Errata

AWR6843 Device Silicon Errata
Silicon Revision 2.0

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2 Device Nomenclature</td>
<td>2</td>
</tr>
<tr>
<td>3 Device Markings</td>
<td>3</td>
</tr>
<tr>
<td>4 Usage Notes</td>
<td>4</td>
</tr>
<tr>
<td>4.1 MSS: SPI Speed in 3-Wire Mode Usage Note</td>
<td>4</td>
</tr>
<tr>
<td>5 Advisory to Silicon Variant / Revision Map</td>
<td>5</td>
</tr>
<tr>
<td>6 Known Design Exceptions to Functional Specifications</td>
<td>6</td>
</tr>
<tr>
<td>7 Trademarks</td>
<td>34</td>
</tr>
<tr>
<td>Revision History</td>
<td>35</td>
</tr>
</tbody>
</table>
1 Introduction

This document describes the known exceptions to the functional and performance specifications to TI CMOS Radar Devices (AWR6843).

2 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of Radar / mmWave sensor devices. Each of the Radar devices has one of the two prefixes: XAx or AWRx (for example: XA6843BGABL). These prefixes represent evolutionary stages of product development from engineering prototypes (XI) through fully qualified production devices (AWR).

Device development evolutionary flow:

XA — Experimental device that is not necessarily representative of the final device’s electrical specifications and may not use production assembly flow.

AWR — Production version of the silicon die that is fully qualified.

XA devices are shipped with the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Texas Instruments recommends that these devices not to be used in any production system as their expected end-use failure rate is still undefined.
3 Device Markings

Figure 3-1 shows an example of the AWR6843 Radar Device’s package symbolization.

This identifying number contains the following information:

- **Line 1**: Device Number
- **Line 2**: Safety Level and Security Grade
- **Line 3**: Lot Trace Code
 - YM = Year/Month Code
 - Z = Assembly Site Code
 - LLL = Assembly Lot Code
 - 9 = Primary Site Code
- **Line 4**:
 - 60 GHZi = AWR6843 (ES1.0) Identifier
 - 678A = AWR6843 (ES2.0) Identifier
 - ABL = Package Identifier
 - G1 = "Green" Package Build (must be underlined)
4 Usage Notes

Usage notes highlight and describe particular situations where the device’s behavior may not match presumed or documented behavior. This may include behaviors that affect device performance or functional correctness. These usage notes will be incorporated into future documentation updates for the device (such as the devicespecific data sheet), and the behaviors they describe will not be altered in future silicon revisions.

4.1 MSS: SPI Speed in 3-Wire Mode Usage Note

The maximum SPI speed under 3-wire operation was only tested up to 33 MHz. This affects AWR6843 ES2.0.
5 Advisory to Silicon Variant / Revision Map

Table 5-1. Advisory to Silicon Variant / Revision Map

<table>
<thead>
<tr>
<th>Advisory Number</th>
<th>Advisory Title</th>
<th>AWR6843</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS#25</td>
<td>Debugger May Display Unpredictable Data in the Memory Browser Window if a System Reset Occurs</td>
<td>X</td>
</tr>
<tr>
<td>MSS#26</td>
<td>DMA Requests Lost During Suspend Mode</td>
<td></td>
</tr>
<tr>
<td>MSS#27</td>
<td>MibSPI in Slave Mode in 3- or 4-Pin Communication Transmits Data Incorrectly for Slow SPICLK Frequencies and for Clock Phase = 1</td>
<td>X</td>
</tr>
<tr>
<td>MSS#28</td>
<td>A Data Length Error is Generated Repeatedly in Slave Mode When IO Loopback is Enabled</td>
<td>X</td>
</tr>
<tr>
<td>MSS#29</td>
<td>Spurious RX DMA REQ From a Slave Mode MibSPI</td>
<td>X</td>
</tr>
<tr>
<td>MSS#30</td>
<td>MibSPI RX RAM RXEMPTY Bit Does Not Get Cleared After Reading</td>
<td>X</td>
</tr>
<tr>
<td>MSS#31</td>
<td>CPU Abort Generated on a Write to Implemented CRC Space After a Write to Unimplemented CRC Space</td>
<td>X</td>
</tr>
<tr>
<td>MSS#32</td>
<td>DMMGLBCTRL BUSY Flag Not Set When DMM Starts Receiving A Packet</td>
<td>X</td>
</tr>
<tr>
<td>MSS#33</td>
<td>MibSPI RAM ECC is Not Read Correctly in DIAG Mode</td>
<td>X</td>
</tr>
<tr>
<td>MSS#34</td>
<td>HS Device Does Not Reboot Successfully on Warm Reset Getting Triggered by Watchdog Expiry</td>
<td>X</td>
</tr>
<tr>
<td>MSS#36</td>
<td>DMA Read From an Unimplemented Address Space is not Reported as a BUS Error</td>
<td>X</td>
</tr>
<tr>
<td>MSS#37A</td>
<td>DCC Module Frequency Comparison can Report Erroneous Results</td>
<td>X</td>
</tr>
<tr>
<td>MSS#38</td>
<td>GPIO Glitch During Power-Up</td>
<td>X</td>
</tr>
<tr>
<td>MSS#39</td>
<td>The state of the MSS DMA is left pending and uncleared on any DMA MPU fault</td>
<td>X</td>
</tr>
<tr>
<td>MSS#40</td>
<td>Any EDMA Transfer That Spans ACCEL_MEM1 +ACCEL_MEM2 Memories of Hardware Accelerator May Result In Data Corruption Without Any Notification Of Error From The SoC</td>
<td>X</td>
</tr>
<tr>
<td>ANA#08B</td>
<td>Doppler Spurs At Specific RF Frequencies</td>
<td>X</td>
</tr>
<tr>
<td>ANA#11</td>
<td>Emissions and Interference Sensitivity During RF Calibrations</td>
<td>X</td>
</tr>
<tr>
<td>ANA#12</td>
<td>Second Harmonic (HD2) Caused When High-Signal Level Present at Receiver Input</td>
<td>X</td>
</tr>
<tr>
<td>ANA#13A</td>
<td>Phase Mismatch Variation Across Temperature in TX3/TX1 and TX3/TX2 Combinations are Double That of TX2/TX1 Combination</td>
<td>X</td>
</tr>
<tr>
<td>ANA#14</td>
<td>Doppler Spurs Observed for Narrow Chirps</td>
<td>X</td>
</tr>
<tr>
<td>ANA#15</td>
<td>Excessive TX-RX Coupling or Reflection can Lead to Saturated RX Output</td>
<td>X</td>
</tr>
<tr>
<td>ANA#16</td>
<td>LVDS Coupling to Clock System</td>
<td>X</td>
</tr>
<tr>
<td>ANA#17</td>
<td>On-Board Supply Ringing Induced Spur</td>
<td>X</td>
</tr>
<tr>
<td>ANA#18</td>
<td>RX Digital Filtering Activity Coupling to XTAL Pins</td>
<td>X</td>
</tr>
<tr>
<td>ANA#19</td>
<td>Bandgap Decoupling Capacitor On-Board</td>
<td>X</td>
</tr>
<tr>
<td>ANA#20</td>
<td>Occasional Failures Observed During Calibration of the Radar Subsystem</td>
<td>X</td>
</tr>
<tr>
<td>ANA#21</td>
<td>Out of Band Radiated Spectral Emission</td>
<td>X</td>
</tr>
<tr>
<td>ANA#22</td>
<td>Overshoot and Undershoot During Inter-Chirp When Dynamic-Power Saving is Disabled</td>
<td>X</td>
</tr>
<tr>
<td>ANA#27A</td>
<td>Digital Temperature Sensor Readings Differ From Analog Temperature Sensors</td>
<td>X</td>
</tr>
</tbody>
</table>
6 Known Design Exceptions to Functional Specifications

MSS#25 Debugger May Display Unpredictable Data in the Memory Browser Window if a System Reset Occurs

Revision(s) Affected:
AWR6843 ES2.0

Description: If a system reset (nRST goes low) occurs while the debugger is performing an access on the system resource using system view, a slave error should be replied to the debugger. If the access was a read, instead the response might indicate that the access completed successfully and return unpredictable data.

This issue occurs under this condition: when a system reset is asserted (nRST low) on a specific cycle, while the debugger is completing an access on the system, using the system view. An example would be, when a debugger, like the CCS-IDE memory browser window, is refreshing content using the system view. This is not an issue for a CPU only reset and, this is not an issue during a power-on-reset (nPORRST) either.

Workaround(s): Avoid performing debug reads and writes while the device might be in reset.
MSS#26

DMA Requests Lost During Suspend Mode

Revision(s)
Affected:
AWR6843 ES2.0

Description:
While the device is halted in suspend mode by the debugger, the DMA is expected to complete the remaining transfers of a block, if the DEBUG MODE bit field of the GCTRL register is configured to '01'. Instead, the DMA does not complete the remaining transfers of a block but, rather stops after two more frames of data are transferred. Subsequent DMA requests from a peripheral to trigger the remaining frames of a block can be lost.

This issue occurs only in the following conditions:
• The device is suspended by a debugger
• A peripheral continues to generate requests while the device is suspended
• The DMA is setup to continue the current block transfer during suspend mode with the DEBUG MODE bit field of the GCTRL register set to '01'
• The request transfer type TTYPE bit in the CHCTRL registers is set to frame trigger ('0')

Workaround(s):

Workaround #1:
Use TTYPE = block transfer ('1'), when the DEBUG MODE bit field is '01' (*finish current block transfer*)

or

Workaround #2:
Use the DMA DEBUG MODE = '00' (ignore suspend), when using TTYPE = frame transfer ('0') to complete the block transfer, even after suspend/halt is asserted.
MSS#27

MibSPI in Slave Mode in 3- or 4-Pin Communication Transmits Data Incorrectly for Slow SPICLK Frequencies and for Clock Phase = 1

Revision(s)
Affected: AWR6843 ES2.0

Description: The MibSPI module, when configured in multibuffered slave mode with 3-functional pins (CLK, SIMO, SOMI) or 4-functional pins (CLK, SIMO, SOMI, nENA), could transmit incorrect data when all the following conditions are met:

- MibSPI module is configured in multibuffered mode,
- Module is configured to be a slave in the SPI communication,
- SPI communication is configured to be in 3-pin mode or 4-pin mode with nENA,
- Clock phase for SPICLK is 1, and
- SPICLK frequency is MSS_VCLK frequency / 12 or slower

Workaround(s): The issue can be avoided by setting the CSHOLD bit in the control field of the TX RAM (Multi-Buffer RAM Transmit Data Register). The nCS is not used as a functional signal in this communication; hence, setting the CSHOLD bit does not cause any other effect on the SPI communication.
MSS#28

A Data Length Error is Generated Repeatedly in Slave Mode When IO Loopback is Enabled

Revision(s) Affected: AWR6843 ES2.0

Description: When a DLEN error is created in Slave mode of the SPI using nSCS pins in IO Loopback Test mode, the SPI module re-transmits the data with the DLEN error instead of aborting the ongoing transfer and stopping. This is only an issue for an IOLPBK mode Slave in Analog Loopback configuration, when the intentional error generation feature is triggered using CTRLDLENERR (IOLPBTSTCR.16).

Workaround(s): After the DLEN_ERR interrupt is detected in IOLPBK mode, disable the transfers by clearing the SPIEN (bit 24) in the SPIGCR1 register and then, re-enable the transfers by resetting the SPIEN bit.
MSS#29 Spurious RX DMA REQ From a Slave Mode MibSPI

Revision(s) AWR6843 ES2.0
Affected:

Description: A spurious DMA request could be generated even when the SPI slave is not transferring data in the following condition sequence:
• The MIBSPI is configured in standard (non-multibuffered) SPI mode, as a slave
• The DMAREQEN bit (SPIINT0.16) is set to enable DMA requests
• The Chip Select (nSCS) pin is in an active state, but no transfers are active
• The SPI is disabled by clearing the SPIEN (SPIGCR1.24) bit from '1' to '0'
The above sequence triggers a false request pulse on the Receive DMA Request as soon as the SPIEN bit is cleared from '1' to '0'.

Workaround(s): Whenever disabling the SPI, by clearing the SPIEN bit (SPIGCR1.24), first clear the DMAREQEN bit (SPIINT0.16) to '0', and then, clear the SPIEN bit.
MSS#30

MibSPI RX RAM RXEMPTY bit Does Not Get Cleared After Reading

Revision(s) Affected:
AWR6843 ES2.0

Description:
The RXEMPTY flag may not be auto-cleared after a CPU or DMA read when the following conditions are met:
- The TXFULL flag of the latest buffer that the sequencer read out of transmit RAM for the currently active transfer group is 0,
- A higher-priority transfer group interrupts the current transfer group and the sequencer starts to read the first buffer of the new transfer group from the transmit RAM, and
- Simultaneously, the Host (CPU/DMA) is reading out a receive RAM location that contains valid received data from the previous transfers.

Workaround(s):
If at all possible, avoid transfer groups interrupting one another.
If dummy buffers are used in lower-priority transfer groups, select the appropriate "BUFMODE" for them (like, SKIP/DISABLED) unless, there is a specific need to use the "SUSPEND" mode.
MSS#31 CPU Abort Generated on a Write to Implemented CRC Space After a Write to Unimplemented CRC Space

Revision(s) AWR6843 ES2.0
Affected:
Description: An abort could be generated on a write to a legal address in the address offset region (0x0000–0x01FF) of the CRC register space when a normal mode write to an unimplemented address region (0x0200–0xFFFF) of the CRC register space is followed by a write to a legal address region (0x0000–0x01FF) of the CRC register space.
Workaround(s): None.
MSS#32

DMMGLBCTRL BUSY Flag Not Set When DMM Starts Receiving A Packet

Revision(s)
AWR6843 ES2.0

Affected:

Description: The BUSY flag in the DMMGLBCTRL register should be set when the DMM starts receiving a packet or has data in its internal buffers. However, the BUSY flag (DMMGLBCTRL.24) may not get set when the DMM starts receiving a packet under the following condition:

- The BUSY bit is set only after the packet has been received, de-serialized, and written to the internal buffers. It stays active while data is still in the DMM internal buffers. If the internal buffers are empty (meaning that no data needs to be written to the destination memory) then, the BUSY bit will be cleared.

Workaround(s): Wait for a number of DMMCLK cycles (for example, 95 DMMCLK cycles) beyond the longest reception and deserialization time needed for a given packet size and DMM port configuration, before checking the status of the BUSY flag, and after the DMM ON/OFF bit field (DMMGLBCTRL.[3:0]) has been programmed to OFF.
<table>
<thead>
<tr>
<th>MSS#33</th>
<th>MibSPI RAM ECC is Not Read Correctly in DIAG Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision(s)</td>
<td>AWR6843 ES2.0</td>
</tr>
<tr>
<td>Affected:</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>A Read operation to the ECC address space of the MibSPI RAM in DIAG mode, does not return the correct ECC value for the first 128 buffers, if the Extended Buffer support is implemented but, the Extended Mode is disabled for the particular MibSPI instance.</td>
</tr>
<tr>
<td>Workaround(s):</td>
<td>None.</td>
</tr>
</tbody>
</table>
HS Device Does Not Reboot Successfully on Warm Reset Getting Triggered or With Internal Software Reset

Revision(s) Affected:
AWR6843 ES2.0

Description:
A warm reset triggered by a watchdog expiry (MSS Wdog), a software register write (SOFTSYSRST), or an external warm reset pin does not ensure a successful reboot of the device in a secure device (HS device).

Workaround(s):
A warm reset should not be triggered externally or internally by a watchdog expiry, a software write, or other trigger mechanisms.

To initiate a reset cycle, external circuitry should be used on the sensor design. The external circuitry uses the watchdog, nERROR OUT monitoring, or other kinds of GPIO signaling to trigger a reset using the nRST pin of the device.
MSS#36

DMA Read From an Unimplemented Address Space is not Reported as a BUS Error

Revision(s) Affected:
AWR6843 ES2.0

Description:
The MSS DMA should generate a Bus Error (BER) interrupt when the DMA detects an error due to a read from an unimplemented address location. This interrupt is not available on any of the VIM Interrupt Channels for DMA1 and DMA2.

Implication: A DMA read from an unimplemented address can go undetected.

Workaround(s):
The DMA MPU has to be engaged with valid address range to ensure no occurrence of any read from an invalid address location happens.

DMA transfers have to be covered with end-to-end CRC from source to destination.
<table>
<thead>
<tr>
<th>MSS#37A</th>
<th>DCC Module Frequency Comparison can Report Erroneous Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision(s)</td>
<td>AWR6843 ES2.0</td>
</tr>
<tr>
<td>Affected:</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>The Dual-clock Comparator module, which is used to monitor a clock frequency while comparing with a known clock reference, could stop earlier than expected, and, thus, indicating the measured clock frequency to be lower. This is due to a clock domain crossing issue causing a preset to the error detection logic to get triggered.</td>
</tr>
<tr>
<td>Workaround(s):</td>
<td>Applicable for devices with monitoring support.</td>
</tr>
<tr>
<td></td>
<td>Multiple measurements can be taken for the same clock pairs, and for the average, or majority of the frequencies reported.</td>
</tr>
<tr>
<td></td>
<td>Application code, where possible, could compare the clocks using an alternate clock comparator module (CCC).</td>
</tr>
</tbody>
</table>
MSS#38 GPIO Glitch During Power-Up

Revision(s) AWR6843 ES2.0
Affected:

Description: During the 3.3-V supply ramp, the GPIO outputs could possibly see a short glitch (rising above the 0 V for a short duration). This GPIO glitch cannot be avoided by just a pulldown resistor. If the GPIO glitch during boot-up is high enough, it could be falsely detected as a “high”.

Workaround(s): Any GPIO used for such critical controls where glitch cannot be tolerated, should be gated by the nRESET signal of the xWR device.

Using a tri-state buffer (for example: SN74LVC1G126-Q1) externally to isolate the GPIO output from the system until the nRESET of xWR device is released. At this point, all the supplies are expected to be stable.
MSS#39

The state of the MSS DMA is left pending and uncleared on any DMA MPU fault

Revision(s)
Affected:
AWR6843 ES2.0

Description:
The state of the MSS DMA is left pending and uncleared on any DMA MPU fault. The transfer that caused this MPU fault is left pending inside the DMA IP. Any trigger on DMA REQ lines (could be caused by any module/IP that is hooked up to DMA in h/w) can re-trigger DMA to start executing the above pending transfer irrespective of whether that trigger is actually valid/enabled in DMA or that module/IP

Workaround(s):
For devices where the Boot ROM is executing the MSS DMA MPU Self tests. As part of application initialization, if the MSS DMA will be used, the following register field should be used to reset the MSS DMA IP so that the uncleared transfer is reset

1. Write MSS_RCM:SOFTRST1[31:24] 0xAD
2. Write MSS_RCM:SOFTRST1[31:24] 0x0

It is not recommended to use this configuration at any another instance other than that recommended here in this Errata.

On an actual Real time MPU Error, this error should be treated as a non-recoverable error and a warm reset should be issued to recover.
Any EDMA Transfer That Spans ACCEL_MEM1 +ACCEL_MEM2 Memories of Hardware Accelerator May Result In Data Corruption Without Any Notification Of Error From The SoC

Revision(s) Affected:
AWR6843 ES2.0

Description:
As per TPTC IP Spec, a Transfer request (TR) is supposed to access a single slave end point. ACCEL_MEM0/ACCEL_MEM1 memory banks of HWA are available via single slave point and ACCEL_MEM2/ACCEL_MEM3 memory banks of HWA are available as another slave point (different from that of ACCEL_MEM0/ACCEL_MEM1). Hence if a single TR is used to access a buffer spanning ACCEL_MEM1 and ACCEL_MEM2 memories of the HWA (i.e. a single buffer spanning 2 different slave points), the spec is not being adhered to. This errata is explicitly highlighting this spec requirement.

Workaround(s):
TBSplit the access into 2 TRs so that a single TR does not span ACCEL_MEM1 +ACCEL_MEM2. The 2 TRs can be chained.
Doppler Spurs At Specific RF Frequencies

Revision(s)
- AWR6843 ES2.0

Affected:
- AWR6843 ES2.0

Description:
There is a non-linearity of the synthesizer when crossing certain frequencies: 57.6, 58.05, 58.5 and 59.4 GHz.

Implication: There will be a spur in the non-zero Doppler bin when the synthesizer crosses any of these frequencies during a chirp. The exact Doppler bin depends on the slope and ramp timings. The spur will be spread across multiple range bins.

Workaround(s):
- Avoid narrow bandwidth ramps around frequencies with high-spur levels.
Emissions and Interference Sensitivity During RF Calibrations

Revision(s)
Affected: AWR6843 ES2.0

Description:
External interference present on the RX or TX pins with level >-10 dBm can lead to degraded accuracy or errors in RF calibrations. This applies to boot-time PD, TX power, RX IQMM and gain calibrations, as well as run-time TX output power calibrations.

Also, a few boot cals will violate -10dBm peak power FCC spec applicable in the non-ISM band. This includes Tx power boot cal, Phase shifter boot cal and Rx IQMM boot cal.

Workaround(s):
At customer factory, perform the RF INIT calibration in interference-free environment, and use the device's calibration save APIs to save the calibration results. These results can be restored later in the field. Use this sequence in the field: Skip the above RF calibrations using the "RF init calibration conf" API, restore the calibration file that was saved in factory, and then, issue the RF INIT API.

The workaround for runtime Tx output calibration is to use the “OLPC only” option in “Run time calibration conf and trigger” API. However, this can cause degradation in the Tx power accuracy.
ANA#12

Second Harmonic (HD2) is Present When Receiver is Tested Standalone Using CW Input

Description:
There is a finite isolation between the RF pins/package and the FMCW synthesizer. This can create spurious tones at the synthesizer output and lead to appearance of 2nd order harmonics and inter-modulations of expected IF frequencies at RX ADC output. The amplitude of the 2nd harmonic could be as high as -55 dBc, referenced to the power level of the intended tone at the LNA input.

Workaround(s):
No workaround available at this time. However, in many typical radar use-cases the HD2 does not affect the system performance due to two reasons:

1. Since the HD2 comes from a coupling to the LO signal, there is an inherent suppression of the HD2 level due to the self-mixing effect (that is, phase noise and phase spur suppression effect at the mixer).
2. In real-life scenarios there is often a double-bounce effect of the radar signal reflected from the target, which leads to a ghost object at twice the distance of the actual object. This effect is often indistinguishable from the effect of HD2 itself.
<table>
<thead>
<tr>
<th>ANA#13A</th>
<th>Phase Mismatch Variation Across Temperature in TX3/TX1 and TX3/TX2 Combinations are Double That of TX2/TX1 Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision(s)</td>
<td>AWR6843 ES2.0</td>
</tr>
<tr>
<td>Affected:</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>TX3/TX1 combination exhibits a phase mismatch variation across the complete recommended operating temperature range per the data manual whereas, TX2/TX1 and TX3/TX2 combinations exhibit a lower degree of variation over the same temperature range.</td>
</tr>
<tr>
<td>Workaround(s):</td>
<td>In applications requiring high phase accuracy across TX channels, a background angle calibration can be used to control phase variation over temperature</td>
</tr>
<tr>
<td>ANA#14</td>
<td>Doppler Spurs Observed for Narrow Chirps</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Revision(s)</td>
<td>AWR6843 ES2.0</td>
</tr>
<tr>
<td>Affected:</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>There is a non-linearity of the synthesizer when crossing certain frequencies: 60.3-, 60.75-, 61.2-, 61.56-, 62.1-, 62.64-, 63-, and 63.45-GHz. Implication: There will be a spur in the non-zero Doppler bin when the synthesizer crosses any of these frequencies during a chirp. The exact Doppler bin depends on the slope and ramp timings. The spur will be spread across multiple range bins.</td>
</tr>
<tr>
<td>Workaround(s):</td>
<td>Avoid narrow bandwidth ramps around frequencies with high-spur levels.</td>
</tr>
<tr>
<td>ANA#15</td>
<td>Excessive TX-RX Coupling or Reflection can Lead to Saturated RX Output</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Revision(s)</td>
<td>AWR6843 ES2.0</td>
</tr>
<tr>
<td>Affected:</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>If there is excessing TX-RX coupling or chassis reflection, it can lead to a saturated RX output. This situation can occur if the RX input is stronger than -10dBm</td>
</tr>
<tr>
<td>Workaround(s):</td>
<td>Improve TX-to-RX antenna isolation on PCB. Radome/chassis should give low reflection amplitude and should be as close as possible to the sensor, to reduce the IF frequency.</td>
</tr>
</tbody>
</table>
LVDS Coupling to Clock System

Revision(s)
AWR6843 ES2.0

Affected:
AWR6843 ES2.0

Description: The digital activity in the High-Speed Serial Interfaces (HSI) state machine can couple to the clock system/FMCW synthesizer and can cause spurs in its clock output. The spur frequency is HSI rate dependent (for example, for a 600-MHz HSI clock rate, 6.25-MHz and 12.5-MHz spurs can be observed on TX/RX output, and for a 900-MHz HSI clock rate, 7-MHz and 14-MHz spurs can be observed on the TX/RX output). The spur levels are low (near or below -65 dBc).

Workaround(s): The spur will not be present, when the LVDS is not used.
On-Board Supply Ringing Induced Spur

Revision(s)Affected: AWR6843 ES2.0

Description: Turning OFF and ON front-end modules can cause on-board supply ringing and slow the settling of the power supply. This supply ringing can manifest as a spur in the FMCW synthesizer output spectrum.

Workaround(s):

1. **Workaround #1:**
 Disable inter-chirp duty cycling of the RX.

 or

2. **Workaround #2:**
 Design the power supply to damp out the ringing on the rails to the device.
RX Digital Filtering Activity Coupling to XTAL Pins

Revision(s)
AWR6843 ES2.0

Affected:

Description:
The Digital filtering activity can potentially couple to XTAL pins and lead to spurs in the RX ADC output. The spur frequencies depend on the sampling rate (Fs) and DFE modes. Specifically, these spurs have been observed when Fs is close to 10- and 20-Msps within ±1.5 MHz. In these cases, an IF spur can appear at about 2Fs-40 MHz, 4Fs-40 MHz. The spur amplitudes vary with the frequency of the spur and are in the -35dBc range (for spur IF frequency of 200 kHz) to -75dBc range (for a spur IF frequency of 1.5 MHz) at the FMCW synthesizer output spectrum.

Workaround(s):
Avoid sampling rates of 10 ±1.5 Msps and 20 ±1.5 Msps. Exact 10-Msps and 20-Msps sampling rates are allowed, as they will not cause a spur.
ANA#19

Bandgap Decoupling Capacitor On-Board

Revision(s) Affected:
AWR6843 ES2.0

Description:
A 47-nF capacitor is needed on the bandgap pin. Not having the correct capacitor on this pin, can cause boot up issues, especially, at negative temperatures. This requirement is being included in the errata, as it is a recent change which may not be updated in older reference designs.

Workaround(s):
Use the recommended 47-nF capacitor. For example: part - GRM155R71E473KA88 (see the device-specific EVM and Reference Design files for updated part).
Occasional Failures Observed During Calibration of the Radar Subsystem

Revision(s)
Affected: AWR6843 ES2.0

Description: Rare occurrences of failures have been observed in the Dual-Clock Comparator (DCC) module, as a result the APLL or Synthesizer may report a failure.

Workaround(s):

Workaround #1:
Any APLL calibration failure needs to be responded with a reset cycle.

or

Workaround #2:
Any SYNTH calibration failure reported by the BSS will require an RFinit.
Out of Band Radiated Spectral Emission

<table>
<thead>
<tr>
<th>Revision(s)</th>
<th>AWR6843 ES2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Out-of-band radiated spectral emissions are observed at 14.4-GHz and 28.8-GHz.</td>
</tr>
<tr>
<td>Workaround(s)</td>
<td>To help in reducing the spur, shield around the device (excluding Antenna region). Microwave absorbers are available and can be attached to the top of the device.</td>
</tr>
<tr>
<td>ANA#22</td>
<td>Overshoot and Undershoot During Inter-Chirp When Dynamic-Power Saving is Disabled</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Revision(s) Affected:</td>
<td>AWR6843 ES2.0</td>
</tr>
<tr>
<td>Description:</td>
<td>This issue applies when Dynamic-Power Saving is disabled for Transmitters. Overshoot and Undershoot conditions cause narrower RF sweeping bandwidth. For a 500-MHz chirp bandwidth, there is MAX Overshoot of ~100 MHz, and a MAX Undershoot of ~100 MHz. This would lead to a significant reduction in effective chirp bandwidth for bandwidth-limited cases (for example, ISM band). For example: For an FMCW RF positive Ramp Chirp example, programmed for Fstart MHz to be (Fstart + 500) MHz, the effective observed transmission may span from (Fstart - 160) MHz to (Fstart + 500) MHz. Which would be an undershoot of 160 MHz. In order to compensate for such an undershoot, the programmed Chirps would have to be (Fstart + 160) MHz to (Fstart + 500) MHz. The net result is, the programmed Chirp would have to be for a reduced Bandwidth (that is, 340 MHz).</td>
</tr>
<tr>
<td>Workaround(s):</td>
<td>Workaround #1: A firmware resolution of 400 MHz is implemented in the accompanied SDK release (SDK version 3.4 or later). This allows the user to program up to 400 MHz of the available 500-MHz ISM band of 61 GHz to 61.5 GHz applications. or Workaround #2: To ensure the TX power amplifier is OFF during chirp idle time and not causing "on-air" emissions during the undershoot/overshoot period, keep the inter-chirp power savings ON.</td>
</tr>
</tbody>
</table>
Digital Temperature Sensor Readings Differ From Analog Temperature Sensors

Revision(s)
AWR6843 ES2.0

Affected:

Description:
The local heating in the digital circuitry can cause the readings from digital temperature sensor to differ from that of the analog temperature sensors (Tx, Rx, and PM).

Implication: The temperature monitor API computes the maximum temperature difference across different sensors and compares against the programmed threshold (TEMP_DIFF_THRESH). Higher difference between analog and digital temperature sensors can cause the monitor to fail.

Workaround(s):
In temperature monitor configuration API (AWR_MONITOR_TEMPERATURE_CONF_SB), if the thresholds for the digital temperature sensors (DIG_TEMP_THRESH_MIN and DIG_TEMP_THRESH_MAX) are both set to zero, the BSS will ignore the digital sensor while computing the temperature difference across sensors to compare against the programmed threshold value (TEMP_DIFF_THRESH).

The digital temperature values (verbose output) from the API need to be validated externally by the processor.

Trademarks
All other trademarks are the property of their respective owners.
Revision History

Changes from August 1, 2020 to September 30, 2020 (from Revision A (August 2020) to Revision B (September 2020))

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-1 (Example of Device Part Markings): Updated/Changed image to include production Functional Safety-Compliant targeted device markings</td>
<td>3</td>
</tr>
<tr>
<td>Table 5-1 (Advisory to Silicon Variant / Revision Map): Added MSS#39, MSS#40, ANA#08B, and ANA#27A advisories, all silicon revisions</td>
<td>5</td>
</tr>
<tr>
<td>Table 5-1 (Advisory to Silicon Variant / Revision Map): Updated/Changed MSS#37A [mislabelled MSS#39], ANA#11, ANA#12, ANA#13A, ANA#14, ANA#15, and ANA#21, all silicon revisions</td>
<td>5</td>
</tr>
</tbody>
</table>

Changes from April 30, 2020 to July 31, 2020 (from Revision * (April 2020) to Revision A (July 2020))

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global: Updated/Changed the numbering format for tables, figures, and cross-references throughout the document</td>
<td>2</td>
</tr>
<tr>
<td>Changed / Updated Figure 3-1</td>
<td>3</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Updated/Changed ANA#14, removed "58.4GHz and" as frequency is not supported in the device</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added MSS#38</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added MSS#39</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added ANA#15</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added ANA#16</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added ANA#17</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added ANA#18</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added ANA#19</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added ANA#20</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added ANA#21</td>
<td>5</td>
</tr>
<tr>
<td>(Advisory to Silicon Variant / Revision Map): Added ANA#22</td>
<td>5</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated