

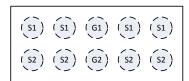
CSD87501L

SLPS523B - FEBRUARY 2015 - REVISED MAY 2019

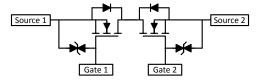
CSD87501L 30-V Dual Common Drain N-Channel NexFET™ Power MOSFET

Features

- Low on-resistance
- Small footprint of 3.37 mm x 1.47 mm
- Ultra-low profile 0.2-mm high
- Lead free
- RoHS compliant
- Halogen free
- Gate ESD protection


Applications

- Battery management
- Battery protection
- USB Type-C / PD


3 Description

This 30-V, 6.6-m Ω , 3.37-mm × 1.47-mm LGA Dual NexFET™ power MOSFET is designed to minimize resistance and gate charge in a small footprint. Its small size and common drain configuration make the device ideal for multi-cell battery pack applications and small handheld devices.

Top View

Configuration

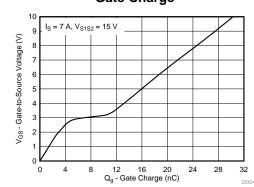
$R_{S1S2(on)}$ vs V_{GS} 24 T_C = 25℃, I_S = 7 A 21 $T_C = 125^{\circ}C$, $I_S = 7$ R_{S152(on)} - On-State Resistance 18 12 9 4 6 8 10 12 14 V_{GS} - Gate-to-Source Voltage (V)

Product Summary

$T_A = 25^{\circ}C$		TYPICAL VA	UNIT	
V _{S1S2}	Source-to-Source Voltage	30		V
Q_g	Gate Charge Total (4.5 V)	ge Total (4.5 V) 15		
Q_{gd}	Gate Charge Gate-to-Drain	6.0		nC
D	Source-to-Source On-	V _{GS} = 4.5 V	9.3	mΩ
R _{S1S2(on)}	Resistance	V _{GS} = 10 V	6.6	11177
V _{GS(th)}	Threshold Voltage	1.8	V	

Device Information⁽¹⁾

DEVICE	MEDIA	QTY	PACKAGE	SHIP
CSD87501L	7-Inch Reel	3000	3.37 mm × 1.47 mm	Tape
CSD87501LT	7-Inch Reel	250	Land Grid Array Package	and Reel


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

T _A = 25	°C	VALUE	UNIT
V _{S1S2}	Source-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	±20	V
Is	Continuous Source Current ⁽¹⁾	14	Α
I _{SM}	Pulsed Source Current ⁽²⁾	72	Α
P _D	Power Dissipation	2.5	W
V _(ESD)	Human-Body Model (HBM)	2	kV
T _J , T _{stg}	Operating Junction, Storage Temperature	-55 to 150	°C

- (1) Typical $R_{\theta JA} = 50^{\circ} \text{C/W}$ on a 1-in², 2-oz Cu pad on a 0.06-in thick FR4 PCB.
- (2) Typical min Cu $R_{\theta JA} = 135^{\circ}C/W$, pulse duration $\leq 100 \mu s$, duty cycle ≤ 1%.

Gate Charge

Table of Contents

2 / 3 4 5	Features Applications Description Revision History Specifications 5.1 Electrical Characteristics 5.2 Thermal Information 5.3 Typical MOSFET Characteristics Device and Documentation Support	. 1 . 1 . 2 . 3 3 3	6.2 6.3 6.4 6.5 Med Info 7.1 7.2	Receiving Notification of Documentation Updates Community Resources
•	bottoo and boodinomation oupport	• •	7.3	Recommended Stencil Pattern

4 Revision History

Cł	nanges from Revision A (April 2015) to Revision B	Page
•	Added Receiving Notification of Documentation Updates section and Community Resources section	7
•	Added Pin Configuration table in the Mechanical, Packaging, and Orderable Information section	8
Cł	nanges from Original (February 2015) to Revision A	Page
•	Extended Y axis in Figure 9 down to 0.01 A	4

5 Specifications

5.1 Electrical Characteristics

 $T_{A} = 25^{\circ}C$ unless otherwise stated

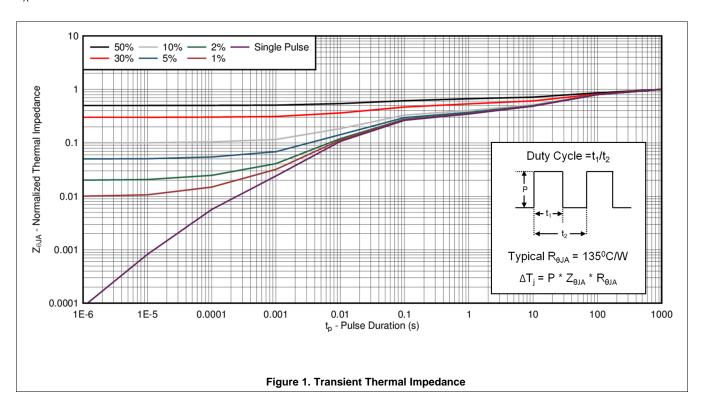
1 _A – 20 0	uniess otherwise stated				
	PARAMETER	TEST CONDITIONS	MIN 7	TYP MA	X UNIT
STATIC C	CHARACTERISTICS		T		
BV _{S1S2}	Source-to-source voltage	$V_{GS} = 0 \text{ V}, I_S = 250 \mu\text{A}$	30		V
I _{S1S2}	Source-to-source leakage current	$V_{GS} = 0 \text{ V}, V_{S1S2} = 24 \text{ V}$			1 μΑ
I_{GSS}	Gate-to-source leakage current	$V_{S1S2} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			10 μA
$V_{GS(th)}$	Gate-to-source threshold voltage	$V_{S1S2} = V_{GS}$, $I_S = 250 \mu A$	1.3	1.8 2	3 V
D	Course to course on registeres	$V_{GS} = 4.5 \text{ V}, I_{S} = 7 \text{ A}$		9.3 11	.0 mΩ
R _{S1S2(on)}	Source-to-source on-resistance	$V_{GS} = 10 \text{ V}, I_{S} = 7 \text{ A}$		6.6	.8
9 _{fs}	Transconductance	$V_{S1S2} = 3 \text{ V}, I_S = 7 \text{ A}$		48	S
DYNAMIC	CHARACTERISTICS ⁽¹⁾		·		
C _{iss}	Input capacitance		1	620 21	10 pF
C _{oss}	Output capacitance	$V_{GS} = 0 \text{ V}, V_{S1S2} = 15 \text{ V}, f = 1 \text{ MHz}$		189 2	46 pF
C _{rss}	Reverse transfer capacitance			152 1	98 pF
R_{G}	Series gate resistance			300 4	50 Ω
Qg	Gate charge total (4.5 V)			15	20 nC
Qg	Gate charge total (10 V)			31	40 nC
Q _{gd}	Gate charge gate-to-drain	V _{S1S2} = 15 V, I _S = 7 A		6.0	nC
Q _{gs}	Gate charge gate-to-source			5.0	nC
Q _{g(th)}	Gate charge at V _{th}			2.5	nC
Q _{oss}	Output charge	V _{S1S2} = 15 V, V _{GS} = 0 V		7.6	nC
t _{d(on)}	Turn on delay time			164	ns
t _r	Rise time	V _{S1S2} = 15 V, V _{GS} = 10 V,		260	ns
t _{d(off)}	Turn off delay time	$I_{S1S2} = 7 \text{ A}, R_G = 0 \Omega$		709	ns
t _f	Fall time			712	ns

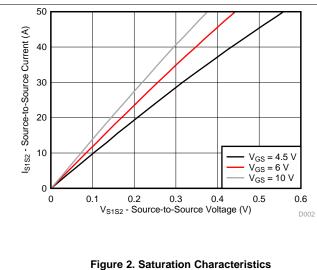
⁽¹⁾ Dynamic characteristics values specified are per single FET.

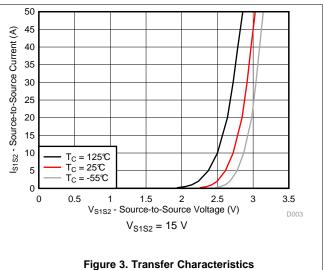
5.2 Thermal Information

 $T_A = 25$ °C unless otherwise stated

	THERMAL METRIC	MIN	TYP	MAX	UNIT
В	Junction-to-ambient thermal resistance ⁽¹⁾		135		°C/W
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)		50		*C/VV

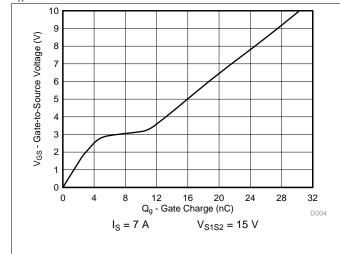

Copyright © 2015–2019, Texas Instruments Incorporated


Submit Documentation Feedback


 ⁽¹⁾ Device mounted on FR4 material with minimum Cu mounting area.
 (2) Device mounted on FR4 material with 1-in² (6.45-cm²), 2-oz (0.071-mm thick) Cu.

5.3 Typical MOSFET Characteristics

 $T_A = 25$ °C unless otherwise stated


Submit Documentation Feedback

Copyright © 2015–2019, Texas Instruments Incorporated

Typical MOSFET Characteristics (continued)

 $T_A = 25$ °C unless otherwise stated

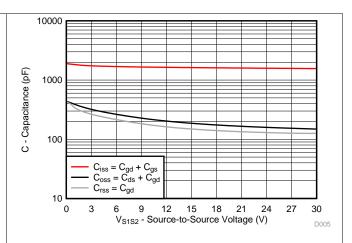


Figure 4. Gate Charge

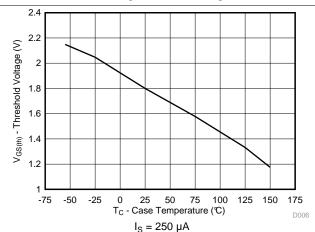


Figure 5. Capacitance

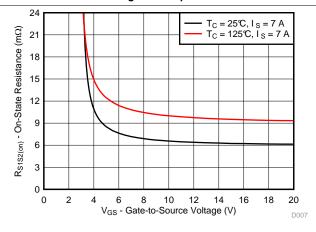


Figure 6. Threshold Voltage vs Temperature

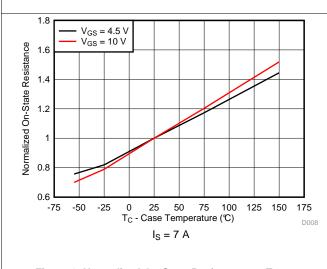
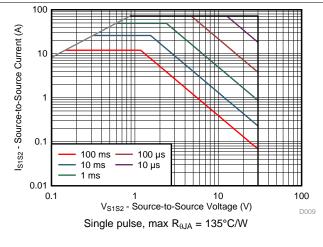
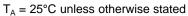


Figure 7. On-State Source-to-Source Resistance vs Gate-to-Source Voltage

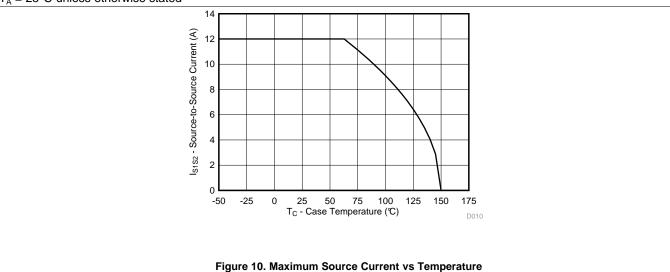

Figure 8. Normalized On-State Resistance vs Temperature

Figure 9. Maximum Safe Operating Area

Typical MOSFET Characteristics (continued)

6 Device and Documentation Support

6.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

6.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

6.3 Trademarks

NexFET, E2E are trademarks of Texas Instruments.

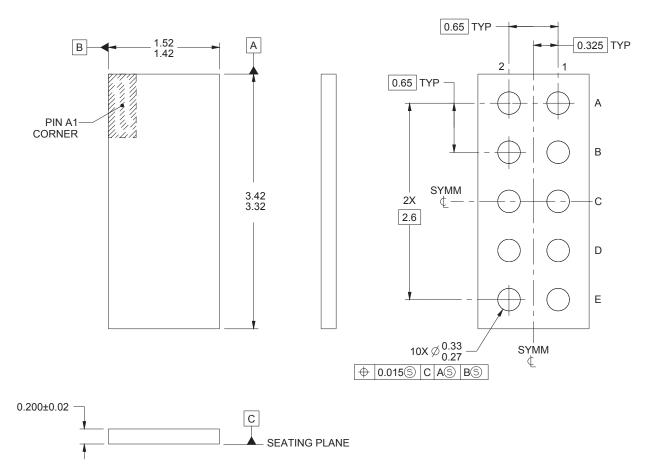
All other trademarks are the property of their respective owners.

6.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.5 Glossary

SLYZ022 — TI Glossary.

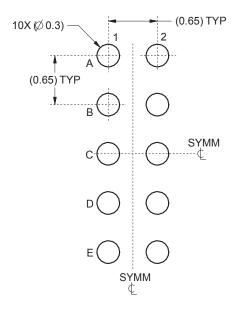

This glossary lists and explains terms, acronyms, and definitions.

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7.1 Package Dimensions

All dimensions in millimeters.


Table 1. Pin Configuration

Position	Designation
A1, B1, D1, E1	Source 1
C1	Gate 1
A2, B2, D2, E2	Source 2
C2	Gate 2

Submit Documentation Feedback

7.2 Recommended PCB Pattern

7.3 Recommended Stencil Pattern

All dimensions are in millimeters unless otherwise noted.

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CSD87501L	Active	Production	PICOSTAR (YJG) 10	3000 LARGE T&R	Yes	NIAU	Level-1-260C-UNLIM	-	CSD87501
CSD87501L.B	Active	Production	PICOSTAR (YJG) 10	3000 LARGE T&R	Yes	NIAU	Level-1-260C-UNLIM	-55 to 150	CSD87501
CSD87501LT	Active	Production	PICOSTAR (YJG) 10	250 SMALL T&R	Yes	NIAU	Level-1-260C-UNLIM	-55 to 150	CSD87501
CSD87501LT.B	Active	Production	PICOSTAR (YJG) 10	250 SMALL T&R	Yes	NIAU	Level-1-260C-UNLIM	-55 to 150	CSD87501

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

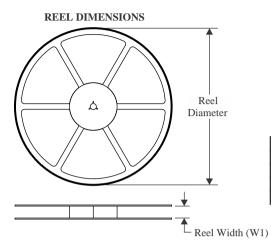
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

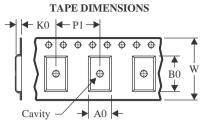
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

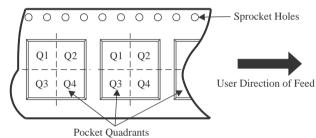
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

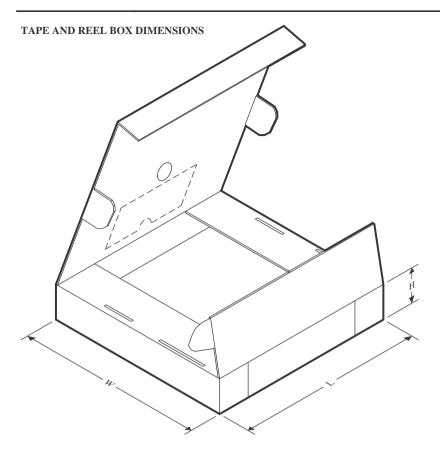
PACKAGE MATERIALS INFORMATION

www.ti.com 13-May-2025


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD87501LT	PICOSTAF	YJG	10	250	330.0	12.4	1.62	3.62	0.37	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 13-May-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD87501LT	PICOSTAR	YJG	10	250	335.0	335.0	25.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025