DESCRIPTION

The UC3717A is an improved version of the UC3717, used to switch drive the current in one winding of a bipolar stepper motor. The UC3717A has been modified to supply higher winding current, more reliable thermal protection, and improved efficiency by providing integrated bootstrap circuitry to lower recirculation saturation voltages. The diagram shown below presents the building blocks of the UC3717A. Included are an LS-TTL compatible logic input, a current sensor, a monostable, a thermal shutdown network, and an H-bridge output stage. The output stage features built-in fast recovery commutating diodes and integrated bootstrap pull up. Two UC3717As and a few external components form a complete control and drive unit for LS-TTL or micro-processor controlled stepper motor systems.

The UC3717A is characterized for operation over the temperature range of 0°C to +70°C.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Voltage
- Logic Supply, Vcc ... 7V
- Output Supply, Vm ... 50V

Input Voltage
- Logic Inputs (Pins 7, 8, 9) 6V
- Analog Input (Pin 10) Vcc
- Reference Input (Pin 11) 15V

Input Current
- Logic Inputs (Pins 7, 8, 9) -10mA
- Analog Inputs (Pins 10, 11) -10mA

Output Current (Pins 1, 15) ±1.2A

Junction Temperature, TJ +150°C

Storage Temperature Range, TS -55°C to +150°C

Note 1: All voltages are with respect to ground, Pins 4, 5, 12, 13. Currents are positive into, negative out of the specified terminal. Pin numbers refer to DIL-16 package. Consult Packaging Section of Databook for thermal limitations and considerations of package.
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Figure 6. \(V_m = 36V, V_{CC} = 5V, V_R = 5V, T_A = 0°C to 70°C,\) unless otherwise stated, \(T_A = T_J.\))

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, (V_m) (Pins 3, 14)</td>
<td></td>
<td>10</td>
<td>46</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Supply Voltage, (V_{CC}) (Pin 6)</td>
<td></td>
<td>4.75</td>
<td>5.25</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Supply Current, (I_{CC}) (Pin 6)</td>
<td>(I_0 = I_1 = 0)</td>
<td>7</td>
<td>15</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Thermal Shutdown Temperature</td>
<td></td>
<td>+160</td>
<td>+180</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Logic Inputs

| Low Voltage Input Current, (Pins 7, 8, 9) | \(V_I = 0.4V, \Pi 8\) | -100| | µA |
| | \(V_I = 0.4V, \Pi 7 \text{ and } 9\) | -400| | mA |

High Voltage Input Current, (Pins 7, 8, 9)

Comparator Low, Threshold Voltage (Pin 10)	\(V_R = 5V; I_0 = L; I_1 = H\)	66	80	90	mV
Comparator Medium, Threshold Voltage (Pin 10)	\(V_R = 5V; I_0 = H; I_1 = L\)	236	250	266	mV
Comparator High, Threshold Voltage (Pin 10)	\(V_R = 5V; I_0 = L; I_1 = L\)	396	420	436	mV
Comparator Input, Current (Pin 10)	\(\Delta I \leq 20\mu A\)				µA
Cutoff Time, \(t_{OFF}\)	\(R_T = 56k\Omega, C_T = 820pF\)	25	35		µs
Turn Off Delay, \(t_{D}\)	(See Figure 5)				µs

Source Diode-Transistor Pair

Saturation Voltage, \(V_{SAT}\) (Pins 1, 15)	\(I_m = -0.5A\), Conduction Period	1.7	2.1		V
	\(I_m = -0.5A\), Recirculation Period	1.1	1.35		V
Saturation Voltage, \(V_{SAT}\) (Pins 1, 15)	\(I_m = -1A\), Conduction Period	2.1	2.8		V
	\(I_m = -1A\), Recirculation Period	1.7	2.5		V
Leakage Current	\(V_m = 40V\)	300			µA
Diode Forward Voltage, \(V_F\)	\(I_m = -0.5A\)	1	1.25		V
	\(I_m = -1A\)	1.3	1.7		V
ELECTRICAL CHARACTERISTICS (cont.)

(Refer to the test circuit, Figure 6. $V_{M} = 36V$, $V_{CC} = 5V$, $V_{R} = 5V$, $T_{A} = 0°C$ to 70°C, unless otherwise stated, $T_{A} = T_{J}$.)

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sink Diode-Transistor Pair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation Voltage, V_{SAT} (Pins 1, 15)</td>
<td>$I_{m} = 0.5A$</td>
<td>0.8</td>
<td>1.1</td>
<td>1.35</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_{m} = 1A$</td>
<td>1.6</td>
<td>2.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td>$V_{m} = 40V$</td>
<td></td>
<td></td>
<td>300</td>
<td>µA</td>
</tr>
<tr>
<td>Diode Forward Voltage, V_{F}</td>
<td>$I_{m} = 0.5A$</td>
<td>1.1</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{m} = 1A$</td>
<td>1.4</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Typical Source Saturation Voltage vs Output Current (Recirculation Period)

Figure 2. Typical Source Saturation Voltage vs Output Current (Conduction Period)

Figure 3. Typical Sink Saturation Voltage vs Output Current

Figure 4. Typical Power Dissipation vs Output Current

Figure 5. Typical Waveforms with MA Regulating (phase = 0)
The UC3717A's drive circuit shown in the block diagram includes the following components.

1. H-bridge output stage
2. Phase polarity logic
3. Voltage divider coupled with current sensing comparators
4. Two-bit D/A current level select
5. Monostable generating fixed off-time
6. Thermal protection

OUTPUT STAGE
The UC3717A's output stage consists of four Darlington power transistors and associated recirculating power diodes in a full H-bridge configuration as shown in Figure 7. Also presented, is the new added feature of integrated bootstrap pull up, which improves device performance during switched mode operation. While in switched mode, with a low level phase polarity input, Q2 is on and Q3 is being switched. At the moment Q3 turns off, winding current begins to decay through the commuting diode pulling the collector of Q3 above the supply voltage. Meanwhile, Q6 turns on pulling the base of Q2 higher than its previous value. The net effect lowers the saturation voltage of source transistor Q2 during recirculation, thus improving efficiency by reducing power dissipation.

Figure 6. UC3717A Test Circuit

Figure 7. Simplified Schematic of Output Stage

Note: Dashed lines indicate current decay paths.
FUNCTIONAL DESCRIPTION (cont.)

PHASE POLARITY INPUT
The UC3717A phase polarity input controls current direction in the motor winding. Built-in hysteresis insures immunity to noise, something frequently present in switched drive environments. A low level phase polarity input enables Q2 and Q3 as shown in Figure 7. During phase reversal, the active transistors are both turned off while winding current delays through the commutating diodes shown. As winding current decays to zero, the inactive transistors Q1 and Q4 turn on and charge the winding with current of the reverse direction. This delay insures noise immunity and freedom from power supply current spikes caused by overlapping drive signals.

<table>
<thead>
<tr>
<th>PHASE INPUT</th>
<th>Q1, Q4</th>
<th>Q2, Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>HIGH</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

CURRENT CONTROL
The voltage divider, comparators, monostable, and two-bit D/A provide a means to sense winding peak current, select winding peak current, and disable the winding sink transistors.

The UC3717A switched driver accomplishes current control using an algorithm referred to as "fixed off-time." When a voltage is applied across the motor winding, the current through the winding increases exponentially. The current can be sensed across an external resistor as an analog voltage proportional to instantaneous current. This voltage is normally filtered with a simple RC low-pass network to remove high frequency transients, and then compared to one of the three selectable thresholds. The two bit D/A input signal determines which one of the three thresholds is selected, corresponding to a desired winding peak current level. At the moment the sense voltage rises above the selected threshold, the UC3717A's monostable is triggered which turns off the lower sink drivers for a fixed off-time. During off-time winding current decays through the appropriate diode and source transistor. The moment off-time times out, the motor current again rises exponentially producing the ripple waveform shown. The magnitude of winding ripple is a direct function of off-time. For a given off-time TOFF, the values of RT and CT can be calculated from the expression:

\[T_{OFF} = 0.69RT/CT \]

with the restriction that RT should be in the range of 10-100k. As shown in Figure 5, the switch frequency Fs is a function of TOFF and TON. Since TON is a function of the reference voltage, sense resistor, motor supply, and winding electrical characteristics, it generally varies during different modes of operation. Thus, Fs may be approximated nominally as:

\[F_s = \frac{1}{1.5 (T_{OFF})} \]

Normally, Switch Frequency Is Selected Greater than

OVERLOAD PROTECTION
The UC3717A is equipped with a new, more reliable thermal shutdown circuit which limits the junction temperature to a maximum of 180°C by reducing the winding current.

PERFORMANCE CONSIDERATIONS
In order to achieve optimum performance from the UC3717A careful attention should be given to the following items.

External Components: The UC3717A requires a minimal number of external components to form a complete control and switch drive unit. However, proper selection of external components is necessary for optimum performance. The timing pin, (pin 2) is normally connected to an RC network which sets the off-time for the sink power transistor during switched mode. As shown in Figure 8, prior to switched mode, the winding current increases exponentially to a peak value. Once peak current is attained the monostable is triggered which turns off the lower sink drivers for a fixed off-time. During off-time winding current decays through the appropriate diode and source transistor. The moment off-time times out, the motor current again rises exponentially producing the ripple waveform shown. The magnitude of winding ripple is a direct function of off-time. For a given off-time TOFF, the values of RT and CT can be calculated from the expression:

\[T_{OFF} = 0.69RT/CT \]

with the restriction that RT should be in the range of 10-100k. As shown in Figure 5, the switch frequency Fs is a function of TOFF and TON. Since TON is a function of the reference voltage, sense resistor, motor supply, and winding electrical characteristics, it generally varies during different modes of operation. Thus, Fs may be approximated nominally as:

\[F_s = \frac{1}{1.5 (T_{OFF})} \]

Normally, Switch Frequency Is Selected Greater than
Low-pass filter components R_c C_c should be selected so that all switching transients from the power transistors and commutating diodes are well smoothed, but the primary signal, which can be in the range of $1/T_{OFF}$ or higher must be passed. Figure 5A shows the waveform which must be smoothed, Figure 5B presents the desired waveform that just smoothes out overshoot without radical distortion.

The sense resistor should be chosen as small as practical to allow as much of the winding supply voltage to be used as overdrive to the motor winding. V_{RS}, the voltage across the sense resistor, should not exceed 1.5V.

Voltage Overdrive: In many applications, maximum speed or step rate is a desirable performance characteristic. Maximum step rate is a direct function of the time necessary to reverse winding current with each step. In response to a constant motor supply voltage, the winding current changes exponentially with time, whose shape is determined by the winding time constant and expressed as:

$$I_m = \frac{V_m}{R [1 - \exp(-R_t/L)]}$$

as presented in Figure 9. With rated voltage applied, the time required to reach rated current is excessive when compared with the time required with over-voltage applied, even though the time constant L/R remains constant. With over-voltage however, the final value of current is excessive and must be prevented. This is accomplished with switch drive by repetitively switching the sink drivers on and off, so as to maintain an average value of current equal to the rated value. This results in a small amount of ripple in the controlled current, but the increase in step rate and performance may be considerable.

Interference: Electrical noise generated by the chopping action can cause interference problems, particularly in the vicinity of magnetic storage media. With this in mind, printed circuit layouts, wire runs and decoupling must be considered. 0.01 to 0.1µF ceramic capacitors for high frequency bypass located near the drive package across $V+$ and ground might be very helpful. The connection and ground leads of the current sensing components should be kept as short as possible.

Half-Stepping: In half step sequence the power input to the motor alternates between one or two phases being energized. In a two phase motor the electrical phase shift between the windings is 90°. The torque developed is the vector sum of the two windings energized. Therefore when only one winding is energized the torque of the motor is reduced by approximately 30%. This causes a torque ripple and if it is necessary to compensate for this, the V_R input can be used to boost the current of the single energized winding.

Figure 9. With rated voltage applied, winding current does not exceed rated value, but takes L/R seconds to reach 63% of its final value - probably too long. Increased performance requires an increase in applied voltage, of overdrive, and therefore a means to limit current. The UC3717A motor driver performs this task efficiently.
MOUNTING INSTRUCTIONS

The $\theta_J A$ of the UC3717AN plastic package can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heat sink. Due to different lead frame design, $\theta_J A$ of the ceramic J package cannot be similarly reduced.

The diagram of Figure 11 shows the maximum package power P_{TOT} and the $\theta_J A$ as a function of the side "l" of two equal square copper areas having a thickness of 35μm (see Figure 10).

During soldering the pins’ temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.

The printed circuit copper area must be connected to electrical ground.

APPLICATIONS

A typical chopper drive for a two phase bipolar permanent magnet or hybrid stepping motor is shown in Figure 12. The input can be controlled by a microprocessor, TTL, LS, or CMOS logic.

The timing diagram in Figure 13 shows the required signal input for a two phase, full step stepping sequence. Figure 14 shows the required input signal for a one phase-two phase stepping sequence called half-stepping.

The circuit of Figure 15 provides the signal shown in Figure 13, and in conjunction with the circuit shown in Figure 12 will implement a pulse-to-step two phase, full step, bi-directional motor drive.

The schematic of Figure 16 shows a pulse to half step circuit generating the signal shown in Figure 14. Care has been taken to change the phase signal the same time the current inhibit is applied. This will allow the current to decay faster and therefore enhance the motor performance at high step rates.
Figure 13. Phase Input Signal for Two Phase Full Step Drive (4 Step Sequence)

Figure 14. Phase and Current-Inhibit Signal for Half-Stepping (8 Step Sequence)

Figure 15. Full Step, Bi-directional Two Phase Drive Logic

Figure 16. Half-Step, Bi-directional Drive Logic
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC3717AN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>UC3717AN</td>
<td>[Samples]</td>
</tr>
<tr>
<td>UC3717ANG4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>UC3717ANG4</td>
<td>[Samples]</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TUBE

T all dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Name</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>T (µm)</th>
<th>B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC3717AN</td>
<td>N</td>
<td>PDIP</td>
<td>16</td>
<td>25</td>
<td>506</td>
<td>13.97</td>
<td>11230</td>
<td>4.32</td>
</tr>
<tr>
<td>UC3717ANG4</td>
<td>N</td>
<td>PDIP</td>
<td>16</td>
<td>25</td>
<td>506</td>
<td>13.97</td>
<td>11230</td>
<td>4.32</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated