TPS7B4250-Q1 50-mA 40-V Voltage-Tracking LDO With 5-mV Tracking Tolerance

1 Features
• Qualified for Automotive Applications
• AEC-Q100 Qualified With the Following Results
 – Device Temperature Grade 1: –40°C to 125°C Ambient Operating Temperature Range
 – Device HBM ESD Classification Level 3A
 – Device CDM ESD Classification Level C6
• –20-V to 45-V Wide, Maximum Input Voltage Range
• Output Current, 50 mA
• Very-Low Output-Tracking Tolerance, 5 mV (max)
• 150-mV Low Dropout Voltage When \(I_{\text{OUT}} = 10 \text{ mA} \)
• Combined Reference and Enable Input
• 40-µA Low Quiescent Current at Light Load
• Extreme, Wide ESR Range.
 – Stable with 1-µF to 50-µF Ceramic Output Capacitor, ESR 1 mΩ to 20 Ω
• Reverse Polarity Protection
• Overtemperature Protection
• Output Short-Circuit Proof to Ground and Supply
• SOT-23 Package

2 Applications
• Off-board Sensor Supply
• High-Precision Sensor Tracking

3 Description
The TPS7B4250-Q1 device is a monolithic, integrated low-dropout voltage tracker. The device is available in a SOT-23 package. The TPS7B4250-Q1 device is designed to supply off-board sensors in an automotive environment. The IC has integrated protection for overload, over temperature, reverse polarity, and output short-circuit to the battery and ground.

A reference voltage applied at the adjust-input pin, ADJ, regulates supply voltages up to \(V_{\text{IN}} = 45 \text{ V} \) with high accuracy and loads up to 50 mA.

By setting the adjust/enable input pin, ADJ/EN, to low, the TPS7B4250-Q1 device switches to standby mode which reduces the quiescent current to the minimum value.

Device Information(1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7B4250-Q1</td>
<td>SOT-23 (5)</td>
<td>2.90 mm × 1.60 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Output Equal to Reference Voltage

Output Lower than Reference Voltage

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features .. 1
2 Applications ... 1
3 Description .. 1
4 Revision History .. 2
5 Pin Configuration and Functions 4
6 Specifications ... 5
 6.1 Absolute Maximum Ratings 5
 6.2 ESD Ratings ... 5
 6.3 Recommended Operating Conditions 5
 6.4 Thermal Information 5
 6.5 Electrical Characteristics 6
 6.6 Typical Characteristics 7
7 Detailed Description ... 9
 7.1 Overview .. 9
 7.2 Functional Block Diagram 9
 7.3 Feature Description 9
 7.4 Device Functional Modes 11
8 Application and Implementation 12
 8.1 Application Information 12
 8.2 Typical Application 12
9 Power Supply Recommendations 13
10 Layout .. 14
 10.1 Layout Guidelines 14
 10.2 Layout Example ... 14
 10.3 Power Dissipation and Thermal Considerations ... 15
11 Device and Documentation Support 16
 11.1 Device Support .. 16
 11.2 Documentation Support 16
 11.3 Receiving Notification of Documentation Updates 16
 11.4 Community Resource 16
 11.5 Trademarks .. 16
 11.6 Electrostatic Discharge Caution 16
 11.7 Glossary .. 16
12 Mechanical, Packaging, and Orderable Information 16

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (July 2015) to Revision C

- Changed the title of the data sheet ... 1
- Added the Device Support and Receiving Notification of Documentation Updates sections ... 1

Changes from Revision A (November 2013) to Revision B

- Changed HBM ESD Classification level from 2 to 3A ... 1
- Changed CDM ESD Classification level from C4 to C6 ... 1
- Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device Functional Modes section, and Mechanical, Packaging, and Orderable Information section ... 1
- Deleted the transient current and 107-pF capacitor for HBM table notes from the ESD Ratings table ... 5
- Changed input voltage symbol from V_{IN} to V_{I} for the $\Delta V_{\text{OL/VIL}}$ and V_{dropout} parameters and the output voltage symbol from V_{OUT} to V_{O} for the I_{L} parameter in the Electrical Characteristics table ... 6
- Added I_{O} and C_{O} to the PSRR test condition in the Electrical Characteristics table ... 6
- Changed the max value for V_{dropout} where $I_{\text{O}} = 10 \text{ mA}$ from 250 to 265 in the Electrical Characteristics table ... 6
- Deleted the $V_{\text{ADJ}} = 5 \text{ V}$ condition for the Ground current vs Temperature graph and changed the legend ... 7
- Changed the y axis units from mV to mA in the Current-limit vs Temperature graph ... 7
- Added the V_{ADJ} condition statement to the Input Voltage vs Output Voltage graph and changed the y-axis from I_{O} to V_{O} ... 7
- Changed the title of Figure 8 from Input Voltage vs Output Voltage to Reference Voltage vs Output Voltage, and changed the y-axis from I_{O} to V_{O}. Also added the V_{I} condition statement to the graph ... 7
- Changed the second y axis from I_{O} to V_{O} and removed the units in the Line Transient figure ... 7
- Deleted the units from the second y axis in the Load Transient ... 7
- Added the V_{ADJ} condition statement to the Power-supply Rejection Ratio vs Frequency graph ... 8
- Added resistor-divider values to the Tracking LDO With Enable Circuit figure ... 11
Changes from Original (October 2013) to Revision A

<table>
<thead>
<tr>
<th>Change</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed CDM ESD Classification level from C3B to C4 throughout document</td>
<td>1</td>
</tr>
<tr>
<td>Changed V_{OUT} min value from –0.3 to –1 in the Absolute Maximum Ratings table</td>
<td>5</td>
</tr>
<tr>
<td>Added transient current flow to ESD rating in the Absolute Maximum Ratings table</td>
<td>5</td>
</tr>
<tr>
<td>Changed HBM absolute maximum rating from 2 kV to 4 kV</td>
<td>5</td>
</tr>
<tr>
<td>Deleted relevant ESR value from Recommended Operating Conditions table</td>
<td>5</td>
</tr>
<tr>
<td>Added greater-than-or-equal-to (\geq) value to $V_{ADJ/EN}$ in condition statement of the Electrical Characteristics table</td>
<td>6</td>
</tr>
<tr>
<td>Added $V_{ADJ} = 1.5$ V to both test conditions for V_{UVLO} parameter in the Electrical Characteristics table</td>
<td>6</td>
</tr>
<tr>
<td>Changed max value for load regulation parameter from 3 to 4 in the Electrical Characteristics table</td>
<td>6</td>
</tr>
<tr>
<td>Changed max value for the current consumption test condition where $I_O = 0.5$ mA from 80 to 90 in the Electrical Characteristics table</td>
<td>6</td>
</tr>
<tr>
<td>Added the Detailed Description section</td>
<td>9</td>
</tr>
<tr>
<td>Added the TPS7B4250 block diagram</td>
<td>9</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN CANONIC</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJ/EN</td>
<td>I</td>
<td>This pin connects to the reference voltage. A low signal disables the IC and a high signal enables the device. Connected the voltage reference directly or with a voltage divider for lower output voltages. To compensate for line influences, TI recommends to place a capacitor close to the IC pins.</td>
</tr>
<tr>
<td>GND</td>
<td>G</td>
<td>Internally connected to pin 5</td>
</tr>
<tr>
<td>GND</td>
<td>G</td>
<td>Internally connected to pin 2</td>
</tr>
<tr>
<td>V_IN</td>
<td>I</td>
<td>This pin is the device supply. To compensate for line influences, TI recommends to place a capacitor close to the IC pins.</td>
</tr>
<tr>
<td>V_OUT</td>
<td>O</td>
<td>V_OUT is an external capacitor that is required between V_OUT and GND with respect to the capacitance and ESR requirements given in the Recommended Operating Conditions.</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^\text{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>–20</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>–1</td>
<td>22</td>
<td>V</td>
</tr>
<tr>
<td>(V_{ADJ/EN})</td>
<td>–0.3</td>
<td>22</td>
<td>V</td>
</tr>
<tr>
<td>(V_{ADJ-V_{IN}}) ((V_{IN} > 0) V)</td>
<td>7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(T_J)</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{STG})</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to ground, GND.

(3) Absolute maximum voltage.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Value</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per AEC Q100-002(^\text{(1)})</td>
<td>±4000</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per AEC Q100-011</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)\(^\text{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>4</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>1.5</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(V_{ADJ/EN})</td>
<td>1.5</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(V_{ADJ-V_{IN}})</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(C_{OUT})</td>
<td>1</td>
<td>50</td>
<td>µF</td>
</tr>
<tr>
<td>(ESR_{COUT})</td>
<td>0.001</td>
<td>20</td>
<td>Ω</td>
</tr>
<tr>
<td>(T_J)</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Within the functional range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

(2) The minimum output capacitance requirement is applicable for a worst-case capacitance tolerance of 30%.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>Thermal Metric(^\text{(1)(2)})</th>
<th>TPS7B4250-Q1</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA})</td>
<td>171.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JC(top)})</td>
<td>81.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JB})</td>
<td>31.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_J)</td>
<td>4.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JC(bot)})</td>
<td>31.2</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

(2) The thermal data is based on the JEDEC standard high K profile, JESD 51-7. Two-signal, two-plane, four-layer board with 2-oz. copper. The copper pad is soldered to the thermal land pattern. Also, correct attachment procedure must be incorporated.
6.5 Electrical Characteristics

\(V_I = 13.5 \, \text{V}, \; 18 \, \text{V} \geq V_{\text{ADJ/EN}} \geq 1.5 \, \text{V}, \; T_J = -40^\circ \text{C} \) to \(150^\circ \text{C} \) unless otherwise stated

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{UVLO}})</td>
<td>(V_{\text{IN}}) undervoltage detection</td>
<td>3.65</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Ramp up (V_I) until the output turns on, (V_{\text{ADJ}} = 1.5 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramp down (V_I) until the output turns off, (V_{\text{ADJ}} = 1.5 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta V_O)</td>
<td>Output-voltage tracking accuracy</td>
<td>–4</td>
<td>4</td>
<td>–5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(I_O = 100 , \mu\text{A to 1 mA}, ; V_I = 4 , \text{V to 40 V}, ; 1.5 , \text{V} < V_{\text{ADJ}} < V_I - 0.3 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_O = 1 , \text{mA to 50 mA}, ; V_I = 4 , \text{V to 40 V}, ; 1.5 , \text{V} < V_{\text{ADJ}} < V_I - 1.5 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{O,\text{IL}})</td>
<td>Load regulation steady-state</td>
<td>4</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(I_O = 1 , \text{mA to 30 mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{O,AVI})</td>
<td>Line regulation steady-state</td>
<td>3</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(I_O = 10 , \text{mA}, ; V_I = 6 , \text{V} to 40 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply ripple rejection</td>
<td>60</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>Frequency = 100 Hz, (V_{\text{ip}} = 0.5 , \text{Vpp}, ; I_O = 5 , \text{mA}, ; C_O = 2.2 , \mu\text{F})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{dropout}})</td>
<td>Dropout voltage, (V_{\text{dropout}} = V_I - V_O)</td>
<td>150</td>
<td>265</td>
<td>550</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(I_O = 10 , \text{mA}, ; V_I \geq 4 , \text{V}) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_O = 50 , \text{mA}, ; V_I \geq 4 , \text{V}) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_L)</td>
<td>Output-current limitation</td>
<td>100</td>
<td>500</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_O) short to GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_R)</td>
<td>Reverse current at (V_{\text{IN}})</td>
<td>–5</td>
<td>0</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>(V_I = 0 , \text{V}, ; V_O = 20 , \text{V}, ; V_{\text{ADJ}} = 5 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{IH1}})</td>
<td>Reverse current at negative input voltage</td>
<td>–5</td>
<td>0</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>(V_I = -20 , \text{V}, ; V_O = 0 , \text{V}, ; V_{\text{ADJ}} = 5 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{IH2}})</td>
<td></td>
<td>–5</td>
<td>0</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>(V_I = -20 , \text{V}, ; V_O = 20 , \text{V}, ; V_{\text{ADJ}} = 5 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\text{SD}})</td>
<td>Thermal shutdown temperature</td>
<td>175</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>(T_J) increasing because of power dissipation generated by the IC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_Q)</td>
<td>Current consumption</td>
<td>7.5</td>
<td>15</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>(V_{\text{ADJ}} \geq 0.8 , \text{V}, ; T_A \leq 85^\circ \text{C}) (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{\text{ADJ}} \geq 0.8 , \text{V}, ; T_A \leq 125^\circ \text{C})</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_O = 0.5 , \text{mA}, ; V_{\text{ADJ}} = 5 , \text{V})</td>
<td>40</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_O = 30 , \text{mA}, ; V_{\text{ADJ}} = 5 , \text{V})</td>
<td>150</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{ADJ}})</td>
<td>Adjust-input and enable-input current</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>(V_{\text{ADJ}} = 5 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{ADJ,low}})</td>
<td>Adjust and enable low signal valid</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_O = 0 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{ADJ,high}})</td>
<td>Adjust and enable high signal valid</td>
<td>1.5</td>
<td>18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>V_O - V_{\text{ADJ}}</td>
<td>< 5 , \text{mV})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Measured when the output voltage \(V_O \) has dropped 10 mV from the typical value.

(2) Ensured by design.
6.6 Typical Characteristics

Figure 1. Dropout Voltage vs Temperature

\[V_I = V_{ADJ} = 4 \text{ V} \]
\[I_O = 10 \text{ mA} \]

Figure 2. Dropout Voltage vs Output Current

\[V_I = V_{ADJ} = 4 \text{ V} \]

Figure 3. Ground Current vs Output Current

\[V_I = 13.5 \text{ V} \]
\[V_{ADJ} = 5 \text{ V} \]

Figure 4. Ground Current vs Temperature

\[V_I = 13.5 \text{ V} \]
\[V_{ADJ} = 5 \text{ V} \]

Figure 5. Current-limit vs Temperature

\[V_I = 13.5 \text{ V} \]
\[V_{ADJ} = 5 \text{ V} \]

Figure 6. Tracking Error vs Temperature

\[V_I = 13.5 \text{ V} \]
\[V_{ADJ} = 5 \text{ V} \]
\[I_O = 1 \text{ mA}, 50 \text{ mA} \]
Typical Characteristics (continued)

Figure 7. Input Voltage vs Output Voltage

$V_{ADJ} = 5 \text{ V}$

$V_I = 9 \text{ to } 16 \text{ V}$

2.2-µF ceramic output capacitor

Figure 8. Reference Voltage vs Output Voltage

$V_I = 13.5 \text{ V}$

$I_O = 5 \text{ to } 30 \text{ mA}$

2.2-µF ceramic output capacitor

Figure 9. Line Transient

$V_I = 13.5 \text{ V}$

$V_{ADJ} = 5 \text{ V}$

$C_O = 2.2 \mu\text{F}$

$I_{LOAD} = 25 \text{ mA}$

Figure 10. Load Transient

$V_I = 9 \text{ to } 16 \text{ V}$

2.2-µF ceramic output capacitor

Figure 11. Power-Supply Rejection Ratio vs Frequency

$V_I = 13.5 \text{ V}$

$V_{ADJ} = 5 \text{ V}$

Figure 12. ESR Stability vs Load Capacitance

$C_O = 2.2 \mu\text{F}$

$I_{LOAD} = 25 \text{ mA}$

$V_I = 9 \text{ to } 16 \text{ V}$

$C_O = 2.2 \mu\text{F}$

$I_{LOAD} = 25 \text{ mA}$
7 Detailed Description

7.1 Overview
The TPS7B4250-Q1 device is a monolithic integrated low-dropout voltage tracker with ultra-low tracking tolerance. Several types of protection circuits are also integrated in the device such as output current limitation, reverse polarity protection, and thermal shutdown in case of over temperature.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Regulated Output (V\textsubscript{OUT})
V\textsubscript{OUT} is the regulated output based on the reference voltage. The output has current limitation. During initial power up, the regulator has an incorporated soft start to control the initial current through the pass element.

7.3.2 Undervoltage Shutdown
The device has an internally-fixed undervoltage shutdown threshold. Undervoltage shutdown activates when the input voltage on V\textsubscript{IN} drops below UVLO. This activation ensures the regulator is not latched into an unknown state during low input supply voltage. If the input voltage has a negative transient that drops below the UVLO threshold and recovers, the regulator shuts down and powers up similar to a standard power-up sequence when the input voltage is above the required levels.
Feature Description (continued)

7.3.3 Thermal Protection

Thermal protection disables the output when the junction temperature rises to approximately 175°C which allows the device to cool. When the junction temperature cools to approximately 150°C, the output circuitry enables. Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the dissipation of the regulator and protects it from damage as a result of overheating.

The internal protection circuitry of the TPS7B4250-Q1 device has been designed to protect against overload conditions. The circuitry was not intended to replace proper heat-sinking. Continuously running the TPS7B4250-Q1 device into thermal shutdown degrades device reliability.

7.3.4 V_{OUT} Short to Battery

The TPS7B4250-Q1 device survives a short to battery when the output is shorted to the battery as shown in Figure 13. No damage occurs to the device. A short to the battery can also occur when the device is powered by an isolated supply at a lower voltage as shown in Figure 14. In this case the TPS7B4250-Q1 supply input voltage is set at 7 V when a short to battery (14 V typical) occurs on V_{OUT} which typically runs at 5 V. The continuous reverse current flows out through V_{IN} is less than 5 µA.

![Figure 13. Output-Voltage Short to Battery](image)

![Figure 14. Output Voltage Higher than Input](image)

7.3.5 Tracking Regulator with ENABLE Circuit

By pulling the reference voltage of the device below 0.8 V, the IC disables and enters a sleep state where the device draws 7.5 µA (typical) from the power supply. In a real application, the reference voltage is generally sourced from another LDO voltage rail. A case where the device must be disabled without a shutdown of the reference voltage can occur. In such case, the device can be configured as shown in Figure 15. The TPS7A6650-Q1 device is a 150-mA LDO with ultra-low quiescent current that is used as a reference voltage to the TPS7B4250-Q1 device and also as a power supply to the ADC. In a configuration as shown in Figure 15, the status of the device is controlled by an MCU I/O.
7.4 Device Functional Modes

7.4.1 Operation With $V_i < 4\,\text{V}$

The device operates with input voltages above 4 V. The maximum UVLO voltage is 3 V and operates at input voltage above 4 V. The device can also operate at lower input voltages; no minimum UVLO voltage is specified. At input voltages below the actual UVLO voltage, the device does not operate.

7.4.2 Operation With ADJ/EN Control

The rising-edge threshold voltage of the ADJ/EN pin is 1.5 V (maximum). When the EN pin is held above that voltage and the input voltage is above the 4 V, the device becomes active. The enable falling edge is 0.8 V (minimum). When the EN pin is held below that voltage the device is disabled, the IC quiescent current is reduced in this state.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
Based on the end-application, different values of external components can be used. An application can require a larger output capacitor during fast load steps to prevent a reset from occurring. TI recommends a low ESR ceramic capacitor with a dielectric of type X5R or X7R for better load transient response.

8.2 Typical Application
Figure 16 show typical application circuit for the TPS7B4250-Q1 device.

![Figure 16. Typical Application Schematic](image)

8.2.1 Design Requirements
For this design example, use the parameters listed in Table 1.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>EXAMPLE VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>4 to 40 V</td>
</tr>
<tr>
<td>ADJ reference voltage</td>
<td>1.5 to 18 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>1.5 to 18 V</td>
</tr>
<tr>
<td>Output current rating</td>
<td>50 mA</td>
</tr>
<tr>
<td>Output capacitor range</td>
<td>1 µF to 50 µF</td>
</tr>
<tr>
<td>Output capacitor ESR range</td>
<td>1 mΩ to 20 Ω</td>
</tr>
</tbody>
</table>
8.2.2 Detailed Design Procedure
To begin the design process, determine the following:
• Input voltage range
• Reference voltage
• Output voltage
• Output current rating
• Input capacitor
• Output capacitor

8.2.2.1 External Capacitors
An input capacitor, C_I, is recommended to buffer line influences. Connect the capacitors close to the IC pins.

The output capacitor for the TPS7B4250-Q1 device is required for stability. Without the output capacitor, the regulator oscillates. The actual size and type of the output capacitor can vary based on the application load and temperature range. The effective series resistance (ESR) of the capacitor is also a factor in the IC stability. The worst case is determined at the minimum ambient temperature and maximum load expected. To ensure stability of TPS7B4250-Q1 device, the device requires an output capacitor between 1 µF and 50 µF with an ESR range between 0.001 Ω and 20 Ω that can cover most types of capacitor ESR variation under the recommend operating conditions. As a result, the output capacitor selection is flexible.

The capacitor must also be rated at all ambient temperature expected in the system. To maintain regulator stability down to –40°C, use a capacitor rated at that temperature.

8.2.3 Application Curves

9 Power Supply Recommendations
The device is designed to operate from an input voltage supply range from 4 V to 40 V. This input supply must be well regulated. If the input supply is located more than a few inches from the TPS7B4250-Q1 device, adding an electrolytic capacitor with a value of 10-µF and a ceramic bypass capacitor at the input is recommended.
10 Layout

10.1 Layout Guidelines

10.1.1 Package Mounting

Solder-pad footprint recommendations for the TPS7B4250-Q1 device are available in the Mechanical, Packaging, and Orderable Information section and at www.ti.com.

10.1.2 Board Layout Recommendations to Improve PSRR and Noise Performance

To improve AC performance such as PSRR, output noise, and transient response, TI recommends to design the board with separate ground planes for V_{IN} and V_{OUT}, with each ground plane connected only at the GND pin of the device. In addition, the ground connection for the output capacitor must connect directly to the GND pin of the device.

Equivalent series inductance (ESL) and ESR must be minimized in order to maximize performance and ensure stability. Every capacitor must be placed as close as possible to the device and on the same side of the PCB as the regulator.

Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use of vias and long traces is strongly discouraged because of the negative impact on system performance. Vias and long traces can also cause instability.

If possible, and to ensure the maximum performance denoted in this product data sheet, use the same layout pattern used for TPS7B4250 evaluation board, available at www.ti.com.

10.2 Layout Example

Figure 19. TPS7B4250-Q1 Layout Example
10.3 Power Dissipation and Thermal Considerations

Device power dissipation is calculated with Equation 1.

\[P_D = I_O \times (V_I - V_O) + I_Q \times V_I \]

where
- \(P_D \) = continuous power dissipation
- \(I_O \) = output current
- \(V_I \) = input voltage
- \(V_O \) = output voltage
- \(I_Q \) = quiescent current

(1)

As \(I_Q \ll I_O \), the term \(I_Q \times V_I \) in Equation 1 can be ignored.

For a device under operation at a given ambient air temperature \((T_A) \), calculate the junction temperature \((T_J) \) with Equation 2.

\[T_J = T_A + (\theta_{JA} \times P_D) \]

where
- \(\theta_{JA} \) = junction-to-junction-ambient air thermal impedance

(2)

A rise in junction temperature because of power dissipation can be calculated with Equation 3.

\[\Delta T = T_J - T_A = (\theta_{JA} \times P_D) \]

(3)

For a given maximum junction temperature \((T_{JM}) \), the maximum ambient air temperature \((T_{AM}) \) at which the device can operate can be calculated with Equation 4.

\[T_{AM} = T_{JM} - (\theta_{JA} \times P_D) \]

(4)
11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support
For the PSpice model, see the TPS7B4250 PSpice Transient Model (SLV976).

11.2 Documentation Support

11.2.1 Related Documentation
For related documentation see the following:
• Various Applications for Voltage-Tracking LDO (SLVA789)
• TPS7B4250 Evaluation Module (SLVU975)
• TPS7B4250-Q1 Pin FMEA (SLVA738)

11.3 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resource
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community Ti's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support Ti's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.7 Glossary

SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7B4250QDBVQ1</td>
<td>PREVIEW</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 125</td>
<td>PA3Q</td>
<td></td>
</tr>
<tr>
<td>TPS7B4250QDBVRQ1</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBsolete: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **K0** Dimension designed to accommodate the component width
- **B0** Dimension designed to accommodate the component length
- **A0** Dimension designed to accommodate the component thickness
- **W** Overall width of the carrier tape
- **P1** Pitch between successive cavity centers

REEL DIMENSIONS

- Reel Diameter
- Reel Width (W1)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- Q1
- Q2
- Q3
- Q4

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7B4250QDBVRQ1</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>9.0</td>
<td>3.3</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>
Tape and Reel Box Dimensions

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7B4250QDBVRQ1</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>190.0</td>
<td>190.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
8. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated