
SAFERTOS-UM-01 Copyr ight © 2009 Texas Instruments
and WA&S Ltd 2009

User ’s Manual

SAFERTOS™

2 December 9, 2009

Copyright
Copyright © 2009 Texas Instruments, Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments. ARM and
Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. SAFERTOS is a trademark of Wittenstein Aerospace and
Simulation Ltd. Other names and brands may be claimed as the property of others.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com

SAFERTOS™ is a robust, specialized Real-time Operating System which has been independently certified by the TÜV as
having been developed in compliance with IEC61508 up to Safety Integrity Level (SIL) 3.

WITTENSTEIN high integrity systems is a trading name of WITTENSTEIN Aerospace and Simulation Ltd.

SafeRTOS™ User’s Manual

December 9, 2009 3

Table of Contents
Preface: About this Manual ... 11
Identification.. 11
Use in Safety-Related Systems .. 11
Document Overview ... 12

Scope.. 12
Contents.. 12

Chapter 1: System Overview ... 13
Summary of the SAFERTOS Scheduler... 13
Differences between SAFERTOS and OPENRTOS .. 13
Design Goals .. 13
Coding Conventions ... 14

Project Definitions ... 14
Naming Conventions... 15

System Components .. 15
Tasks .. 15
Task Priorities ... 18
The Scheduler... 18
Communication between Tasks and Interrupts... 25
Interrupts... 25

Chapter 2: Installation .. 27
Source Code and Libraries ... 27
Hook Functions ... 27
Configuration... 28

Chapter 3: API Reference... 29
Task Functions ... 29

vTaskInitializeScheduler().. 30
xTaskCreate() .. 32
xTaskDelete()... 35
xTaskDelay().. 37
xTaskDelayUntil()... 39
xTaskPriorityGet() .. 41
xTaskPrioritySet() .. 43
xTaskSuspend()... 45
xTaskResume().. 47

Scheduler Control Functions ... 49
xTaskStartScheduler() ... 50
vTaskSuspendScheduler()... 51
xTaskResumeScheduler() ... 53
xTaskGetTickCount() ... 54
taskYIELD().. 55
taskYIELD_FROM_ISR() ... 56
taskENTER_CRITICAL() ... 57

Table of Contents

4 December 9, 2009

taskEXIT_CRITICAL().. 59
Queue Functions ... 61

xQueueCreate() ... 62
xQueueSend().. 64
xQueueReceive() ... 66
xQueueMessagesWaiting().. 68
xQueueSendFromISR() ... 69
xQueueReceiveFromISR()... 71

Chapter 4: Stellaris® ARM® Cortex™-M3 Processor Core Port-Specific Information............................. 73
Installation... 73

C Startup Code ... 73
Vector Table.. 73

Execution Context... 73
Interrupts... 75

Interrupt Entry and Exit ... 75
Interrupt Priorities and Nesting ... 75
Interrupt Vectors ... 75

System Tick Timer (SysTick) .. 75
RAM Usage .. 76

SafeRTOS™ User’s Manual

December 9, 2009 5

List of Code Examples
Code Example 1-1. pdTASK_CODE definition... 16
Code Example 1-2. Typical structure of a task... 16
Code Example 1-3. A task deleting itself prior to the function terminating ... 16
Code Example 1-4. Using queues to implement binary semaphores... 23
Code Example 1-5. Using a gatekeeper task to control access to a resource ... 23
Code Example 1-6. Deferring interrupt processing to the task level .. 25
Code Example 2-1. vApplicationErrorHook() Function Prototype .. 27
Code Example 2-2. vApplicationTaskDeleteHook() function prototype.. 28
Code Example 2-3. vApplicationIdleHook() function prototype .. 28
Code Example 3-1. Using the vTaskInitializeScheduler() API function .. 30
Code Example 3-2. Using the xTaskCreate() API function .. 33
Code Example 3-3. Using the xTaskDelete() API function... 35
Code Example 3-4. Using the xTaskDelay() API function .. 37
Code Example 3-5. Using the xTaskDelayUntil() API function... 40
Code Example 3-6. Using the xTaskPriorityGet() API function .. 41
Code Example 3-7. Using the xTaskPrioritySet() API function... 44
Code Example 3-8. Using the xTaskSuspend() API function ... 45
Code Example 3-9. Using the xTaskResume() API function.. 48
Code Example 3-10. Using the vTaskSuspendScheduler() and xTaskResumeScheduler() API functions ... 51
Code Example 3-11. Using the xTaskGetTickCount() API function ... 54
Code Example 3-12. Using the taskYIELD() API function.. 55
Code Example 3-13. Using the taskENTER_CRITICAL() and taskEXIT_CRITICAL() macros...................... 58
Code Example 3-14. Using the xQueueCreate() API function ... 63
Code Example 3-15. Using the xQueueSend() API function.. 65
Code Example 3-16. Using the xQueueReceive() API function ... 67
Code Example 3-17. Using the xQueueMessagesWaiting() API function.. 68
Code Example 3-18. Using the xQueueSendFromISR() API function ... 70
Code Example 3-19. Using the xQueueReceiveFromISR() API function... 72
Code Example 4-1. Definition of the xPORT_INIT_PARAMETERS Structure... 73
Code Example 4-2. The ISR... 75

List of Code Examples

6 December 9, 2009

SafeRTOS™ User’s Manual

December 9, 2009 7

List of Figures
Figure 1-1. Valid Task State Transitions.. 17
Figure 1-2. Valid Scheduler State Transitions ... 20

List of Figures

8 December 9, 2009

SafeRTOS™ User’s Manual

December 9, 2009 9

List of Tables
Table 1-1. Project Definitions ... 14
Table 1-2. Port-Dependent Definitions ... 14
Table 1-3. Naming Conventions ... 15
Table 1-4. Task States ... 17
Table 1-5. Scheduler States ... 19
Table 4-1. Example xPORT_INIT_PARAMETERS Initialization Values .. 74

List of Tables

10 December 9, 2009

December 9, 2009 11

About this Manual
Identification

This is the user’s manual for SAFERTOS™ - a low over head, mini, pre-emptive real time
scheduler. SAFERTOS is pre-programmed into the processor ROM, providing a unique
way to develop high integrity applications quickly and safely.
Incorporating SAFERTOS in to an embedded software application permits that application
to be structured as a set of autonomous tasks. The scheduler selects which task to
execute at any point in time in accordance with the state and relative priority of each task.
Chapter 1, “System Overview”, elaborates on the states in which a task can exist.

This SAFERTOS User’s Manual contains detailed reference information related to using
SAFERTOS from ROM.

SAFERTOS is based on the FREERTOS™ and OPENRTOS™ code base and can be
used either as a general purpose real-time operating system or in a mission critical
environment.

Use in Safety-Related Systems
SAFERTOS was developed using a formal and rigorous process. The process was
certified by TÜV SÜD to confirm that it was in compliance with that mandated by IEC
61508 [Reference 3] parts 1 and 3 for Safety Integrity Level (SIL) 3 projects. The same
processes have been used throughout the SAFERTOS development.

Simply using SAFERTOS in an application does not mean developers can make a claim
related to the conformance of SAFERTOS to any requirements or process specification
(including IEC 61508 [Reference 3]) without first following a recognized system wide
conformance verification process. Conformance evidence must then be presented,
audited and accepted by a recognized and relevant independent assessment
organization. Without undergoing this process of due diligence, no claim can be made as
to the suitability of SAFERTOS to be used in any safety or otherwise commercially critical
application.

In order to facilitate low risk certification, WITTENSTEIN have developed a Design
Assurance Pack which contains full conformance evidence for SAFERTOS. The Design
Assurance Pack facilitates certification and speeds and de-risks the use of SAFERTOS in
industrial, medical and other similar critical applications.

In order to obtain the Design Assurance Packs for either IEC61508 (SIL3) or FDA510(k)
certification, please contact your local WITTENSTEIN sales representative. Information
can be found at http://www.HighIntegritySystems.com/ or by sending an email to
info@highintegritysystems.com.

P R E F A C E

Preface - About this Manual

12 December 9, 2009

Document Overview
Scope

Engineers holding a position of responsibility within a safety or commercially critical
development team must be adequately trained or have adequate prior experience to fulfill
their responsibilities competently. It is therefore assumed that readers are already
familiar with the concepts and development of multitasking embedded systems and these
fundamental concepts are omitted from this manual. The eBook “Using the FreeRTOS
Real Time Kernel – A Practical Guide” provides a more introductory text that can be
referenced if required.

The ‘ ’ symbol is used to emphasize instruction or information to which compliance is
deemed to be essential for the correct and safe integration of SAFERTOS into an
application.

Contents
The SAFERTOS User’s Manual is organized into the following chapters:

Chapter 1, “System Overview,” provides an overview of SAFERTOS and the
description of the SAFERTOS task, queue, semaphore and scheduling mechanisms.
Chapter 2, “Installation,” describes the installation and setup required to use
SAFERTOS in your application.
Chapter 3, “API Reference,” provides the SAFERTOS API reference.

Chapter 4, “Stellaris® ARM® Cortex™-M3 Processor Core Port-Specific Information,”
provides information on using Stellaris® ARM® Cortex™-M3 Processor Core product
variants.

ESSENTIAL COMPLIANCE INFORMATION

SAFERTOS users must not call functions within the SAFERTOS code base that are not documented
in Chapter 3, “API Reference.”

December 9, 2009 13

System Overview
This chapter provides an overview of SAFERTOS.

Summary of the SAFERTOS Scheduler
The SAFERTOS pre-emptive real time scheduler has the following characteristics:

Any number of tasks can be created – the availability of RAM being the only limiting factor.

Each task is assigned a priority between zero and ten, zero being the lowest priority. Source
code versions of SAFERTOS (as opposed to ROMed versions) do not impose restrictions on
the number of priorities available.

Any number of tasks can share the same priority – allowing for maximum application design
flexibility.

The highest priority task that is able to execute (that is, not blocked or suspended) will be the
task selected by the scheduler to execute.

Tasks of equal priority will each get a share of the processing time available to tasks of that
priority. A time sliced round robin policy is used (see “The Scheduling Policy” on page 18).

Tasks can block for a fixed period.

Tasks can block to wait for an absolutespecified time.

Tasks can block with a specified time-out period to wait for queue events (either data being
written to or read from the queue).

Queues can be used to send data between tasks, and to send data between tasks and
interrupt service routines (ISR).

Semaphores can be used to synchronize tasks with other tasks and to synchronize tasks with
interrupt service routines.

Semaphores can be used to ensure mutually exclusive access to shared resources.

Differences between SAFERTOS and OPENRTOS
While SAFERTOS and OPENRTOS share many attributes, the development process has
necessitated some notable differences. In partular SAFERTOS does not perform any
dynamic memory allocation, and SAFERTOS performs numerious parameter and internal
data validity checks.

SAFERTOS is a statically declared subset of OPENRTOS. OPENRTOS to SAFERTOS
conversion instructions are provided in a separate technical note.

Design Goals
The design goal of SAFERTOS is to achieve its stated functionality using a small, simple,
and (most importantly) robust implementation.

C H A P T E R 1

Chapter 1 - System Overview

14 December 9, 2009

Coding Conventions
This section defines the coding conventions used for the SAFERTOS API.

Project Definitions
Each C file that utilizes the SAFERTOS API must include the SAFERTOS.h header. The
SAFERTOS.h header file itslef includes the ProjDefs.h header file which contains the definitions
shown in Table 1-1 and Table 1-2.

Table 1-1. Project Definitions

Definition Value

pdTRUEa

a. The ‘pd’ prefix denotes that the constant is defined within the ProjDefs.h
header file. The ProjDefs.h header file also contains error code definitions
that begin with the ‘err’ prefix.

1

pdFALSE 0

pdPASS 1

pdFAIL 0

Table 1-2. Port-Dependent Definitions

Definition Value

portCHAR char (type)

portLONG long (type)

portSHORT short (type)

portBASE_TYPE Port-dependent a– defined to be the most efficient data type for the
architecture

a. Port-dependent values are described in Chapter 4, “Stellaris® ARM® Cortex™-M3 Processor Core Port-Specific
Information” on page 73.

portMAX_DELAY Port-dependent

portTickType Port-dependent

SafeRTOS™ User’s Manual

December 9, 2009 15

Naming Conventions
The following conventions are used throughout the code:

Parameter names are prefixed with their type as follows:

Historically function names were also prefixed with their return type using the same
convention. The additional validity checking performed by SAFERTOS has resulted in nearly
all API functions returning a value, and for reasons of portability this value is always of type
portBASE_TYPE (prefix ‘x’). It is simpler therefore to consider any function that is prefixed ‘x’
as returning either a status code or a value, and any function that is prefixed ‘v’ (void) as
returning no value.

API functions are also prefixed with the feature to which they relate, either Task or Queue. For
example, the prototype for the API function xTaskGetTickCount(), or
xQueueSend().

Macro names are written in all uppercase other than a lowercase prefix that indicates in which
header file the macro is defined. The exception to this rule are the error codes which are
prefixed with ‘err’ but contained in the ProjDefs.h header file.

System Components
Tasks

Including SAFERTOS in your application allows the application to be structured as a set of
autonomous tasks. Each task executes within its own context with no coincidental dependency on
other tasks within the system or the scheduler itself.

Task Functions
Functions that implement a task must be of pdTASK_CODE type, where pdTASK_CODE is
defined as shown in Code Example 1-1 with an example of such a function shown in
Code Example 1-2.

Table 1-3. Naming Conventions

Parameter Name Type Prefix

Variables portCHAR c

portSHORT s

portLONG l

portBASE_TYPE x

structures, and so on x

void va

a. For example, pointers to void and void functions.

Pointers — pb

b. For example, a pointer to a short will have the prefix ps, a
pointer to void will have the prefix pv, and so on.

Unsigned variables — uc

c. For example, an unsigned short will have the prefix us.

Chapter 1 - System Overview

16 December 9, 2009

A task will typically execute indefinitely and as such be written as an infinite loop, also shown in
Code Example 1-2.

Code Example 1-1 pdTASK_CODE definition

typedef void (*pdTASK_CODE)(void * pvParameters);

Code Example 1-2 Typical structure of a task

 void vATaskFunction(void *pvParameters)
 {
 /* The function executes indefinitely so enter an infinite loop. */
 for(;;)
 {
 /* -- Task application code goes here. -- */
 }
 }

A task is created using the xTaskCreate() API function.

A task is deleted using the xTaskDelete() API function.

ESSENTIAL COMPLIANCE INFORMATION

A task function must never terminate by attempting to return to its caller (or by calling exit()) as doing
so will result in undefined behavior. If required, a task can delete itself prior to reaching the function
end as shown in Code Example 1-3.

Code Example 1-3 A task deleting itself prior to the function terminating

void vATaskFunction(void *pvParameters)
 {
 for(;;)
 {
 /* -- Task application code here. -- */
 }

 /* The task deletes itself (indicated by the NULL parameter)
before reaching the end of the task function. */
 xTaskDelete(NULL);
 }

The void* function parameter permits a reference to any type to be passed into the task when the
task is created. Where more than one parameter is required, a pointer to a structure can be used.
See the API documentation for the xTaskCreate() function on page 32 for further information.

Task States
Only one task can be executing at a time. The scheduler is responsible for selecting the task to
execute in accordance with each task’s relative priority and state. A task can exist in one of the
states described by Table 1-4, with valid transitions between states shown in Figure 1-1 on page
17.

SafeRTOS™ User’s Manual

December 9, 2009 17

Figure 1-1. Valid Task State Transitions

Table 1-4. Task States

Task State Description

Running When a task is actually executing it is said to be in the Running state. It is the task
selected by the scheduler to execute and is currently utilizing the processor.

Only one task can be in the Running state at any given time.

Blocked A task is in the Blocked state if it is waiting for an event. The task cannot continue until
the event occurs and until that time, it cannot be selected by the scheduler as the task to
enter the Running state.

Tasks in the Blocked state always have a time-out period, after which the task becomes
unblocked.

Suspended A task enters the Suspended state when it is the subject of a call to the
xTaskSuspend() API function, and remains in the Suspended state until
unsuspended by a call to the xTaskResume() API function. A time-out period
cannot be specified.

A Suspended state task cannot be selected by the scheduler as the task to enter the
Running state.

Ready A task is in the Ready state if it is able to enter the Running state (it is not in the Blocked
or Suspended state), but is not currently the task that is selected to execute.

The only tasks that are available to the scheduler for selection as the task to enter the
Running state are those that are in the Ready state.

Ready is the initial state when a task is created.

Ready

Blocked

Suspended

Running

Blocking API function
called

Event

xTaskSuspend()
cal led

xTaskSuspend()
cal led

xTaskSuspend()
called

xTaskResume()
cal led

Chapter 1 - System Overview

18 December 9, 2009

Each task executes within its own context. The process of transitioning one task out of the
Running state while transitioning another task into the Running state is called context switching.

A call to the xTaskSuspend() API function can cause a task in the Running state, Blocked
state, or Ready state to enter the Suspended state.

Calls to the xTaskDelay() and xTaskDelayUntil() API functions can cause a task in the
Running state to enter the Blocked state to wait for a temporal event – the event being the
expiration of the requested delay period.

Calls to the xQueueSend() and xQueueReceive() API functions can cause a task in the
Running state to enter the Blocked state to wait for a queue event – the event being either data
being added to or removed from a queue. “Intertask Communication” on page 21 provides more
information on using queues.

Task Priorities
A priority is assigned to each task when the task is created.

The priority of a task can be queried using the xTaskPriorityGet() API function and
changed by using the xTaskPrioritySet() API function.

Low numeric values denote low priority tasks. The lowest priority value that can be assigned to a
task is 0.

High numeric values denote high priority tasks. The maximum priority that can be assigned to a
task is 10 (this restriction applies only when executing SafeRTOS out of ROM).

The Scheduler
The scheduler has responsibility for:

Deciding which task to select to enter the Running state

Performing the applicable context switching

Measuring the passage of time

Transitioning tasks from the Blocked state into the Ready state upon the expiration of a
time-out period

Measuring Time
A periodic (tick) timer interrupt is used to measure time. The time between two consecutive timer
interrupts is defined as one tick. All times are measured and specified in tick units.

The number of milliseconds between each tick is set using the ulTickRateHz member of the
structure passed to the vTaskInitializeScheduler() API function.

The core SysTick timer is used to generate the tick interrupt.

The Scheduling Policy
The scheduler selects as the task to be in the Running state the highest priority task that would
otherwise be in the Ready state. In other words, the task chosen to execute is the highest priority
task that is able to execute. Tasks in the Blocked or Suspended state are not able to execute.

Different tasks can be assigned the same priority. When this is the case, the tasks of equal priority
are selected to enter the Running state in turn. Each task executes for a maximum of one tick
period before the scheduler selects another task of equal priority to enter the Running state.

SafeRTOS™ User’s Manual

December 9, 2009 19

NOTE: While the scheduler ensures that tasks of equal priority are selected to enter the
Running state in turn, it is not guaranteed that each such task will get an equal
share of processing time.

Starting the Scheduler
The scheduler is started using the xTaskStartScheduler() API function. See
Code Example 1-5 on page 23 for an example usage scenario.

At least one task must be created prior to the xTaskStartScheduler() function being
called.

Calling the xTaskStartScheduler() function causes the creation of the Idle task. The Idle
task never enters the Blocked or Suspended state. It is created to ensure there is always at least
one task that is able to enter the Running state. The idle task hook (callback) function can be used
to execute application-specific code within the Idle task.

Yielding
Yielding is where a task volunteers to leave the Running state by re-entering the Ready state.
When a task yields, the schedule re-evaluates which task should be in the Running state. If no
tasks of higher or equal priority to the yielding task are in the Ready state, then the yielding task
will again be selected as the task to enter the Running state.

A task can yield by explicitly calling the taskYIELD() macro, or by calling an API function that
changes the state or priority of another task within the application.

Scheduler States
The scheduler can exist in one of the states Table 1-5, with valid transitions between
states shown in Figure 1-2 on page 20.

Table 1-5. Scheduler States

Scheduler State Description

Initialization This is the initial state, prior to the scheduler being started.

While in the Initialization state the scheduler has no control over the
application execution.

Tasks and queues can be created while the scheduler is in the
Initialization state.

Active While in the Active state the scheduler controls the application
execution by selecting the task that is in the Running state at any
given time..

Suspended The Scheduler does not perform any context switching while in the
Suspended state. The task that was in the Running state when the
scheduler entered the Suspended state will remain in the Running
state until the scheduler returns to the Active state.

Chapter 1 - System Overview

20 December 9, 2009

Figure 1-2. Valid Scheduler State Transitions

The scheduler enters the Suspended state following a call to the
xTaskSuspendScheduler() function, and returns to the Active state following a call to the
xTaskResumeScheduler() function.

A code section that must be executed atomically (without interruption from other tasks or
interrupts) to guarantee data integrity is called a critical region. The traditional method of
implementing a critical region of code is to disable and then re-enable interrupts as the critical
region is entered and then exited respectively. The taskENTER_CRITICAL() and
taskEXIT_CRITICAL() macros are provided for this purpose. Critical sections will only disable
interrupts that have a priority up to and including interrupt priority 5 (a basepri value of 191). The
execution of interrupts with a higher priority (those with priority 4 to 0) will not be effected by critical
sections.

Implementing a critical section through the use of the taskENTER_CRITICAL() and
taskEXIT_CRITICAL() macros has the disadvantage of the application being unresponsive
to interrupts of priority 5 and below for the duration of the critical region. The scheduler suspension
mechanism provides an alternative approach that permits interrupts to remain enabled during the
critical region itself.

The xTaskSuspendScheduler() API function places the scheduler into the Suspended state. While
in the Suspended state a switch to another task will never occur. The task executing the critical
region is guaranteed to remain as the task in the Running state until the xTaskResumeScheduler()
function is called.

Initialization

Active

Suspended

xTaskStartScheduler()

xTaskSuspendScheduler()xTaskResumeScheduler()

SafeRTOS™ User’s Manual

December 9, 2009 21

ESSENTIAL COMPLIANCE INFORMATION

• Interrupts remain enabled while the scheduler is in the Suspended state. Critical regions
implemented using the scheduler suspension mechanism therefore protect the critical data from
access by other tasks, but not by interrupts. It is safe for an interrupt to access a queue or
semaphore while the scheduler is in the Suspended state.

• The xTaskSuspendScheduler() API function places the scheduler into the Suspended state. While
in the Suspended state a switch to another task will never occur. The task executing the critical
region is guaranteed to remain as the task in the Running state until the xTaskResumeScheduler()
function is called. It is still desirable for the scheduler not to be held in the Suspended state for an
extended period as doing so will reduce the responsiveness of high-priority tasks.

Intertask Communication
SAFERTOS provides a queue implementation that permits data to be transferred safely
between tasks. The queue mechanism removes the need for data that is shared between
tasks to be declared globally, or for the application writer to concern themselves with
mutual exclusion primitives when accessing the data.
The queue implementation is flexible and can be used to achieve a number of objectives, including
simple data transfer, synchronization, and semaphore-type behavior.

Queue Characteristics
The queue is implemented as follows:

At any time a queue can contain zero or more items.

The size of each item and the maximum number of items that the queue can hold are
configured when the queue is created.

Items are sent to a queue using the xQueueSend() and xQueueSendFromISR() API
functions.

Items are received from a queue using the xQueueReceive() and
xQueueReceiveFromISR() API functions.

Queues are FIFO buffers – that is, the first item sent to a queue using the xQueueSend()
(or xQueueSendFromISR()) function is the first item retrieved from the queue when using
the xQueueReceive() (or xQueueReceiveFromISR()) function.

Data transferred through a queue is done so by copy – the data is copied byte for byte into the
queue when the data is sent, and then copied byte for byte out of the queue when the data is
subsequently received.

Queue Events
Data being sent to or received from a queue is called a queue event.

When calling the xQueueSend() function, a task can specify a period during which it should be
held in the Blocked state to wait for space to become available on the queue if the queue is
already full. The task is blocking on a queue event and leaves the Blocked state automatically
when another task or interrupt removes an item from the queue.

When calling the xQueueReceive() function, a task can specify a period during which it
should be held in the Blocked state to wait for data to become available from the queue if the
queue is already empty. Again, the task is blocking on a queue event and leaves the Blocked state
automatically when another task or interrupt writes data to the queue.

Chapter 1 - System Overview

22 December 9, 2009

If more than one task is blocked waiting for the same event, then the task unblocked upon the
occurrence of the event is the task that has the highest priority. Where more than one task of the
same priority are blocked waiting for the same event, then the task unblocked upon the occurrence
of the event will be the task that has been in the Blocked state for the longest time.

Data Formatting
The queue sender and receiver must agree on the meaning of the data placed in the queue. This
could be a simple data type, such as a char or long, or a compound data type, such as a structure
containing a number of complex data items. For example, a structure can be used to hold both a
data value and the identity of the task sending the data.

If the amount of data requiring transfer in each item is large, then it may be preferable to queue a
pointer to the data rather than the data itself. This is more efficient as only the pointer value needs
to be copied rather than each byte of the data itself.

ESSENTIAL COMPLIANCE INFORMATION

When data is sent to a queue by copy, then the queue implementation ensures access is consistent
and mutual exclusion primitives are not required when accessing the data. When data is queued by
reference (that is, a pointer to the data is queued rather than the data itself), then each task with
access to the referenced data must agree how consistent and exclusive access is to be achieved.

Using Queues as Binary Semaphores
Semaphores can be used for task to task synchronization, interrupt to task synchronization, and as
a means for a task to signal that it wants to have exclusive access to data or other resources. In
the latter case, while the task has the semaphore, other tasks know they are excluded from
accessing the protected resource.

To be permitted access to the resource, the task must first take the semaphore, and when it has
finished with the resourc, it must give the semaphore back. If it cannot take the semaphore, it
knows the resource is already in use by another task and it must wait for the semaphore to
become available. If a task chooses to enter the Blocked state to wait for a semaphore, it will
automatically be moved back to the Ready state as soon as the semaphore is available.

A binary semaphore can be considered to be a queue that can contain, as a maximum, one item.
For efficiency, the item size can be zero, thus preventing any data from actually being copied into
and out of the queue. The important information is whether or not the queue is empty or full (the
only two available states as it can only contain one item), not the value of the data it contains.

When the resource is available, the queue (representing the semaphore) is full. To take the
semaphore, the task simply receives from the queue which results in the queue being empty. To
give the semaphore, the task simply sends to the queue which results in the queue again being
full. If, when attempting to receive from the queue, it finds the queue is already empty, a task
knows it cannot access the resource and can choose whether or not it wishes to enter the Blocked
state to wait for the resource to become available again.

Code Example 1-4 provides an example semaphore function that creates, takes, and
gives that uses the SAFERTOS queue implementation. See Chapter 3, “API Reference”
on page 29 for more information on the API functions used (xQueueCreate(),
xQueueReceive(), and xQueueSend()). Macros are also provided to hide the
underlying mechanism.

SafeRTOS™ User’s Manual

December 9, 2009 23

Code Example 1-4 Using queues to implement binary semaphores

portBASE_TYPE xSemaphoreCreateBinary(xSemaphoreHandle *xCreatedHandle)
 {
 /* The first two parameters define the memory buffer to be used to hold
 the created semaphore. 1 is the length of the queue being created (1 as
 this is a binary semaphore), 0 is the queue item size.

 pdPASS will be returned if the semaphore is created successfully. */

 return xQueueCreate(pcBuffer, uxBufferLengthBytes, 1, 0, xCreatedHandle);
 }

 portBASE_TYPE xSemaphoreTake(xSemaphoreHandle xSemaphore, portTickTYpe xBlockTime)
 {
 /* The queue item size is zero so we do not need to specify the buffer
 into which the received data will be placed, therefore NULL is passed.

 pdPASS will be returned if the semaphore is successfully 'taken'. */

 return xQueueReceive(xSemaphore, NULL, xBlockTime);
 }

 portBASE_TYPE xSemaphoreGive(xSemaphoreHandle xSemaphore)
 {
 /* The queue item size is zero so we do not need to specify the buffer
 from which the sent data will be retrieved, therefore NULL is passed. */

 return xQueueSend(xSemaphore, NULL, 0);
 }

Counting semaphores can be implemented in a similar way.

Where semaphores are used to control access to a resource, consideration must be given to
whether including a gatekeeper task would provide a neater application solution. A gatekeeper
task is a task that has exclusive access to the kept resource. For example, consider an application
where more than one task wants to write messages to stdout. stdout can be controlled by a
gatekeeper task. When a task wants to display a message, instead of writing to the display directly,
the message is instead sent to the stdout gatekeeper through a queue. The gatekeeper spends
most of its time in the Blocked state on a queue, but is awakened by arriving messages at which
point it removes the message from the queue and writes it to the display before re-entering the
Blocked state. This is shown in Code Example 1-5.

Code Example 1-5 Using a gatekeeper task to control access to a resource

xQueueHandle xPrintQueue;

 int main(void)
 {
 /* Create the gatekeeper queue. Its length is 5 and itemsize equal to sizeof(char
*). */
 xQueueCreate(pcQueueMemory, uxBufferLengthBytes, 5, sizeof(portCHAR *), &xPrint-
QUeue);

 /* Create the gatekeeper task. */
 xTaskCreate(vGateKeeperTask, /* The function to execute.
*/
 "stdout keeper", /* The name of the task. */
 pcStackBuffer1, /* The memory to be used to create the task.
*/
 400, /* The stack size. */

Chapter 1 - System Overview

24 December 9, 2009

 NULL, /* We are not passing in any parameters. */
 2, /* The priority. */
 NULL); /* We are not storing the task handle. */

 /* Create the task that uses stdout. */
 xTaskCreate(vAnotherTask, /* The function to execute.
*/
 "Another task", /* The name of the task. */
 pcStackBuffer2, /* The memory to be used to create the task.
*/
 400, /* The stack size. */
 NULL, /* We are not passing in any parameters. */
 1, /* The priority. */
 NULL); /* We are not storing the task handle. */

 /* Start the scheduler to run the created tasks. */
 xTaskStartScheduler(pdFALSE);

 /* Will not reach here as the scheduler is now running the tasks. */
 return 1;
 }

 /* The gate keeper task implementation. --
-- */
 void vGateKeeperTask(void *pvParameters)
 {
 portCHAR *pcMessage;

 for(;;)
 {
 /* Wait for a message to arrive. */
 xQueueReceive(xPrintQueue, &pcMessage, portMAX_DELAY);

 /* Write the message to stdout. */
 printf("%s", pcMessage);
 }
 }

 /* A task that wants to write to stdout. ---
-- */
 void vAnotherTask(void *pvParameters)
 {
 const portCHAR *pcMessage1 = "Message to display 1\r\n";

 for(;;)
 {
 /* Task code goes here....

 At some point the task wants to write to stdout so generates
 the string to send (in this case its just a constant) and
 sends it to the gatekeeper task. */

 xQueueSend(xPrintQueue, &pcMessage1, 0);

 /* Rest of the task code goes here. */
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 25

Communication between Tasks and Interrupts

ESSENTIAL COMPLIANCE INFORMATION

Interrupt handlers must not under any circumstances call an API function that could cause a task to
block. For this reason the xQueueSend() and xQueueReceive() functions must not be
called from within an ISR, instead, use the xQueueSendFromISR() and
xQueueReceiveFromISR() functions.

The xQueueSendFromISR() and xQueueReceiveFromISR() (interrupt-safe versions of
the xQueueSend() and xQueueReceive()) functions are often used to unblock a task upon
the occurrence on an interrupt (see “Interrupts” on page 25 regarding interrupt management).
However, for better efficiency, do not make multiple calls within a single ISR in order to send or
receive lots of small data items. Instead, multiple data items should be packed into a single object
that can be queued. Alternatively, a simple buffering scheme could be used, followed by a single
call to an API function to unblock the task required to process the buffered data.

Interrupts
In the interest of stack usage predictability and to facilitate system behavioral analysis, interrupt
handlers should only collect event data and clear the interrupt source – and therefore exit promptly
by deferring the processing of the event data to the task level. Task-level processing can be
performed with interrupts enabled. This scenario is shown in Code Example 1-6.

Code Example 1-6 Deferring interrupt processing to the task level

void vISRFunction(void)
 {
 char cData;
 portBASE_TYPE xTaskWoken = pdFALSE;

 /* Read the data input from the peripheral that triggered the interrupt. */
 cData = ReceivedValue;

 /* Send the data to the peripheral handler task. */
 xQueueSendFromISR(xPrintQueue, &cData, &xTaskWoken);

 /* If the peripheral handler task has a priority higher than the interrupted
 task request a switch to the handler task. */
 taskYIELD_FROM_ISR(xTaskWoken);

 /* Clear interrupt here. If taskYIELD_FROM_ISR() was called then the interrupt
 will return directly to the handler task where cData will be processed contiguous
 in time with the ISR exiting. */
 }

 void vPeripheralHandlerTask(void *pvParameters)
 {
 portCHAR *pcMessage;

 for(;;)
 {
 /* Wait for a message to arrive. */
 xQueueReceive(xPrintQueue, &pcMessage, portMAX_DELAY);

 /* Write the message to stdout. */
 printf("%s", pcMessage);

Chapter 1 - System Overview

26 December 9, 2009

 }
 }

This scheme has the added advantage of flexible event processing prioritization as any task
priority can be used. The prioritization of peripheral handler tasks would normally be chosen to be
higher than ordinary tasks within the same application – thereby allowing the interrupt handler to
return directly into the peripheral handler task for immediate processing.

ESSENTIAL COMPLIANCE INFORMATION

• Do not allow interrupt service routines that call API functions to execute prior to the scheduler being
started. The easiest method to ensure this is for interrupts to remain disabled until after the
scheduler is started. Interrupts are automatically enabled when the first task starts executing.

• Do not call API functions from interrupts that have a priority greater than 5 (interrupts with priority 4
to 0).

• Calling an API function while the scheduler is in the Initializing state will result in interrupts
becoming disabled.

• API functions that do not end in “FromISR” or macros that do not end in “FROM_ISR” must not be
used within an interrupt service routine.

December 9, 2009 27

Installation
This chapter describes how to integrate a host application (the application that uses SAFERTOS)
with the SAFERTOS ROM code.

Source Code and Libraries
SAFERTOS is pre-programmed in to the processor ROM. The SAFERTOS API is made
available to a host application by including the SAFERTOS.h header files from within the
host application source files.

Hook Functions
The host application is required to provide three hook (or callback) functions.

vApplicationErrorHook()
vApplicationErrorHook() is called upon the detection of a fatal error – either a corruption
within the scheduler data structures or a potential stack overflow while performing a context
switch. Figure 2-1 shows the prototype for the vApplicationErrorHook() function.

Code Example 2-1 vApplicationErrorHook() Function Prototype

void vApplicationErrorHook(xTaskHandle xCurrentTask, signed portCHAR *pcErrorString,
portBASE_TYPE xErrorCode);

vApplicationErrorHook() enables the host application to perform application-specific
error handling to ensure the system is placed into a safe state.

ESSENTIAL COMPLIANCE INFORMATION

• vApplicationErrorHook() must not return.
• vApplicationErrorHook() is called with interrupts disabled.

vApplicationErrorHook() Parameters
xCurrentTask The handle to the task that was in the Running state when the error

occurred.

pcErrorString A text string related to the error. This may be an error message or the
name of the task that was in the Running state when the error
occurred.

xErrorCode Can take the following values:
• errINVALID_TICK_VALUE
• errINVALID_TASK_SELECTED
• errTASK_STACK_OVERFLOW

vApplicationTaskDeleteHook()
vApplicationTaskDeleteHook() is called when a task is deleted. Its purpose is to inform
the host application that the memory allocated by the application for use by the task is once again

C H A P T E R 2

Chapter 2 - Installation

28 December 9, 2009

free for use for other purposes. Figure 2-1 shows the prototype for the
vApplicationTaskDeleteHook() function.

Code Example 2-2vApplicationTaskDeleteHook() function prototype

void vApplicationTaskDeleteHook(xTaskHandle xDeletedTask);

vApplicationTaskDeleteHook() Parameters
xDeletedTask The handle of the task that was deleted.

vApplicationIdleHook()
vApplicationIdleHook() is called repeatedly by the scheduler idle task to allow
application-specific functionality to be executed within the idle task context. It is common to use
the idle task hook to perform low-priority, application-specific background tasks, or simply put the
processor into a low-power Sleep mode.

vApplicationIdleHook() has the prototype shown in Listing 5.

Code Example 2-3vApplicationIdleHook() function prototype

void vApplicationIdleHook(void);

ESSENTIAL COMPLIANCE INFORMATION

• Code contained within vApplicationIdleHook() must never call an API function that could
result in the idle task entering the blocked state.

• If the vApplicationIdleHook() function is used to place the processor into a low-power
mode, then the mode chosen must not prevent tick interrupts from being serviced.

Configuration
Configuration is performed at run time by calling the vTaskInitializeScheduler() API
function.

ESSENTIAL COMPLIANCE INFORMATION

vTaskInitializeScheduler() must be the first SAFERTOS API function to be called, and
must only be called once.

December 9, 2009 29

API Reference
This chapter provides the SAFERTOS API reference and is divided into the following sections:

Task Functions on page 29

Scheduler Control Functions on page 49

Queue Functions on page 61

All API functions reside in ROM and are made available to the host application through the
inclusion of the SAFERTOS.h header file within the host application C source files. Additional
functionality is provided by macros that are contained within the semphr.h header file.

Task Functions
The following task functions are provided in the SAFERTOS API:

vTaskInitializeScheduler() on page 30

xTaskCreate() on page 32

xTaskDelete() on page 35

xTaskDelay() on page 37

xTaskDelayUntil() on page 39

xTaskPriorityGet() on page 41

xTaskPrioritySet() on page 43

xTaskSuspend() on page 45

xTaskResume() on page 47

C H A P T E R 3

Chapter 3 - API Reference

30 December 9, 2009

vTaskInitializeScheduler()
task.h
void vTaskInitializeScheduler(signed portCHAR *pcInIdleTaskStackBuffer,
 unsigned portLONG ulInIdleTaskStackSizeBytes,
 unsigned portLONG ulAdditionalStackCheckMarginBytes,
 const xPORT_INIT_PARAMETERS * const pxPortInitParameters
);

Summary
Initializes all scheduler private data and passes application-specific configuration data to the
scheduler and portable layer. This removes any reliance on the C startup code to perform this
task.

Parameters
pcInIdleTaskStackBuffer Pointer to the start of (lowest address) the buffer that should be used

to hold the stack of the idle task.

ulInIdleTaskStackSizeBytes The size in bytes of the buffer pointed to by the
pcInIdleTaskStackBuffer parameter. This is effectively the size in
bytes of the idle task stack.

ulAdditionalStackCheckMarginBytes
When moving a task out of the Running state, the task context is
saved onto the task stack. If following the save there remains fewer
than ulAdditionalStackCheckMarginBytes free bytes on the task
stack, the application error hook is called. Therefore, the higher the
ulAdditionalStackCheckMarginBytes value, the more sensitive the
stack overflow checking becomes—zero is a valid value and results in
the least sensitive stack overflow checking.

When a potential stack overflow is detected, the error hook is called
without having actually saved the task context.

pxPortInitParameters Pointer to a structure that contains initialization data. See section
TBD in chapter TBD for details of the xPORT_INIT_PARAMTERS
structure.

Return Values
None.

Notes

ESSENTIAL COMPLIANCE INFORMATION

vTaskInitializeScheduler() must be the first SAFERTOS API function to be called, and
must only be called once.

Example
Code Example 3-1 Using the vTaskInitializeScheduler() API function

/* Allocate a buffer for use by the idle task as its stack. The size required
 will depend on the port and application. */
 static signed portCHAR cIdleTaskStack[mainIDLE_TASK_STACK_DEPTH_BYTES];

SafeRTOS™ User’s Manual

December 9, 2009 31

 int main(void)
 {
 /* Setup a xPORT_INIT_PARAMETERS structure to configure the portable layer. */
const xPORT_INIT_PARAMETERS xPortInit =
 {
 50000000UL, /* ulCPUClockHz */
 1000UL, /* ulTickRateHz */
 prvTaskDeleteHook, /* pxTaskDeleteHook */
 prvErrorHook, /* pxErrorHook */
 prvIdleHook, /* pxIdleHook */
 (void *) *((unsigned portLONG *) 0), /* pulSystemStackLocation */
 200, /* ulSystemStackSizeBytes */
 (unsigned portLONG *) 0, /* pulVectorTableBase */
 };
 /* Setup the hardware. */
 prvSetupHardware();

 /* Initialize the scheduler before calling any other API functions. */
 vTaskInitializeScheduler(cIdleTaskStack, mainIDLE_TASK_STACK_DEPTH_BYTES, 20, &xPortParame-
ters);

 /* Other SafeRTOS API functions can be called from this point on. */

 }

Chapter 3 - API Reference

32 December 9, 2009

xTaskCreate()
task.h
portBASE_TYPE xTaskCreate(pdTASK_CODE pvTaskCode,
 const signed portCHAR * const pcName,
 signed portCHAR * const pcStackBuffer,
 unsigned portLONG ulStackDepthBytes,
 void *pvParameters,
 unsigned portBASE_TYPE uxPriority,
 xTaskHandle *pxCreatedTask
);

Summary
Creates a new task and places it into the Ready state.

Parameters
pvTaskCode Pointer to the function that implements the task.

pcName A descriptive name for the task. This is mainly used to facilitate
debugging. Maximum length is defined by the
configMAX_TASK_NAME_LEN parameter.

pcStackBuffer Pointer to the start of the memory to be used as the task stack. The
stack should be aligned on an 8 byte boundary.

ulStackDepthBytes The size in bytes of the memory pointed to by the pcStackBuffer
pointer. The minimum allowable size for the stack buffer is 136 bytes.

pvParameters Task functions take a void * parameter—the value of which is set by
pvParameters when the task is created.

uxPriority The priority of the task. Can take any value between 0 and
(configMAX_PRIORITIES – 1). The lower the numeric value of the
assigned priority, the lower the relative priority of the task.

pxCreatedTask Used to pass back a handle by which the created task can be
referenced, for example, when changing the priority of the task or
subsequently deleting the task.

Return Values
pdPASS The task was created successfully.

errINVALID_TASK_CODE_POINTER
The pvTaskCode parameter was found to be NULL.

errINVALID_PRIORITY The uxPriority parameter was greater than or equal to
configMAX_PRIORITIES.

errSUPPLIED_BUFFER_TOO_SMALL
ulStackDepthBytes was less than the stated minimum.

errINVALID_BYTE_ALIGNMENT
The alignment of the pcStackBuffer value was not correct for the
target hardware.

errNULL_PARAMETER_SUPPLIED
The value of pcStackBuffer was found to be NULL.

The handle to the created task is returned in the pxCreatedTask parameter.

SafeRTOS™ User’s Manual

December 9, 2009 33

Notes
A task can be created while the scheduler is in the Initialization state, or from another task while
the scheduler is in the Running or Suspended state.

Creating a task while the scheduler is in the Active state can cause the task being created to enter
the Running state prior to the xTaskCreate() function returning. This occurs if the task being
created has a priority higher than the task calling the xTaskCreate() function.

ESSENTIAL COMPLIANCE INFORMATION

• Calling xTaskCreate() while interrupts are disabled does not prevent the task being created
from entering the Running state if it has a higher priority than the task calling xTaskCreate().
The task being created commences execution with interrupts enabled. Interrupts are again disabled
when the task calling xTaskCreate() once again enters the Running state.

• Calling xTaskCreate() while the scheduler is in the Suspended state defers any necessary
context switch until such time that the scheduler re-enters the Active state.

• xTaskCreate() must not be called from an interrupt service routine.

Example
Code Example 3-2 Using the xTaskCreate() API function

/* Define the priority at which the task is to be created. */
 #define TASK_PRIORITY 1

 /* Define the buffer to be used by the tasks stack. */
 #define STACK_SIZE 400
 const portCHAR cTaskStack[STACK_SIZE];

 /* Define a structure used to demonstrate a parameter being passed into a task function. */
 typdef struct A_STRUCT
 {
 char cStructMember1;
 char cStructMember2;
 } xStruct;

 /* Define a variable of the type of the structure just defined. A reference to this
 * variable is passed in as the task parameter. */
 xStruct xParameter = { 1, 2 };

 /* The task being created. */
 void vTaskCode(void * pvParameters)
 {
 xStruct *pxParameters;

 /* Cast the parameter to the expected type. */
 pxParameters = (xStruct *) pvParameters;

 /* The parameter can now be accessed. */
 if(pxParameters->cStructMember1 != 1)
 {
 /* Etc. */
 }

 /* Enter an infinite loop to perform the task processing. */

Chapter 3 - API Reference

34 December 9, 2009

 for(;;)
 {
 // Task code goes here.
 }
 }

 /* Function that creates a task. This could be called while the scheduler was in the
 * Initialization state or from another task while the scheduler was in the Running or
 * Suspended state. */
 void vAnotherFunction(void)
 {
 xTaskHandle xHandle;

 /* Create the task defined by the vTaskCode function, storing the handle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 cTaskStack,
 STACK_SIZE,
 &xParameter, /* Pass in the structure as the task parameter. */
 TASK_PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not successfully created. The return value could have been
 checked to find out why. */
 }
 else
 {
 /* The task was created successfully. If this function is called from a task,
 * the scheduler is in the Active state, and the task just created has a priority
 * higher than the calling task then vTaskCode will have executed before this task
 * reaches this point. */
 }

 /* The handle can now be used in other API functions, for example to change the
 * priroity of the task. */
 if(xTaskPrioritySet(xHandle, 1) != pdPASS)
 {
 /* The priority was not changed. */
 }
 else
 {
 /* The priority was changed. */
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 35

xTaskDelete()
task.h
portBASE_TYPE xTaskDelete(xTaskHandle pxTaskToDelete);

Summary
Deletes the task referenced by the pxTaskToDelete parameter.

Parameters
pxTaskToDelete The handle of the task to be deleted.

The handle to a task is obtained via the pxCreatedTask parameter to
the xTaskCreate() API function when the task is created.

A task can delete itself by passing NULL as the pxTaskToDelete
parameter.

Return Values
pdPASS The task was successfully deleted.

errINVALID_TASK_HANDLE
The pxTaskToDelete parameter was not found to reference a valid
task.

Notes
Deleting a task causes the task delete hook function to be called (see
“vApplicationTaskDeleteHook()” on page 27). This lets the host application know that the memory
that was used by the task is now free for reuse.

The handle of the deleted task is invalidated and cannot therefore, be used in further API function
calls. Attempting to do so results in the API function returning an error.

ESSENTIAL COMPLIANCE INFORMATION

• xTaskDelete() must not be called while the scheduler is in the Initialization state (prior to the
scheduler being started).

• xTaskDelete() must not be called to delete the calling task while the scheduler is in the
Suspended state. While the scheduler is suspended, a switch away from the task being deleted
cannot be performed.

• xTaskDelete() must not be called from an interrupt service routine.
• xTaskDelete() must not be used to delete the idle task unless at least one other task has

been created that is guaranteed never to enter the Blocked or Suspended state.
• Once a task has been deleted, the memory allocated for use as the task stack can be reused. If the

same memory buffer is passed into another call to xTaskCreate() (to create a new task) then
the handle of the deleted task and the handle of the newly created task are identical.

Example
Code Example 3-3 Using the xTaskDelete() API function

void vAnotherFunction(void)
 {
 xTaskHandle xHandle;

Chapter 3 - API Reference

36 December 9, 2009

 /* Create a task, storing the handle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 cTaskStack,
 STACK_SIZE,
 NULL,
 TASK_PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. The return value could have
 * been checked to find out why. */
 }
 else
 {
 /* Use the handle obtained when the task was created to delete the task. */
 if(xTaskDelete(xHandle) != pdPASS)
 {
 /* The task could not be deleted. The return value could have been
 * checked to find out why. */
 }
 else
 {
 /* The task was deleted and execution will never reach here. */
 }
 }

 /* Delete ourselves. */
 xTaskDelete(NULL);
 }

SafeRTOS™ User’s Manual

December 9, 2009 37

xTaskDelay()
task.h
portBASE_TYPE xTaskDelay(portTickType xTicksToDelay);

Summary
Places the calling task into the Blocked state for a fixed number of tick periods. The task then
delays for the requested number of ticks before transitioning back into the Ready state.

Parameters
xTicksToDelay The number of ticks for which the calling task should be held in the

Blocked state.

Return Values
pdPASS The calling task was held in the Blocked state for the specified

number of ticks.

errSCHEDULER_IS_SUSPENDED
The scheduler was in the Suspended state when xTaskDelay()
was called. The scheduler cannot select a different task to enter the
Running state when it is suspended and therefore, is unable to
transition the calling task into the Blocked state.

Notes
The actual time between a task calling xTaskDelay() to enter the Blocked state, and then
subsequently being moved back to the Ready state, can only be specified to the available time
resolution. If xTaskDelay() is called a fraction of a tick period prior to the next tick increment,
then this fraction counts as one of the tick periods for which the task is held in the Blocked state.

Specifying a delay period of 0 ticks does not cause the task to enter the Blocked state, but does
cause the task to yield. It has the same effect as calling the taskYIELD() API function.

ESSENTIAL COMPLIANCE INFORMATION

• xTaskDelay() must only be called from an executing task and therefore, must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

• xTaskDelay() must not be called from within an interrupt service routine.
• Calling xTaskDelay() while interrupts are disabled does not prevent the task from entering the

Blocked state and a different task being selected as the task to enter the Running state. Each task
maintains its own interrupt state and therefore, the task entering the Running state could have
interrupts enabled. Interrupts would once again be disabled when the task calling
xTaskDelay() re-enters the Running state.

Example
Code Example 3-4 Using the xTaskDelay() API function

void vAnotherTask(void * pvParameters)
 {
 for(;;)
 {
 /* Perform some processing here. */

 /* Delay for a fixed period. */

Chapter 3 - API Reference

38 December 9, 2009

 if(xTaskDelay(20) == pdPASS)
 {
 /* The scheduler was not suspended. */
 }

 /* 20 ticks will have passed since calling xTaskDelay() prior to reaching here. */
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 39

xTaskDelayUntil()
task.h
portBASE_TYPE xTaskDelayUntil(portTickType *pxPreviousWakeTime, portTickType xTimeIncrement);

Summary
Places the calling task into the Blocked state until an absolute time is reached.

Differences between xTaskDelay() and xTaskDelayUntil()
xTaskDelay() causes the calling task to enter the Blocked state for the specified number of
ticks from the time xTaskDelay() is called. Therefore, xTaskDelay() specifies a delay
period relative to the time at which the function is called. xTaskDelayUntil() instead
specifies the absolute (exact) time at which it wants to re-enter the Ready state.

xTaskDelayUntil() can be used by cyclical tasks to ensure a constant execution frequency.
It is difficult to use xTaskDelay() for this purpose as the time taken between cycles of the task
are fixed (the task may take a different path though the code between calls, or may get interrupted
or pre-empted a different number of times each time it executes) making it impossible to specify a
relative delay period with any accuracy.

Parameters
pxPreviousWakeTime Pointer to a variable that holds the time at which the task was last

unblocked. The variable must be initialized with the current time prior
to its first use (see the example below). Following this, the variable is
automatically updated within xTaskDelayUntil().

xTimeIncrement The cycle time period. The task is unblocked at time
(*pxPreviousWakeTime + xTimeIncrement).

Return Values
pdPASS The calling task was held in the Blocked state until the specified time.

errSCHEDULER_IS_SUSPENDED
The scheduler is in the Suspended state when
xTaskDelayUntil() is called. The scheduler cannot select a
different task to enter the Running state when it is suspended and
therefore, is unable to transition the calling task into the Blocked
state.

errDID_NOT_YIELD The parameters passed into the function are valid, but the time at
which the task specified that it should re-enter the Ready state has
already passed.

The task did not enter the Blocked state and a yield was not
performed.

Chapter 3 - API Reference

40 December 9, 2009

Notes

ESSENTIAL COMPLIANCE INFORMATION

• xTaskDelayUntil() must only be called from an executing task and therefore, must not be
called while the scheduler is in the Initialization state (prior to the scheduler being started).

• xTaskDelayUntil() must not be called from within an interrupt service routine.
• Calling xTaskDelayUntil() while interrupts are disabled does not prevent the task from

entering the Blocked state and a different task being selected as the task to enter the Running
state. Each task maintains its own interrupt state and therefore, the task entering the Running state
could have interrupts enabled. Interrupts are once again be disabled when the task calling
xTaskDelayUntil() re-enters the Running state.

Example
Code Example 3-5 Using the xTaskDelayUntil() API function

/* A function that performs an action every 50 ticks. */
void vCyclicTaskFunction(void * pvParameters)
{
portTickType xLastWakeTime;
const portTickType xFrequency = 50;

 /* Initialize the xLastWakeTime variable with the current time. */
 xLastWakeTime = xTaskGetTickCount();

 /* Enter the loop that defines the task behavior. */
 for(;;)
 {
 /* Wait for the next cycle. */
 if(xTaskDelayUntil(&xLastWakeTime, xFrequency) == errDID_NOT_YIELD)
 {
 /* The scheduler is not suspended so it must have taken longer than 50
 * ticks to perform a cycle of this task. */
 }

 /* Perform task action here. This code will be executed every 50 ticks.
 *
 * xLastWakeTime is automatically updated by the xTaskDelayUntil() function
 * so need not be modified once it has been initialized. */
 }
}

SafeRTOS™ User’s Manual

December 9, 2009 41

xTaskPriorityGet()
task.h
portBASE_TYPE xTaskPriorityGet(xTaskHandle pxTask, unsigned portBASE_TYPE *puxPriority);

Summary
Queries the priority of a task.

Parameters
pxTask The handle of the task being queried.

The handle to a task is obtained via the pxCreatedTask parameter to
the xTaskCreate() API function when the task is created.

A task may query its own priority by passing NULL as the pxTask
parameter.

puxPriority Pointer to the variable that sets the priority of the task being queried.

Return Values
pdPASS *puxPriority is set to the priority of the task being queried.

errNULL_PARAMETER_SUPPLIED
puxPriority is NULL.

errINVALID_TASK_HANDLE
pxTask is not a valid task handle.

Notes

ESSENTIAL COMPLIANCE INFORMATION

xTaskPriorityGet() must not be called from within an interrupt service routine.

Example
Code Example 3-6 Using the xTaskPriorityGet() API function

void vAFunction(void)
 {
 xTaskHandle xHandle;
 unsigned portBASE_TYPE uxCreatedPriority, uxOurPriority;

 /* Create a task, storing the handle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 cTaskStack,
 STACK_SIZE,
 NULL,
 TASK_PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. The return value
 * could have been checked to find out why. */
 }
 else

Chapter 3 - API Reference

42 December 9, 2009

 {
 /* Use the handle to query the priority of the created task. */
 if(xTaskPriorityGet(xHandle, &uxCreatedPriority) != pdPASS)
 {
 /* Could not obtain the task priority. The return value could have been
 * checked to find out why. */
 }

 /* Query our own priority. */
 if(xTaskPriorityGet(NULL, &uxOurPriority) != pdPASS)
 {
 /* Could not obtain our own priority - should never get here when using NULL. */
 }

 /* Is our priority higher than the priority of the task just created? */
 if(uxOurPriority > uxCreatedPriority)
 {
 /* Yes. */
 }
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 43

xTaskPrioritySet()
task.h
portBASE_TYPE xTaskPrioritySet(xTaskHandle pxTask, unsigned portBASE_TYPE uxNewPriority);

Summary
Changes the priority of a task.

Parameters
pxTask The handle of the task being modified.

The handle to a task is obtained via the pxCreatedTask parameter to
the xTaskCreate() API function when the task is created.

A task may change its own priority by passing NULL as the pxTask
parameter.

uxNewPriority The priority to which the task identified by the pxTask parameter
should be set.

Return Values
pdPASS The priority of the task was changed.

errINVALID_TASK_HANDLE
pxTask is not a valid task handle.

errINVALID_PRIORITY The value of uxNewPriority is greater than the highest available task
priority (configMAX_PRIORITIES – 1).

Notes

ESSENTIAL COMPLIANCE INFORMATION

• xTaskPrioritySet() must not be called from within an interrupt service routine.
• xTaskPrioritySet() must only be called from an executing task and therefore, must not be

called while the scheduler is in the Initialization state (prior to the scheduler being started).
• Do not use the xTaskPrioritySet() API function to modify the priority of the idle task. The

idle task never enters the Blocked or Suspended state and completely starves lower priority tasks of
execution time if its priority is not the lowest (or equal to the lowest) priority in the application.

• It is possible for more than one task to be in the Blocked state while waiting for an event to occur
on the same queue. When this is the case, the set of tasks that are waiting for the same event are
referenced in priority order. When the queue event occurs, it is the task that is referenced first that
is moved out of the Blocked state and into the Ready state – thus ensuring (due to the priority
ordering) that it is the highest priority task that is unblocked. Using xTaskPrioritySet() to
change the priority of a task that is one of a set of tasks blocked to wait for an event does not force
the series in which the tasks are referenced to be reordered. This could lead to a queue event
transitioning a task into the Ready state when there is a task of higher priority waiting for the same
event.

• Calling xTaskPrioritySet() can result in a context switch being performed. Each task
maintains its own interrupt state, therefore calling xTaskPrioritySet() while interrupts are
disabled could cause a context switch to a task that has interrupts enabled. Interrupts would once
again be disabled when the task calling xTaskPrioritySet() next entered the Running
state.

Chapter 3 - API Reference

44 December 9, 2009

ESSENTIAL COMPLIANCE INFORMATION (CONTINUED)
• Calling xTaskPrioritySet() while the scheduler is in the Suspended state defers any

necessary context switch until such time that the scheduler re-enters the Active state.

Example
Code Example 3-7 Using the xTaskPrioritySet() API function

void vAFunction(void)
 {
 xTaskHandle xHandle;

 /* Create a task, storing the handle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 cTaskStack,
 STACK_SIZE,
 NULL,
 TASK_PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. The return value could
 * have been checked to find out why. */
 }
 else
 {
 /* Use the handle to raise the priority of the created task. */
 vTaskPrioritySet(xHandle, TASK_PRIORITY + 1);

 /* Use a NULL handle to modify our own priority. */
 vTaskPrioritySet(NULL, 1);
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 45

xTaskSuspend()
task.h
portBASE_TYPE xTaskSuspend(xTaskHandle pxTaskToSuspend);

Summary
Places a task into the Suspended state.

Parameters
pxTaskToSuspend The handle of the task being suspended.

The handle to a task is obtained via the pxCreatedTask parameter to
the xTaskCreate() API function when the task is created.

A task can suspend itself by passing NULL as the pxTaskToSuspend
parameter.

Return Values
pdPASS The task was successfully suspended.

errSCHEDULER_IS_SUSPENDED
The scheduler was in the Suspended state when
xTaskSuspend() was called. The scheduler cannot select a
different task to enter the Running state when it is suspended and
therefore, is unable to select a new task to run if a task suspends
itself.

errINVALID_TASK_HANDLE
pxTaskToSuspend is not a valid task handle.

errTASK_ALREADY_SUSPENDED
The task referenced by the pxTaskToSuspend handle was already in
the Suspended state.

Notes

ESSENTIAL COMPLIANCE INFORMATION

• xTaskSuspend() must not be called from within an interrupt service routine.
• xTaskSuspend() must only be called from an executing task and therefore, must not be called

while the scheduler is in the Initialization state (prior to the scheduler being started).
• xTaskSuspend() must not be used to suspend the idle task unless at least one other task has

been created that is guaranteed never to enter the Blocked or Suspended state.
• Calling xTaskSuspend() can result in a context switch being performed. Each task maintains

its own interrupt state, therefore calling xTaskSuspend() while interrupts are disabled could
cause a context switch to a task that has interrupts enabled. Interrupts are once again disabled
when the task calling xTaskSuspend() next enters the Running state.

Example
Code Example 3-8 Using the xTaskSuspend() API function

void vAFunction(void)
 {

Chapter 3 - API Reference

46 December 9, 2009

 xTaskHandle xHandle;

 /* Create a task, storing the handle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 cTaskStack,
 STACK_SIZE,
 NULL,
 TASK_PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. The return value could have been
 * checked to find out why. */
 }
 else
 {
 /* Use the handle to suspend the created task. */
 if(xTaskSuspend(xHandle) != pdPASS)
 {
 /* Could not suspend the task. The return value could have been checked to
 * find out why. */
 }

 /* The created task will not run during this period, unless another task calls
 * xTaskResume(xHandle). */

 /* Suspend ourselves. */
 xTaskSuspend(NULL);

 /* We cannot reach here unless another task calls xTaskResume() with the handle
 * to the task from which this function was called as the parameter. */
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 47

xTaskResume()
task.h
portBASE_TYPE xTaskResume(xTaskHandle pxTaskToResume);

Summary
Transitions a task from the Suspended state to the Ready state. The task must have previously
been suspended using a call to xTaskSuspend().

Parameters
pxTaskToResume The handle of the task being resumed (transitioned out of the

Suspended state).

The handle to a task is obtained via the pxCreatedTask parameter to
the xTaskCreate() API function when the task is created.

Return Values
pdPASS The task was successfully resumed (transitioned out of the

Suspended state).

errNULL_PARAMETER_SUPPLIED
pxTaskToResume is NULL.

errINVALID_TASK_HANDLE
pxTaskToResume is not a valid task handle (and not NULL).

errTASK_WAS_NOT_SUSPENDED
The task referenced by the pxTaskToResume handle was not in the
Suspended state.

Notes
A task can block to wait for a queue event, specifying a timeout period. It is legitimate to move
such a Blocked task into the Suspended state using a call to xTaskSuspend(), then out of the
Suspended state and into the Ready state using a call to xTaskResume(). Following this
scenario, the next time the task enters the Running state, it checks whether its timeout period has
expired in the meantime. If the timeout period has not expired, the task once again enters the
Blocked state to wait for the queue event for the remainder of the originally specified timeout
period.

A task can also block to wait for a temporal event using the xTaskDelay() or
xTaskDelayUntil() API functions. It is legitimate to move such a Blocked task into the
Suspended state using a call to xTaskSuspend(), then out of the Suspended state and into the
Ready state using a call to xTaskResume(). Following this scenario, the next time the task
enters the Running state, it exits the xTaskDelay() or xTaskDelayUntil() function as if
the specified delay period had expired, even if this is not actually the case.

Chapter 3 - API Reference

48 December 9, 2009

ESSENTIAL COMPLIANCE INFORMATION

• xTaskResume() must not be called from within an interrupt service routine.
• xTaskResume() must only be called from an executing task and therefore, must not be called

while the scheduler is in the Initialization state (prior to the scheduler being started).
• Calling xTaskResume() can result in a context switch being performed. Each task maintains its

own interrupt state, therefore calling xTaskResume() while interrupts are disabled could cause
a context switch to a task that has interrupts enabled. Interrupts are once again disabled when the
task calling xTaskResume() next enters the Running state.

• Calling xTaskResume() while the scheduler is in the Suspended state defers any necessary
context switch until such time that the scheduler re-enters the Active state.

Example
Code Example 3-9 Using the xTaskResume() API function

void vAFunction(void)
 {
 xTaskHandle xHandle;

 /* Create a task, storing the handle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 cTaskStack,
 STACK_SIZE,
 NULL,
 TASK_PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. The return value could have been checked
 * to find out why. */
 }
 else
 {

 /* Use the handle to suspend the created task. The return value should be checked to
 * ensure the task is successfully suspended. */
 xTaskSuspend(xHandle);

 /* The suspended task will not run during this period, unless another task calls
 * xTaskResume(xHandle). */

 /* Resume the suspended task again. */
 if(xTaskResume(xHandle) != pdPASS)
 {
 /* Could not resume the task. The return value could have been checked to find
 * out why. */
 }

 /* The created task is again available to the scheduler. */
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 49

Scheduler Control Functions
The following Schedule Control functions are included in the SAFERTOS API:

xTaskStartScheduler() on page 50

vTaskSuspendScheduler() on page 51

xTaskResumeScheduler() on page 53

xTaskGetTickCount() on page 54

taskYIELD() on page 55

taskYIELD_FROM_ISR() on page 56

taskENTER_CRITICAL() on page 57

taskEXIT_CRITICAL() on page 59

Chapter 3 - API Reference

50 December 9, 2009

xTaskStartScheduler()
task.h
portBASE_TYPE xTaskStartScheduler(portBASE_TYPE xUseKernelConfigurationCheck);

Summary
Starts the scheduler by transitioning the scheduler from the Initialization state into the Active state.

Starting the scheduler causes the highest priority task that was created while the scheduler was in
the Initialization state to enter the Running state.

Parameters
xUseKernelConfigurationCheck

A Boolean which indicates whether the kernel configuration
parameters should be checked.

Return Values
errNO_TASKS_CREATED A task was not created prior to calling

xTaskStartScheduler().

errSCHEDULER_ALREADY_RUNNING
The scheduler is already in the Active state.

errCOULD_NOT_START_IDLE_TASK
The scheduler could not be started as an error was encountered
while creating the idle task.

The xTaskStartScheduler() API function does not return if the scheduler starts
successfully.

Notes

ESSENTIAL COMPLIANCE INFORMATION

• xTaskStartScheduler() must not be called from within an interrupt service routine.
• See Chapter 4, “Stellaris® ARM® Cortex™-M3 Processor Core Port-Specific Information,” for

details of the architecture-specific requirements that must be fulfilled before calling
xTaskStartScheduler() (for example, the processor mode from which the function can be
called).

Example
See Code Example 1-5, “Using a gatekeeper task to control access to a resource” on page 23.

SafeRTOS™ User’s Manual

December 9, 2009 51

vTaskSuspendScheduler()
task.h
void vTaskSuspendScheduler(void);

Summary
Transitions the scheduler from the Active state to the Suspended state.

A context switch will not occur while the scheduler is in the Suspended state but instead be held
pending until the scheduler re-enters the Active state.

Parameters
None.

Return Values
None.

Notes
Suspending the scheduler allows a task to execute without the risk of interference from other
tasks.

Calls to vTaskSuspendScheduler() can be nested. The same number of calls must be
made to xTaskResumeScheduler() as were previously made to
vTaskSuspendScheduler() before the scheduler leaves the Suspended state and re-enters
the Active state.

ESSENTIAL COMPLIANCE INFORMATION

• vTaskSuspendScheduler() must not be called from an interrupt service routine.
• Interrupts remain enabled while the scheduler is suspended.
• The tick count value will not increase while scheduler is in the Suspended state (although tick

interrupts are not missed).
• vTaskSuspendScheduler() must only be called from an executing task and therefore, must

not be called while the scheduler is in the Initialization state (prior to the scheduler being started).
• The count of nested calls to vTaskSuspendScheduler() will overflow if it reaches the

0xffffffff (the maximum unsigned 32bit value).

Example
Code Example 3-10 Using the vTaskSuspendScheduler() and xTaskResumeScheduler() API functions

/* A function that suspends then resumes the scheduler. */
 void vDemoFunction(void)
 {
 /* This function suspends the scheduler. When it is called from
 * vTask1 the scheduler is already suspended, so this call creates a
 * nesting depth of 2. */
 vTaskSuspendScheduler();

 /* Perform an action here. */

 /* As calls to vTaskSuspendScheduler() are nested resuming the scheduler
 * does not cause the scheduler to re-enter the active state at this time. */
 xTaskResumeScheduler();
 }

Chapter 3 - API Reference

52 December 9, 2009

 void vTask1(void * pvParameters)
 {
 for(;;)
 {
 /* Perform some actions here. */

 /* At some point the task wants to perform a long operation during
 * which it does not want to get swapped out, or it wants to access data
 * which is also accessed from another task (but not from an interrupt).
 * It cannot use taskENTER_CRITICAL()/taskEXIT_CRITICAL() as the
 * length of the operation may cause interrupts to be missed */

 /* Prevent the scheduler from performing a context switch. */
 vTaskSuspendScheduler();

 /* Perform the operation here. There is no need to use critical
 * sections as the task has all the processing time other than that
 * utilized by interrupt service routines.*/

 /* Calls to vTaskSuspendScheduler can be nested so it is safe to
 * call a function which also calls vTaskSuspendScheduler. */
 vDemoFunction();

 /* The operation is complete. Set the scheduler back into the Active
 * state. */
 if(xTaskResumeScheduler() == pdTRUE)
 {
 /* A context switch occurred as we resumed the scheduler. */
 }
 else
 {
 /* A context switch did not occur as we resumed the scheduler.
 * Maybe we want to perform one here? */
 taskYIELD();
 }
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 53

xTaskResumeScheduler()
task.h
portBASE_TYPE xTaskResumeScheduler(void);

Summary
Transitions the scheduler out of the Suspended state and into the Active state.

Parameters
None.

Return Values
pdTRUE The scheduler was transitioned into the Active state. The transition

caused a pending context switch to occur.

pdFALSE Either the scheduler was transitioned into the Active state and the
transition did not cause a context switch to occur, or the scheduler
was left in the Suspended state due to nested calls to
vTaskSuspendScheduler().

errSCHEDULER_WAS_NOT_SUSPENDED
The scheduler was not in the Suspended state.

Notes
Calls to xTaskResumeScheduler() transition the scheduler out of the Suspended state
following a previous call to vTaskSuspendScheduler().

Calls to vTaskSuspendScheduler() can be nested.

The same number of calls must be made to xTaskResumeScheduler() as were
previously made to vTaskSuspendScheduler() before the scheduler will leave the
Suspended state and re-enter the Active state.

ESSENTIAL COMPLIANCE INFORMATION

• xTaskResumeScheduler() must not be called from within an interrupt service routine.
• xTaskResumeScheduler() must only be called from an executing task and therefore, must

not be called while the scheduler is in the Initialization state (prior to the scheduler being started).
• Calling xTaskResumeScheduler() can result in a context switch being performed. Each task

maintains its own interrupt state therefore, calling xTaskResumeScheduler() while interrupts
are disabled could cause a context switch to a task that has interrupts enabled. Interrupts are once
again disabled when the task calling xTaskResumeScheduler() next enters the Running
state.

Example
See Code Example 3-10, “Using the vTaskSuspendScheduler() and xTaskResumeScheduler()
API functions” on page 51

Chapter 3 - API Reference

54 December 9, 2009

xTaskGetTickCount()
task.h
portTickType xTaskGetTickCount(void);

Summary
Returns the current tick value.

Parameters
None.

Return Values
xTaskGetTickCount() always returns the current tick count value.

Notes
Time is measured in ticks. xTaskGetTickCount() effectively returns the time since the
scheduler was started.

ESSENTIAL COMPLIANCE INFORMATION

• xTaskGetTickCount() must not be called from an interrupt service routine.
• The tick value will eventually overflow, returning to zero. The frequency at which this occurs is

dependent both on the type chosen to hold the tick value (See Table 1-4 on page 17 for information
about portTickType) and the frequency of the tick interrupt.

• xTaskGetTickCount() will always return zero prior to a successful call to xTaskStartScheduler().

Example
Code Example 3-11 Using the xTaskGetTickCount() API function

void vAFunction(void)
 {
 portTickType xTime1, xTime2, xExecutionTime

 /* Get the time when the function started. */
 xTime1 = xTaskGetTickCount();

 /* Perform some operation. */

 /* Get the time following the execution of the operation. */
 xTime2 = xTaskGetTickCount();

 /* Approximately how long did the operation take? */
 xExectutionTime = xTime2 – xTime1;
 }

SafeRTOS™ User’s Manual

December 9, 2009 55

taskYIELD()
task.h
Macro: taskYIELD()

Summary
Yielding is where a task volunteers to leave the Running state by re-entering the Ready state
before using all of its time slice. For more information, see “Yielding” on page 19.

Parameters
None.

Return Values
None.

Notes

ESSENTIAL COMPLIANCE INFORMATION

• taskYIELD() must only be called from an executing task and therefore, must not be called while
the scheduler is in the Initialization state (prior to the scheduler being started).

• Calling taskYIELD() while the scheduler is suspended will not result in a yield being performed
until such a time that the scheduler re-enters the Active state. The yield is held pending.

• taskYIELD() must not be called from an interrupt service routine.
• Each task maintains its own interrupt status. Yielding when interrupts are disabled could cause a

context switch to a task that has interrupts enabled. Interrupts would once again be disabled when
the task calling taskYIELD() next enters the Running state.

Example
Code Example 3-12 Using the taskYIELD() API function

void vATask(void * pvParameters)
 {
 for(;;)
 {
 /* Perform some actions. */

 /* We are not desperate for processing time now. If there are any tasks of
 * equal priority to this task that are in the Ready state then let them execute
 * now even though we have not used all of our time slice. */
 taskYIELD();

 /* If there were any tasks of equal priority to this task in the Ready state
 * then they will have executed before we reach here. If there were no other
 * tasks of equal priority in the Ready state we would have just continued.
 *
 * There will not be any tasks of higher priority that are in the Ready state as
 * if there were this task would not be in the Running state in the first place. */
 }
 }

Chapter 3 - API Reference

56 December 9, 2009

taskYIELD_FROM_ISR()
task.h
Macro: taskYIELD_FROM_ISR(xSwitchRequired)

Summary
A version of taskYIELD() that can be called from within an interrupt service routine.

Parameters
xSwitchRequired Set to zero if a context switch is not required, or a non-zero value if a

context switch is required.

Return Values
None.

Notes
Calling either xQueueSendFromISR() or xQueueReceiveFromISR() within an interrupt
service routine can potentially cause a task to leave the Blocked state which then necessitates a
context switch if the unblocked task has a higher priority than the interrupted task.

A context switch is performed transparently (within the API functions) when either xQueueSend()
or xQueueReceive() cause a task of higher priority than the calling task to exit the Blocked
state. This behavior is desirable from a task, but not from an interrupt service routine. Therefore,
xQueueSendFromISR() and xQueueReceiveFromISR(), rather than performing the
context switch themselves, instead return a value indicative of whether a context switch is
required. If a context switch is required, the application writer can use
taskYIELD_FROM_ISR() to perform the context switch at the most appropriate time, normally
at the end of the interrupt handler.

See “xQueueSendFromISR()” on page 69 and “xQueueReceiveFromISR()” on page 71 which
describe the xQueueSendFromISR() and xQueueReceiveFromISR() functions
respectively for more information.

ESSENTIAL COMPLIANCE INFORMATION

• taskYIELD_FROM_ISR() must only be called from within an interrupt service routine.
• Interrupt service routines that call taskYIELD_FROM_ISR() must not be permitted to execute prior

to the scheduler being started.

Example
See Code Example 1-6, “Deferring interrupt processing to the task level” on page 25,
Code Example 3-18, “Using the xQueueSendFromISR() API function” on page 70, and
Code Example 3-19, “Using the xQueueReceiveFromISR() API function” on page 72.

SafeRTOS™ User’s Manual

December 9, 2009 57

taskENTER_CRITICAL()
task.h
Macro: taskENTER_CRITICAL()

Summary
Critical sections are entered by calling taskENTER_CRITICAL() and exited by calling
taskEXIT_CRITICAL(). Entering a critical section disables interrupts that have been
assigned a priority of 5 or below (that is interrupts with priorities 5, 6 and 7). Exiting a critical
section will enable all interrupt priority levels (assuming the nesting count is zero).

Preemptive context switches can only occur from within an interrupt or priority 7, so as long as
tasks remain disabled at priority 5 and below, the task that called taskENTER_CRITICAL() is
guaranteed to remain in the Running state until the critical section is exited.

It is safe for critical sections to become nested because the kernel keeps a count of the nesting
depth. The critical section is only exited when the nesting depth returns to zero – which is when
one call to taskEXIT_CRITICAL() has been executed for every preceding call to
taskENTER_CRITICAL().

Critical sections must be kept short, otherwise, they will adversely affect interrupt response times.
Every call to taskENTER_CRITICAL() must be closely paired with a call to
taskEXIT_CRITICAL().

SAFERTOS API functions should not be called from within a critical section.

For more information on interrupts see “Interrupts” on page 75 in Chapter 4, “Stellaris® ARM®
Cortex™-M3 Processor Core Port-Specific Information.”

Parameters
None.

Return Values
None.

Notes
Calls to taskENTER_CRITICAL() can be nested. The same number of calls must be made to
taskEXIT_CRITICAL() as have previously been made to taskENTER_CRITICAL()
before the critical region is exited and interrupts are enabled.

The longer a critical region takes to execute, the less responsive the application will be to
interrupts. Therefore, all calls to taskENTER_CRITICAL() should be closely followed by a
matching call to taskEXIT_CRITICAL().

Each call to taskENTER_CRTICAL() must have a corresponding call to
taskEXIT_CRITICAL().

Chapter 3 - API Reference

58 December 9, 2009

ESSENTIAL COMPLIANCE INFORMATION

• taskENTER_CRITICAL() must not be called from an interrupt service routine.
• Critical sections implemented using the taskENTER_CRITICAL() and taskEXIT_CRITICAL()

macros must be kept short in order that the system responsiveness to interrupts is maintained. The
actual acceptable length is application-dependent.

• Calling taskENTER_CRITICAL() and taskEXIT_CRITICAL() should be the only method used
to disable and enable interrupts respectively.

• API functions must not be called from within a critical section.
• The count of nested calls to taskENTER_CRITICAL() will eventually overflow – with the maximum

value that can be held in the type defined as portBASE_TYPE being the maximum nesting count
that can be maintained.

Example
Code Example 3-13 Using the taskENTER_CRITICAL() and taskEXIT_CRITICAL() macros

/* A function that also uses a critical region. */
 void vDemoFunction(void)
 {
 /* This function uses taskENTER_CRITICAL() to implement a critical region.
 * It is itself called from within a critical region within vTask1, so this
 * call creates a nesting depth of 2. */
 taskENTER_CRITICAL();

 /* Perform an action here. */

 /* As calls to taskENTER_CRITICAL() are nested this call does not result in
 * interrupts being enabled. */
 taskEXIT_CRITICAL();
 }

 void vTask1(void * pvParameters)
 {
 for(;;)
 {
 /* Perform some actions here. */

 /* At some point the task wants to perform an operation within a critical
 * region so calls taskENTER_CRITICAL() to disable interrupts. */

 taskENTER_CRITICAL();

 /* Perform the operation here. This part of the code must be kept
 * short as interrupts cannot execute. */

 /* Calls to taskENTER_CRITICAL() can be nested so it is safe to
 * call a function which also calls taskENTER_CRITICAL. */
 vDemoFunction();

 /* The operation is complete. Exit the critical region. */
 taskEXIT_CRITICAL();
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 59

taskEXIT_CRITICAL()
task.h
Macro: taskEXIT_CRITICAL()

Summary
Critical sections are exited by calling taskEXIT_CRITICAL().

Preemptive context switches can only occur from within an interrupt of priority 7, so as long as
tasks remain within a critical section, the task is guaranteed to remain in the Running state until
taskEXIT_CRITICAL() is called.

It is safe for critical sections to become nested because the kernel keeps a count of the nesting
depth. The critical section is exited only when the nesting depth returns to zero – which is when
one call to taskEXIT_CRITICAL() has been executed for every preceding call to
taskENTER_CRITICAL().

Critical sections must be kept very short otherwise they will adversely affect interrupt response
times. Every call to taskENTER_CRITICAL() must be closely paired with a call to
taskEXIT_CRITICAL().

SAFERTOS API functions should not be called from within a critical section.

For more information on interrupts see “Interrupts” on page 75 in Chapter 4, “Stellaris® ARM®
Cortex™-M3 Processor Core Port-Specific Information.”

Parameters
None.

Return Values
None.

Notes
Calls to taskENTER_CRITICAL() can be nested. The same number of calls must be made to
taskEXIT_CRITICAL() as have previously been made to taskENTER_CRITICAL()
before the critical region is exited and interrupts are enabled.

The longer a critical region takes to execute, the less responsive the application is to interrupts.
Therefore, all calls to taskENTER_CRITICAL() should be closely followed by a matching call
to taskEXIT_CRITICAL().

Each call to taskENTER_CRTICAL() must have a corresponding call to
taskEXIT_CRITICAL().

ESSENTIAL COMPLIANCE INFORMATION

• taskEXIT_CRITICAL() must not be called from an interrupt service routine.
• Critical sections implemented using the taskENTER_CRITICAL() and taskEXIT_CRITICAL()

macros must be kept short in order that the system responsiveness to interrupts is maintained. The
actual acceptable length is application dependent.

• Calling taskENTER_CRITICAL() and taskEXIT_CRITICAL() should be the only method used
to disable and enable interrupts respectively.

• API functions must not be called from within a critical section.

Chapter 3 - API Reference

60 December 9, 2009

Example
See Code Example 3-13, “Using the taskENTER_CRITICAL() and taskEXIT_CRITICAL() macros” on
page 58.

SafeRTOS™ User’s Manual

December 9, 2009 61

Queue Functions
The following Queue functions are available in the SAFERTOS API:

xQueueCreate() on page 62

xQueueSend() on page 64

xQueueReceive() on page 66

xQueueMessagesWaiting() on page 68

xQueueSendFromISR() on page 69

xQueueReceiveFromISR() on page 71

Chapter 3 - API Reference

62 December 9, 2009

xQueueCreate()
queue.h
portBASE_TYPE xQueueCreate(signed portCHAR *pcQueueMemory,
 unsigned portBASE_TYPE uxBufferLength,
 unsigned portBASE_TYPE uxQueueLength,
 unsigned portBASE_TYPE uxItemSize,
 xQueueHandle *pxQueue
);

Summary
Creates a queue.

Parameters
pcQueueMemory Pointer to the start of the memory to be used to hold the queue.

uxBufferLength The length of the memory pointed to by the pcQueueMemory
parameter. This must be equal to:

(uxQueueLength * uxItemSize) + portQUEUE_OVERHEAD_BYTES

where uxQueueLength and uxItemSize are the values passed
into the respective parameters of the xQueueCreate()
function and portQUEUE_OVERHEAD_BYTES is a constant
available through the inclusion of the SAFERTOS.h header file.

uxQueueLength The maximum number of items the queue can hold at any time.

uxItemSize The size in bytes of each item the queue can hold.

pxQueue Used to pass back a handle by which the created queue can be
referenced, for example, when sending data to or reading data from
the queue.

Return Values
pdPASS The queue was created successfully.

errINVALID_BYTE_ALIGNMENT
The alignment of the pcQueueMemory value was not correct for the
target hardware.

errINVALID_QUEUE_LENGTH
uxQueueLength was found to equal zero.

errINVALID_BUFFER_SIZE uxBufferLengthBytes was found to not equal:

 (uxQueueLength * uxItemSize) + portQUEUE_OVERHEAD_BYTES

errNULL_PARAMETER_SUPPLIED
Either pcQueueMemory or pxQueue was NULL.

Notes
Queues can be created prior to the scheduler being started and from within a task after the
scheduler has been started.

SafeRTOS™ User’s Manual

December 9, 2009 63

Example
Code Example 3-14 Using the xQueueCreate() API function

/* Define the data type that will be queued. */
 typedef struct A_Message
 {
 portCHAR ucMessageID;
 portCHAR ucData[20];
 } AMessage;

 /* Define the queue parameters. */
 #define QUEUE_LENGTH 5
 #define QUEUE_ITEM_SIZE sizeof(AMessage)

 /* Define the buffer to be used by the queue. */
 #define REQUIRED_BUFFER_SIZE ((QUEUE_LENGTH * QUEUE_ITEM_SIZE) + portQUEUE_OVERHEAD_BYTES)
 portCHAR cQueueBuffer[REQUIRED_BUFFER_SIZE];

 int main(void)
 {
 xQueueHandle xQueue;

 if(xQueueCreate(
 cQueueBuffer,
 REQUIRED_BUFFER_LENGTH,
 QUEUE_LENGTH,
 QUEUE_ITEM_SIZE,
 &xHandle
) != pdPASS)
 {
 /* The queue could not be created. The return value could have been checked to find out
why. */
 }

 return 1;
 }

Chapter 3 - API Reference

64 December 9, 2009

xQueueSend()
queue.h
portBASE_TYPE xQueueSend(xQueueHandle pxQueue,
 const void * const pvItemToQueue,
 portTickType xTicksToWait);

Summary
Sends an item to a queue.

Parameters
pxQueue The handle of the queue to which the data is to be sent.

The handle of a queue is obtained from the pxQueue parameter of
the call to xQueueCreate() that created the queue.

pvItemToQueue A pointer to the data to be sent to the queue.

xTicksToWait The number of ticks for which the calling task is held in the Blocked
state to wait for space to become available on the queue if the queue
is already full. A value of zero prevents the calling task from entering
the Blocked state.

Return Values
pdPASS Data was successfully sent to the queue. The calling task may have

been temporarily blocked to wait for space to become available on
the queue.

errSCHEDULER_IS_SUSPENDED
The scheduler was in the Suspended state when xQueueSend()
was called. As xQueueSend() can potentially cause the calling
task to enter the Blocked state, it cannot be called when the
scheduler is suspended.

errINVALID_QUEUE_HANDLE
The pxQueue parameter was either NULL or did not reference a valid
queue.

errNULL_PARAMETER_SUPPLIED
pvItemToQueue was found to be NULL. pvItemToQueue is only
permitted to be NULL when the queue item size (set when the queue
was created) is zero.

errQUEUE_FULL The queue is already full and therefore, the send cannot complete.
The calling task may have been temporarily blocked to wait for space
to become available.

SafeRTOS™ User’s Manual

December 9, 2009 65

Notes

ESSENTIAL COMPLIANCE INFORMATION

• xQueueSend() must only be called from an executing task. Do not call while the scheduler is in
the Initialization state (prior to the scheduler being started).

• If xQueueSend() is called from within a critical section, then the critical section would not prevent
the calling task from blocking. Each task maintains its own interrupt status and therefore, the calling
task blocking could cause a switch to a task that has interrupts enabled.

Example
This example sends an item to the queue created in Code Example 3-14. It assumes the queue
handle is passed into the task using the tasks parameter.

Code Example 3-15 Using the xQueueSend() API function

void vATask(void *pvParameters)
 {
 xQueueHandle xQueue;
 AMessage xMessage;

 /* The queue handle is passed into this task as the task parameter. */
 xQueue = (xQueueHandle) pvParameters;

 for(;;)
 {
 /* Create a message to send on the queue. */
 xMessage.ucMessageID = SEND_EXAMPLE;

 /* Send the message to the queue, waiting for 10 ticks for space become available
 * should the queue already be full. */
 if(xQueueSend(xQueue, &xMessage, 10) != pdPASS)
 {
 /* We could not send to the queue. The return value could have been checked to find
out why. */
 }
 }
 }

Chapter 3 - API Reference

66 December 9, 2009

xQueueReceive()
queue.h
portBASE_TYPE xQueueReceive(xQueueHandle pxQueue, void *const pvBuffer, portTickType xTicksToWait);

Summary
Retrieves an item from a queue.

Parameters
pxQueue The handle of the queue from which the data is to be received.

The handle of a queue is obtained from the pxQueue parameter of
the call to xQueueCreate() that created the queue.

pvBuffer A pointer to the memory into which the data received from the queue
should be copied.

ESSENTIAL COMPLIANCE INFORMATION

The length of the buffer for the pvBuffer parameter must be at least equal to the queue item size (set
when the queue was created).

xTicksToWait The number of ticks for which the calling task is held in the Blocked
state to wait for data to become available from the queue if the queue
is already empty. A value of zero prevents the calling task from
entering the Blocked state.

Return Values
pdPASS Data was successfully received from the queue. The calling task may

have been temporarily blocked to wait for data to become available.

errSCHEDULER_IS_SUSPENDED
The scheduler was in the Suspended state when
xQueueReceive() was called. As xQueueReceive() can
potentially cause the calling task to enter the Blocked state, it cannot
be called when the scheduler is suspended.

errINVALID_QUEUE_HANDLE
The pxQueue parameter was either NULL or did not reference a valid
queue.

errNULL_PARAMETER_SUPPLIED
pvBuffer was found to be NULL. pvBuffer is only permitted to be
NULL when the queue item size (set when the queue was created) is
zero.

errQUEUE_EMPTY The queue is already empty so the receive cannot complete. The
calling task may have been temporarily blocked to wait for data to
become available on the queue.

SafeRTOS™ User’s Manual

December 9, 2009 67

Notes

ESSENTIAL COMPLIANCE INFORMATION

• xQueueReceive() must only be called from an executing task and therefore must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

• If xQueueReceive() were called from within a critical section, then the critical section would not
prevent the calling task from blocking. Each task maintains its own interrupt status and therefore,
the calling task blocking could cause a switch to a task that has interrupts enabled.

Example
This example receives an item from the queue created in [TBD this should be a reference to
example 3-14] Code Example 3-15. It assumes the queue handle is passed into the task using the
tasks parameter.

Code Example 3-16 Using the xQueueReceive() API function

void vAnotherTask(void *pvParameters)
 {
 xQueueHandle xQueue;
 AMessage xMessage;

 /* The queue handle is passed into this task as the task parameter. */
 xQueue = (xQueueHandle) pvParameters;

 for(;;)
 {
 /* Wait for the maximum period for data to become available on the queue. */
 if(xQueueReceive(xQueue, &xMessage, portMAX_DELAY) != pdPASS)
 {
 /* We could not receive from the queue. The return value could have been
 * checked to find out why. */
 }
 else
 {
 /* xMessage now contains the received data. */
 }
 }
 }

Chapter 3 - API Reference

68 December 9, 2009

xQueueMessagesWaiting()
queue.h
portBASE_TYPE xQueueMessagesWaiting(const xQueueHandle pxQueue,
 unsigned portBASE_TYPE *puxMessagesWaiting);

Summary
Queries the number of items that are currently within a queue.

Parameters
pxQueue The handle of the queue being queried.

The handle of a queue is obtained from the pxQueue parameter of
the call to xQueueCreate() that created the queue.

puxMessagesWaiting Address of the variable into which the number of items in the queue
will be written.

Return Values
pdPASS The number of items in the queue was successfully written to the

variable at address puxMessagesWaiting.

errNULL_PARAMETER_SUPPLIED
Either pxQueue or puxMessagesWaiting was NULL.

errINVALID_QUEUE_HANDLE
pxQueue did not reference a valid queue.

Notes

ESSENTIAL COMPLIANCE INFORMATION

xQueueMessagesWaiting() must not be called from within an interrupt service routine.

Example
Code Example 3-17 Using the xQueueMessagesWaiting() API function

void vAFunction(xQueueHandle xQueue)
 {
 unsigned portBASE_TYPE uxNumberOfItems;

 /* How many items are currently in the queue? */
 if(xQueueMessagesWaiting(xQueue, &uxNumberOfItems) != pdPASS)
 {
 /* Could not query the queue. The return value could have been checked to find out why. */
 }
 else
 {
 /* uxNumberOfItems is now set to the number of items currently within xQueue. */
 }
 }

SafeRTOS™ User’s Manual

December 9, 2009 69

xQueueSendFromISR()
queue.h
portBASE_TYPE xQueueSendFromISR(xQueueHandle pxQueue,
 const void *const pvItemToQueue,
 portBASE_TYPE *pxHigherPriorityTaskWoken
);

Summary
A version of xQueueSend() that can be called from an ISR. Unlike xQueueSend(),
xQueueSendFromISR() does not permit a block time to be specified.

Parameters
pxQueue The handle of the queue to which the data is to be sent.

The handle of a queue is obtained from the pxQueue parameter of
the call to xQueueCreate() that created the queue.

pvItemToQueue A pointer to the data to be sent to the queue.

pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken will be set to pdTRUE if sending to the
queue caused a task to unblock, and the unblocked task has a priority
higher than the current Running state task, otherwise
*pxHigherPriorityTaskWoken will remain unchanged.

The value of *pxHigherPriorityTaskWoken can be used to determine
whether a context switch should be performed prior to the interrupt
exiting, as shown in Code Example 3-18.

Return Values
pdPASS Data was successfully written to the queue.

errINVALID_QUEUE_HANDLE
pxQueue was either NULL or did not reference a valid queue.

errNULL_PARAMETER_SUPPLIED
pvItemToQueue or pxHigherPriorityTaskWoken was found to be
NULL. It is only valid for pvItemToQueue to be NULL if the queue
item size (set when the queue was created) is zero.

errQUEUE_FULL The queue is already full and therefore, the send cannot complete.

Notes
Calling xQueueSendFromISR() within an interrupt service routine can potentially cause a task
to leave the Blocked state, which necessitates a context switch if the unblocked task has a higher
priority than that of the interrupted task. The context switch ensures that the interrupt returns
directly to the highest priority Ready state task. However, unlike the xQueueSend() API
function, xQueueSendFromISR() does not itself cause a context switch to occur.

A context switch is performed transparently (within the API function itself) when xQueueSend()
causes a task of higher priority than the calling task to exit the Blocked state. While this behavior
is desirable during the execution of a task, it might be undesirable during the execution on an
interrupt if the interrupt service routine had not yet completed its processing. Therefore,
xQueueSendFromISR(), rather than performing the context switch itself, instead returns a
value in the pxHigherPriorityTaskWoken parameter to indicate whether a context switch is
required. This is shown in Code Example 3-18.

Chapter 3 - API Reference

70 December 9, 2009

ESSENTIAL COMPLIANCE INFORMATION

• xQueueSendFromISR() should only be called from within an interrupt service routine.
• xQueueSendFromISR() must not be called prior to the scheduler being started. Therefore, an

interrupt that calls xQueueSendFromISR() must not be allowed to execute prior to the scheduler
being started.

Example
Code Example 3-18 Using the xQueueSendFromISR() API function

void vAnExampleISR(void)
 {
 portCHAR cIn;
 portBASE_TYPE xHigherPriorityTaskWoken;

 /* We have not yet woken a task. */
 xHigherPriorityTaskWoken = pdFALSE;

 /* By way of example, assume this interrupt empties a FIFO, sending
 each character it obtains onto a queue. Sending each character individually
 in this manner would in reality be inefficient and should normally be avoided. */
 while(prvCharactersInFIFO() == pdTRUE)
 {
 cIn = prvGetNextCharacterFromFIFO();

 /* Send the character onto the queue. xHigherPriorityTaskWoken will get
 set to pdTRUE if the send operation causes a task to unblock, and the
 unblocked task has a priority higher than the current Running state task.
 It does not matter how many times this is called. For simplicity the return
 value is ignored. It is assumed that the queue xQueue has already been
 created and is expecting to receive single bytes. */
 xQueueSendFromISR(xQueue, &cIn, &xHigherPriorityTaskWoken);
 }

 /* Ensure the interrupt is cleared before leaving the function. */

 /* Now the buffer is empty and we have cleared the interrupt we pass
 xHigherPriorityTaskWoken to taskYIELD_FROM_ISR() – which will cause a context
 switch only if xHigherPriorityTaskWoken was set to pdTRUE by one of the calls to
 xQueueSendFromISR(). */
 taskYIELD_FROM_ISR(xHigherPriorityTaskWoken);
 }

SafeRTOS™ User’s Manual

December 9, 2009 71

xQueueReceiveFromISR()
queue.h
portBASE_TYPE xQueueReceiveFromISR(xQueueHandle pxQueue, void *const pvBuffer, portBASE_TYPE
*pxHigherPriorityTaskWoken);

Summary
A version of xQueueReceive() that can be called from an ISR. Unlike xQueueReceive(),
xQueueReceiveFromISR() does not permit a block time to be specified.

Parameters
pxQueue The handle of the queue from which data is to be received.

The handle of a queue is obtained from the pxQueue parameter of
the call to xQueueCreate() that created the queue.

pvBuffer A pointer to the buffer into which the data received from the queue will
be copied.

ESSENTIAL COMPLIANCE INFORMATION

The length of the buffer must be at least equal to the queue item size (set when the queue was
created).

pxHigherPriorityTaskWoken
*pxHigherPriorityTaskWoken will be set to pdTRUE if receiving from
the queue caused a task to unblock, and the unblocked task has a
priority higher than the current Running state task, otherwise
*pxHigherPriorityTaskWoken will remain unchanged.

The value of *pxHigherPriorityTaskWoken can be used to determine
whether a context switch should be performed prior to the interrupt
exiting, as shown in Code Example 3-19.

Return Values
pdPASS Data was successfully received from the queue.

errNULL_PARAMETER_SUPPLIED
pxHigherPriorityTaskWoken or pvBuffer was found to be NULL. It is
only valid for pvBuffer to be NULL if the queue item size (set when the
queue was created) is zero.

errINVALID_QUEUE_HANDLE
pxQueue was either NULL or did not reference a valid queue.

errQUEUE_EMPTY The queue is already empty so the receive cannot complete.

Notes
Calling xQueueReceiveFromISR() within an interrupt service routine can potentially cause a
task to leave the Blocked state, which necessitates a context switch if the unblocked task has a
priority higher than that of the interrupted task. The context switch ensures that the interrupt
returns directly to the highest priority Ready state task. However, unlike the xQueueReceive()
API function, xQueueReceiveFromISR() does not itself cause a context switch to occur.

Chapter 3 - API Reference

72 December 9, 2009

A context switch is performed transparently (within the API function itself) when
xQueueReceive() causes a task of higher priority than the calling task to exit the Blocked
state. While this behavior is desirable during the execution of a task, it might be undesirable
during the execution on an interrupt if the interrupt service routine had not yet completed its
processing. Therefore, xQueueReceiveFromISR(), rather than performing the context
switch itself, instead sets the variable pointed to by pxHigherPriorityTaskWoken to a value to
indicate whether a context switch is required. This is shown in Code Example 3-19.

ESSENTIAL COMPLIANCE INFORMATION

• xQueueReceiveFromISR() should only be called from within an interrupt service routine.
• xQueueReceiveFromISR() must not be called prior to the scheduler being started. Therefore, an

interrupt that calls xQueueReceiveFromISR() must not be allowed to execute prior to the
scheduler being started.

Example
Code Example 3-19 Using the xQueueReceiveFromISR() API function

/* vISR is an interrupt service routine that empties a queue of values,
 sending each to a peripheral. It might be that there are multiple
 tasks blocked on the queue waiting for space to write more data to
 the queue. */
 void vISR(void)
 {
 portCHAR cByte;
 portBASE_TYPE xHigherPriorityTaskWoken;

 /* No tasks have yet been woken. */
 xHigherPriorityTaskWoken = pdFALSE;

 /* Loop until the queue is empty. */
 while(xQueueReceiveFromISR(xQueue, &cByte, &xHigherPriorityTaskWoken) == pdPASS)
 {
 /* Write the received byte to the peripheral. */
 OUTPUT_BYTE(TX_REGISTER_ADDRESS, cByte);
 }

 /* Clear the interrupt source. */

 /* Now the queue is empty and we have cleared the interrupt we pass
 xHigherPriorityTaskWoken to taskYIELD_FROM_ISR() – which will cause a context
 switch only if xHigherPriorityTaskWoken was set to pdTRUE by one of the calls to
 xQueueReceiveFromISR(). */
 taskYIELD_FROM_ISR(xYieldRequired);
 }

December 9, 2009 73

Stellaris® ARM® Cortex™-M3 Processor Core
Port-Specific Information

This chapter describes the SAFERTOS port-specific documentation for the Stellaris® ARM®
Cortex™-M3 Processor Core.

Installation
C Startup Code

A startup code example is provided; use this as a reference to obtain the correct settings. Function
outlines are provided for the NMI_ISR and FaultISR handlers which must be configured by the
user.

For correct operation, the C startup code at a minimum must reserve adequate space on the
system stack for main() and interrupts to execute, and must use the system stack when main() is
called. While SAFERTOS tasks make use of the Process stack (as opposed to the Main stack),
the stack space required is statically allocated within the C files and does not need to be allocated
in the C startup file.

Vector Table
vSafeRTOS_SVC_Handler_Address must be installed as the SVCall handler.

vSafeRTOS_PendSV_Handler_Address must be installed as the PendSV handler.

vSafeRTOS_SysTick_Handler_Address must be installed as the System Tick Timer,
SysTick, handler.

Definitions for the three interrupt handler addresses are contained in the SAFERTOS.h header file.

Execution Context
The Stellaris® Cortex™-M3 port makes use of the xPORT_INIT_PARAMETERS structure which is
defined as shown in Code Example 4-1.

Code Example 4-1 Definition of the xPORT_INIT_PARAMETERS Structure

typedef struct PORT_INIT_PARAMETERS

{

 unsigned portLONG ulCPUClockHz; /* The frequency at which the

 MCU is running. */

 unsigned portLONG ulTickRateHz; /* The frequency at which the

 tick interrupt should execute. */

 portTASK_DELETE_HOOK pxTaskDeleteHook; /* Pointer to the delete hook

 function implementation. */

 portERROR_HOOK pxErrorHook; /* Pointer to the error hook

 function implementation. */

 portIDLE_HOOK pxIdleHook; /* Pointer to the idle hook

C H A P T E R 4

Chapter 4 - Stellaris® ARM® Cortex™-M3 Processor Core Port-Specific Information

74 December 9, 2009

 function implementation. */

 unsigned portLONG *pulSystemStackLocation; /* The address that holds the

 pointer to the start of the

 system stack - normally 0. */

 unsigned portLONG ulSystemStackSizeBytes; /* The size of the system stack

 - set within the C start up code. */

 unsigned portLONG *pulVectorTableBase; /* Pointer to the start of the

 interrupt vector table. */

} xPORT_INIT_PARAMETERS;

It is required that a variable of type xPORT_INIT_PARAMETERS is passed into the
vTaskInitializeScheduler() function and that the structure's contents are initialized to
ensure the correct running of SAFERTOS.

Table 4-1 shows the initialization values for the xPORT_INIT_PARAMETERS structure, used by
the Demo Project supplied with the GCC Stellaris® Cortex™-M3 Product Variant of SAFERTOS.

Table 4-1. Example xPORT_INIT_PARAMETERS Initialization Values

Field Assigned Value

ulCPUClockHz 50000000UL

ulTickRateHz 1000UL

pxTaskDeleteHook prvTaskDeleteHook (Function pointer to a user
created function which will handle task deletions)

pxErrorHook prvErrorHook (Function pointer to a user created
function which will handle errors)

pxIdleHook prvIdleHook (A Function pointer to a user created
function which will handle the idle task)

pulSystemStackLocation (void *) * ((unsigned portLONG *) 0). By default
on a Cortex M3 address 0 holds the address of the
system stack.

ulSystemStackSizeBytes 200

pulVectorTableBase (unsigned portLONG *) 0. By default on a Cortex
M3 address 0 holds the start of the vector table -
the first value in which is actually the address of the
start of the system stack.

SafeRTOS™ User’s Manual

December 9, 2009 75

Interrupts
This section describes interrupt usage for the GCC Stellaris® Cortex™-M3 Product Variant.

Interrupt Entry and Exit
An application-defined interrupt handler that wants to request a context switch need only call
taskYIELD_FROM_ISR() as described in “taskYIELD_FROM_ISR()” on page 56 and shown
in Code Example 4-2.

Code Example 4-2 The ISR

void vXYZ_ISR(void)
{
portBASE_TYPE xYieldRequired = pdFALSE;

/* Clear the interrupt. */

/* Perform ISR work here. */

/* A yield is required. */
xYieldRequired = pdTRUE;

/* Perform the yield. */
taskYIELD_FROM_ISR(xYieldRequired);
}

Interrupt Priorities and Nesting
The tick interrupt has a priority of 7. Interrupts that call interrupt safe API functions (those that end
in “FromISR”) can be safely assigned priorities of 7, 6 and 5. Interrupts that do not call API
functions can execute at priorities higher than 5 and will never have their execution delayed by
kernel activity (within the limits of the hardware itself).

Important: Be aware that the Cortex™-M3 core uses numerically low priority numbers to represent HIGH
priority interrupts. If you wish to assign an interrupt a low priority, do NOT assign it a priority of
0 (or other low numeric value) as this can result in the interrupt actually having the highest
priority; and potentially make your system crash if this priority is above
portSYSCALL_INTERRUPT_PRIORITY.

See Chapter 3, “API Reference” on page 29, for details of which API functions can be safely called
from within interrupt service routines.

Interrupt Vectors
See the “Vector Table” on page 73.

System Tick Timer (SysTick)
SAFERTOS uses the ARM® Cortex™-M3 system tick timer (SysTick) and must have exclusive
access to SysTick. In addition, SAFERTOS does not perform any other processor configuration,
such as clock frequencies and memory interfaces. These items are the responsibility of the host
application. An example configuration is provided within the supplied demonstration application.

The timer is configured with a timer compare value during the initialization of the port layer that is
calculated using the following equation:

(ulCPU_CLOCK_HZ / ulTICK_RATE_HZ) - 1UL;

Chapter 4 - Stellaris® ARM® Cortex™-M3 Processor Core Port-Specific Information

76 December 9, 2009

The range and accuracy of the tick interrupt is dependent on the ulCPUClockHz and ulTickRateHz
fields of the xPORT_INIT_PARAMETERS structure which is passed in to the
vTaskInitializeScheduler() API function.

RAM Usage
SAFERTOS requires 0x20C bytes of RAM. RAM in the range 0x20000000 to 0x2000020C must
be resurved for use by the kernel.

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	SAFERTOS™
	About this Manual
	Identification
	Use in Safety-Related Systems
	Document Overview
	Scope
	Contents

	System Overview
	Summary of the SAFERTOS Scheduler
	Differences between SAFERTOS and OPENRTOS
	Design Goals
	Coding Conventions
	Project Definitions
	Naming Conventions

	System Components
	Tasks
	Task Functions
	Task States

	Task Priorities
	The Scheduler
	Measuring Time
	The Scheduling Policy
	Starting the Scheduler
	Yielding
	Scheduler States
	Intertask Communication
	Queue Characteristics
	Queue Events
	Data Formatting
	Using Queues as Binary Semaphores

	Communication between Tasks and Interrupts
	Interrupts

	Installation
	Source Code and Libraries
	Hook Functions
	vApplicationErrorHook()
	vApplicationTaskDeleteHook()
	vApplicationIdleHook()

	Configuration

	API Reference
	Task Functions
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example
	Summary
	Parameters
	Return Values
	Notes
	Example

	Stellaris® ARM® Cortex™-M3 Processor Core Port-Specific Information
	Installation
	C Startup Code
	Vector Table

	Execution Context
	Interrupts
	Interrupt Entry and Exit
	Interrupt Priorities and Nesting
	Interrupt Vectors

	System Tick Timer (SysTick)
	RAM Usage

