temperature at the center-top of the device package, and
- T_B is the PCB temperature measured 1 mm away from the device package on the PCB surface.

\[(10) \]

NOTE

Both T_T and T_B can be measured on actual application boards using a thermo-gun (an infrared thermometer).

For more information about measuring T_T and T_B, see the application note *Using New Thermal Metrics (SBVA025)*, available for download at www.ti.com.
12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.1.1.1 Evaluation Modules

An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TPS7A30. The TPS7A30-49EVM-567 evaluation module (and related user's guide) can be requested at the TI website through the product folders or purchased directly from the TI eStore.

12.1.1.2 Spice Models

Computer simulation of circuit performance using SPICE is often useful when analyzing the performance of analog circuits and systems. A SPICE model for the TPS7A30 is available through the product folders under the Tools & Software tab.

12.1.2 Device Nomenclature

Table 3. Ordering Information

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>V<sub>OUT</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A30xx yyy z</td>
<td>XX is nominal output voltage (01 = Adjustable).<sup>(2)</sup></td>
</tr>
<tr>
<td></td>
<td>YYY is package designator.</td>
</tr>
<tr>
<td></td>
<td>Z is package quantity.</td>
</tr>
</tbody>
</table>

⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder on www.ti.com.

⁽²⁾ For fixed ~1.2-V operation, tie FB to OUT.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

- Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator, SBVA042.
- Using New Thermal Metrics, SBVA025

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
12.6 Glossary

SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/Ball material (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A3001DGNR</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>PSZQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS7A3001DGNT</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>PSZQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS7A3001DRBR</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>PSZQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS7A3001DRBT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>PSZQ</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS
- **Reel Diameter**
- **Reel Width (W1)**

TAPE DIMENSIONS
- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
- **Pocket Quadrants**
- **Sprocket Holes**
- **User Direction of Feed**

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A3001DGNR</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS7A3001DGNT</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS7A3001DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TPS7A3001DRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A3001DGNR</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>356.0</td>
<td>356.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS7A3001DGNT</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS7A3001DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>346.0</td>
<td>346.0</td>
<td>33.0</td>
</tr>
<tr>
<td>TPS7A3001DRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187.

PowerPAD is a trademark of Texas Instruments.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
9. Size of metal pad may vary due to creepage requirement.
EXAMPLE STENCIL DESIGN

PowerPAD™ VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
EXPOSED PAD 9:
100% PRINTED SOLDER COVERAGE BY AREA
SCALE: 15X

<table>
<thead>
<tr>
<th>STENCIL THICKNESS</th>
<th>SOLDER STENCIL OPENING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.76 X 2.11</td>
</tr>
<tr>
<td>0.125</td>
<td>1.57 X 1.89 (SHOWN)</td>
</tr>
<tr>
<td>0.15</td>
<td>1.43 X 1.73</td>
</tr>
<tr>
<td>0.175</td>
<td>1.33 X 1.60</td>
</tr>
</tbody>
</table>

NOTES: (continued)

10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

11. Board assembly site may have different recommendations for stencil design.