Leverage Jacinto™ 7 Processors Functional Safety Features for Automotive Designs

Yashwant Dutt
Engineering Manager
Jacinto™ Processors

Sam Visalli
Functional Safety Manager
Jacinto Processors

Mahmut Ciftci
Systems Architect
Jacinto Processors

Dave Maples
General Manager Automotive Gateway and Infotainment
Jacinto Processors

Krishna Gopalakrishnan
Quality Manager
Embedded Processing
Texas Instruments
The onset of autonomous driving, connected cars and electric vehicles/hybrid electric vehicles is changing paradigms in the automotive industry.

At a glance

1. What is functional safety?
 Functional safety is a system's ability to respond to malfunctioning behavior to minimize harm and risk.

2. Jacinto 7 functional safety architecture
 The functional safety architecture is divided into two independent domains: the main domain and the MCU domain.

3. Functional safety collateral
 Functional safety documentation can help enable system-level safety certification.

4. Software functional safety overview
 The SDK provides safety software, diagnostic libraries, and corresponding collateral for safety-critical components.

5. Safety application mapping
 Map various use-cases with mixed safety requirements.

Functional safety, which is central to these technologies, is no longer limited to traditional microcontrollers (MCUs) but needs to be supported in application processors as well. Engine control unit (ECU) compute requirements are increasing, which drives the need for more capable processors, hardware accelerators and digital signal processors (DSPs) to realize application needs. When you consider these parameters, it becomes more challenging for existing cores to process safety-related data and host mixed-criticality functions. Mixed-criticality systems run tasks with different criticality levels on a shared platform. In mixed-criticality systems, the timing of safety-critical tasks must be strictly ensured. TI Jacinto™ 7 system-on-chip (SoC) family for automotive not only integrates an isolated ASIL-D safety MCU, but also provides higher levels of ASIL functional safety for all processing cores. In this white paper, the safety diagnostics built into the Jacinto 7 System-on-Chip (SoC) family is reviewed, which includes TDA4x and DRA8x devices, the various isolation mechanisms available to support a mixed-criticality system, the software architecture, software product offerings, and how to construct a complete solution.

What is functional safety?

Functional safety is a system’s ability to respond to malfunctioning behavior, whether that is a random failure, hardware failure or environmental stress, in a way that minimizes harm. As per ISO 26262, this simply means freedom from unacceptable risk. Although the concept of functional safety has been around in the automotive industry for quite some time, its adoption in application processors has been nascent. Keeping ASIL-D-compliant applications in mind, Jacinto 7 processors introduce safety concepts that were once limited to MCU-class devices to application processors.

These processors use hardware-assisted isolation techniques that enable mixed-criticality systems. The ability to seamlessly host both safety-critical and non-safety-critical tasks on one device helps reduce system cost.

The Jacinto 7 processor family provides a comprehensive safety solution involving both hardware and software. It is designed systematically for ASIL-D
capability using a hardware development process that is certified by an independent functional safety assessor, like TÜV SÜD. It has diagnostics circuitry capable of detecting random faults and can be categorized into three broad categories:

- Fundamental diagnostics, which cover test circuitry for memory, clocks, power, core and interconnect.
- Hardware isolation capabilities like separate voltage/power/reset, firewalls, memory management units (MMUs) and microprocessors (MPUs), which simplify Freedom From Interference (FFI) in systems that support mixed-criticality operations (Ex: ASIL-B and ASIL-D).
- Application-specific hardware diagnostics such as freeze-frame detection.

The Jacinto 7 processor family is also externally certified as a system element out of context to the ASIL level required by the targeted end equipment. Like the hardware development process, the software development process is also certified by an independent functional safety assessor, like TÜV SÜD. Jacinto 7 software components that have safety requirements are designed to support up to ASIL-D functional safety requirements. Software components are not externally certified. A certification support package gives you the ability to certify your final software/system. Software diagnostics libraries are delivered with examples of on-chip diagnostics usage. TI offers functional safety certificates for compatible hardware and software.

Jacinto 7 functional safety architecture

One of the key safety architecture differentiations of Jacinto 7 processors is the integration of MCU functionality. The integration simplifies the system design and reduces the number of components on the board and space, allowing an overall lower system bill of materials (BOM). Figure 1 shows the high-level functional safety architecture of Jacinto 7 platform. The application processor is divided into two independent domains: the main domain and the MCU domain. The main domain provides high-performance compute cores such as an MPU and a graphics processing unit (GPU), multimedia, and vision hardware accelerators including DSPs, as well as the necessary peripherals and supports ASIL-B. The MCU domain is an independent domain with separate power and voltage for safety functions with lock-step Cortex R5F cores and high FFI to support ASIL-D.

In addition to the safety MCU domain, the Jacinto 7 platform extends ASIL-D support to the main domain in the form of an extended MCU domain starting with the DRA821 SoC. The extended safety MCU domain includes:

- Dual lockstep Cortex RF5 cores to provide additional ASIL-D DMIPS.
- ASIL-D protection on cache and external DDR interface through back channel communication to enable DDR memory to be used for ASIL-D safety use-cases.
- Freedom from interference from the rest of SoC (MPU, GPU, an so forth).
- Additional peripherals for safety applications.

Functional safety collateral

The Jacinto 7 processors are safety-compliant devices that come with functional safety documentation that includes:

- A safety manual that provides information to help you create a safety-critical system using a supported Jacinto 7 processor family. This document contains details about the development process, functional
safety architecture and implemented functional safety mechanisms.

- A safety analysis report that contains information regarding the device’s ability to achieve the stated functional safety goals.
- A quantitative functional safety analysis (also known as failure mode, effects and diagnostic analysis [FMEDA]) is also a part of the safety analysis report, but it is a separate document. It contains details about the different parts of the component, suitable to enable calculations based on a customized application of diagnostics functional safety mechanisms and contains information about FIT, diagnostic coverage, SPFM/LFM, and failure modes.

Software functional safety overview

Software is an important element in reaching the overall safety goal of a product. Safety for Jacinto 7 software consists of the following two facets:

- Systematic capabilities of software components used in the safety path.
- Comprehensive software support for the hardware diagnostics and reference example code.

For systematic capability, TI follows a well-defined, common software development process and tools used across its various teams. An independent software quality organization is responsible for approving all software products. TI’s overall functional safety deliverables include:

- Process compliance: Functional safety software development process is certified by TÜV SÜD for ISO 26262 for ASIL-D and IEC 61508.
- Project compliance: Project compliance is ensured via internal audit and is conducted against the ISO 26262 or IEC 61508 processes. Any noncompliance is corrected with an improvement plan and actions.
- Enabling customer certification: All software that is developed following the using safety process is provided with a Compliance Support Package (CSP). The CSP includes:
 - A TI internal audit report.
 - Requirements, a test plan and reports.
 - A traceability report.
 - A dynamic code coverage analysis report.
 - A static code analysis/Motor Industry Software Reliability Association-C report.
 - A functional safety diagnostics library and manual.
 - A compiler qualification kit.
 - A software failure mode and effects analysis report.

The unified Jacinto 7 software development kit (SDK) also provides software support that enables you to build your safety solution. Components that are supposed to be used in a system “as is” and that are part of a safety loop are developed according to TI’s functional safety software development process. The process includes a software diagnostic library for all key safety IPs and functional software like microcontroller abstraction level drivers, IPC and DMA.

TI also provides various reference examples that help you understand how to use these safety features in your applications. Since safety features can vary from application to application, reference software is not developed using the safety process and instead follows the TI baseline process.

Table 1 shows various examples of what is provided in the diagnostics software, functional software and reference software that is included in the SDK.
Software Diagnostics

Software Diagnostic Library (SDL) - Software functions and response handlers for various safety features
- LBIST/ PBIST for various modules
- Safety IP: CRC, ECC, RTI/WDT, DCC, ESM, TOG, PGD, POK, VTM
- Ability to inject error
- Software with systematic capability

Functional Software

Components in safety path - SDK component built with systematic capability
- AUTOSAR MCAL (CAN, DIO, SPI, ETH, IPC, ADC, PWM, WDG, GPT)
- DMA, Power and Resource Management library
- SafeRTOS Operating System
- Low Level Drivers (LLD) for all IPs in safety path
- Deep Learning: MMA, TIDL Library
- Vision Analytics: CSI2, VHWA
- Inter Processor Communication (IPC)
- PMIC Driver
- Compiler Qualification Kit
- Example code for FFI, Main / MCU island isolation and other safety features
- Reference software demonstrating Safety IP usage in use case context
- Reference software demonstrating diagnostics listed in safety manual

<table>
<thead>
<tr>
<th>Software Diagnostics</th>
<th>Functional Software</th>
<th>Reference Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Diagnostic Library (SDL) - Software functions and response handlers for various safety features</td>
<td>Components in safety path - SDK component built with systematic capability</td>
<td>Example code for FFI, Main / MCU island isolation and other safety features</td>
</tr>
<tr>
<td>- LBIST/ PBIST for various modules</td>
<td>- AUTOSAR MCAL (CAN, DIO, SPI, ETH, IPC, ADC, PWM, WDG, GPT)</td>
<td>Reference software demonstrating Safety IP usage in use case context</td>
</tr>
<tr>
<td>- Safety IP: CRC, ECC, RTI/WDT, DCC, ESM, TOG, PGD, POK, VTM</td>
<td>- DMA, Power and Resource Management library</td>
<td>Reference software demonstrating diagnostics listed in safety manual</td>
</tr>
<tr>
<td>- Ability to inject error</td>
<td>- SafeRTOS Operating System</td>
<td></td>
</tr>
<tr>
<td>- Software with systematic capability</td>
<td>- Low Level Drivers (LLD) for all IPs in safety path</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Software Functional Safety Offerings

For details on Wittenstein’s SafeRTOS offering, see the https://www.highintegritysystems.com/safertos/design-assurance-pack/ website.

Safety application mapping

Typical SoC architectures built for data center and mobile applications lack the safety features necessary for automotive applications and in turn requires additional computing performance to add software-based safety diagnostics. The various hardware and software safety features of the Jacinto 7 processor family, when used in an end application, help reduce the need for computing performance.

Figure 2 illustrates a typical vision-based system.

The input camera data is captured via Camera Serial Interface and is then sent to a vision processing hardware engine for conversion from raw to YUV. Various analytics and deep learning algorithms like object classification and free space detection are run on the processor’s on-chip C7x DSP, MMA and Arm® Cortex®-A72 cores. The MCU domain acts like a checker for each step and periodically validates and monitors the data being processed. The MCU domain also takes final decisions of the safety functions based on other sensor inputs, which are then communicated to other automotive ECUs via a communication protocol like Controller Area Network (CAN). ..

Figure 2. Typical Vision Processing

Each of the blocks in **Figure 2** are modules on the Jacinto 7 processor and include hardware diagnostics to meet the overall safety goal without using CPU resources. **Table 1** maps the same vision application referred to earlier and shows the functional safety differentiation between the Jacinto 7 processor family compared to a typical SoC.
Jacinto Processor-compatible power management solutions

In parallel to the Jacinto processor family, TI developed two high-accuracy, flexible Power Management Integrated Circuits (PMICs) that are suitable for automotive applications requiring functional safety and come with functional safety documentation. These PMICs, TPS6594-Q1 and LP8764-Q1 PMICs, provide a scalable power management solution for both the main domain and the MCU domain and support functional safety up to ASIL-D.

<table>
<thead>
<tr>
<th>Safety Domain</th>
<th>Feature</th>
<th>Typical Automotive System</th>
<th>Jacinto 7 Processor Family Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Architecture</td>
<td>• Integrating MCU island</td>
<td>• Uses an external MCU</td>
<td>• System cost optimization</td>
</tr>
<tr>
<td></td>
<td>• Heterogeneous safety cores</td>
<td>• Uses hypervisor and an external MCU, requires an extra CPU load for hypervisor</td>
<td>• Scalable safety performance</td>
</tr>
<tr>
<td>• Fundamental safety</td>
<td>• Built-in self-test for cores, memories and hardware accelerators</td>
<td>• Typically not available in application processors</td>
<td>• Fail-safe and recovery without hypervisor</td>
</tr>
<tr>
<td>• Transient and permanent faults</td>
<td>• Error-correcting code for memories</td>
<td>• Additional load on all cores for software diagnostics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lockstep DMIPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CRC, watchdog, clock comparator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Safety on interconnect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Isolation</td>
<td>• MMU, MPU, firewalls, timeout gaskets</td>
<td>• Hypervisor – software-based method – loads processing cores</td>
<td>• Available all in hardware</td>
</tr>
<tr>
<td>• FFI</td>
<td></td>
<td>• Additional load on all cores for software diagnostics</td>
<td>• Negligible additional CPU load</td>
</tr>
<tr>
<td>• Application safety features</td>
<td>• Black frame</td>
<td>• Software-based method – loads processing cores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Freeze frame</td>
<td>• Additional load on all cores for software diagnostics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Camera blockage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Deep learning network parameter safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A properly architected system supports functional safety requirements, including:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The SoC checks sensor data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The MCU checks the SoC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The MCU controls the actuators.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The MCU checks whether the actuators react on the control in the expected way.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PMIC monitors MCU hardware and software execution.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PMIC monitors application processor hardware operation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the PMIC detects an erroneous operation, it puts the system in safe state by forcing the ENDRV output pin low. Examples of errors include:

• Failures in supply voltages to the MCU or the SoC.
• Failure in input supply voltage to PMICs.
• MCU software or hardware error.
• SoC hardware error reported by the ESM for SoC.

The TPS6594-Q1 and the LP8764-Q1 devices can be used as standalone PMICs, but in systems where multiple PMICS are utilized together for scalability with a processor or MCU, the PMICs communicate with each other over a two-wire interface covered with CRC protocol. The interface allows synchronizing power states and error handling between the PMICs. Periodic polling of the bus checks the health status of all the PMICs on the communication bus. This implementation ensures rapid response to system fault conditions and therefore enables the solution to target higher functional safety goals of the end system. Figure 3 illustrates one example connection between the two PMICs and a Jacinto 7 processor system use case. Most applications utilize one TPS6594-Q1, but the use of an additional LP8764-Q1 supports additional system features and higher performance supports additional system features and...
higher performance. This ability to use one or more PMICs to power the SoC by a “virtual” PMIC allows optimization of system cost in use cases requiring lower power while enabling the highest performance systems as well.

![Diagram of PMICs and Jacinto 7 processor family](image)

Figure 3. TPS6594-Q1 + LP8764-Q1 + LP8764-Q1 Communication as “Virtual” PMIC

Conclusion

TI’s new Jacinto 7 processor family with integrated functional safety features on chip enables customers to better reach their safety certification and goals of their end product. The extensive safety features help reduce system BOM and can save performance overhead across various cores. In addition, TI’s software SDK provides safety-related drivers and diagnostics libraries to help customers achieve their safety software development goals. A simplified safety architecture and software offering can help customers save significant engineering development time and effort.

Additional Resources

- Texas Instruments: *The state of functional safety in Industry 4.0*
- Texas Instruments: *Foundational Software for Functional Safety*
- Texas Instruments: *Certification for SafeTI Functional Safety Hardware Process*
- Texas Instruments: *2513321-0006 EU Declaration of Conformity (DoC)*
- *Jacinto 7 Functional Safety Documentation*

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Jacinto™ is a trademark of Texas Instruments. Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All trademarks are the property of their respective owners.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated