1 Revision History
✓ The check mark indicates that the issue is present in the specified revision.

<table>
<thead>
<tr>
<th>Errata</th>
<th>Rev A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOOPING_READ</td>
<td>✓</td>
</tr>
<tr>
<td>RF_UNRESPONSIVE</td>
<td>✓</td>
</tr>
<tr>
<td>MISSING_WAIT_TIME_EXTENSION</td>
<td>✓</td>
</tr>
</tbody>
</table>

2 Package Markings

PW14  TSSOP (PW), 14 Pin

+----------------+ 
| CL331H          | YM = YEAR MONTH DATE CODE |
| \T/ YMSG4       | LLLL = ASSEMBLY LOT CODE  |
| O LLLL #        | S = ASSEMBLY SITE CODE (PER QSS 005-120) |
| +----------------+                           |
| O = PIN 1       | 7 CHARACTERS MAX LINE 1        |

#SYMBOL ECAT : G4 MUST BE SYMBOLIZED WITH AN UNDERSCORE
#SYMBOL DEVICE NAME1 : CL331H
#SYMBOL LOGO : TI LOGO

RGT16  VQFN (RGT), 16 Pin

+----------+ 
| !O !\T/ = TI LOGO ! |
| ! CL331H ! YM = YEAR MONTH DATE CODE ! |
| ! \T/ YMS ! S = ASSEMBLY SITE CODE PER QSS 005-120 ! |
| ! LLLL # ! LLLL = ASSY LOT CODE ! |
| +----------+                           |
| O - PIN 1 (MARKED) LINE 1 MAXIMUM IS 6 CHARACTERS |

*#SYMBOL PIN 1 QUADRANT : 1
*#SYMBOL DEVICE NAME: CL331H
*#SYMBOL LOGO : TI
3 Detailed Bug Description

LOOPING_READ

Description

This issue manifests itself on some readers by a repetitive NDEF read as long as the reader is in the read range.

The device initializes the block number to 1 only on reset. On further activation sequences the block number is not set to 1. The correct behavior is defined in NFC Digital Protocol 15.2.4.1 and can be seen in the following table.

<table>
<thead>
<tr>
<th>Poll Mode</th>
<th>Listen Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2.4.1</td>
<td>The block number of the Reader/Writer MUST be initialized to 0 for the current activated Card Emulator.</td>
</tr>
<tr>
<td>15.2.4.2</td>
<td>The block number of the Card Emulator MUST be initialized to 1 at activation.</td>
</tr>
</tbody>
</table>

Workaround

To ensure that this behavior does not happen in any case, an additional initialization sequence must be added. The following code snippet shows this initialization sequence. This sequence must be applied only once after every power-on and reset and does not reduce the memory allocated for the user. Note that this fixes three different errata, LOOPING_READ, RF_UNRESPONSIVE, and MISSING_WAIT_TIME_EXTENSION.

```c
uint8_t errata_fixes[] = { 0xB2, 0xF0, 0xFF, 0xFB, 0x00, 0x07, 0xB2, 0xF0, 0x00, 0x07, 0xA2, 0xC3, 0x00, 0x07, 0xF4, 0x23, 0x30, 0x41, 0x0F, 0x12, 0x0E, 0x12, 0xB2, 0xB0, 0x04, 0x04, 0x00, 0x07, 0x08, 0x24, 0x3E, 0x40, 0x1D, 0x00, 0x1F, 0x42, 0xB2, 0x2A, 0x6E, 0x9F, 0x02, 0x20, 0x92, 0x43, 0x2E, 0x2A, 0x0E, 0x41, 0x03F, 0x41, 0x30, 0x41};

void RF430ErrataFix(void){
    //Fixes LOOPING_READ, RF_UNRESPONSIVE, and MISSING_WAIT_TIME_EXTENSION erratas
    //Add to initial section after status byte returns okay
    CL331H_Write_Register(0xFFE0, 0x004E));
    CL331H_Write_Register(0xFFFE, 0x0080);
    Write_Continuous (0x2AD0, (uint8_t *) &errata_fixes, sizeof(errata_fixes));
    CL331H_Write_Register(0x2A90, 0x2AFC); // looping fix
    CL331H_Write_Register(0x2A9E, 0x2AD0); // wait time extension fix
    CL331H_Write_Register(0x2A66, 0x0000); // rf unresponsive fix
    CL331H_Write_Register(0x27B8, 0);
    CL331H_Write_Register(0x2F0E, 0);
    // Upon execution of the preceding firmware, the control register is set to 0
}
```
RF_UNRESPONSIVE

Description
When this issue manifests, the device does not receive or transmit RF packets. The RF430CL331H does not assert the INTO signal for RF requests, even when it is exposed to an active NFC reader.

This issue does not appear in all of the devices—some devices function correctly without this fix.

Workaround
Use the provided firmware in the LOOPING_READ errata. This fixes the issue.

MISSING_WAIT_TIME_EXTENSION

Description
In some cases, the device automatic wait time extension request is not issued when required. This request must be issued when the interrupt the RF430CL331H is not serviced in time.

Workaround
Use the provided firmware in the LOOPING_READ errata. This fixes the issue.
## Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>Changes from September 23, 2015 to July 8, 2016</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Updated description of RF_UNRESPONSIVE</td>
<td>3</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio

Amplifiers
amplifier.ti.com

Data Converters
dataconverter.ti.com

DLP® Products
www.dlp.com

DSP
dsp.ti.com

Clocks and Timers
www.ti.com/clocks

Interface
interface.ti.com

Logic
logic.ti.com

Power Mgmt
power.ti.com

Microcontrollers
microcontroller.ti.com

RFID
www.ti-rfid.com

OMAP Applications Processors
www.ti.com/omap

Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
www.ti.com/automotive

Communications and Telecom
www.ti.com/communications

Computers and Peripherals
www.ti.com/computers

Consumer Electronics
www.ti.com/consumer-apps

Energy and Lighting
www.ti.com/energy

Industrial
www.ti.com/industrial

Medical
www.ti.com/medical

Security
www.ti.com/security

Space, Avionics and Defense
www.ti.com/space-avionics-defense

Video and Imaging
www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated