

TS5A22362

SCDS364E - JUNE 2015-REVISED OCTOBER 2019

TS5A22362 0.65- Ω 2-channel SPDT Analog Switches With Negative Signaling Capability

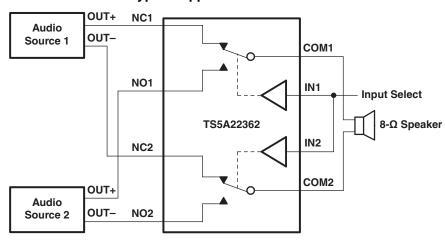
Features

- Specified break-before-make switching
- Negative signaling capability: maximum swing from -2.75 V to 2.75 V ($V_{CC} = 2.75$ V)
- Low ON-state resistance (0.65 Ω typical)
- Low charge injection
- Excellent ON-state resistance matching
- 2.3-V to 5.5-V Power supply (V_{CC})
- Latch-Up performance exceeds 100 mA Per JESD 78, Class II
- ESD Performance tested per JESD 22
 - 2500-V Human-body model (A114-B, class II)
 - 1500-V Charged-device model (C101)
 - 200-V Machine model (A115-A)

Applications

- Cell phones
- Personal digital assistant (PDAs)
- Portable instrumentation
- Audio routing
- Medical imaging

3 Description


The TS5A22362 is a bidirectional, 2-channel singlepole double-throw (SPDT) analog switch designed to operate from 2.3 V to 5.5 V. The device features negative signal swing capability that allows signals below ground to pass through the switch without distortion. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another. Low ON-state resistance, excellent channel-to-channel ON-state resistance matching, and minimal total harmonic distortion (THD) performance are ideal for audio applications. The 3.00 mm x 3.00 mm DRC package is also available as a nonmagnetic package for medical imaging application.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	VSON (10)	3.00 mm × 3.00 mm
TS5A22362	DSBGA (10)	1.86 mm × 1.36 mm
	VSSOP (10)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

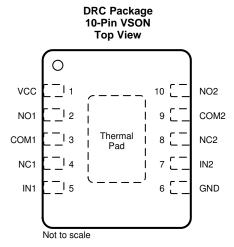
Typical Application Schematic

Table of Contents

1	Features 1		8.2 Functional Block Diagram	15
2	Applications 1		8.3 Feature Description	15
3	Description 1		8.4 Device Functional Modes	15
4	Revision History2	9	Application and Implementation	16
5	Pin Configuration and Functions		9.1 Application Information	16
6	Specifications4		9.2 Typical Application	16
•	6.1 Absolute Maximum Ratings 4	10	Power Supply Recommendations	18
	6.2 ESD Ratings	11	Layout	18
	6.3 Recommended Operating Conditions		11.1 Layout Guidelines	18
	6.4 Thermal Information		11.2 Layout Example	18
	6.5 Electrical Characteristics for 2.5-V Supply	12	Device and Documentation Support	19
	6.6 Electrical Characteristics for 3.3-V Supply		12.1 Receiving Notification of Documentation Update	
	6.7 Electrical Characteristics for 5-V Supply		12.2 Community Resources	19
	6.8 Typical Characteristics9		12.3 Trademarks	19
7	Parameter Measurement Information 11		12.4 Electrostatic Discharge Caution	19
8	Detailed Description 15		12.5 Glossary	19
	8.1 Overview	13	Mechanical, Packaging, and Orderable Information	19

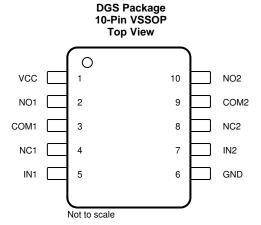
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

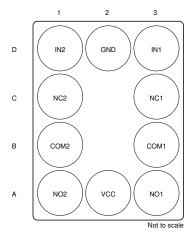

Cł	hanges from Revision D (March 2018) to Revision E	Page
•	Changed the YZP Package view From: Top View To: Bottom View	3
Cl	hanges from Revision C (June 2017) to Revision D	Page
•	Changed the YZP Package From: Laser Marketing View and Bump View To: Top View	3
<u>•</u>	Changed the Q _C TYP value From: 10 pC To: 150 pC in the <i>Electrical Characteristics for 5-V Supply</i> table	8
Cł	hanges from Revision B (September 2015) to Revision C	Page
•	Changed the V _{IN} MAX value From: V _{CC} To: 5.5 V in the <i>Recommended Operating Conditions</i> table	4
Cł	hanges from Revision A (August 2015) to Revision B	Page
•	Changed C _L TEST CONDITION value for all THD PARAMETERs from 15 pf to 35 pf	6
Cł	hanges from Original (June 2015) to Revision A	Page
•	Changed the Functional Block Diagram.	15

Submit Documentation Feedback

Copyright © 2015–2019, Texas Instruments Incorporated



5 Pin Configuration and Functions



The exposed center pad, if used, must be

connected as a secondary GND or left electrically open.

YZP Package 10-Pin DSBGA Bottom View

Pin Functions

		PIN		TYPE	DESCRIPTION		
NAME	VSON	VSSOP	DSBGA	ITPE	DESCRIPTION		
VCC	1	1	A2	_	Power Supply		
NO1	2	2	А3	I/O	Normally Open (NO) signal path, Switch 1		
COM1	3	3	В3	I/O	Common signal path, Switch 1		
NC1	4	4	C3	I/O	Normally Closed (NC) signal path, Switch 1		
IN1	5	5	D3	I	Digital control pin , Switch 1		
GND	6	6	D2	_	Ground		
IN2	7	7	D1	I	Digital control pin, Switch 2		
NC2	8	8	C1	I/O	Normally Closed (NC) signal path, Switch 2		
COM2	9	9	B1	I/O	Common signal path, Switch 2		
NO2	10	10	A1	I/O	Normally Open (NO) signal Path, Switch 2		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V _{CC} (2)	Supply voltage (3)		-0.5	6	V
V _{NC} V _{NO} V _{COM}	Analog voltage (3) (4) (5)		V _{CC} – 6	V _{CC} + 0.5	V
I _{I/OK}	Analog port diode current	V_{NC} , V_{NO} , $V_{COM} < 0$ or V_{NC} , V_{NO} , $V_{COM} > V_{CC}$	-50	50	mA
I _{NC} I _{NO} I _{COM}	ON-state switch current		-150	150	mA
	ON-state peak switch current ⁽⁶⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-300	300	
I _{NC} (3) (7) (8) I _{NO} (3) (7) (8)	ON-state switch current		-350	350	
I _{NO} (3) (7) (8) I _{COM} (3) (7) (8)	ON-state peak switch current ⁽⁶⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-500	500	mA
VI	Digital input voltage	,	-0.5	6.5	V
I _{IK}	Digital input clamp current (3) (4)	V _I < 0	-50	50	mA
I _{CC} I _{GND}	Continuous current through V _{CC} or GN	ND	-100	100	mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 5.5 V maximum.
- (6) Pulse at 1-ms duration < 10% duty cycle.
- (7) $V_{CC} = 3.0 \text{ V to } 5.0 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}.$
- (8) For YZP package only.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101	±1500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply voltage	2.3	5.5	V
V _{NC} V _{NO} V _{COM}	Signal path voltage	V _{CC} – 5.5	V _{CC}	V
V _{IN}	Digital control	GND	5.5	V

6.4 Thermal Information

			TS5A22362		
	THERMAL METRIC (1)	DGS (VSSOP)	DRC (VSON)	YZP (DSBGA)	UNIT
		10 PINS	10 PINS	10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	163.3	44.3	90.9	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	56.4	70.1	0.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	83.1	19.3	8.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	6.8	2.0	3.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	81.8	19.4	8.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application

6.5 Electrical Characteristics for 2.5-V Supply

 $V_{CC} = 2.3 \text{ V}$ to 2.7 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted) ⁽¹⁾

F	PARAMETER	TEST COND	ITIONS	TA	V _{CC}	MIN	TYP	MAX	UNIT
Analog Sv	witch								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					V _{CC} - 5.5		V _{CC}	V
Б	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.5 V,	COM to NO or NC,	25°C	0.7.1/		0.65	0.94	0
R _{on}	resistance	$V_{CC} - 5.5 \text{ V}$ $I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.7 V			1.3	Ω
4 D	ON-state	V_{NC} or $V_{NO} = 1.5 \text{ V}$,	COM to NO or NC,	25°C	0.7.1/		0.023	0.11	0
ΔR_{on}	resistance match between channels	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.7 V			0.15	Ω
Б	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.5 V,	COM to NO or NC,	25°C	0.7.1/		0.18	0.46	0
R _{on(flat)}	resistance flatness	$V_{CC} - 5.5 \text{ V}$ $I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.7 V			0.5	Ω
		$V_{NC} = 2.25 \text{ V}, V_{CC} - 5.5 \text{ V}$		25°C		-50		50	
I _{NC(OFF)} , I _{NO(OFF)}	NC, NO OFF leakage current	$\begin{array}{l} V_{COM} = V_{CC} - 5.5 \text{ V}, \ 2.25 \text{ V} \\ V_{NO} = \text{Open} \\ \text{COM to NO} \\ \text{or} \\ V_{NO} = 2.25 \text{ V}, \ V_{CC} - 5.5 \text{ V}, \\ V_{COM} = V_{CC} - 5.5 \text{ V}, \ 2.25 \text{ V} \\ V_{NC} = \text{Open} \\ \text{COM to NC} \end{array}$	See Figure 14	Full	2.7	-375		375	nA
	COM	V_{NC} and V_{NO} = Floating,		25°C		-50		50	
I _{COM(ON)}	ON leakage current	$V_{COM} = V_{CC}, V_{CC} - 5.5 \text{ V}$	See Figure 15	Full	2.7 V	-375		375	nA
Digital Co	ntrol Inputs (IN) (2)	T.							
V_{IH}	Input logic high			Full		1.4		5.5	V
V_{IL}	Input logic low			1 411				0.6	
I _{IH} , I _{IL}	Input leakage	$V_{IN} = V_{CC}$ or 0		25°C	2.7 V	-250		250	nA
	current	- IIV		Full		-250		250	
Dynamic		1			, ,				
		$V_{COM} = V_{CC}$	$C_1 = 35 pF$,	25°C	2.5 V		44	80	
t _{ON}	Turnon time	$R_L = 300 \Omega,$	see Figure 17	Full	2.3 V to 2.7 V			120	ns
		V V	0 05 -5	25°C	2.5 V		22	70	
t _{OFF}	Turnoff time	$V_{\text{COM}} = V_{\text{CC}},$ $R_{\text{L}} = 300 \ \Omega,$	C _L = 35 pF, see Figure 17	Full	2.3 V to 2.7 V			70	ns
t _{BBM}	Break-before-make time	See Figure 18		25°C	2.5 V	1	7		ns
Q_C	Charge injection	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, see Figure 22	25°C	2.5 V		150		рС
$C_{NC(OFF)}$, $C_{NO(OFF)}$	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND,	See Figure 16	25°C	2.5 V		70		pF

 ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 2.5-V Supply (continued)

 V_{CC} = 2.3 V to 2.7 V, T_A = -40°C to 85°C (unless otherwise noted) $^{(1)}$

F	PARAMETER	TEST COND	ITIONS	T _A	V _{CC}	MIN TYP	MAX	UNIT
C _{COM(ON)}	NC, NO, COM ON capacitance	V _{COM} = V _{CC} or GND, Switch ON, f = 10 MHz	See Figure 16	25°C	2.5 V	370		pF
Cı	Digital input capacitance	V _I = V _{CC} or GND	See Figure 16	25°C	2.5 V	2.6		pF
BW	Bandwidth	$R_L = 50 \Omega, -3 dB$	See Figure 18	25°C	2.5 V	17		MHz
O _{ISO}	OFF isolation	R _L = 50 Ω	f = 100 kHz, see Figure 20	25°C	2.5 V	-66		dB
X _{TALK}	Crosstalk	R _L = 50 Ω	f = 100 kHz, see Figure 21	25°C	2.5 V	-75		dB
THD	Total harmonic distortion	$R_L = 600 \ \Omega,$ $C_L = 35 \ pF$	f = 20 Hz to 20 kHz, see Figure 23	25°C	2.5 V	0.01%		
Supply							•	
-	Positive	V_{COM} and $V_{IN} = V_{CC}$ or GND,		25°C	2.7 V	0.2	1.1	^
I _{CC}	supply current	V_{NC} and V_{NO} = Floating		Full	2.7 V		1.3	μΑ
I _{cc}	Positive supply current	$V_{COM} = V_{CC} - 5.5 \text{ V},$ $V_{IN} = V_{CC} \text{ or GND,}$ $V_{NC} \text{ and } V_{NO} = \text{Floating}$		Full	2.7 V		3.3	μА

6.6 Electrical Characteristics for 3.3-V Supply

 $V_{CC} = 3 \text{ V}$ to 3.6 V. $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted) (1)

1	PARAMETER	TEST COM	IDITIONS	TA	V _{CC}	MIN	TYP	MAX	UNIT
ANALOG S	SWITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					V _{CC} - 5.5		V _{CC}	V
		V_{NC} or $V_{NO} \le V_{CC}$,		25°C			0.61	0.87	
R _{on}	ON-state resistance	1.5 V, $V_{CC} - 5.5 \text{ V},$ $I_{COM} = -100 \text{ mA}$	COM to NO or NC, see Figure 13	Full	3 V			0.97	Ω
	ON-state	V_{NC} or $V_{NO} = 1.5 \text{ V}$,	COM to NO or NC,	25°C			0.024	0.13	
ΔR_{on}	resistance match between channels	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	3 V			0.13	Ω
	ON-state	V_{NC} or $V_{NO} \le V_{CC}$,		25°C			0.12	0.46	
$R_{on(flat)}$	resistance flatness	1.5 V, $V_{CC} - 5.5 \text{ V},$ $I_{COM} = -100 \text{ mA}$	COM to NO or NC, see Figure 13	Full 3 V	3 V			0.5	Ω
		$V_{NC} = 3 \text{ V}, V_{CC} - 5.5 \text{ V}$		25°C		-50		50	
I _{NC(OFF)} , I _{NO(OFF)}	NC, NO OFF leakage current	$\begin{array}{l} V_{COM} = V_{CC} - 5.5 \text{ V}, 3 \text{ V} \\ V_{NO} = \text{Open} \\ \text{COM to NO} \\ \text{or} \\ V_{NO} = 3 \text{ V}, V_{CC} - 5.5 \text{ V}, \\ V_{COM} = V_{CC} - 5.5 \text{ V}, 3 \text{ V} \\ V_{NC} = \text{Open} \\ \text{COM to NC} \end{array}$	See Figure 14	Full	3.6 V	-375		375	nA
	COM	V_{NC} and V_{NO} = Floating,	COM to NO or NC.	25°C		-50		50	
I _{COM(ON)}	ON leakage current	$V_{\text{COM}} = V_{\text{CC}}, V_{\text{CC}} - 5.5 \text{ V}$	see Figure 15	Full	3.6 V	-375		375	nA
DIGITAL C	CONTROL INPUTS (IN) (2)							
V _{IH}	Input logic high			Full		1.4		5.5	V
V _{IL}	Input logic low			ı uli				8.0	V
	Input leakage current	V - V or 0		25°C	3.6 V	-250		250	nA
I _{IH} , I _{IL}	input leakage current	$V_{IN} = V_{CC}$ or 0		Full	3.0 V	-250		250	ПA

 ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 3.3-V Supply (continued)

 $V_{CC} = 3 \text{ V to } 3.6 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$ (unless otherwise noted) (1)

	PARAMETER	TEST COND	ITIONS	TA	Vcc	MIN	TYP	MAX	UNIT
DYNAMIC	:								
		V V	0 05 -5	25°C	3.3 V		34	80	
t _{ON}	Turnon time	$V_{COM} = V_{CC},$ $R_L = 300 \Omega$	C _L = 35 pF, see Figure 17	Full	3 V to 3.6 V			120	ns
		$V_{COM} = V_{CC}$	$C_1 = 35 \text{ pF},$	25°C	3.3 V		19	70	
t _{OFF}	Turnoff time	$R_L = 300 \Omega$	see Figure 17	Full	3 V to 3.6 V			70	ns
t _{BBM}	Break-before-make time	See Figure 18		25°C	3.3 V	1	7		ns
Q _C	Charge injection	V _{GEN} = 0, R _{GEN} = 0	C _L = 1 nF, see Figure 22	25°C	3.3 V		150		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or $V_{CC} - 5.5 \text{ V}$	See Figure 16	25°C	3.3 V		70		pF
C _{COM(ON)}	NC, NO, COM ON capacitance	V _{COM} = V _{CC} or GND, f = 10 MHz	See Figure 16	25°C	3.3 V		370		pF
Cı	Digital input capacitance	V _I = V _{CC} or GND	See Figure 16	25°C	3.3 V		2.6		pF
BW	Bandwidth	$R_L = 50 \Omega, -3 dB$	Switch ON, see Figure 18	25°C	3.3 V		17.5		MHz
O _{ISO}	OFF isolation	R _L = 50 Ω	f = 100 kHz, see Figure 20	25°C	3.3 V		-68		dB
X _{TALK}	Crosstalk	R _L = 50 Ω	f = 100 kHz, see Figure 21	25°C	3.3 V		-76		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 35 \text{ pF}$	f = 20 Hz to 20 kHz, see Figure 23	25°C	3.3 V		0.008%		
SUPPLY									
		V_{COM} and $V_{IN} = V_{CC}$ or GND,		25°C	3.6 V		0.1	1.2	μА
	Positive	V_{NC} and V_{NO} = Floating		Full	3.0 V			1.3	μА
I _{CC}	supply current	$V_{COM} = V_{CC} - 5.5 \text{ V},$ $V_{IN} = V_{CC} \text{ or GND},$ $V_{NC} \text{ and } V_{NO} = \text{Floating}$		Full	3.6 V			3.4	μΑ

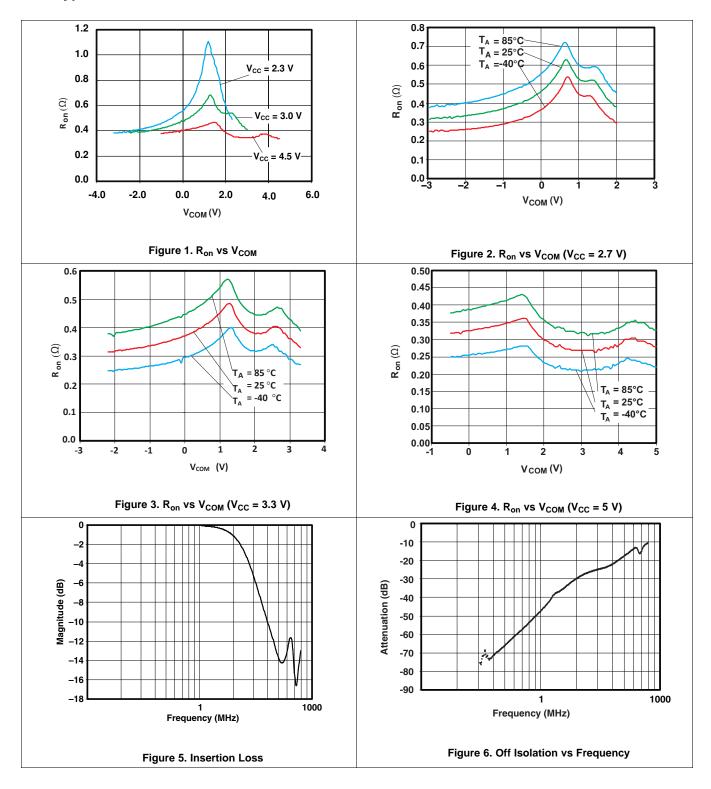
6.7 Electrical Characteristics for 5-V Supply

 $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted) (1)

P	ARAMETER	TEST CON	DITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG	SWITCH								
V_{COM} , V_{NO} , V_{NC}	Analog signal range					V _{CC} - 5.5		V_{CC}	V
_	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.6 V,	COM to NO or NC,	25°C			0.52	0.74	_
R _{on}	resistance	$V_{CC} = -5.5 \text{ V},$ $I_{COM} = -100 \text{ mA}$	see Figure 13	Full	4.5 V			0.83	Ω
. 5	ON-state	V_{NC} or $V_{NO} = 1.6 \text{ V}$,	COM to NO or NC.	25°C			0.04	0.23	
ΔR _{on} resistance match between channels	$I_{COM} = -100 \text{ mA}$	see Figure 13	Full	4.5 V			0.30	Ω	
_	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.6 V,	COM to NO or NC,	25°C			0.076	0.46	Ω
R _{on(flat)}	resistance flatness	$V_{CC} = -5.5 \text{ V},$ $I_{COM} = -100 \text{ mA}$	see Figure 13	Full	4.5 V			0.5	
		$V_{NC} = 4.5 \text{ V}, V_{CC} - 5.5 \text{ V},$		25°C		-50		50	i
I _{NC(OFF)} , I _{NO(OFF)}	NC, NO OFF leakage current	$\begin{split} &V_{\text{COM}} = V_{\text{CC}} - 5.5 \text{ V}, 4.5 \text{ V}, \\ &V_{\text{NO}} = \text{Open}, \\ &\text{COM to NO} \\ &\text{or} \\ &V_{\text{NO}} = 4.5 \text{ V}, V_{\text{CC}} - 5.5 \text{ V}, \\ &V_{\text{COM}} = V_{\text{CC}} - 5.5 \text{ V}, 4.5 \text{ V}, \\ &V_{\text{NC}} = \text{Open}, \\ &\text{COM to NC} \end{split}$	See Figure 14	Full	5.5 V	-375		375	nA
	СОМ	V_{NC} and V_{NO} = Floating,		25°C		-50		50	
I _{COM(ON)} ON leakage current	•	$V_{COM} = V_{CC}, V_{CC} - 5.5 \text{ V}$	See Figure 15	Full	5.5 V	-375		375	nA

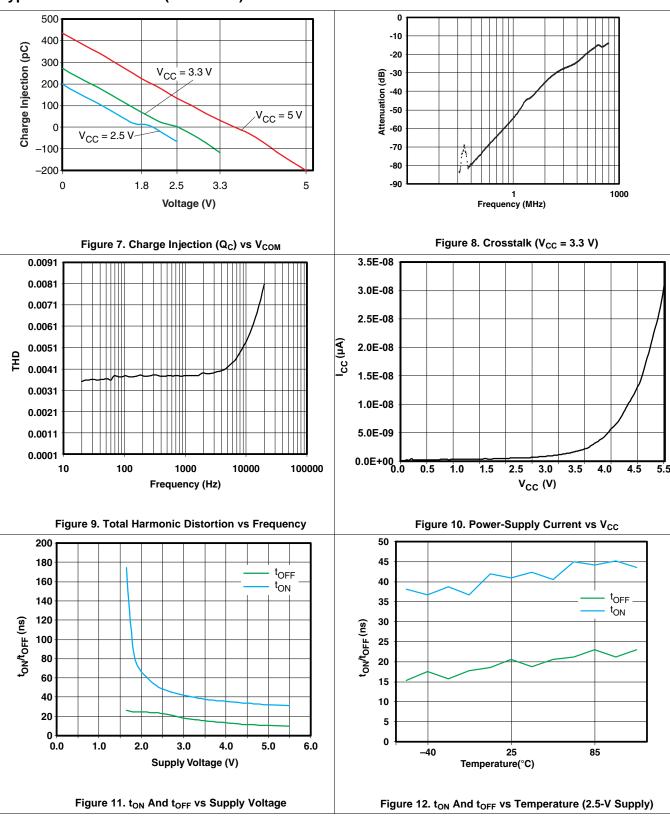
(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 5-V Supply (continued)


 V_{CC} = 4.5 V to 5.5 V, T_A = -40°C to 85°C (unless otherwise noted) $^{(1)}$

ı	PARAMETER	TEST CONE	OITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
DIGITAL (CONTROL INPUTS (IN) ⁽²⁾							
V _{IH}	Input logic high			F		2.4		5.5	V
V _{IL}	Input logic low			Full				0.8	V
	Input leakage	V V 050	25°C	5.5 V	-250		250	Λ	
_{IH} , I _{IL}	current	$V_{IN} = V_{CC}$ or 0		Full	5.5 V	-250		250	nA
DYNAMIC	;								
		$V_{COM} = V_{CC}$	$C_L = 35 pF$,	25°C	5 V		27	80	
ON	Turnon time	$R_L = 300 \Omega$	see Figure 17	Full	4.5 V to 5.5 V			80	ns
		V - V	$C_1 = 35 pF$,	25°C	5 V		13	70	
OFF	Turnoff time	$V_{COM} = V_{CC},$ $R_L = 300 \Omega$	see Figure 17	Full	4.5 V to 5.5 V			70	ns
ВВМ	Break-before-make time	$V_{NC} = V_{NO} = V_{CC}/2$ $R_L = 300 \Omega$	$C_L = 35 \text{ pF},$ see Figure 18	25°C	5 V	1	3.5		ns
Q_{C}	Charge injection	V _{GEN} = 0, R _{GEN} = 0	$C_L = 1 \text{ nF},$ see Figure 22	25°C	5 V		150		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or $V_{CC} - 5.5 \text{ V}$	See Figure 16	25°C	5 V		70		pF
C _{COM(ON)}	NC, NO, COM ON capacitance	$V_{COM} = V_{CC}$ or GND,	See Figure 16	25°C	5 V		370		pF
Cı	Digital input capacitance	$V_{I} = V_{CC}$ or GND	See Figure 16	25°C	5 V		2.6		pF
3W	Bandwidth	$R_L = 50 \Omega$	See Figure 18	25°C	5 V		18.3		MHz
O _{ISO}	OFF isolation	R _L = 50 Ω	f = 100 kHz, see Figure 20	25°C	5 V		-70		dB
X _{TALK}	Crosstalk	R _L = 50 Ω	f = 100 kHz, see Figure 21	25°C	5 V		-78		dB
ГНD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 35 \text{ pF}$	f = 20 Hz to 20 kHz, see Figure 23	25°C	5 V		0.009%		
SUPPLY								'	
-		V_{COM} and $V_{IN} = V_{CC}$ or GND,		25°C		·	0.2	1.3	
	Positive	V_{NC} and V_{NO} = Floating		Full				3.5	
CC	supply current	$V_{COM} = V_{CC} - 5.5 \text{ V},$ $V_{IN} = V_{CC} \text{ or GND},$ $V_{NC} \text{ and } V_{NO} = \text{Floating}$		Full	5.5 V			5	μА

⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.


6.8 Typical Characteristics

Copyright © 2015–2019, Texas Instruments Incorporated

Typical Characteristics (continued)

Submit Documentation Feedback

Copyright © 2015–2019, Texas Instruments Incorporated

7 Parameter Measurement Information

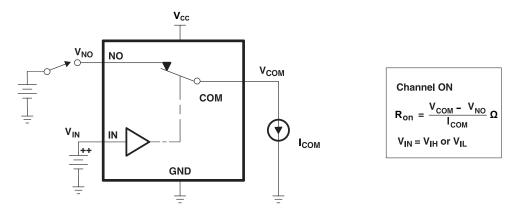


Figure 13. ON-state resistance (R_{on})

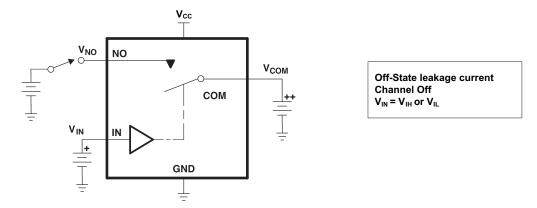


Figure 14. OFF-state leakage current (I_{COM(OFF)}, I_{NO(OFF)})

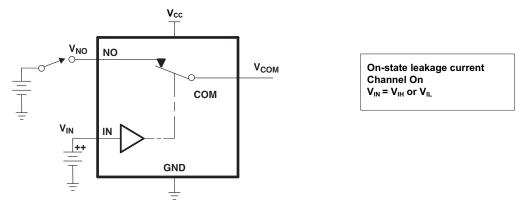


Figure 15. ON-state leakage current $(I_{COM(ON)}, I_{NO(ON)})$

Copyright © 2015–2019, Texas Instruments Incorporated

Parameter Measurement Information (continued)

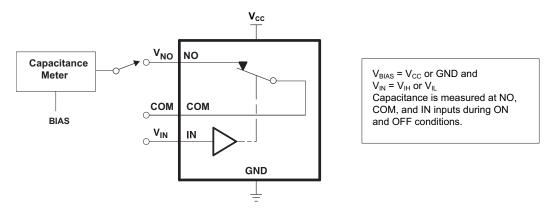
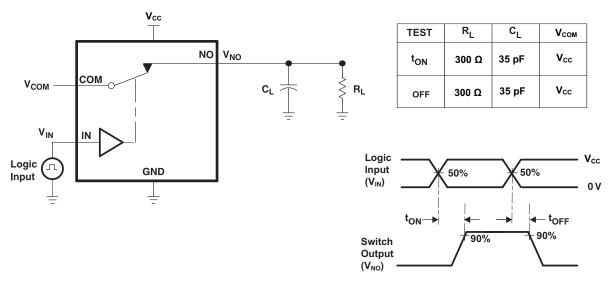
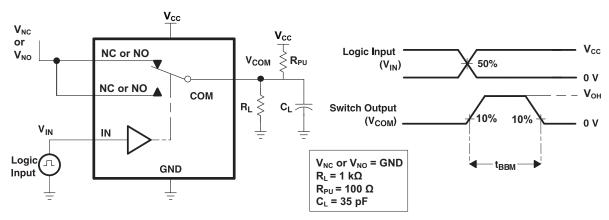



Figure 16. Capacitance (C_I, C_{COM(OFF)}, C_{COM(ON)}, C_{NO(OFF)}, C_{NO(ON)})



- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.
- B. C_L includes probe and jig capacitance.

Figure 17. Turnon (t_{ON}) and Turnoff time (t_{OFF})

Parameter Measurement Information (continued)

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f < 5$ ns, $t_f < 5$ ns.

Figure 18. Break-Before-Make Time (t_{BBM})

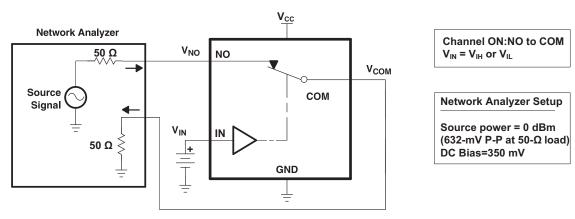


Figure 19. Bandwidth (BW)

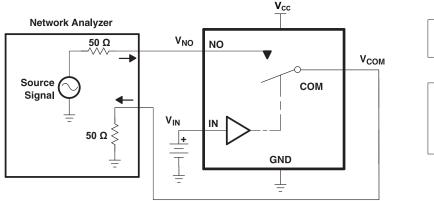


Figure 20. OFF isolation (O_{ISO})

Channel OFF: NO to COM $V_{IN} = V_{IH}$ or V_{IL}

NetworkAnalyzerSetup
Source power = 0 dBm
(632-mV P-P at 50-Ω load)
DC bias = 350 mV

Parameter Measurement Information (continued)

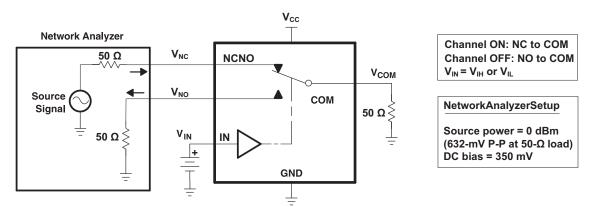
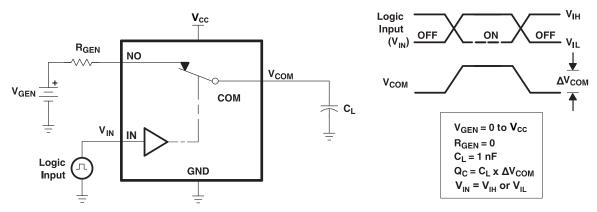
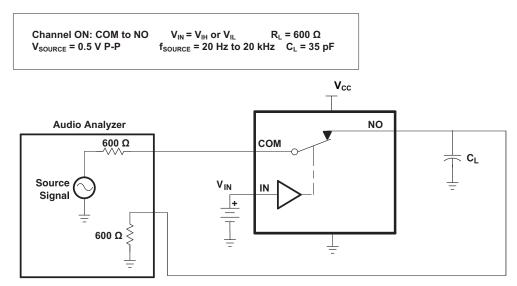




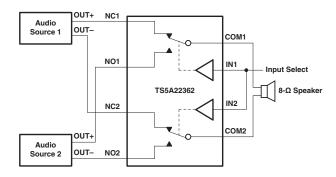
Figure 21. Crosstalk (X_{TALK})

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.
- B. C_L includes probe and jig capacitance.

Figure 22. Charge injection (Q_C)

A. C_L includes probe and jig capacitance.

Figure 23. Total Harmonic Distortion (THD)



8 Detailed Description

8.1 Overview

The TS5A22362 is a bidirectional, 2-channel single-pole double-throw (SPDT) analog switches designed to operate from 2.3 V to 5.5 V. The devices feature negative signal capability that allows signals below ground to pass through the switch without distortion. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another. Low ON-state resistance, excellent channel-to-channel ON-state resistance matching, and minimal total harmonic distortion (THD) performance are ideal for audio applications

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Negative Signaling Capacity

The TS5A22362 dual SPDT switches feature negative signal capability that allows signals below ground to pass through without distortion. These analog switches operate from a single +2.3-V to +5.5-V supply. The input and output signal swing of the device is dependant of the supply voltage V_{CC} : the devices pass signals as high as V_{CC} and as low as $V_{CC} - 5.5$ V, including signals below ground with minimal distortion.

Table 1 shows the input/output signal swing the user can get with different supply voltages.

SUPPLY VOLTAGE, V _{CC}	$\begin{aligned} & \text{MINIMUM} \\ & (\text{V}_{\text{NC}}, \text{V}_{\text{NO}}, \text{V}_{\text{COM}}) = \text{V}_{\text{CC}} - 5.5 \end{aligned}$	$\begin{aligned} & \text{MAXIMUM} \\ & (\text{V}_{\text{NC}}, \text{V}_{\text{NO}}, \text{V}_{\text{COM}}) = \text{V}_{\text{CC}} \end{aligned}$
5.5 V	0 V	5.5 V
4.5 V	−1.9 V	4.5 V
3.6 V	–2.5 V	3.6 V
3.0 V	–2.5 V	3.0 V
2.7 V	-2.8 V	2.7 V
2.3 V	−3.2 V	2.3 V

Table 1. Input/Output signal swing

8.4 Device Functional Modes

The function table for TS5A22362 is shown in Table 2

Table 2. Function Table

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO		
L	ON	OFF		
Н	OFF	ON		

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Ensure that the device is powered up with a supply voltage on VCC before a voltage can be applied to the signal paths NC and NO.

Tie the digitally controlled inputs select pins IN1 and IN2 to V_{CC} or GND to avoid unwanted switch states that could result if the logic control pins are left floating.

All unused digital inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

9.2 Typical Application

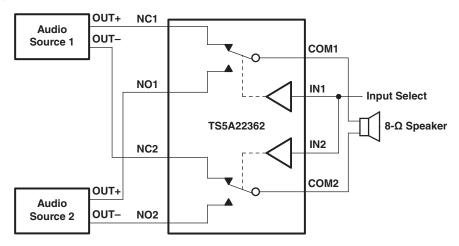


Figure 24. Typical Application

9.2.1 Design Requirements

Tie the digitally controlled inputs select pins IN1 and IN2 to V_{CC} or GND to avoid unwanted switch states that could result if the logic control pins are left floating.

9.2.2 Detailed Design Procedure

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch because the TS5A22362 operates from a single +2.3-V to +5.5-V supply and the input/output signal swing of the device is dependant of the supply voltage V_{CC} . The device will pass signals as high as V_{CC} and as low as V_{CC} – 5.5 V. Use table 2 as a guide for selecting supply voltage based on the signal passing through the switch.

Ensure that the device is powered up with a supply voltage on VCC before a voltage can be applied to the signal paths NC and NO.

Typical Application (continued)

9.2.3 Application Curve

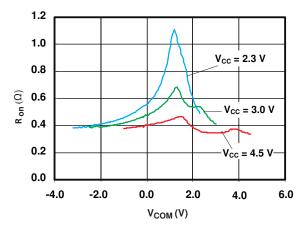
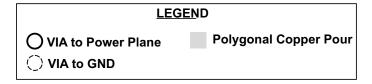


Figure 25. R_{on} vs V_{COM}

10 Power Supply Recommendations

The TS5A22362 operates from a single 2.3-V to 5.5-V supply. The device must be powered up with a supply voltage on VCC before a voltage can be applied to the signal paths NC and NO. It is recommended to include a 100-μs delay after VCC is at voltage before applying a signal on NC and NO paths

It is also good practice to place a 0.1- μ F bypass capacitor on the supply pin VCC to GND to smooth out lower frequency noise to provide better load regulation across the frequency spectrum.


11 Layout

11.1 Layout Guidelines

TI recommends placing a bypass capacitor as close to the supply pin VCC as possible to help smooth out lower frequency noise to provide better load regulation across the frequency spectrum.

Minimize trace lengths and vias on the signal paths in order to preserve signal integrity.

11.2 Layout Example

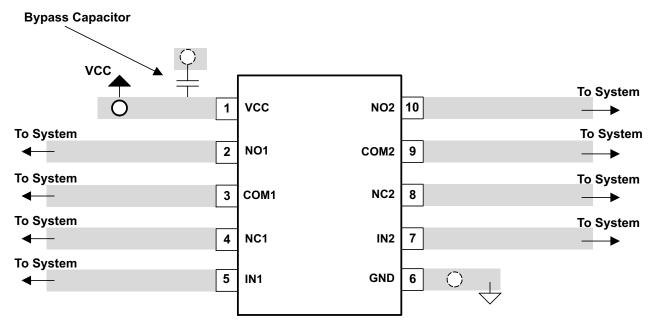


Figure 26. Layout example of TS5A22362

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 12-Jan-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TS5A22362DGSR	ACTIVE	VSSOP	DGS	10	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	39R	Samples
TS5A22362DGSRG4	LIFEBUY	VSSOP	DGS	10	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	39R	
TS5A22362DRCR	ACTIVE	VSON	DRC	10	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZVG	Samples
TS5A22362DRCT-NM	LIFEBUY	VSON	DRC	10	250	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 85	ZVGNM	
TS5A22362YZPR	ACTIVE	DSBGA	YZP	10	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(39, 392)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

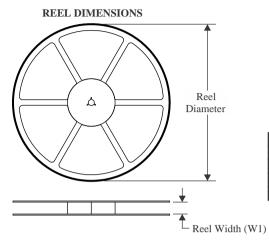
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet J\$709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

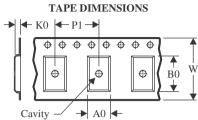
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 12-Jan-2024


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

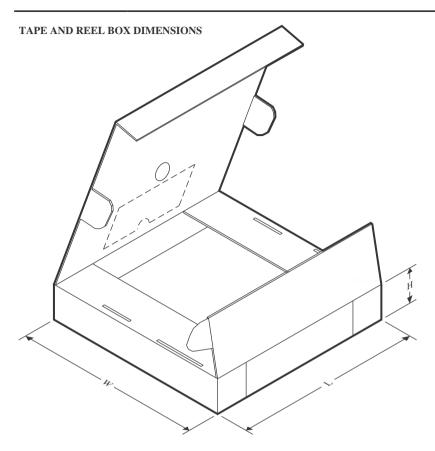
PACKAGE MATERIALS INFORMATION

www.ti.com 10-Apr-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

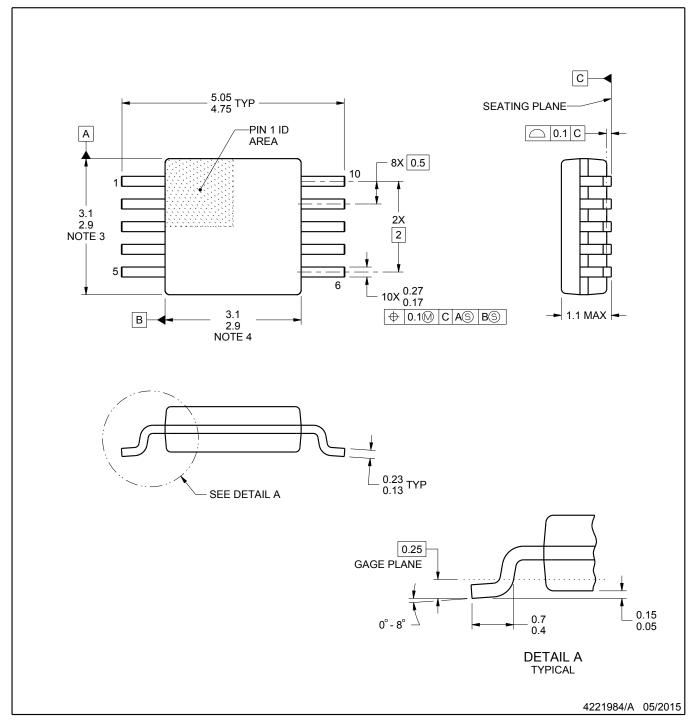
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A22362DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS5A22362DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TS5A22362DRCT-NM	VSON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TS5A22362YZPR	DSBGA	YZP	10	3000	178.0	9.2	1.49	1.99	0.63	4.0	8.0	Q2

www.ti.com 10-Apr-2024

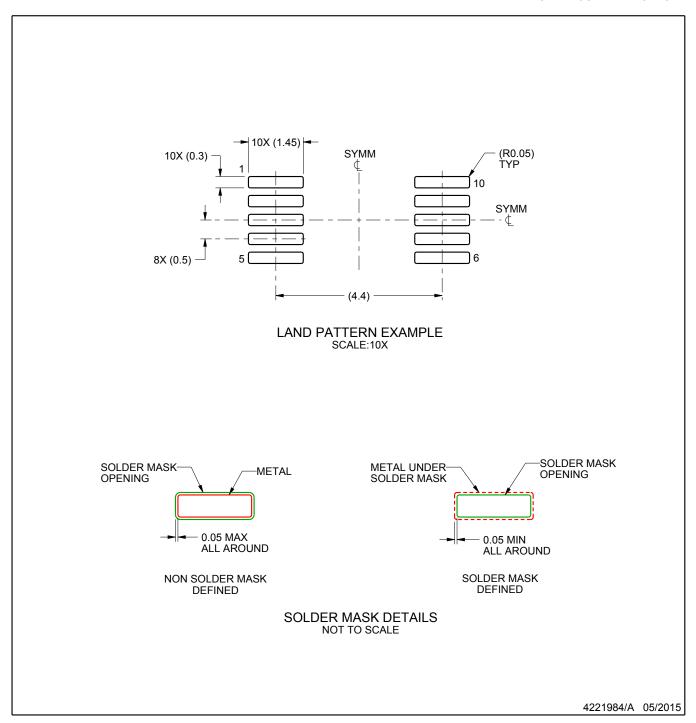


*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A22362DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0
TS5A22362DRCR	VSON	DRC	10	3000	356.0	356.0	35.0
TS5A22362DRCT-NM	VSON	DRC	10	250	210.0	185.0	35.0
TS5A22362YZPR	DSBGA	YZP	10	3000	220.0	220.0	35.0

SMALL OUTLINE PACKAGE

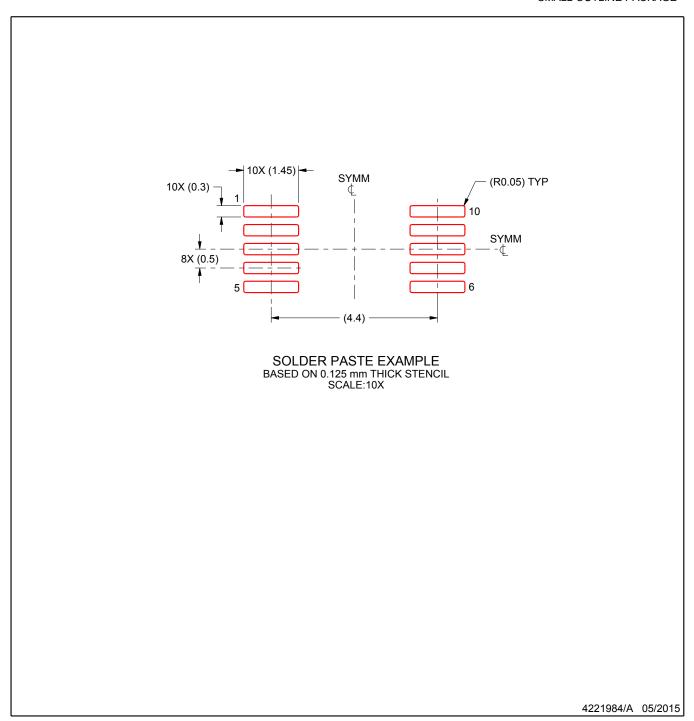
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE

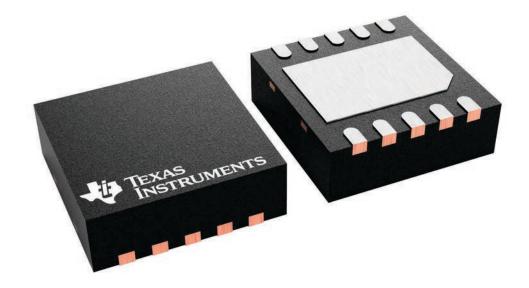

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

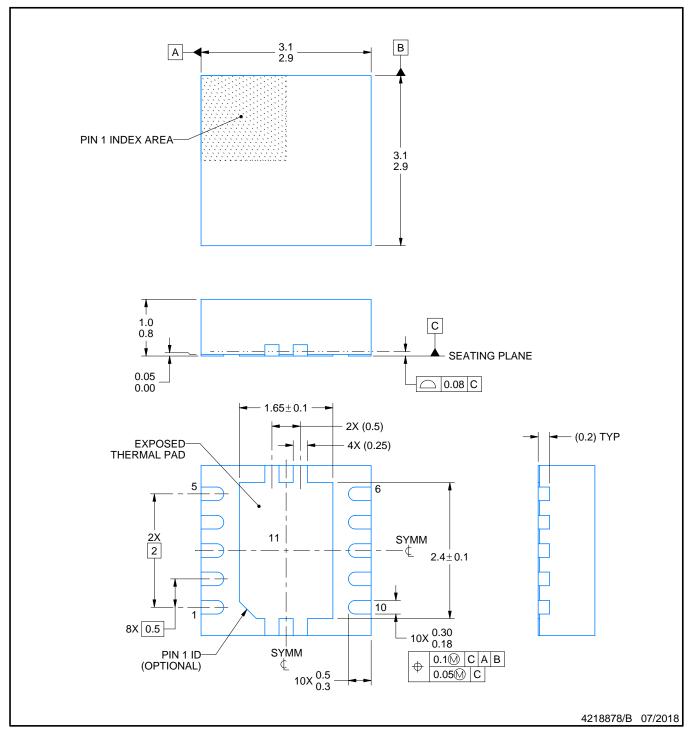
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

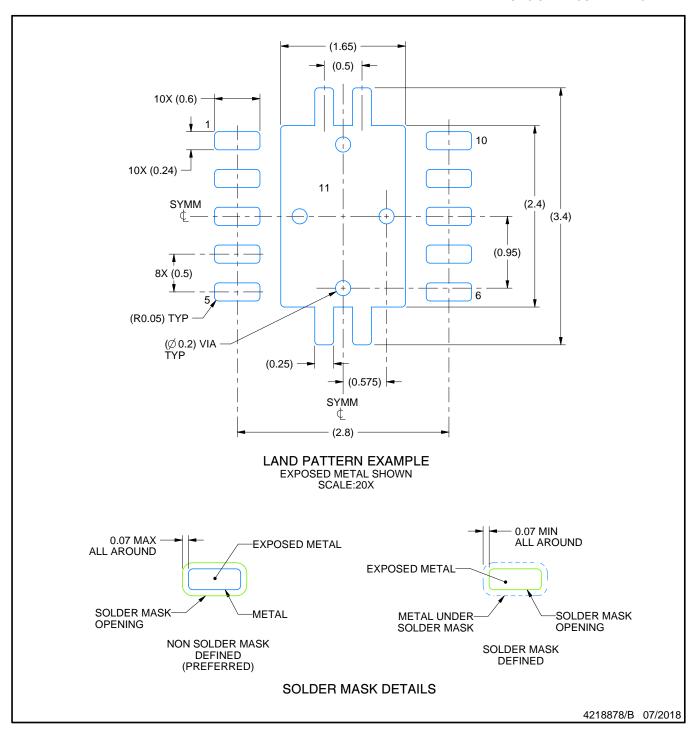

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

3 x 3, 0.5 mm pitch


PLASTIC SMALL OUTLINE - NO LEAD

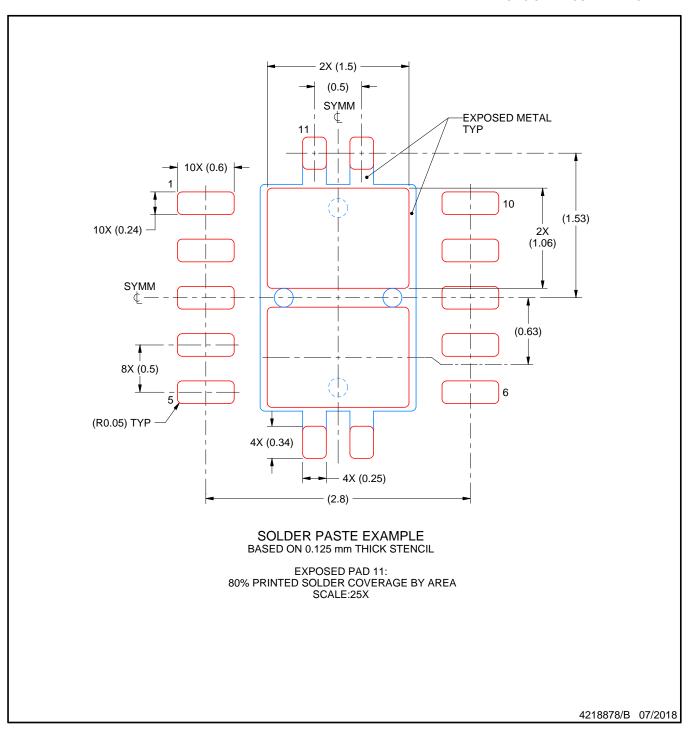
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com



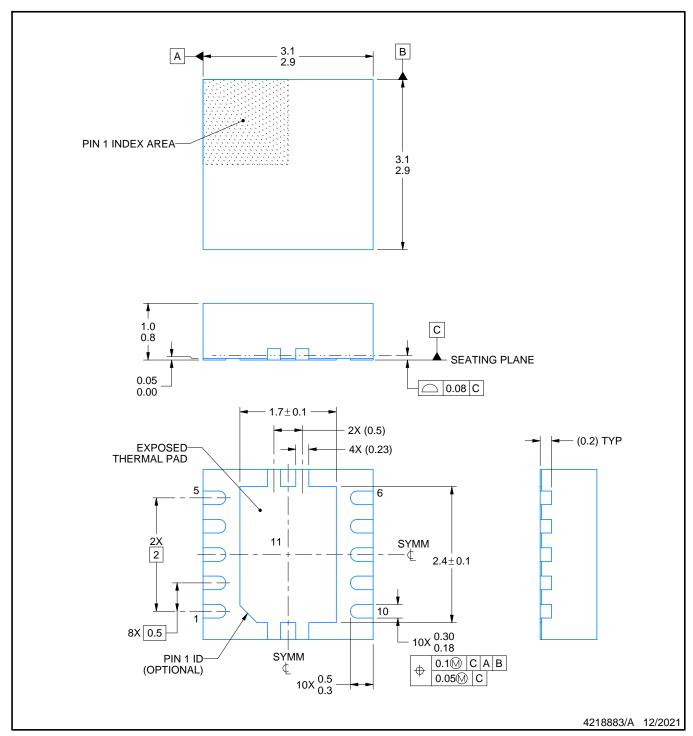
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



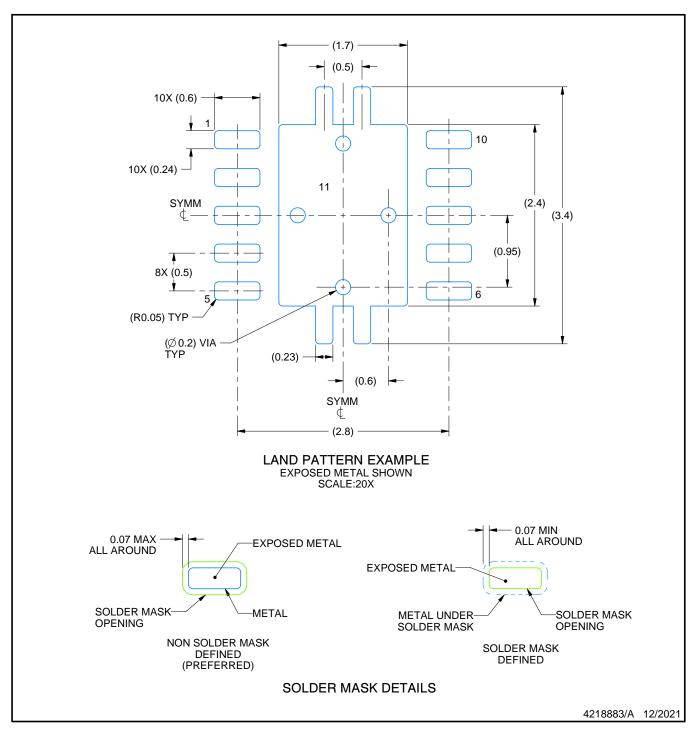
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



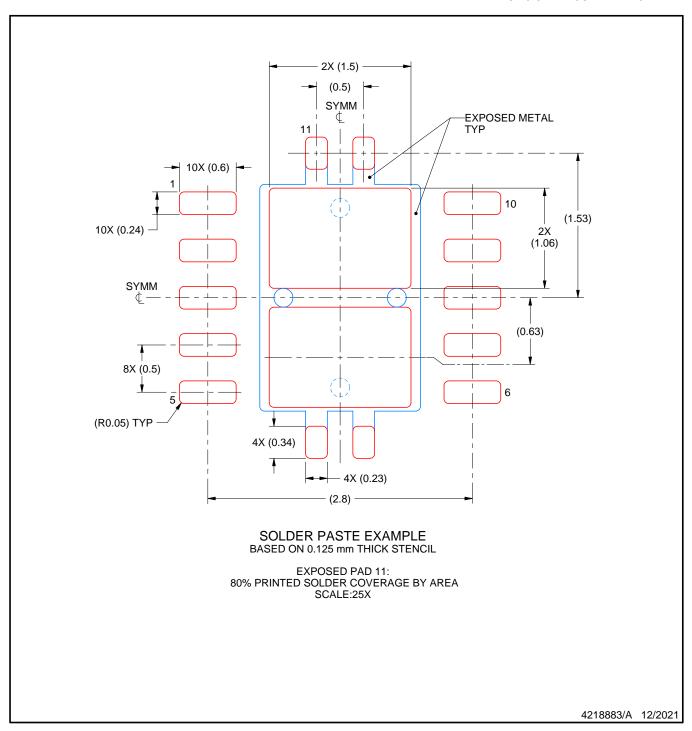
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



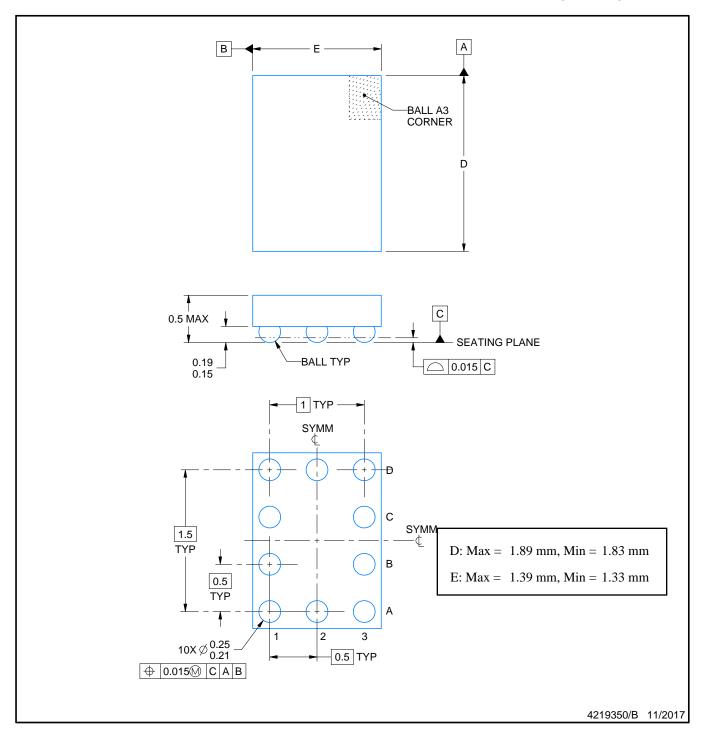
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



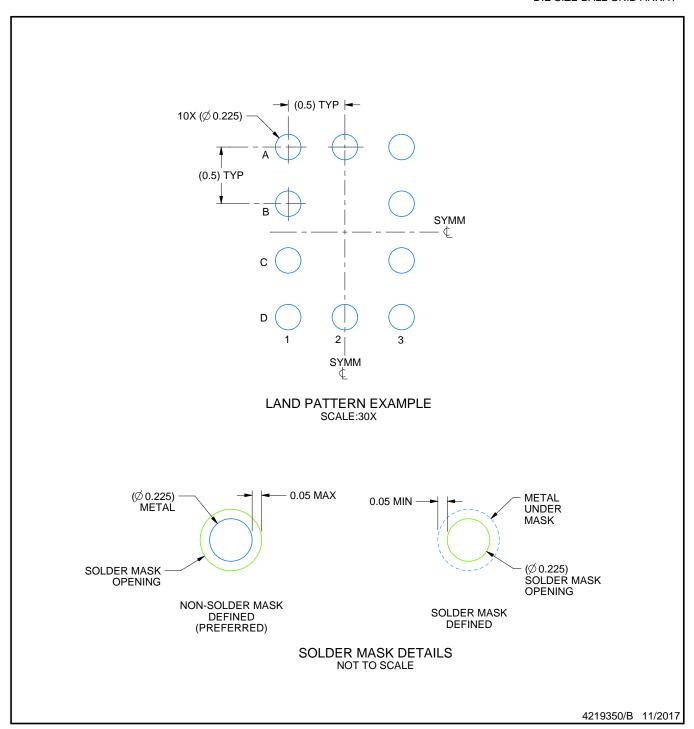
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.


NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

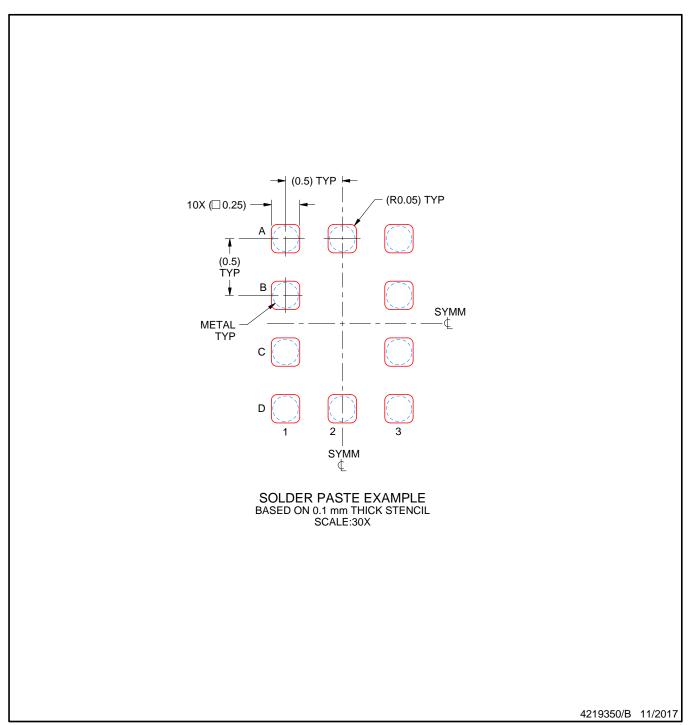
DIE SIZE BALL GRID ARRAY


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated