Voltage-to-Frequency and Frequency-to-Voltage CONVERTER

FEATURES
- HIGH LINEARITY: 12 to 14 bits
 ±0.005% max at 10kHz FS
 ±0.03% max at 100kHz FS
 ±0.1% typ at 1MHz FS
- V/F OR F/V CONVERSION
- 6-DECADE DYNAMIC RANGE
- GAIN DRIFT: 20ppm/°C max
- OUTPUT TTL/CMOS COMPATIBLE

APPLICATIONS
- INEXPENSIVE A/D AND D/A CONVERTER
- DIGITAL PANEL METERS
- TWO-WIRE DIGITAL TRANSMISSION WITH NOISE IMMUNITY
- FM MOD/DEMOD OF TRANSDUCER SIGNALS
- PRECISION LONG TERM INTEGRATOR
- HIGH RESOLUTION OPTICAL LINK FOR ISOLATION
- AC LINE FREQUENCY MONITOR
- MOTOR SPEED MONITOR AND CONTROL

DESCRIPTION

The VFC320 monolithic voltage-to-frequency and frequency-to-voltage converter provides a simple low cost method of converting analog signals into digital pulses. The digital output is an open collector and the digital pulse train repetition rate is proportional to the amplitude of the analog input voltage. Output pulses are compatible with TTL, and CMOS logic families.

High linearity (0.005%, max at 10kHz FS) is achieved with relatively few external components. Two external resistors and two external capacitors are required to operate. Full scale frequency and input voltage are determined by a resistor in series with –In and two capacitors (one-shot timing and input amplifier integration). The other resistor is a non-critical open collector pull-up (I_OUT to +V_CC). The VFC320 is available in two performance grades. The VFC320 is specified for the –25°C to +85°C range.
ELECTRICAL CHARACTERISTICS

At \(T_A = +25^\circ C \) and \(\pm 15\text{VDC} \) power supply, unless otherwise noted.

ELECTRICAL CHARACTERISTICS

INPUT TO OP AMP

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>VFC320BP</th>
<th>VFC320CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/F CONVERTER</td>
<td>(f_{\text{OUT}} = \frac{V_{\text{IN}}}{7.5R_1C_1}), Figure 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range(1)</td>
<td>Fig. 4 with (e_2 = 0)</td>
<td>(\geq 0)</td>
<td>Note 2</td>
</tr>
<tr>
<td></td>
<td>Fig. 4 with (e_1 = 0)</td>
<td>(< 0)</td>
<td>(-10)</td>
</tr>
<tr>
<td>Current Range(1)</td>
<td>(I_N = \frac{V_{\text{IN}}}{R_{\text{IN}}})</td>
<td>(+0.25)</td>
<td>(+750)</td>
</tr>
<tr>
<td>Bias Current</td>
<td>Inverting Input</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Noninverting Input</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Offset Voltage(3)</td>
<td>(\pm 0.15)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Offset Voltage Drift</td>
<td>Differential Impedance</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>Common-Mode Impedance</td>
<td>Impedance</td>
<td>300</td>
<td>3</td>
</tr>
</tbody>
</table>

ACCURACY

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/F CONVERTER</td>
<td>Fig. 4 with (e_2 = 0)</td>
<td>0.01Hz</td>
<td>(\leq f_{\text{OUT}} \leq 10\text{kHz})</td>
<td>(\pm 0.004)</td>
<td>(\pm 0.005)</td>
<td>(\pm 0.0015)</td>
<td>(\pm 0.002)</td>
<td>% FSR</td>
</tr>
<tr>
<td></td>
<td>(0.1\text{Hz} \leq f_{\text{OUT}} \leq 100\text{kHz})</td>
<td>(\pm 0.008)</td>
<td>(\pm 0.030)</td>
<td>*</td>
<td>*</td>
<td>% FSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1\text{Hz} \leq f_{\text{OUT}} \leq 1\text{MHz})</td>
<td>(\pm 0.1)</td>
<td>*</td>
<td>*</td>
<td>% FSR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFSET ERROR</td>
<td>Offset Error Input</td>
<td>(\pm 15)</td>
<td>*</td>
<td>ppm FSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offset Drift(7)</td>
<td>(10\text{Hz} \leq f \leq 10\text{kHz})</td>
<td>(\pm 0.5)</td>
<td>*</td>
<td>ppm FSR/(^\circ \text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain Error(3)</td>
<td>(1\text{Hz} \leq f \leq 1\text{MHz})</td>
<td>(\pm 5)</td>
<td>(\pm 10)</td>
<td>% FSR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain Drift(7)</td>
<td>(f = 10\text{kHz})</td>
<td>50</td>
<td>*</td>
<td>ppm FSR/(^\circ \text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full Scale Drift</td>
<td>(f = 10\text{kHz})</td>
<td>50</td>
<td>*</td>
<td>ppm FSR/(^\circ \text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Offset Drift and Gain Drift)(7)(8)(9)</td>
<td>Power Supply Sensitivity</td>
<td>(\pm V_{CC} = 14\text{VDC}) to 18VDC</td>
<td>(\pm 0.015)</td>
<td>*</td>
<td>% FSR%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DYNAMIC RESPONSE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/F CONVERTER</td>
<td>(V_{\text{OUT}} = 7.5R_1C_1f_{\text{IN}}), Figure 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Scale Frequency</td>
<td>(C_{\text{LOAD}} \leq 50\text{pF})</td>
<td>6</td>
<td>1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>(V/F) to Specified Linearity</td>
<td>For a Full Scale Input Step</td>
<td>Note 10</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Settling Time</td>
<td>(<50%) Overload</td>
<td>Note 10</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPEN COLLECTOR OUTPUT

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/F CONVERTER</td>
<td>(V_{\text{OUT}} = 7.5R_1C_1f_{\text{IN}}), Figure 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage, Logic “0”</td>
<td>(V_O = 15\text{V})</td>
<td>0.01</td>
<td>1.0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Leakage Current, Logic “1”</td>
<td>External Pull-up Resistor Required (See Figure 4)</td>
<td>(V_{PU})</td>
<td>*</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle at FS</td>
<td>For Best Linearity</td>
<td>25</td>
<td>*</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td></td>
<td>100</td>
<td>*</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

POWER SUPPLY

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/F CONVERTER</td>
<td>(V_{\text{OUT}} = 7.5R_1C_1f_{\text{IN}}), Figure 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEMPERATURE RANGE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/F CONVERTER</td>
<td>(V_{\text{OUT}} = 7.5R_1C_1f_{\text{IN}}), Figure 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td>B and G Grades</td>
<td>(-25)</td>
<td>+85</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>S Grade</td>
<td>(-55)</td>
<td>+125</td>
<td>*</td>
<td>*</td>
<td>(^\circ \text{C})</td>
</tr>
<tr>
<td>Operating</td>
<td>B and G Grades</td>
<td>(-40)</td>
<td>+85</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>S Grade</td>
<td>(-55)</td>
<td>+125</td>
<td>*</td>
<td>*</td>
<td>(^\circ \text{C})</td>
</tr>
<tr>
<td>Storage</td>
<td>(-65)</td>
<td>+150</td>
<td>*</td>
<td>*</td>
<td>(^\circ \text{C})</td>
</tr>
</tbody>
</table>

* Specification the same as for VFC320BP.

NOTES: (1) A 25% duty cycle at full scale (0.25mA input current) is recommended where possible to achieve best linearity. (2) Determined by \(R_N \) and full scale current range constraints. (3) Adjustable to zero. See Offset and Gain Adjustment section. (4) Linearity error at any operating frequency is defined as the deviation from a straight line drawn between the full scale frequency and 0.1% of full scale frequency. See Discussion of Specifications section. (5) When offset and gain errors are nulled, at an operating temperature, the linearity error determines the final accuracy. (6) For \(e_1 = 0 \) typical linearity errors are: 0.01% at 10kHz, 0.2% at 100kHz, 0.1% at 1MHz. (7) Exclusive of external components’ drift. (8) FSR = Full Scale Range (corresponds to full scale and full scale input voltage.) (9) Positive drift is defined to be increasing frequency with increasing temperature. (10) One pulse of new frequency plus 50ns typical.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±20V</td>
</tr>
<tr>
<td>Output Sink Current at (f_{OUT})</td>
<td>50mA</td>
</tr>
<tr>
<td>Output Current at (V_{OUT})</td>
<td>20mA</td>
</tr>
<tr>
<td>Input Voltage, –Input</td>
<td>±(V_{CC})</td>
</tr>
<tr>
<td>Input Voltage, +Input</td>
<td>±(V_{CC})</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>–65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>+300°C</td>
</tr>
</tbody>
</table>

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE</th>
<th>PACKAGE DRAWING NUMBER</th>
<th>PACKAGE DESIGNATOR</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>PACKAGE MARKING</th>
<th>ORDERING NUMBER(1)</th>
<th>TRANSPORT MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFC320BP</td>
<td>DIP-14</td>
<td>010</td>
<td>N</td>
<td>–40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFC320CP</td>
<td>DIP-14</td>
<td>010</td>
<td>N</td>
<td>–40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "VFC320BP/2K5" will get a single 2500-piece Tape and Reel.

PIN CONFIGURATION

Top View

DIP
DISCUSSION OF SPECIFICATIONS

LINEARITY

Linearity is the maximum deviation of the actual transfer function from a straight line drawn between the end points (100% full scale input or frequency and 0.1% of full scale called zero.) Linearity is the most demanding measure of voltage-to-frequency converter performance, and is a function of the full scale frequency. Refer to Figure 1 to determine typical linearity error for your application. Once the full scale frequency is chosen, the linearity is a function of operating frequency as it varies between zero and full scale. Examples for 10kHz full scale are shown in Figure 2. Best linearity is achieved at lower gains ($\Delta f_{\text{OUT}}/\Delta V_{\text{IN}}$) with operation as close to the chosen full scale frequency as possible.

The high linearity of the VFC320 makes the device an excellent choice for use as the front end of Analog-to-Digital (A/D) converters with 12- to 14-bit resolution, and for highly accurate transfer of analog data over long lines in noisy environments (2-wire digital transmission.)

FREQUENCY STABILITY VS TEMPERATURE

The full scale frequency drift of the VFC320 versus temperature is expressed as parts per million of full scale range per °C. As shown in Figure 3, the drift increases above 10kHz. To determine the total accuracy drift over temperature, the drift coefficients of external components (especially R_1 and C_1) must be added to the drift of the VFC320.

RESPONSE

Response of the VFC320 to changes in input signal level is specified for a full scale step, and is 50ns plus 1 pulse of the new frequency. For a 10V input signal step with the VFC320 operating at 100kHz full scale, the settling time to within ±0.01% of full scale is 10μs.

THEORY OF OPERATION

The VFC320 monolithic voltage-to-frequency converter provides a digital pulse train output whose repetition rate is directly proportional to the analog input voltage. The circuit shown in Figure 4 is composed of an input amplifier, two comparators and a flip-flop (forming a on-shot), two switched current sinks, and an open collector output transistor stage. Essentially the input amplifier acts as an integrator that produces a two-part ramp. The first part is a function of the input voltage, and the second part is dependent on the input voltage and current sink. When a positive input voltage is applied at V_{IN}, a current will flow through the input resistor, causing the voltage at V_{OUT} to ramp down toward zero, according to $dV/dt = V_{\text{IN}}/R_1C_1$. During this time the constant current sink is disabled by the switch. Note, this period is only dependent on V_{IN} and the integrating components.

When the ramp reaches a voltage close to zero, comparator A sets the flip-flop. This closes the current sink switches as well as changing f_{OUT} from logic 0 to logic 1. The ramp now begins to ramp up, and 1mA charges through C_1 until $V_{C1} = -7.5V$. Note this ramp period is dependent on the 1mA current sink, connected to the negative input of the op amp, as well as the input voltage. At this ~7.5V threshold point C_1, comparator B resets the flip-flop, and the ramp voltage...
In the time \(t_1 + t_2 \) the integrator capacitor \(C_2 \) charges and discharges but the net voltage change is zero.

Thus \(\Delta Q = 0 = I_{IN} t_1 + (I_{IN} - I_A) t_2 \)

So that \(I_{IN} (t_1 + t_2) = I_A t_2 \)

But since \(t_1 + t_2 = \frac{1}{f_{OUT}} \) and \(I_{IN} = \frac{V_{IN}}{R_1} \)

\(f_{OUT} = \frac{V_{IN}}{I_A R_1 R_2} \) \(\text{(6)} \)

In the time \(t_1 \), \(I_B \) charges the one-shot capacitor \(C_1 \) until its voltage reaches \(-7.5\) \(\text{V} \) and trips comparator B.

Thus \(t_2 = \frac{C_{IN} 7.5}{I_B} \) \(\text{(7)} \)

Using (7) in (6) yield \(f_{OUT} = \frac{V_{IN}}{7.5 R_1 C_1} \) \(\frac{I_B}{I_A} \) \(\text{(8)} \)

Since \(I_A = I_B \) the result is

\(f_{OUT} = \frac{V_{IN}}{7.5 R_1 C_1} \) \(\text{(9)} \)

Since the integrating capacitor, \(C_2 \), affects both the rising and falling segments of the ramp voltage, its tolerance and temperature coefficient do not affect the output frequency. It should, however, have a leakage current that is small compared to \(I_{IN} \), since this parameter will add directly to the gain error of the VFC. \(C_1 \), which controls the one-shot period, should be very precise since its tolerance and temperature coefficient add directly to the errors in the transfer function.
The operation of the VFC320 as a highly linear frequency-to-voltage converter, follows the same theory of operation as the voltage-to-frequency converter. \(e_1\) and \(e_2\) are shorted and \(F_{\text{IN}}\) is disconnected from \(V_{\text{OUT}}\). \(F_{\text{IN}}\) is then driven with a signal which is sufficient to trigger comparator A. The one-shot period will then be determined by \(C_1\) as before, but the cycle repetition frequency will be dictated by the digital input at \(F_{\text{IN}}\).

DUTY CYCLE

The duty cycle (D) of the VFC is the ratio of the one-shot period \(t_2\) or pulse width, PW, to the total VFC period \(t_1 + t_2\). For the VFC320, \(t_2\) is fixed and \(t_1 + t_2\) varies as the input voltage. Thus the duty cycle, D, is a function of the input voltage. Of particular interest is the duty cycle at full scale frequency, \(D_{\text{FS}}\), which occurs at full scale input. \(D_{\text{FS}}\) is a user determined parameter which affects linearity.

\[
D_{\text{FS}} = \frac{t_2}{t_1 + t_2} = \text{PW} \cdot f_{\text{FS}}
\]

Best linearity is achieved when \(D_{\text{FS}}\) is 25%. By reducing equations (7) and (9) it can be shown that

\[
D_{\text{FS}} = \frac{V_{\text{IN}}\max / R_1}{1\text{mA}} = \frac{I_{\text{IN}}\max}{1\text{mA}}
\]

Thus \(D_{\text{FS}} = 0.25\) corresponds to \(I_{\text{IN}}\max = 0.25\text{mA}\).

INSTALLATION AND OPERATING INSTRUCTIONS

VOLTAGE-TO-FREQUENCY CONVERSION

The VFC320 can be connected to operate as a V/F converter that will accept either positive or negative input voltages, or an input current. Refer to Figures 6 and 7.

EXTERNAL COMPONENT SELECTION

In general, the design sequence consists of: (1) choosing \(f_{\text{MAX}}\), (2) choosing the duty cycle at full scale \((D_{\text{FS}} = 0.25\) typically), (3) determining the input resistor, \(R_1\) (Figure 4), (4) calculating the one-shot capacitor, \(C_1\), (5) selecting the integrator capacitor \(C_2\), and (6) selecting the output pull-up resistor, \(R_2\).

Input Resistors \(R_1\) and \(R_3\)

The input resistance (\(R_1\) and \(R_3\) in Figures 6 and 7) is calculated to set the desired input current at full scale input voltage. This is normally 0.25mA to provide a 25% duty cycle at full scale input and output. Values other than \(D_{\text{FS}} = 0.25\) may be used but linearity will be affected.

The nominal value is \(R_1\) is

\[
R_1 = \frac{V_{\text{IN}}\max}{0.25\text{mA}} \tag{10}
\]

If gain trimming is to be done, the nominal value is reduced by the tolerance of \(C_1\) and the desired trim range. \(R_1\) should have a very-low temperature coefficient since its drift adds directly to the errors in the transfer function.

One-Shot Capacitor, \(C_1\)

This capacitor determines the duration of the one-shot pulse. From equation (9) the nominal value is

\[
C_1\text{NOM} = \frac{V_{\text{IN}}}{7.5 \cdot R_1 \cdot f_{\text{OUT}}} \tag{11}
\]

For the usual 25% duty at \(f_{\text{MAX}} = V_{\text{IN}}/R_1 = 0.25\text{mA}\) there is approximately 15pF of residual capacitance so that the design value is

\[
C_1(pF) = \frac{33 \cdot 10^6}{f_{\text{FS}}} - 15 \tag{12}
\]
where \(f_{FS} \) is the full scale output frequency in Hz. The temperature drift of \(C_1 \) is critical since it will add directly to the errors of the transfer function. An NPO ceramic type is recommended. Every effort should be made to minimize stray capacitance associated with \(C_1 \). It should be mounted as close to the VFC320 as possible. Figure 8 shows pulse width and full scale frequency for various values of \(C_1 \) at \(D_{FS} = 25\% \).

OFFSET AND GAIN ADJUSTMENT PROCEDURES

To null errors to zero, follow this procedure:
1. Apply an input voltage that should produce an output frequency of 0.001 • full scale.
2. Adjust \(R_5 \) for proper output.
3. Apply the full scale input voltage.
4. Adjust \(R_3 \) for proper output.
5. Repeat steps 1 through 4.

If nulling is unnecessary for the application, delete \(R_4 \) and \(R_5 \), and replace \(R_3 \) with a short circuit.

POWER SUPPLY CONSIDERATIONS

The power supply rejection ratio of the VFC320 is 0.015% of FSR/% max. To maintain ±0.015% conversion, power supplies which are stable to within ±1% are recommended. These supplies should be bypassed as close as possible to the converter with 0.01\(\mu \)F capacitors.

Internal circuitry causes some current to flow in the common connection (pin 11 on DIP package). Current flowing into the \(f_{OUT} \) pin (logic sink current) will also contribute to this current. It is advisable to separate this common lead ground from the analog ground associated with the integrator input to avoid errors produced by these currents flowing through any ground return impedance.

DESIGN EXAMPLE

Given a full scale input of +10V, select the values of \(R_1 \), \(R_2 \), \(R_3 \), \(C_1 \), and \(C_2 \) for a 25% duty cycle at 100kHz maximum operation into one TTL load. See Figure 6.

Integrating Capacitor, \(C_2 \)

Since \(C_2 \) does not occur in the V/F transfer function equation (9), its tolerance and temperature stability are not important; however, leakage current in \(C_2 \) causes a gain error. A ceramic type is sufficient for most applications. The value of \(C_2 \) determines the amplitude of \(V_{OUT} \). Input amplifier saturation, noise levels for the comparators and slew rate limiting of the integrator determine a range of acceptable values,

\[
C_2 (\mu F) = \begin{cases}
100/f_{FS}; & \text{if } f_{FS} \leq 100kHz \\
0.001; & \text{if } 100kHz < f_{FS} \leq 500kHz \\
0.0005; & \text{if } f_{FS} > 500kHz
\end{cases}
\]

Output Pull Up Resistor \(R_2 \)

The open collector output can sink up to 8mA and still be TTL-compatible. Select \(R_2 \) according to this equation:

\[
R_2 \min (\Omega) = V_{PULLUP}/(8mA - I_{LOAD})
\]

A 10% carbon film resistor is suitable for use as \(R_2 \).

Trimming Components \(R_3 \), \(R_4 \), \(R_5 \)

\(R_5 \) nulls the offset voltage of the input amplifier. It should have a series resistance between 10k\(\Omega \) and 100k\(\Omega \) and a temperature coefficient less than 100ppm/°C. \(R_4 \) can be a 10% carbon film resistor with a value of 10M\(\Omega \).

\(R_3 \) nulls the gain errors of the converter and compensates for initial tolerances of \(R_1 \) and \(C_1 \). Its total resistance should be at least 20% of \(R_1 \), if \(R_1 \) is selected 10% low. Its temperature coefficient should be no greater than five times that of \(R_1 \) to maintain a low drift of the \(R_3 \) - \(R_1 \) series combination.

\[
C_2 = 10^2/F_{MAX} = 10^2/100kHz = 0.001\mu F
\]

Choose a 0.001\(\mu \)F capacitor with ±5% tolerance.
Selecting R_2

$$R_2 = \frac{V_{PULLUP}}{8mA - I_{LOAD}}$$

= $5V/(8mA - 1.6mA)$, one TTL-load = 1.6mA

= 781Ω

Choose a 750Ω 1/4-watt carbon compensation resistor with ±5% tolerance.

FREQUENCY-TO-VOLTAGE CONVERSION

To operate the VFC320 as a frequency-to-voltage converter, connect the unit as shown in Figure 9. To interface with TTL-logic, the input should be coupled through a capacitor, and the input to pin 10 biased near +2.5V. The converter will detect the falling edges of the input pulse train as the voltage at pin 10 crosses zero. Choose C_3 to make $t = 0.1t$ (see Figure 9). For input signals with amplitudes less than 5V, pin 10 should be biased closer to zero to insure that the input signal at pin 10 crosses the zero threshold.

Errors are nulled using 0.001 • full scale frequency to null offset, and full scale frequency to null the gain error. The procedure is given on this page. Use equations from V/F calculations to find R_1, R_3, R_4, C_1 and C_2.

TYPICAL APPLICATIONS

Excellent linearity, wide dynamic range, and compatible TTL, DTL, and CMOS digital output make the VFC320 ideal for a variety of VFC applications. High accuracy allows the VFC320 to be used where absolute or exact readings must be made. It is also suitable for systems requiring high resolution up to 14 bits

Figures 10-14 show typical applications of the VFC320.

FIGURE 9. Connection Diagram for F/V Conversion.

FIGURE 11. Inexpensive Digital Panel Meter.
FIGURE 12. Remote Transducer Readout via Fiber Optic Link (Analog and Digital Output).

FIGURE 13. Bipolar input is accomplished by offsetting the input to the VFC with a reference voltage. Accurately matched resistors in the REF101 provide a stable half-scale output frequency at zero volts input.

FIGURE 14. Absolute value circuit with the VFC320. Op amp, D1, and Q1 (its base-emitter junction functioning as a diode) provide full-wave rectification of bipolar input voltages. VFC output frequency is proportional to |e1|. The sign bit output provides indication of the input polarity.
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001).
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Lead finish/ Ball material (2)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFC320BP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>N / A for Pkg Type</td>
<td>-25 to 85</td>
<td>VFC320BP</td>
</tr>
<tr>
<td>VFC320CP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>N / A for Pkg Type</td>
<td>-25 to 85</td>
<td>VFC320CP</td>
</tr>
<tr>
<td>VFC320CPG4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>N / A for Pkg Type</td>
<td>-25 to 85</td>
<td>VFC320CP</td>
</tr>
</tbody>
</table>

1. The marketing status values are defined as follows:
 - ACTIVE: Product device recommended for new designs.
 - LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 - NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 - PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
 - OBSOLETE: TI has discontinued the production of the device.

2. RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
 - RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
 - Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

3. MSL, Peak Temp: The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

4. There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

5. Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

6. Lead finish/Ball material: Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated