TPS92611-Q1 Automotive Single-Channel Linear LED Driver

1 Features

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Temperature Grade 1: –40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H2
 - Device CDM ESD Classification Level C3B
- Functional safety capable
 - Documentation available to aid functional safety system design
- Single-Channel Constant-Current LED Driver With PWM Dimming
- Wide Input-Voltage Range: 4.5 V–40 V
- Constant Output Current, Adjustable by Sense Resistor
- Precision Current Regulation, Tolerance ±4.6%
- Maximum Current: 300 mA
- Heat Sharing With External Resistor
- Low Dropout Voltage (Current-Sense Voltage Drop Included)
 - Maximum Dropout: 150 mV at 10 mA
 - Maximum Dropout: 400 mV at 70 mA
 - Maximum Dropout: 700 mV at 150 mA
 - Maximum Dropout: 1.3 V at 300 mA
- Diagnostics and Protection
 - LED Open-Circuit and Short-Circuit Detection With Auto-Recovery
 - Diagnostic-Enable With Adjustable Threshold for Low-Dropout Operation
 - Fault Bus up to 15 Devices, Configurable As Either One-Fails–All-Fail or Only-Failed-Channel Off
 - Low Quiescent Current and Fault-Mode Current (<250 µA per Device)
- Operating Junction Temperature Range: –40°C to 150°C

2 Applications

- Automotive Convenience Lighting: Dome Light, Door Handles, Reading Lamp, and Miscellaneous Lamps
- Automotive Rear Lamp, Center High-Mounted Stop Lamp, Side Markers, Blind-Spot Detection Indicator, Charging Inlet Indicator
- General-Purpose LED Driver Application

3 Description

With LEDs being widely used in automotive applications, simple LED drivers are more and more popular. Compared to discrete solutions, a low-cost monolithic solution lowers system-level component counts and significantly improves current accuracy and reliability.

The TPS92611-Q1 device is a simple single-channel high-side LED driver operating from an automotive car battery. It is a simple and elegant solution, with LED diagnostics, to deliver constant current for a single LED string. Its one-fails–all-fail feature is able to work together with other LED drivers, such as the TPS9261x-Q1, TPS9263x-Q1, and TPS9283x-Q1 devices, to address different requirements.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS92611-Q1</td>
<td>MSOP (8)</td>
<td>3mm x 3mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Diagram
5 Pin Configuration and Functions

TPS92611-Q1 DGN PowerPAD™ Package
8-Pin MSOP With Exposed Thermal Pad
Top View

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
<td></td>
</tr>
<tr>
<td>DIAGEN</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>EN</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>FAULT</td>
<td>4</td>
<td>I/O</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>IN</td>
<td>7</td>
<td>I</td>
</tr>
<tr>
<td>OUT</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>PWM</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>SUPPLY</td>
<td>8</td>
<td>I</td>
</tr>
</tbody>
</table>

6 Specifications

6.1 Absolute Maximum Ratings
over operating ambient temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
</tr>
<tr>
<td>DIAGEN, EN, IN, PWM, SUPPLY</td>
<td>2</td>
</tr>
<tr>
<td>OUT</td>
<td></td>
</tr>
<tr>
<td>FAULT</td>
<td></td>
</tr>
<tr>
<td>V({(IN)}) − V({(OUT)})</td>
<td></td>
</tr>
<tr>
<td>V({(SUPPLY)}) − V({(IN)})</td>
<td></td>
</tr>
<tr>
<td>Operating junction temperature, T(_{J})</td>
<td></td>
</tr>
<tr>
<td>Storage temperature, T(_{stg})</td>
<td></td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>I/O</th>
<th>DESCRIPTION</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS92611-Q1</td>
<td>Human-body model (HBM), per AEC Q100-002(^{(1)})</td>
<td>All pins</td>
<td>±2000</td>
</tr>
<tr>
<td>Charged-device model (CDM), per AEC Q100-011</td>
<td></td>
<td>Corner pins (1, 4 and 8)</td>
<td>±750</td>
</tr>
</tbody>
</table>

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY</td>
<td>4.5</td>
<td></td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>IN</td>
<td>4.4</td>
<td></td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>PWM</td>
<td>0</td>
<td></td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>DIAGEN</td>
<td>0</td>
<td></td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>OUT</td>
<td>0</td>
<td></td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>EN</td>
<td>0</td>
<td></td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>FAULT</td>
<td>0</td>
<td></td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>TA</td>
<td>–40</td>
<td></td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TPS92611-Q1</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JA}</td>
<td>60</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{JC(top)}$</td>
<td>58.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JB}</td>
<td>25.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JT}</td>
<td>1.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JB}</td>
<td>25.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{JC(bot)}$</td>
<td>11.3</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

6.5 Electrical Characteristics

$V_{(SUPPLY)} = 5$ V–40 V, $T_J = –40^\circ$C to 150°C unless otherwise noted

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS</td>
<td>Supply voltage, POR rising threshold</td>
<td>3.2</td>
<td>4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{(POR_falling)}$</td>
<td>Supply voltage, POR falling threshold</td>
<td>2.2</td>
<td>3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$I_{(shutdown)}$</td>
<td>Device shutdown current, $EN = LOW$</td>
<td>0.1</td>
<td>0.2</td>
<td>0.25</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{(Quiescent)}$</td>
<td>Device standby current, $PWM = HIGH$, $EN = HIGH$</td>
<td>0.1</td>
<td>0.2</td>
<td>0.25</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{(FAULT)}$</td>
<td>Device current in fault mode, $EN = HIGH$, $PWM = HIGH$, FAULT externally pulled LOW</td>
<td>0.1</td>
<td>0.2</td>
<td>0.25</td>
<td>mA</td>
</tr>
</tbody>
</table>

LOGIC INPUTS (DIAGEN, PWM, EN)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>$V_{(DIAGEN)}$</th>
<th>$V_{(PWM)}$</th>
<th>$V_{(EN)}$</th>
<th>$I_{PD(EN)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{IL(DIAGEN)}$</td>
<td>Input logic-low voltage, $DIAGEN$</td>
<td>1.045</td>
<td>1.1</td>
<td>1.155</td>
</tr>
<tr>
<td>$V_{IH(DIAGEN)}$</td>
<td>Input logic-high voltage, $DIAGEN$</td>
<td>1.14</td>
<td>1.2</td>
<td>1.26</td>
</tr>
<tr>
<td>$V_{IL(PWM)}$</td>
<td>Input logic-low voltage, PWM</td>
<td>1.045</td>
<td>1.1</td>
<td>1.155</td>
</tr>
<tr>
<td>$V_{IH(PWM)}$</td>
<td>Input logic-high voltage, PWM</td>
<td>1.14</td>
<td>1.2</td>
<td>1.26</td>
</tr>
<tr>
<td>$V_{IL(EN)}$</td>
<td>Input logic-low voltage, EN</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IH(EN)}$</td>
<td>Input logic-high voltage, EN</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{PD(EN)}$</td>
<td>EN pin pulldown current, $V_{(EN)} = 12$ V</td>
<td>1.5</td>
<td>3.3</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Electrical Characteristics (continued)

\(V_{\text{SUPPLY}} = 5 \text{ V–}40 \text{ V, } T_J = -40^\circ \text{C to } 150^\circ \text{C unless otherwise noted} \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{(OUT)}})</td>
<td>Device output-current range</td>
<td>100% duty-cycle</td>
<td>4</td>
<td>300</td>
<td>mA</td>
</tr>
<tr>
<td>(V_{\text{(CS_REG)}})</td>
<td>Sense-resistor regulation voltage</td>
<td>(T_A = 25^\circ \text{C, } V_{\text{SUPPLY}} = 4.5 \text{ V to } 18 \text{ V})</td>
<td>94</td>
<td>98</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = -40^\circ \text{C to } 125^\circ \text{C, } V_{\text{SUPPLY}} = 4.5 \text{ V to } 18 \text{ V})</td>
<td>93.5</td>
<td>98</td>
<td>102.5</td>
</tr>
<tr>
<td>(R_{\text{(CS_REG)}})</td>
<td>Sense-resistor value</td>
<td></td>
<td></td>
<td>24.5</td>
<td>Ω</td>
</tr>
<tr>
<td>(V_{\text{(DROPOUT)}})</td>
<td>Voltage dropout from SUPPLY to OUT</td>
<td>(V_{\text{(CS_REG)}}) voltage included, current setting = 10 mA</td>
<td>120</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{(CS_REG)}}) voltage included, current setting = 70 mA</td>
<td>250</td>
<td>400</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{(CS_REG)}}) voltage included, current setting = 150 mA</td>
<td>430</td>
<td>700</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{(CS_REG)}}) voltage included, current setting = 300 mA</td>
<td>800</td>
<td>1300</td>
<td>mV</td>
</tr>
</tbody>
</table>

DIAGNOSTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{(open_th_rising)}})</td>
<td>LED open rising threshold, (V_{\text{(IN)}} - V_{\text{(OUT)}})</td>
<td></td>
<td>70</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>(V_{\text{(open_th_falling)}})</td>
<td>LED open falling threshold, (V_{\text{(IN)}} - V_{\text{(OUT)}})</td>
<td></td>
<td>235</td>
<td>290</td>
<td>335</td>
</tr>
<tr>
<td>(V_{\text{(SG_th_falling)}})</td>
<td>Channel output (V_{\text{(OUT)}}) short to ground falling threshold</td>
<td></td>
<td>1.14</td>
<td>1.2</td>
<td>1.26</td>
</tr>
<tr>
<td>(V_{\text{(SG_th_rising)}})</td>
<td>Channel output (V_{\text{(OUT)}}) short to ground rising threshold</td>
<td></td>
<td>0.82</td>
<td>0.865</td>
<td>0.91</td>
</tr>
<tr>
<td>(I_{\text{(retry)}})</td>
<td>Channel output retry current (V_{\text{(OUT)}} = 0 \text{ V})</td>
<td></td>
<td>0.64</td>
<td>1.08</td>
<td>1.528</td>
</tr>
</tbody>
</table>

FAULT

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IL(FAULT)}})</td>
<td>Logic-input low threshold</td>
<td>0.7</td>
</tr>
<tr>
<td>(V_{\text{IH(FAULT)}})</td>
<td>Logic-input high threshold</td>
<td>2</td>
</tr>
<tr>
<td>(V_{\text{OL(FAULT)}})</td>
<td>Logic-output low threshold</td>
<td>With 500-µA external pullup</td>
</tr>
<tr>
<td>(V_{\text{OH(FAULT)}})</td>
<td>Logic-output high threshold</td>
<td>With 1-µA external pulldown, (V_{\text{SUPPLY}} = 12 \text{ V})</td>
</tr>
<tr>
<td>(I_{\text{(FAULT_pulldown)}})</td>
<td>FAULT internal pulldown current</td>
<td>500</td>
</tr>
<tr>
<td>(I_{\text{(FAULT_pullup)}})</td>
<td>FAULT internal pullup current</td>
<td>5</td>
</tr>
</tbody>
</table>

THERMAL PROTECTION

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{(TSD)}})</td>
<td>Thermal shutdown junction temperature threshold</td>
<td>172</td>
</tr>
<tr>
<td>(T_{\text{(TSD_HYS)}})</td>
<td>Thermal shutdown junction temperature hysteresis</td>
<td>15</td>
</tr>
</tbody>
</table>

6.6 Timing Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{(PWM_delay_rising)}})</td>
<td>PWM rising edge delay, 50% PWM voltage to 10% of output current, (t_2 - t_1) as shown in Figure 1</td>
<td>17</td>
</tr>
<tr>
<td>(t_{\text{(PWM_delay_falling)}})</td>
<td>PWM falling edge delay, 50% PWM voltage to 90% of output current, (t_5 - t_4) as shown in Figure 1</td>
<td>21</td>
</tr>
<tr>
<td>(t_{\text{TSD_deg}})</td>
<td>Thermal overtemperature deglitch timer</td>
<td>60</td>
</tr>
<tr>
<td>(t_{\text{(DEVICE_STARTUP)}})</td>
<td>EN rising edge to 10% output current at 150-mA set current and 12-V supply voltage</td>
<td>100</td>
</tr>
<tr>
<td>(t_{\text{(OPEN_deg)}})</td>
<td>LED open-circuit fault-deglitch time</td>
<td>80</td>
</tr>
<tr>
<td>(t_{\text{(SG_deg)}})</td>
<td>Channel-output short-to-ground detection deglitch time</td>
<td>80</td>
</tr>
<tr>
<td>(t_{\text{(Recover_deg)}})</td>
<td>Recovery deglitch time</td>
<td>16</td>
</tr>
</tbody>
</table>
6.7 Typical Characteristics

Figure 1. Output Timing Diagram

Figure 2. Output Current vs Supply Voltage

Figure 3. Output Current vs Current-Sense Resistor
Typical Characteristics (continued)

Figure 4. Output Current vs Dropout Voltage

Figure 5. Output Current vs Dropout Voltage

Figure 6. Shutdown, Quiescent, and Fault Current vs Supply Voltage

Figure 7. PWM Output Duty Cycle vs Input Duty Cycle

Figure 8. PWM Dimming via External Input

Figure 9. PWM Dimming via Power Supply
Typical Characteristics (continued)

Figure 10. Transient Undervoltage
Ch. 1 = SUPPLY
Ch. 2 = V_{OUT}
Ch. 3 = FAULT
Ch. 4 = I_{OUT}

Figure 11. Transient Overvoltage
Ch. 1 = SUPPLY
Ch. 2 = V_{OUT}
Ch. 3 = FAULT
Ch. 4 = I_{OUT}

Figure 12. Jump Start
Ch. 1 = SUPPLY
Ch. 2 = V_{OUT}
Ch. 3 = FAULT
Ch. 4 = I_{OUT}

Figure 13. Superimposed Alternating Voltage, 15-Hz
Ch. 1 = SUPPLY
Ch. 2 = V_{OUT}
Ch. 3 = FAULT
Ch. 4 = I_{OUT}

Figure 14. Superimposed Alternating Voltage, 1-kHz
Ch. 1 = SUPPLY
Ch. 2 = V_{OUT}
Ch. 3 = FAULT
Ch. 4 = I_{OUT}

Figure 15. Slow Decrease, Quick Increase of Supply Voltage
Ch. 1 = SUPPLY
Ch. 2 = V_{OUT}
Ch. 3 = FAULT
Ch. 4 = I_{OUT}
Typical Characteristics (continued)

Figure 16. Slow Decrease and Slow Increase of Supply Voltage

Figure 17. LED Open-Circuit Protection and Recovery

Figure 18. LED Short-Circuit Protection and Recovery
7 Detailed Description

7.1 Overview
The TPS92611-Q1 device is one of a family of single-channel linear LED drivers. The family provides a simple solution for automotive LED applications. Different package options in the family provide a variety of current ranges and diagnostic options. The TPS92611-Q1 device in an MSOP-8 package supports LED open-circuit detection and short-to-ground detection. A one-fails–all-fail fault bus allows the TPS92611-Q1 device to be used together with the TPS9261x-Q1, TPS9263x-Q1, and TPS9283x-Q1 families.

The output current can be set by an external \(R_{\text{SNS}} \) resistor. Current flows from the supply through the \(R_{\text{SNS}} \) resistor into the internal current source and to the LEDs.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Device Bias

7.3.1.1 Power-On Reset (POR)
The TPS92611-Q1 device has an internal power-on-reset (POR) function. When power is applied to SUPPLY, the internal POR holds the device in the reset condition until \(V_{\text{SUPPLY}} \) reaches \(V_{\text{POR_rising}} \).

7.3.1.2 Low-Quiescent-Current Fault Mode
The TPS92611-Q1 device consumes minimal quiescent current when it is in fault mode. If the FAULT voltage is externally pulled LOW, the device shuts down the output driver.

If the device detects an internal fault, it pulls the FAULT output LOW to signal a fault alarm on the one-fails–all-fail fault bus.
Feature Description (continued)

7.3.2 Constant-Current Driver
The TPS92611-Q1 device has a high-side constant-current integrated driver. The device senses channel current with an external high-side current-sense resistor, $R_{(SNS)}$. A current regulation loop drives an internal transistor and regulates the current-sense voltage at the current-sense resistor to $V_{(CS_REG)}$. When the output driver is in regulation, the output current can be set using the following equation.

$$I_{(OUT)} = \frac{V_{(CS_REG)}}{R_{(SNS)}}$$

(1)

7.3.3 Device Enable
The TPS92611-Q1 device has an enable input EN. When EN is low, the device is in sleep mode with ultralow quiescent current $I_{(Shutdown)}$. This low current helps to save system-level current consumption in applications where battery voltage directly connects to the device without high-side switches.

7.3.4 PWM Dimming
The TPS92611-Q1 device supports PWM dimming via PWM input dimming and supply dimming.

The PWM input functions as an enable for the output current. When the PWM input is low, the device also disables the diagnostic features.

Supply dimming applies PWM dimming on the power input. For an accurate PWM threshold, TI recommends using a resistor divider on the PWM input stage to set the PWM threshold higher than $V_{(POR_rising)}$.

7.3.5 Diagnostics
The TPS92611-Q1 device provides advanced diagnostics and fault protection features for automotive exterior lighting systems. The device is able to detect and protect from LED string short-to-GND and LED string open-circuit faults. It also supports a one-fails–all-fail fault bus that could flexibly fit different regulatory requirements.

7.3.5.1 DIAGEN
The TPS92611-Q1 device supports the DIAGEN pin with an accurate threshold to disable the open-load diagnostic function. With a resistor divider, the DIAGEN pin can be used to sense SUPPLY voltage with a resistor-programmable threshold. With the DIAGEN feature, the device is able to avoid false error reports due to low dropout voltage and to drive maximum current in low-dropout mode when the input voltage is not high enough for current regulation.

When $V_{(DIAGEN)}$ is higher than the $V_{(IH(DIAGEN))}$ threshold, the device enables the LED open-circuit diagnostic. When $V_{(DIAGEN)}$ is lower than the $V_{(IL(DIAGEN))}$ threshold, the device disables the LED open-circuit diagnostic.

7.3.5.2 Low-Dropout Mode
When the supply voltage drops, the TPS92611-Q1 device tries to regulate current by driving internal transistors in the linear region, also known as low-dropout mode, because the voltage across the sense resistor fails to reach the regulation target.

In low-dropout mode, the open-circuit diagnostic must be disabled. Otherwise, the device treats the low-dropout mode as an open-circuit fault. The DIAGEN pin is used to avoid false diagnostics on the output channel due to low supply voltage.

When the DIAGEN voltage is low, open-circuit detection is ignored. When the DIAGEN voltage is high, open-circuit detection returns to normal operation.

In low-dropout mode, a parallel diode and current-limiting resistor are recommended to clamp between SUPPLY and IN (across the sense resistor) in case of a large current pulse during recovery.

7.3.5.3 Open-Circuit Detection
The TPS92611-Q1 device has LED open-circuit detection. Open-circuit detection monitors the output voltage when the channel is in the ON state. Open-circuit detection is only enabled when DIAGEN is HIGH. A short-to-battery fault is also detected as an LED open-circuit fault.
Feature Description (continued)

The device monitors dropout-voltage differences between the IN and OUT pins when PWM is HIGH. The voltage difference \(V_{(IN)} - V_{(OUT)} \) is compared with the internal reference voltage \(V_{(OPEN_th_rising)} \) to detect an LED open-circuit failure. If \(V_{(IN)} - V_{(OUT)} \) falls below the \(V_{(OPEN_th_rising)} \) voltage longer than the deglitch time of \(t_{(OPEN_deg)} \), the device detects an open-circuit fault. Once an LED open-circuit failure is detected, the constant-current source pulls the fault bus down. During the deglitch time period, if \(V_{(IN)} - V_{(OUT)} \) rises above \(V_{(OPEN_th_falling)} \), the deglitch timer is reset.

When the PWM input is in auto-retry, the device keeps the output ON to retry if the PWM input is HIGH; the device sources a small current \(I_{(retry)} \) from IN to OUT to retry when the PWM input is LOW. In either scenario, once a faulty channel recovers, the device resumes normal operation and releases the FAULT pulldown.

7.3.5.4 Short-to-GND Detection

The TPS92611-Q1 device has LED short-to-GND detection. Short-to-GND detection monitors the output voltage when the channel is in the ON state. Once a short-to-GND LED failure is detected, the device turns off the output channel and retries automatically, ignoring the PWM input. If the retry mechanism detects removal of the LED short-to-GND fault, the device resumes normal operation.

The device monitors the \(V_{(OUT)} \) voltage and compares it with the internal reference voltage to detect a short-to-GND failure. If \(V_{(OUT)} \) falls below \(V_{(SG_th_rising)} \) longer than the deglitch time of \(t_{(SG_deg)} \), the device asserts the short-to-GND fault and pulls FAULT low. During the deglitching time period, if \(V_{(OUT)} \) rises above \(V_{(SG_th_falling)} \), the timer is reset.

Once the device has detected a short-to-GND fault, the device turns off the output channel and retries automatically with a small current. When retrying, the device sources a small current \(I_{(retry)} \) from IN to OUT to pull up the LED loads continuously. Once auto-retry detects output voltage rising above \(V_{(SG_th_falling)} \), it clears the short-to-GND fault and resumes normal operation.

7.3.5.5 Overtemperature Protection

The TPS92611-Q1 device monitors device junction temperature. When the junction temperature reaches thermal shutdown threshold \(T_{(TSD)} \), the output shuts down. Once junction temperature falls below \(T_{(TSD)} - T_{(TSD_HYS)} \), the device resumes normal operation. During overtemperature protection, the fault bus is pulled low.

7.3.6 Fault-Bus Output With One-Fails–All-Fail

The TPS92611-Q1 device has a fault bus for diagnostics output. In normal operation, FAULT is weakly pulled up by an internal pullup current source \(I_{(FAULT_pullup)} \) higher than \(V_{OH(FAULT)} \). If any fault occurs, the fault bus is strongly pulled low by the internal pulldown current source \(I_{(FAULT_pulldown)} \). Once \(V_{(FAULT)} \) falls below \(V_{IL(FAULT)} \), all outputs shut down for protection. The faulty channel keeps retrying until the fault is removed.

If FAULT is externally pulled up with a current larger than \(I_{(FAULT_pulldown)} \), the one-fails–all-fail function is disabled and only the faulty channel is turned off.

The fault bus is able to support up to 15 pieces of TPS9261x-Q1, TPS9263x-Q1, or TPS9283x-Q1 devices.
Feature Description (continued)

Table 1. Fault Table With DIAGEN = HIGH

<table>
<thead>
<tr>
<th>FAULT BUS STATUS</th>
<th>FAULT TYPE</th>
<th>DETECTION MECHANISM</th>
<th>CHANNEL STATE</th>
<th>DEGLITCH TIME</th>
<th>FAULT BUS</th>
<th>FAULT HANDLING ROUTINE</th>
<th>FAULT RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTAULT floating or externally pulled up</td>
<td>Open-circuit or short-to-supply</td>
<td>(V_{\text{IN}} - V_{\text{OUT}} < V_{\text{OPEN_h_rising}})</td>
<td>On</td>
<td>(t_{\text{OPEN_deg}})</td>
<td>Constant-current pulldown</td>
<td>Device works normally with FAULT pin pulled low. Device sources (I_{\text{retry}}) current when PWM is LOW. Device keeps output normal when PWM is HIGH.</td>
<td>Auto recover</td>
</tr>
<tr>
<td>Short-to-ground</td>
<td>(V_{\text{OUT}} < V_{\text{SG_h_rising}})</td>
<td>On</td>
<td>(t_{\text{SG_deg}})</td>
<td>Constant-current pulldown</td>
<td>Device turns output off and retries with constant current (I_{\text{retry}}), ignoring the PWM input.</td>
<td>Auto recover</td>
<td></td>
</tr>
<tr>
<td>Over-temperature</td>
<td>(T_J > T_{\text{TSD}})</td>
<td>On or off</td>
<td>(t_{\text{TSD_deg}})</td>
<td>Constant-current pulldown</td>
<td>Devices turns output off.</td>
<td>Auto recover</td>
<td></td>
</tr>
</tbody>
</table>
Externally pulled low | | | | | Device turns output off |

Table 2. Fault Table With DIAGEN = LOW

<table>
<thead>
<tr>
<th>FAULT BUS STATUS</th>
<th>FAULT TYPE</th>
<th>DETECTION MECHANISM</th>
<th>CHANNEL STATE</th>
<th>DEGLITCH TIME</th>
<th>FAULT BUS</th>
<th>FAULT HANDLING ROUTINE</th>
<th>FAULT RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTAULT floating or externally pulled up</td>
<td>Open-circuit or short-to-supply</td>
<td>Ignored</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-to-ground</td>
<td>(V_{\text{OUT}} < V_{\text{SG_h_rising}})</td>
<td>On</td>
<td>(t_{\text{SG_deg}})</td>
<td>Constant-current pulldown</td>
<td>Device turns output off and retries with constant current (I_{\text{retry}}), ignoring the PWM input.</td>
<td>Auto recover</td>
<td></td>
</tr>
<tr>
<td>Over-temperature</td>
<td>(T_J > T_{\text{TSD}})</td>
<td>On or off</td>
<td>(t_{\text{TSD_deg}})</td>
<td>Constant-current pulldown</td>
<td>Devices turns output off.</td>
<td>Auto recover</td>
<td></td>
</tr>
</tbody>
</table>
Externally pulled low | | | | | Device turns output off |

7.4 Device Functional Modes

7.4.1 Undervoltage Lockout, \(V_{\text{(SUPPLY)}} < V_{\text{(POR_rising)}}\)

When the device is in undervoltage lockout mode, the TPS92611-Q1 device disables all functions until the supply rises above the POR-rising threshold.

7.4.2 Normal Operation \(V_{\text{(SUPPLY)}} \geq 4.5\ V\)

The device drives an LED string in normal operation. With enough voltage drop across SUPPLY and OUT, the device is able to drive the output in constant-current mode.

7.4.3 Low-Voltage Dropout

When the device drives an LED string in low-dropout mode, if the voltage drop is less than the open-circuit detection threshold, the device may report a false open. Set the DIAGEN threshold higher than the LED string voltage to avoid a false open-circuit detection.

7.4.4 Fault Mode

When the device detects an open or shorted LED, the device tries to pull down the FAULT pin with a constant current. If the fault bus is pulled down, the device switches to fault mode and consumes a fault current of \(I_{\text{FAULT}}\).
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
In automotive lighting applications, thermal performance and LED diagnostics are always design challenges for linear LED drivers.

The TPS92611-Q1 device is capable of detecting LED open-circuit and LED short-circuit failures. To further increase current-driving capability, the TPS92611-Q1 device supports heat sharing with an external parallel resistor as shown in Figure 21. This technique provides the low-cost solution of using external resistors to dissipate heat due to high input voltage, and still keeps high accuracy of the total current output. Note that the one-fails–all-fail feature is not supported by this topology.

8.2 Typical Application

8.2.1 Single-Channel LED Driver With Diagnostics
The TPS92611-Q1 device can be a good fit for LED driver applications with diagnostics requirements. In many cases, LED diagnostics are mandatory for applications such as automotive exterior lighting.

![Typical Application Diagram](image)

Figure 19. Typical Application Diagram

8.2.1.1 Design Requirements
Input voltage range is 9 V to 16 V, LED maximum forward voltage $V_{f_{\text{max}}}=2.5$ V, minimum forward voltage $V_{f_{\text{min}}}=1.9$ V, current $I_{\text{(LED)}}=50$ mA.

8.2.1.2 Detailed Design Procedure
Current setting by a sense resistor is as described in Equation 1.

$$R_{\text{(SNS)}} = \frac{V_{\text{CS_REG}}}{I_{\text{(LED)}}} = 1.96\Omega$$

(2)

LED-string maximum forward voltage $= 3 \times 2.5$ V $= 7.5$ V.
Typical Application (continued)

With 400-mV headroom reserved for the TPS92611-Q1 device between SUPPLY and OUT, the TPS92611-Q1 device must disable open-circuit detection when the supply voltage is below 7.9 V by using the DIAGEN feature.

\[
V_{IL(DIAG,\text{min})} = \frac{7.9 \times R_1}{R_1 + R_2}
\]

(3)

Set \(R_1 = 10 \, \text{k}\Omega \), \(R_2 = 65.6 \, \text{k}\Omega \).

Total device power consumption at worst case is with 16-V input and LEDs at minimal forward voltage.

\[
P_{\text{(Max)}} = (V_{\text{(SUPPLY)}} - V_{\text{(CS_REG)}} - V_{\text{(OUT)}}) \times I_{\text{(LED)}} + V_{\text{(SUPPLY)}} \times I_{\text{(Quiescent)}}
\]

\[
= (16 - 3 \times 1.9 - 0.098) \times 0.05 + 16 \times 0.00025 = 0.5141 \, \text{W}
\]

(4)

TI recommends to add capacitors \(C_1 \) and \(C_2 \) at SUPPLY and OUT. TI recommends \(C_1 \) of 1 \(\mu \)F and 100 nF close to the SUPPLY pin, and \(C_2 \) of 10 nF close to the OUT pin. A larger capacitor for \(C_1 \) or \(C_2 \) is helpful for EMC and ESD; however, it takes a longer time to charge up the capacitor and could affect PWM dimming performance.

8.2.1.3 Application Curve

![Application Curve Diagram](image)

Ch. 1 = \(V_{\text{(OUT)}} \)
Ch. 2 = \(V_{\text{(PWM)}} \)
Ch. 4 = \(I_{\text{(OUT)}} \)

Figure 20. Output Current With PWM Input

8.2.2 Single-Channel LED Driver With Heat Sharing

Using parallel resistors, thermal performance can be improved by balancing current between the TPS92611-Q1 device and the external resistors as follows. As the current-sense resistor controls the total LED string current, the LED string current \(I_{\text{(LED)}} \) is set by \(V_{\text{(CS_REG)}} / R_{\text{(SNS)}} \), while the TPS92611-Q1 current \(I_{\text{(DRIVE)}} \) and parallel resistor current \(I_{\text{(P)}} \) combine to the total current. Note that the device is not able to control the parallel resistor path, thus TI does not suggest to use one-fails–all-fail with this topology. For PWM applications, TI suggests to add an external bipolar switch at the bottom of LED strings. The PWM input and bipolar switch inputs must be tied together to minimize delay mismatch and to avoid false open-circuit faults.
Typical Application (continued)

![Typical Application Diagram]

Figure 21. Heat Sharing With a Parallel Resistor

8.2.2.1 Design Requirements

Input voltage range is 9 V to 16 V, LED maximum forward voltage \(V_{f_{\text{max}}} = 2.5 \) V, minimum forward voltage \(V_{f_{\text{min}}} = 1.9 \) V, current \(I_{(\text{LED})} = 200 \) mA.

8.2.2.2 Detailed Design Procedure

In linear LED driver applications, the input voltage variation contributes to most of the thermal concerns. The resistor current, as indicated by Ohm’s law, depends on the voltage across the external resistors. The TPS92611-Q1 controls the driver current \(I_{(\text{DRIVE})} \) to attain the desired total current. If \(I_{(P)} \) increases, the TPS92611-Q1 device decreases \(I_{(\text{DRIVE})} \) to compensate, and vice versa.

While in low-dropout mode, the voltage across the \(R_{(P)} \) resistor may be close to zero, so that almost no current can flow through the external resistor \(R_{(P)} \).

When the input voltage is high, the parallel-resistor current \(I_{(P)} \) is proportional to the voltage across the parallel resistor \(R_{(P)} \). The parallel resistor \(R_{(P)} \) takes the majority of the total string current, generating maximum heat. The device must prevent current from draining out to ensure current regulation capability.

In this case, the parallel resistor value must be carefully calculated to ensure that 1) enough output current is achieved in low-dropout mode, 2) thermal dissipation for both the TPS92611-Q1 device and the resistor is within their thermal dissipation limits, and 3) device current in the high-voltage mode is above the minimal output-current requirement.

TI recommends to add capacitors \(C_1 \) and \(C_2 \) at SUPPLY and OUT. TI recommends \(C_1 \) of 1 \(\mu \)F and 100 nF close to the SUPPLY pin, and \(C_2 \) of 10 nF close to the OUT pin. A larger capacitor for \(C_1 \) or \(C_2 \) is helpful for EMC and ESD; however, it takes a longer time to charge up the capacitor and could affect PWM dimming performance.

Current setting by a sense resistor is as described in Equation 1.

\[
R_{(SNS)} = \frac{V_{(CS_REG)}}{I_{(LED)}} = 0.49\Omega
\]

(5)

LED-string maximum forward voltage \(= 3 \times 2.5 \) V \(= 7.5 \) V.

Parallel resistor \(R_{(P)} \) is recommended to consume 1/2 of the total current at maximum supply voltage.
Typical Application (continued)

\[R_{(P)} = \frac{V_{(SUPPLY)} - V_{(CS_REG)} - V_{(OUT)}}{0.5 \times I_{(LED)}} = \frac{16 - 3 \times 1.9 - 0.098}{0.5 \times 0.2} \approx 100\Omega \]

(6)

Total device power consumption is maximum at 16 V input and LED minimal forward voltage.

\[P_{(DEV_MAX)} = (V_{(SUPPLY)} - V_{(CS_REG)} - V_{(OUT)}) \times \left(I_{(LED)} \times \frac{V_{(SUPPLY)} - V_{(CS_REG)} - V_{(OUT)}}{R_{(P)}} \right) + V_{(SUPPLY)} \times I_{(Quiescent)} \]

\[= (16 - 3 \times 1.9 - 0.098) \times 0.1 + 16 \times 0.00025 = 1.0242\ W \]

(7)

Resistor \(R_{(P)} \) maximum power consumption is at 16-V input.

\[P_{(RP_MAX)} = \frac{(V_{(SUPPLY)} - V_{(CS_REG)} - V_{(OUT)})^2}{R_{(P)}} + V_{(SUPPLY)} \times I_{(Quiescent)} \]

\[= \frac{(16 - 3 \times 1.9 - 0.098)^2}{100} = 1.04\ W \]

(8)

Users must consider the maximum power of both of the device and the parallel resistor.

For PWM scenarios, a non-power bipolar transistor with a base current-limiting resistor of 10 kΩ can modulate the output current together with the device PWM function.

8.2.2.3 Application Curve

![Application Curve](image)

Ch. 1 = \(V_{(SUPPLY)} \)
Ch. 2 = \(V_{(OUT)} \)
Ch. 3 = \(I_{(P)} \)
Ch. 4 = \(I_{(LED)} \)
Supply voltage increases from 9 V to 16 V

Figure 22. Constant Output Current With Increasing Supply Voltage

9 Power Supply Recommendations

The TPS92611-Q1 device is qualified for automotive applications. The normal power supply connection is therefore to an automobile electrical system that provides a voltage within the range specified in the Recommended Operating Conditions.
10 Layout

10.1 Layout Guidelines
Thermal dissipation is the primary consideration for TPS92611-Q1 layout. TI recommends good thermal dissipation area connected to thermal pads with thermal vias.

10.2 Layout Example

Figure 23. TPS92611-Q1 Example Layout Diagram
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation
For related documentation see the following:

- TPS92610-Q1 Automotive Single-Channel Linear LED Driver
- TPS92612-Q1 Automotive Single-Channel Linear LED Driver
- TPS92610-Q1 EVM User's Guide
- How to Calculate TPS92630-Q1 Maximum Output Current for Automotive Exterior Lighting Applications
- Automotive Linear LED Driver Reference Design for Center High-Mounted Stop Lamp (CHMSL)
- Automotive Linear LED Driver Reference Design for Center High-Mounted Stop Lamp (CHMSL)

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.4 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most-current data available for the designated device. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS92611QDGNRQ1</td>
<td>ACTIVE</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>1N3X</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead finish/Ball material** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI’s knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS92611QDGNRQ1</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS92611QDGNRQ1</td>
<td>HVSSOP</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>
This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
9. Size of metal pad may vary due to creepage requirement.
NOTES: (continued)

10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
11. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated