
LOG300 40MHz, 98dB Logarithmic Detector With Integrated Low-Noise Amplifier

1 Features

- Input range:
 - LNA + Log Detector: $7\mu\text{V}_\text{P}$ to 200mV_P
 - Log Detector: $20\mu\text{V}_\text{P}$ to 1.6V_P
- Adjustable output to input slope and response time
- Supports single-ended and differential inputs
- Dynamic range: 98dB with log conformance error (LCE) = $\pm 1\text{dB}$
- Signal detection from 50Hz to 40MHz; even higher with reduced LCE
- Input frequency detection, zero cross detect
- Supply: 3V to 5.25V

2 Applications

- Ultrasonic distance and material sensing
- Flow cytometry
- ESD and high energy EMI signal detection
- Energy detection
- Bubble, occlusion detection

Logarithmic Detector and Envelope Detector

3 Description

The LOG300 is an integrated analog front end (AFE) consisting of low-noise amplifier (LNA) and a Log Detector block. This device supports an input frequency range from 50Hz to 40MHz and a typical dynamic range of 98dB. The LOG300 is intended for use in applications that require a wide dynamic range of voltage and signal measurement. The Log Detector block of LOG300 supports both single-ended and differential inputs. The low input noise of the integrated LNA, allows measurement of signals as low as $7\mu\text{V}_\text{P}$. The transient output response can be adjusted by tuning the capacitor connected at the Log_Out pin. The integrated frequency detect feature of LOG300 enables users to extract input signal frequency and zero-crossing information.

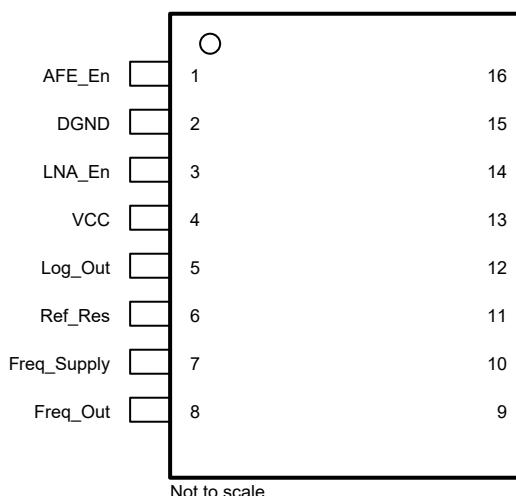
The LOG300 is available in a 16-pin SOIC and 16-pin VQFN package. The LOG300 is operational from a 3V to 5.25V supply and over the full ambient temperature range of -40°C to $+125^\circ\text{C}$.

Package Information

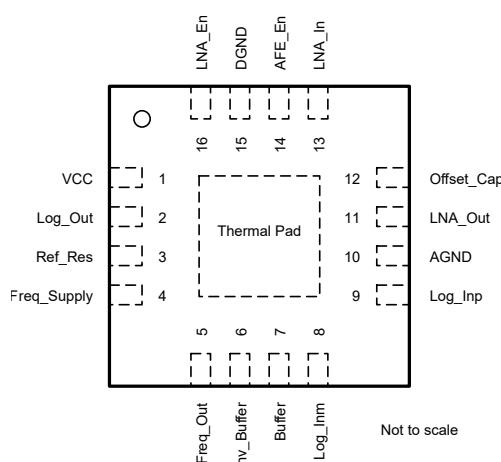
PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
LOG300	D (SOIC, 16)	9.9mm × 6mm
	RGT (VQFN, 16)	3mm × 3mm

(1) For more information, see [Section 11](#).

(2) The package size (length × width) is a nominal value and includes pins, where applicable.



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.


Table of Contents

1 Features	1	7.2 Functional Block Diagram.....	17
2 Applications	1	7.3 Feature Description.....	17
3 Description	1	7.4 Device Functional Modes.....	19
4 Pin Configuration and Functions	3	8 Application and Implementation	20
5 Specifications	4	8.1 Application Information.....	20
5.1 Absolute Maximum Ratings	4	8.2 Typical Application.....	20
5.2 ESD Ratings.....	4	8.3 Power Supply Recommendations.....	22
5.3 Recommended Operating Conditions.....	4	8.4 Layout.....	23
5.4 Thermal Information.....	5	9 Device and Documentation Support	24
5.5 Electrical Characteristics Low Noise Amplifier (LNA)	5	9.1 Third-Party Products Disclaimer.....	24
5.6 Electrical Characteristics Log Detector.....	6	9.2 Receiving Notification of Documentation Updates.....	24
5.7 Electrical Characteristics LNA + Log Detector (AFE).....	8	9.3 Support Resources.....	24
5.8 Typical Characteristics: VCC = 5V.....	9	9.4 Trademarks.....	24
5.9 Typical Characteristics: VCC = 3.3V	15	9.5 Electrostatic Discharge Caution.....	24
6 Parameter Measurement Information	16	9.6 Glossary.....	24
7 Detailed Description	17	10 Revision History	24
7.1 Overview.....	17	11 Mechanical, Packaging, and Orderable Information	25

4 Pin Configuration and Functions

Figure 4-1. D Package, 16-Pin SOIC (Top View)

Figure 4-2. RGT Package, 16-Pin VQFN (Top View)

Table 4-1. Pin Functions

NAME	PIN		TYPE ⁽¹⁾	DESCRIPTION
	D (SOIC)	RG (VQFN)		
AFE_En	1	14	I	LNA and Log Detector block enable and disable pin. AFE_En = High for AFE enable. Floating this pin keeps both blocks enabled as well.
AGND	13	10	P	Analog ground for LNA and Log Detector block
Buffer	10	7	O	Noninverting buffered output. $V_{Buffer} = V_{Log_Out} \times 2$.
DGND	2	15	P	Digital ground for Freq_Out pin
Freq_Out	8	5	O	This pin toggles at the same signal frequency applied at the Log_In.
Freq_Supply	7	4	P	Power supply for Freq_Out function. Float this pin if the frequency-detection feature is not required.
Inv_Buffer	9	6	O	Inverted buffered output. $V_{Inv_Buffer} = VCC - V_{Log_Out} \times 2$.
LNA_En	3	16	I	Low-noise amplifier enable and disable. LNA_En = High for LNA enable. Floating this pin keeps the LNA enabled as well.
LNA_In	16	13	I	Low-noise amplifier input
LNA_Out	14	11	O	Low-noise amplifier output
Log_Inm	11	8	I	Inverting input of Log Detector block. Connect an appropriate capacitor to ground when used in a single-ended input. See Section 7.3.2 .
Log_Inp	12	9	I	Noninverting input of Log Detector block
Log_Out	5	2	O	Unbuffered output of Log Detector block. Connect an appropriate resistor R_F (to set the input to output slope) and capacitor C_F (to set the response time).
Offset_Cap	15	12	I	Connect a recommended capacitor from this pin to ground. This capacitor sets the pole of the internal offset correction loop. See Section 7.3.1 for the recommended capacitor.
Ref_Res	6	3	I	Connect a 1% 56kΩ resistor to this pin. Float this pin if the default relaxed slope accuracy is acceptable.
VCC	4	1	P	Supply
Thermal Pad	—	Thermal Pad	P	Thermal pad. Electrically isolated from the device. Connect to a heat spreading plane, typically ground.

(1) I = input, O = output, I/O = input or output, G = ground, P = power.

5 Specifications

5.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
VCC	Supply voltage and Freq_Supply		5.5	V
	Supply turn-on and turn-off maximum dV/dT ⁽³⁾		1	V/μs
	AFE_En and LNA_En	GND–0.5	VCC+0.5	V
LNA_In	LNA input voltage		±1	V _P
Log_In	Single ended input voltage (Log_Inp and Log_Inm)		(VCC × 0.17) + 0.9	V _P
I _I	Continuous input current for all pins ⁽²⁾		±10	mA
	Continuous power dissipation	See Thermal Information		
T _J	Maximum junction temperature		150	°C
T _{stg}	Storage temperature	–65	150	°C

- (1) Operation outside the *Absolute Maximum Ratings* can cause permanent device damage. *Absolute Maximum Ratings* do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) Input pins are diode-clamped to the power-supply rails. Current limit the input signals, which can swing more than 0.5V beyond the supply rails to 10mA or less. Can be easily achieved with a RC filter on VCC.
- (3) Do not exceed this ± supply turn-on edge rate to prevent the edge-triggered ESD absorption device across the supply pins from turning on.

5.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	V
		Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±500	V

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
VCC	Supply voltage	3	5.25		V
T _A	Ambient temperature	–40	25	125	°C
Ref_Res	Recommended reference resistor to ground		56		kΩ
Log_In	Log-Detector input at 3.3V VCC ⁽¹⁾			1.2	V _P
	Log-Detector input at 5V VCC ⁽¹⁾			1.6	

- (1) At room temperature, irrespective of the frequency and waveform of the input signal.

5.4 Thermal Information

THERMAL METRIC ⁽¹⁾		LOG300		UNIT
		D (SOIC)	VQFN (RGT)	
		16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	81.1	48.2	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	43.3	56.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	43.5	23.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	7.7	1.6	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	43.1	23.4	°C/W
$R_{\theta JC(\text{bottom})}$	Junction-to-case (bottom) thermal resistance	N/A	8.2	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

5.5 Electrical Characteristics Low Noise Amplifier (LNA)

at $T_A = 25^\circ\text{C}$, $VCC = 3.3\text{V}$ to 5V , $\text{LNA_Out} = 1\text{k}\Omega$ to AGND, $R_{\text{SOURCE}} = 50\Omega$, and input ac coupling capacitor ($C_{\text{IN}} = 10\text{nF}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC PERFORMANCE						
G_{LNA}	Internal gain		11			V/V
	Internal gain error	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	± 0.8	± 1		%
AC PERFORMANCE						
SSBW	Small-signal bandwidth	$\text{LNA_Out} = 20\text{mV}_{\text{PP}}$	39			MHz
LSBW	Large-signal bandwidth		36			MHz
SR	Slew rate	2V step at LNA_Out	200			$\text{V}/\mu\text{s}$
	Total input referred noise	$f > 100\text{kHz}$, includes gain and bias resistors	2.6			$\text{nV}/\sqrt{\text{Hz}}$
	Overdrive recovery time	2 \times output overdrive	1			μs
	Capacitive drive ⁽¹⁾	< 3dB of peaking	∞			nF
INPUT						
$V_{\text{LNA_In}}$	Linear input voltage	$VCC = 5\text{V}$		200		mV_{P}
		$VCC = 3.3\text{V}$		140		
V_{BIAS}	Internal bias voltage	$\text{At LNA_In, } T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		$VCC \times 0.044$		mV
		Input impedance of LNA		1.7 \parallel 1.8		
OUTPUT						
	Output bias point of LNA	$\text{LNA_In} = \text{open}$		$V_{\text{BIAS}} \times 11$		V
	Output impedance of LNA		0.850	1	1.150	$\text{k}\Omega$
POWER SUPPLY						
	Quiescent operating current	$\text{LNA_Out} = \text{Open}$		2	2.7	mA
		$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$			3	
POWER DOWN						
	LNA enable voltage threshold		$VCC - 1.2$			V
	LNA disable voltage threshold			$\text{GND} + 0.6$		V
	Turn-on time	Time from disable to enable	50			μs
	Turn off time	Time from enable to disable	130			ns

(1) Infinite capacitive drive possible due to presence of $1\text{k}\Omega$ of isolation resistor.

5.6 Electrical Characteristics Log Detector

at $T_A = 25^\circ\text{C}$, $VCC = 3.3\text{V}$ to 5V , $C_F = 1\text{nF}$, $R_F = 43\text{k}\Omega$ (slope = 43mV/dB) for $VCC = 5\text{V}$ and $R_F = 30\text{k}\Omega$ for $VCC = 3.3\text{V}$, $\text{Ref_resistor} = 1\%$ $56\text{k}\Omega$, 10nF capacitor to AGND or to source on Log_Inp and Log_Inm (unless otherwise noted)^{(1) (2)}

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
AC PERFORMANCE						
LCE	Log conformance error ⁽³⁾	f = 1MHz		±0.6	±1	dB
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		±1.1	
		f = 40MHz		±2		
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	±2.5		
DR	Dynamic range ⁽³⁾	LCE = ±1dB, f = 1MHz, VCC = 5V		96	98	dB
	Log-Detector slope ⁽⁴⁾			R_F value in $\text{k}\Omega$ ⁽⁵⁾		mV/dB
	Log-Detector slope variation ⁽³⁾	Ref_Res = 56kΩ, f = 1MHz		±1	±6	%
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		±6.8	
		Ref_Res = open, f = 1MHz		±4.5		
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	±5.6		
INPUT						
V _{Log_In}	Typical input voltage	VCC = 3.3V, LCE = ±2dB, f = 20MHz		20μ	1.2	V _P
			$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$	24μ	1	
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	26μ	0.8	
		VCC = 5V, LCE = ±2dB, f = 20MHz		20μ	1.6	
			$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$	22μ	1.6	
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	32μ	1.6	
	Differential input voltage	$(\text{Log_Inp}) - (\text{Log_Inm})$, $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$			±1.6	V
	Internal bias voltage	Log_Inp and Log_Inm			1.7	V
	Input impedance	for Log_Inp and Log_Inm		1.7 10		$\text{k}\Omega$ pF
LOG_OUT						
	Log_Out rise time	$C_F = 220\text{pF}$		20		μs
		$C_F = 1\text{nF}$		95		
	Log_Out fall time	$C_F = 220\text{pF}$		27		μs
		$C_F = 1\text{nF}$		100		
	Output overdrive recovery	$C_F = 220\text{pF}$		250		μs
	Minimum output voltage ^{(3) (6)} Log_Inp = 10nF to AGND	QFN Package		82	142	233
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		301	mV
		SOIC Package		90	130	162
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		250	mV
	Maximum output voltage	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		VCC – 0.3		V

5.6 Electrical Characteristics Log Detector (continued)

at $T_A = 25^\circ\text{C}$, $VCC = 3.3\text{V}$ to 5V , $C_F = 1\text{nF}$, $R_F = 43\text{k}\Omega$ (slope = 43mV/dB) for $VCC = 5\text{V}$ and $R_F = 30\text{k}\Omega$ for $VCC = 3.3\text{V}$, $\text{Ref_resistor} = 1\%$ $56\text{k}\Omega$, 10nF capacitor to AGND or to source on Log_Inp and Log_Inm (unless otherwise noted)^{(1) (2)}

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BUFFER OUTPUT ($C_{LOAD} \parallel R_{LOAD} = 100\text{pF} \parallel 10\text{k}\Omega$)					
Gain	V_{Buffer}/V_{Log_Out}	+2			V/V
Output voltage equation		$2 \times V_{Log_Out}$			V
Output-referred offset			30		mV
Output voltage	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	GND + 0.1		VCC - 0.1	V
Rise-and-fall time ⁽⁵⁾	$C_{LOAD} \parallel R_{LOAD} = 100\text{pF} \parallel 10\text{k}\Omega$		1.5		μs
Short-circuit current	Source-and-sink current	10			mA
Z_{OUT}	Output impedance		5.3		Ω
INV_BUFFER OUTPUT ($C_{LOAD} \parallel R_{LOAD} = 100\text{pF} \parallel 10\text{k}\Omega$)					
Gain	$V_{Inv_Buffer}/V_{Log_Out}$	-2			V/V
Output voltage equation		$VCC - (2 \times V_{Log_Out})$			V
Output voltage	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	GND + 0.1		VCC - 0.1	V
Rise-and-fall time ⁽⁵⁾	$C_{LOAD} \parallel R_{LOAD} = 100\text{pF} \parallel 10\text{k}\Omega$		1.5		μs
Output-referred offset			32		mV
Short-circuit current	Source-and-sink current	10			mA
Output impedance			6.3		Ω
FREQUENCY DETECT OUTPUT					
Frequency detect block typical input sensitivity	Log_Inp signal of $f < 20\text{MHz}$		250 μ	1.6	V _P
Frequency error	Averaged over 1ms, $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		0.15		%
Freq_Out swing		DGND		Freq_Supply	V
POWER SUPPLY					
Quiescent current	Current through VCC		3.6	4.6	mA
		$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		5.9	
	Current through Freq_Supply			0.37	

(1) See [Offset Correction Loop](#) to calculate the value of capacitor on Offset_Cap pin based on signal frequency.

(2) The symbol f stands for a short burst of sine wave applied at the Log_Inp pin. This definition applies across the data sheet.

(3) Characterized through 32 units.

(4) Log-Detector slope reduces with increased input signal frequency, see [Typical Characteristics](#).

(5) See [Parameter Measurement Information](#) for definition of R_F .

(6) Minimum output voltage is the lowest voltage that Log_Out settles to when the inputs are shorted to the AGND pin using a high-value capacitor with no signal applied.

5.7 Electrical Characteristics LNA + Log Detector (AFE)

at $T_A = 25^\circ\text{C}$, $V_{CC} = 5\text{V}$, $C_F = 1\text{nF}$ and $R_F = 43\text{k}\Omega$ (slope = 43mV/dB for $f = 1\text{MHz}$), $\text{Ref_resistor} = 1\%$ $56\text{k}\Omega$, with 2nd-order external band-pass filter (BPF) of gain = -7dB , and $R_{\text{SOURCE}} = 50\Omega$, 10nF capacitor to AGND or to source on LNA_In (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT		
AFE AC PERFORMANCE									
LCE	Log conformance error	$f = 1\text{MHz}$		± 1			dB		
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		± 1				
DR	Dynamic range	For LCE = $\pm 1\text{dB}$, $f = 1\text{MHz}$		91		dB			
	Log-Detector slope variation ⁽¹⁾	Ref_Res = open		± 4.5		± 7	%		
		Ref_Res = $56\text{k}\Omega$		± 1					
		Ref_Res = $56\text{k}\Omega$	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	± 7.2					
AFE INPUT									
	Typical input voltage	LCE = $\pm 1\text{dB}$, $f = 1\text{MHz}$		7 μ	200m		V_P		
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	8 μ	200m				
		LCE = $\pm 2\text{dB}$, $f = 20\text{MHz}$		12 μ	200m				
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	14 μ	200m				
	Output rise time	BPF = 180kHz , $C_F = 350\text{pF}$		35		μs			
		BPF = 1MHz , $C_F = 500\text{pF}$		50					
	Output fall time	BPF = 180kHz , $C_F = 350\text{pF}$		65		μs			
		BPF = 1MHz , $C_F = 500\text{pF}$		45					
LOG_OUT									
	Minimum output voltage ⁽¹⁾	LNA_In = 10nF to AGND		290	335	mV			
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	450					
POWER SUPPLY									
	VCC quiescent current	Total AFE, LNA_Out = open		6	7.2	mA			
			$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	8.3					
POWER DOWN									
	VCC disabled current	Total AFE, $V_{CC} = 3.3\text{V}$	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$	65		μA			
				130					
	AFE enable voltage threshold				$V_{CC} - 1.2$		V		
	AFE disable voltage threshold				$\text{AGND} + 0.6$		V		

(1) Characterized through 32 devices.

5.8 Typical Characteristics: VCC = 5V

at $T_A = 25^\circ\text{C}$, $\text{VCC} = 5\text{V}$, $C_F = 1\text{nF}$, $R_F = 43\text{k}\Omega$ (slope = 43mV/dB), $\text{Ref_Res} = 1\%$ $56\text{k}\Omega$, and 10nF capacitor to AGND on Log_Inp and Log_Inm (unless otherwise noted); for AFE, 2nd-order BPF centered around frequency f with gain = -7dB used between LNA and Log-Detector block

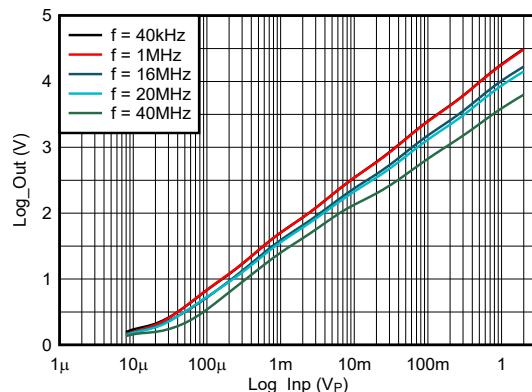


Figure 5-1. Log-Detector Output at Various Frequencies

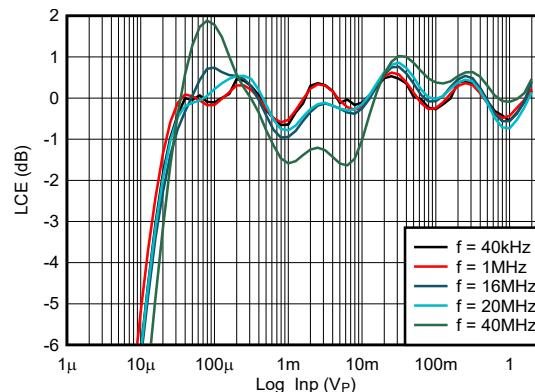


Figure 5-2. Log-Detector Conformance Error for Different Frequencies

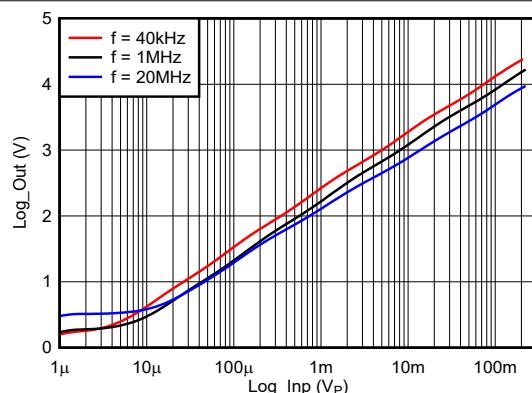


Figure 5-3. AFE Output at Various Frequencies

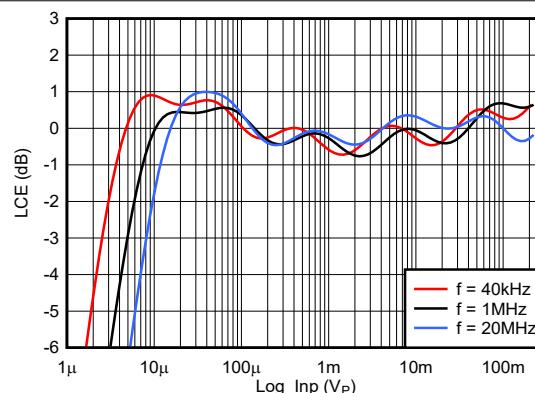


Figure 5-4. AFE Log-Conformance Error for Different Frequencies

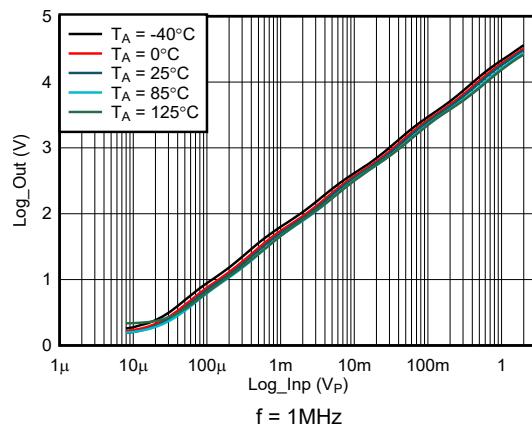


Figure 5-5. Log-Detector Output at Different Temperature Points

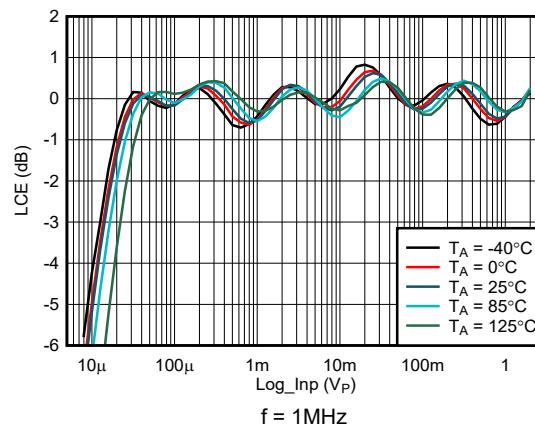


Figure 5-6. Log-Detector Conformance Error for Different Temperature Points

5.8 Typical Characteristics: VCC = 5V (continued)

at $T_A = 25^\circ\text{C}$, $\text{VCC} = 5\text{V}$, $C_F = 1\text{nF}$, $R_F = 43\text{k}\Omega$ (slope = 43mV/dB), $\text{Ref_Res} = 1\%$ $56\text{k}\Omega$, and 10nF capacitor to AGND on Log_Inp and Log_Inm (unless otherwise noted); for AFE, 2nd-order BPF centered around frequency f with gain = -7dB used between LNA and Log-Detector block

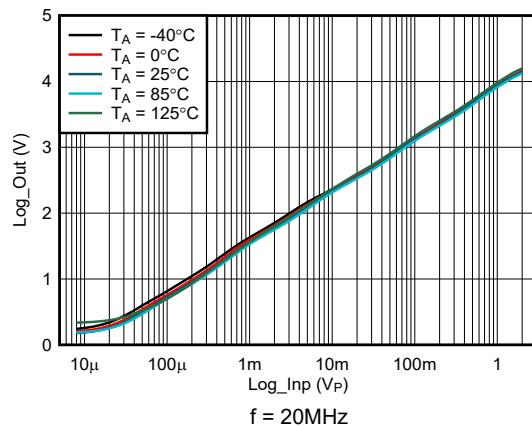


Figure 5-7. Log-Detector Output at Different Temperature Points

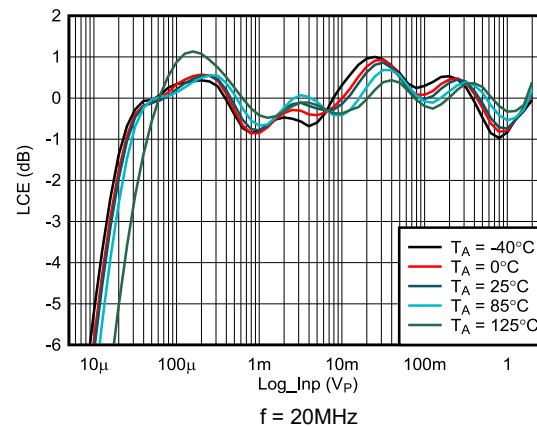


Figure 5-8. Log-Detector Conformance Error for Different Temperature Points

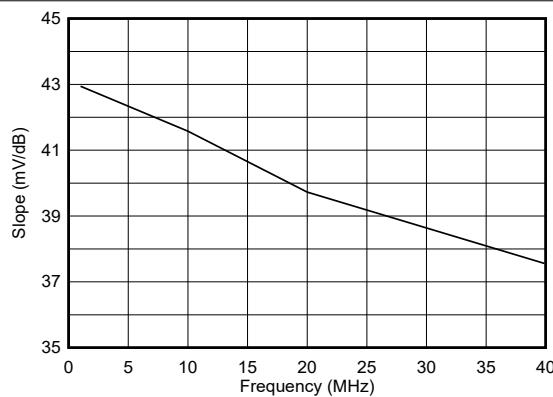


Figure 5-9. Log-Detector Slope Variation with Input Signal Frequency

Figure 5-10. Log-Detector Slope Variation vs Supply

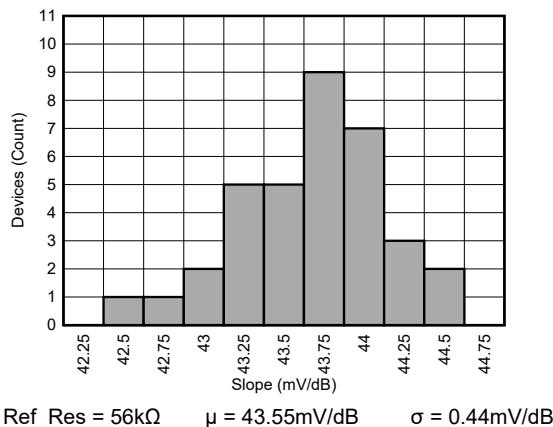


Figure 5-11. Log-Detector Slope Histogram With Ref_Res

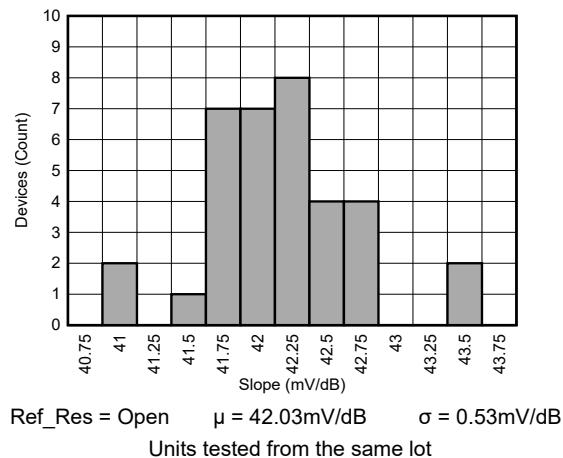


Figure 5-12. Log-Detector Slope Histogram Without Ref_Res

5.8 Typical Characteristics: VCC = 5V (continued)

at $T_A = 25^\circ\text{C}$, $VCC = 5\text{V}$, $C_F = 1\text{nF}$, $R_F = 43\text{k}\Omega$ (slope = 43mV/dB), $\text{Ref_Res} = 1\%$ $56\text{k}\Omega$, and 10nF capacitor to AGND on Log_Inp and Log_Inm (unless otherwise noted); for AFE, 2nd-order BPF centered around frequency f with gain = -7dB used between LNA and Log-Detector block

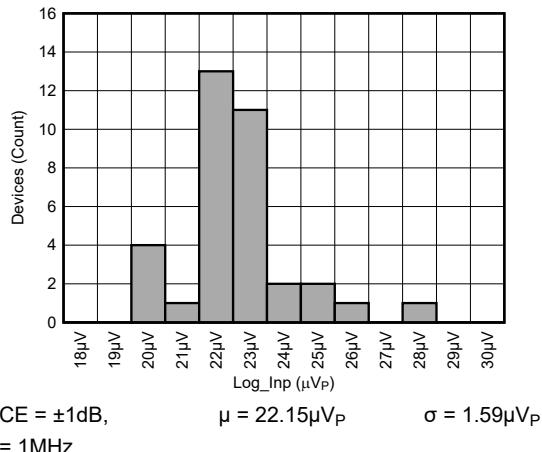


Figure 5-13. Minimum Input Sensitivity of Log Detector

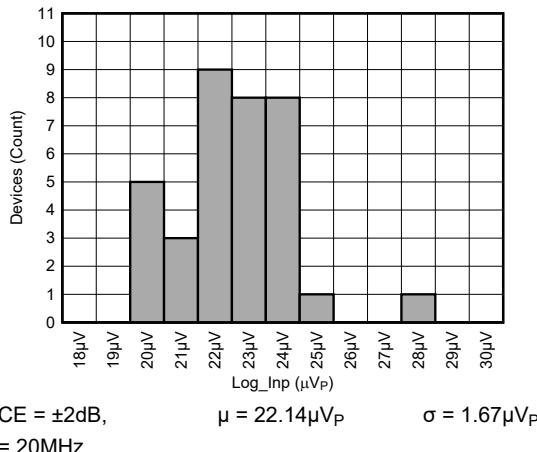


Figure 5-14. Minimum Input Sensitivity of Log Detector

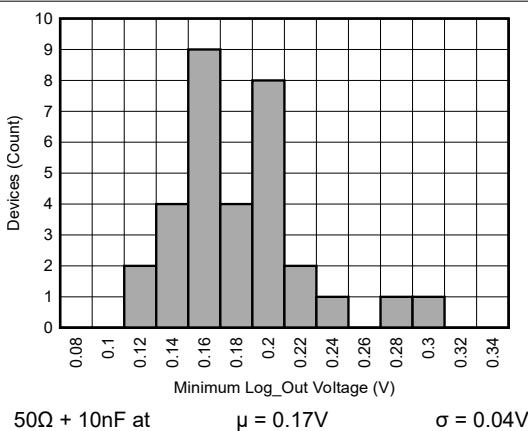


Figure 5-15. Minimum Output Voltage at Log_Out

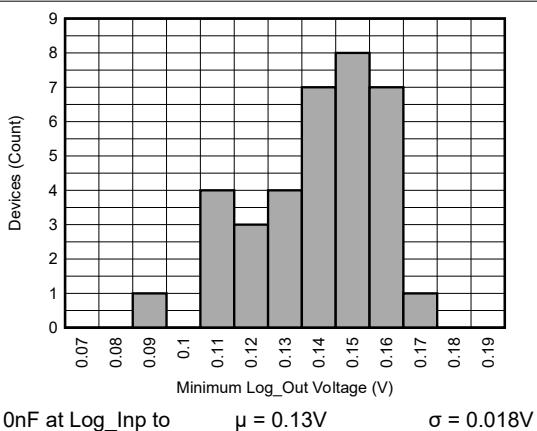


Figure 5-16. Minimum Output Voltage at Log_Out

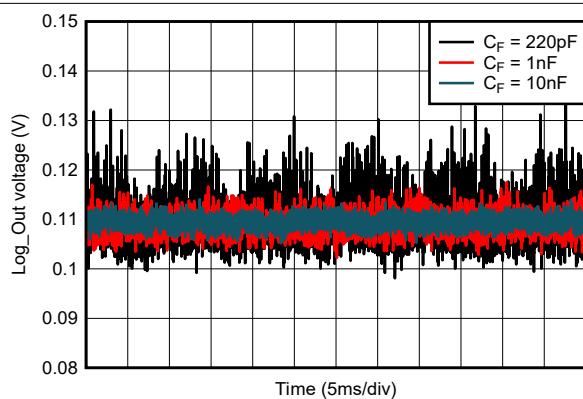


Figure 5-17. Minimum Log_Out Voltage vs Time

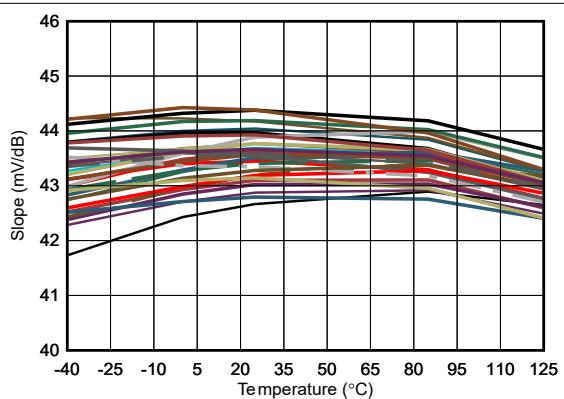
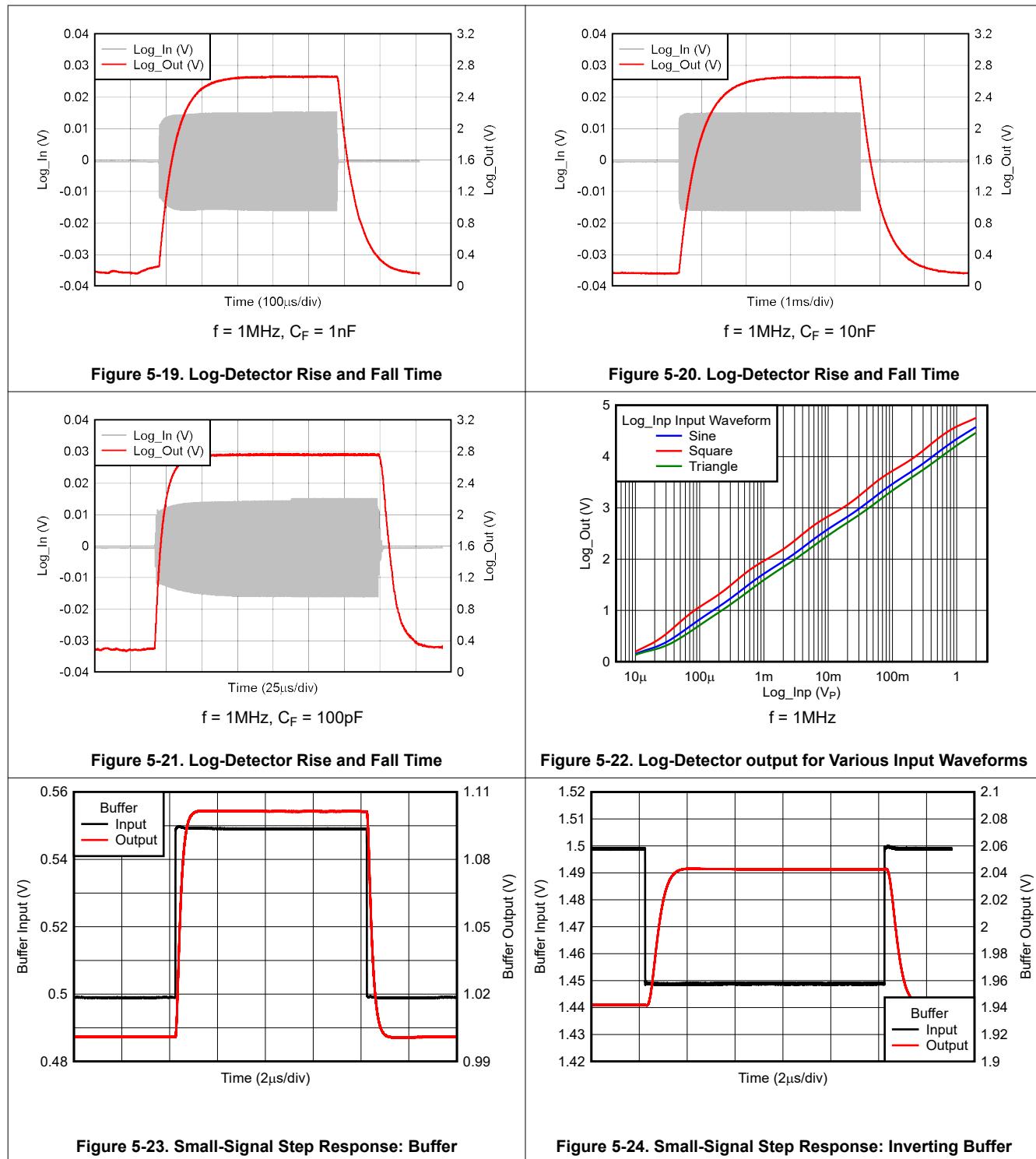



Figure 5-18. Slope Variation vs Temperature

5.8 Typical Characteristics: VCC = 5V (continued)

at $T_A = 25^\circ\text{C}$, $VCC = 5\text{V}$, $C_F = 1\text{nF}$, $R_F = 43\text{k}\Omega$ (slope = 43mV/dB), $\text{Ref_Res} = 1\%$ $56\text{k}\Omega$, and 10nF capacitor to AGND on Log_Inp and Log_Inm (unless otherwise noted); for AFE, 2nd-order BPF centered around frequency f with gain = -7dB used between LNA and Log-Detector block

5.8 Typical Characteristics: VCC = 5V (continued)

at $T_A = 25^\circ\text{C}$, $VCC = 5\text{V}$, $C_F = 1\text{nF}$, $R_F = 43\text{k}\Omega$ (slope = 43mV/dB), $\text{Ref_Res} = 1\%$ $56\text{k}\Omega$, and 10nF capacitor to AGND on Log_Inp and Log_Inm (unless otherwise noted); for AFE, 2nd-order BPF centered around frequency f with gain = -7dB used between LNA and Log-Detector block

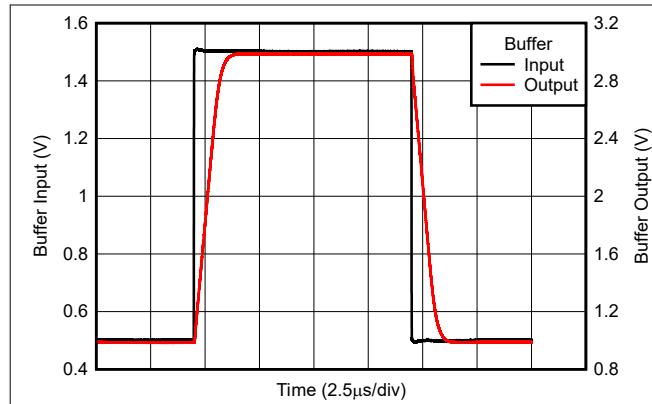


Figure 5-25. Large-Signal Step Response: Buffer

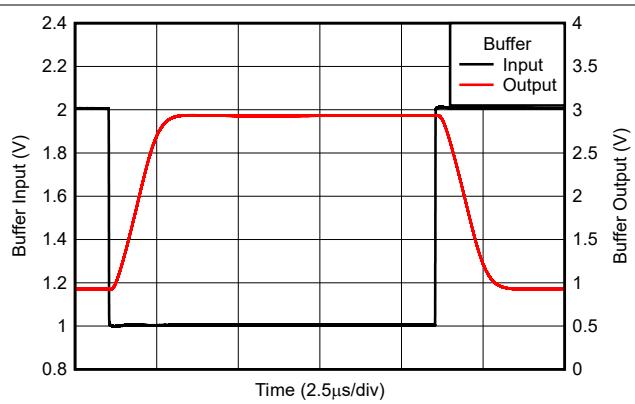


Figure 5-26. Large-Signal Step Response: Inverting Buffer

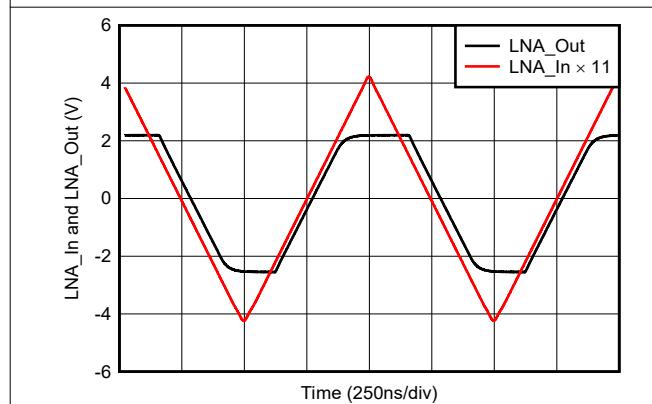


Figure 5-27. LNA Overdrive Recovery

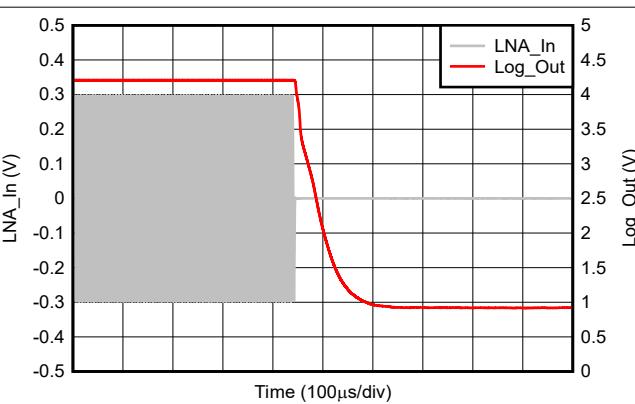


Figure 5-28. AFE Overdrive Recovery

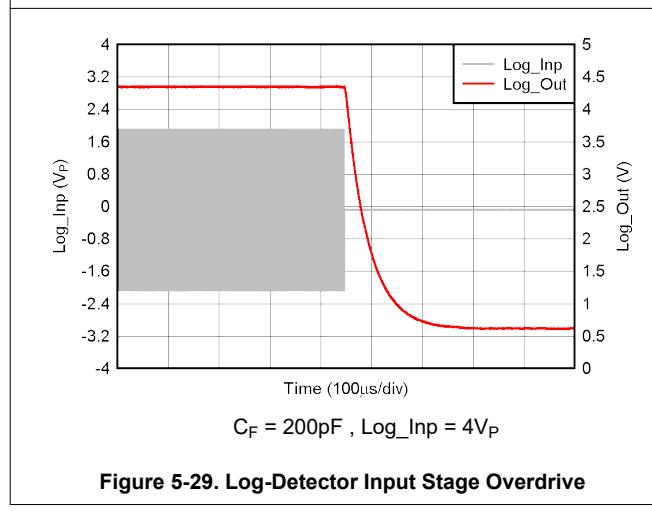


Figure 5-29. Log-Detector Input Stage Overdrive

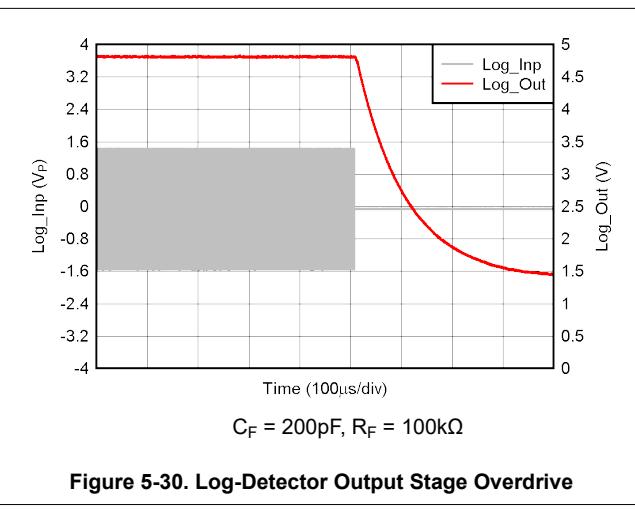


Figure 5-30. Log-Detector Output Stage Overdrive

5.8 Typical Characteristics: VCC = 5V (continued)

at $T_A = 25^\circ\text{C}$, $VCC = 5\text{V}$, $C_F = 1\text{nF}$, $R_F = 43\text{k}\Omega$ (slope = 43mV/dB), $\text{Ref_Res} = 1\%$ $56\text{k}\Omega$, and 10nF capacitor to AGND on Log_Inp and Log_Inm (unless otherwise noted); for AFE, 2nd-order BPF centered around frequency f with gain = -7dB used between LNA and Log-Detector block

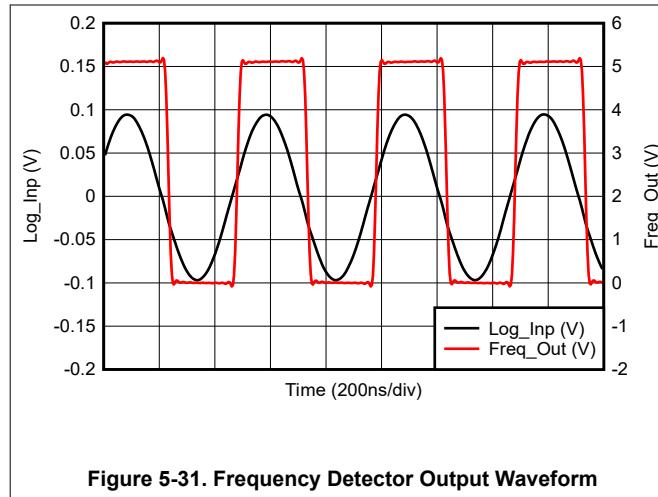
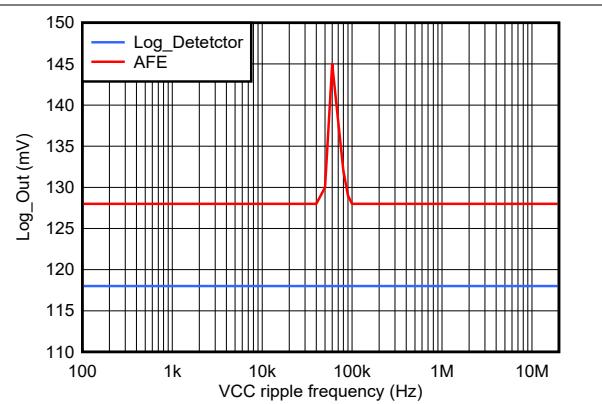



Figure 5-31. Frequency Detector Output Waveform

AFE; BPF = 65kHz , RC filter on VCC of $R = 50\Omega$, $C = 12\mu\text{F}$

Figure 5-32. Output vs 100mVpp Ripple Injected on VCC

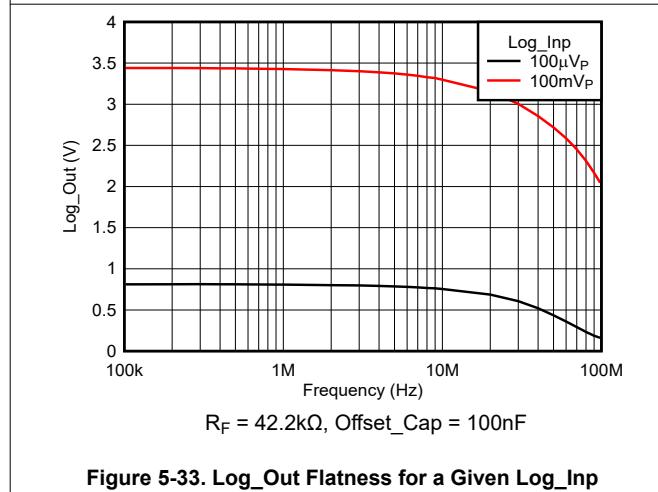
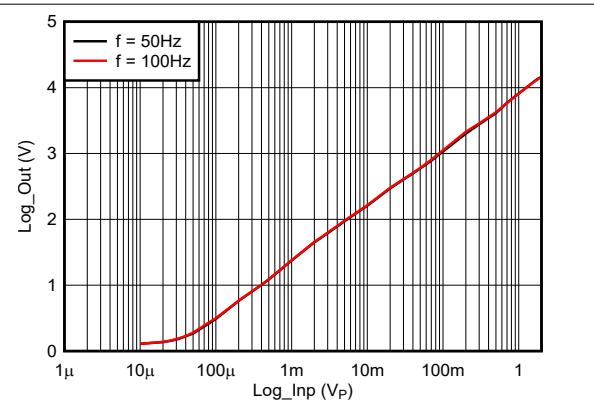



Figure 5-33. Log_Out Flatness for a Given Log_Inp

Input capacitor, $C_{IN} = 30\mu\text{F}$ and Offset_Cap = $50\mu\text{F}$

Figure 5-34. Low Frequency Sweep

5.9 Typical Characteristics: VCC = 3.3V

at $T_A = 25^\circ\text{C}$, $\text{VCC} = 3.3\text{V}$, $C_F = 1\text{nF}$, $R_F = 30\text{k}\Omega$ (slope = 30mV/dB), $\text{Ref_Res} = 1\%$ $56\text{k}\Omega$, and 10nF capacitor to AGND on Log_Inp and Log_Inm (unless otherwise noted); for AFE, 2nd-order BPF centered around frequency f with gain = -7dB used between LNA and Log-Detector block

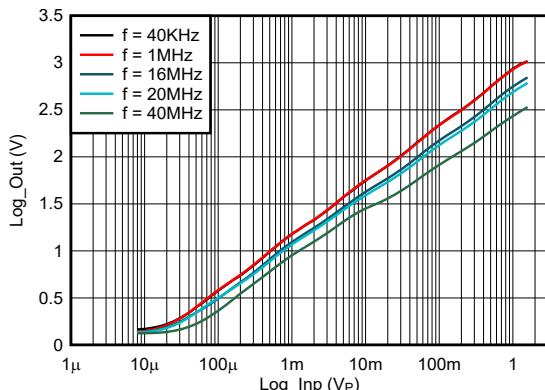


Figure 5-35. Log-Detector Output at Various Frequencies

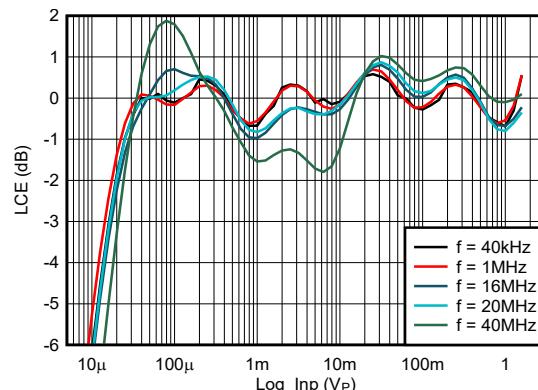


Figure 5-36. Log-Detector Conformance Error for Different Frequencies

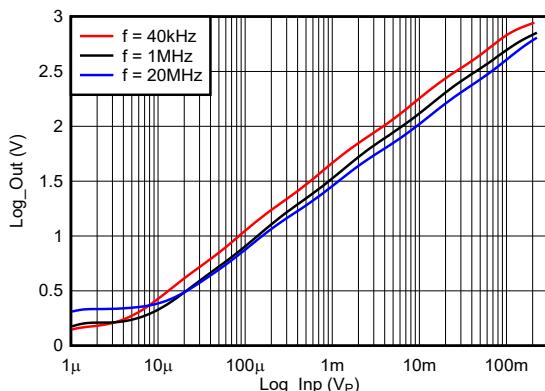


Figure 5-37. AFE Output at Various Frequencies

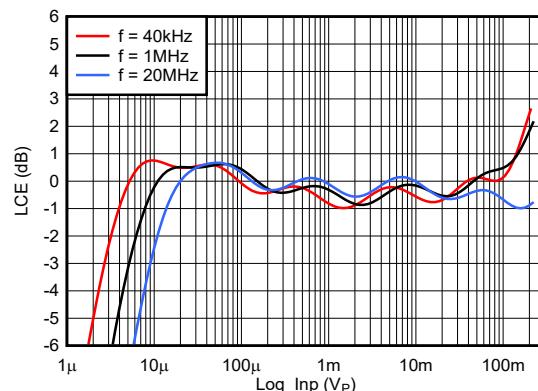


Figure 5-38. AFE Log-Conformance Error for Different Frequencies

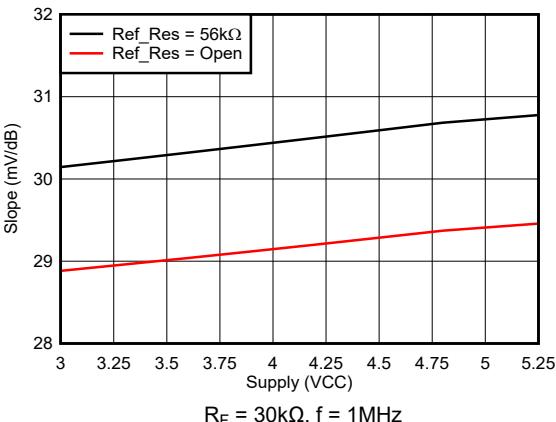


Figure 5-39. Log-Detector Slope Variation vs Supply

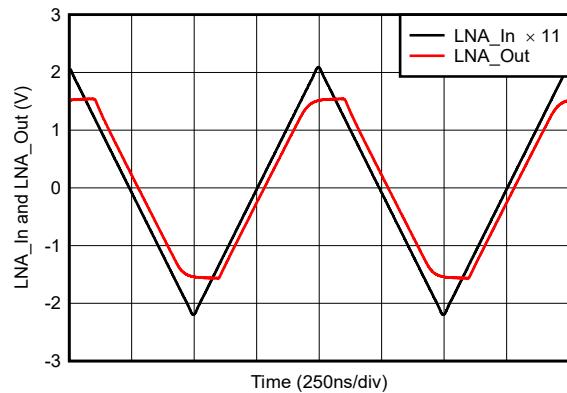
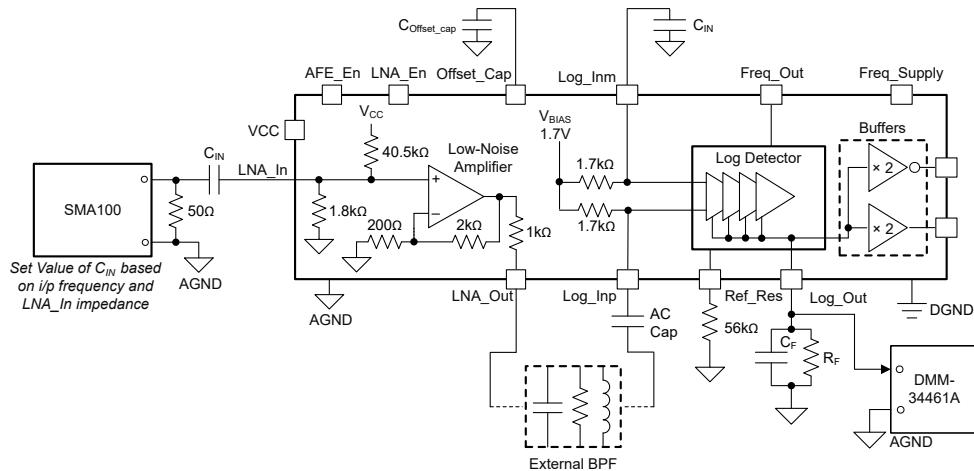
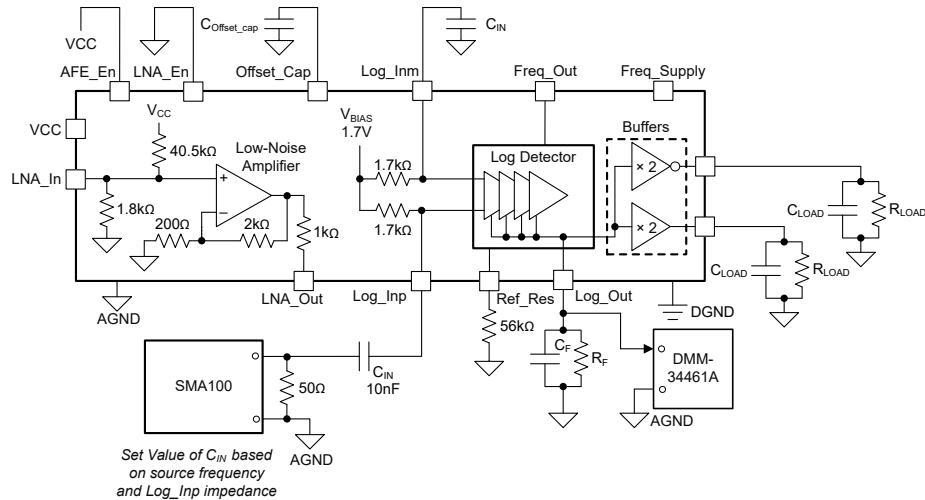




Figure 5-40. LNA Overdrive Recovery

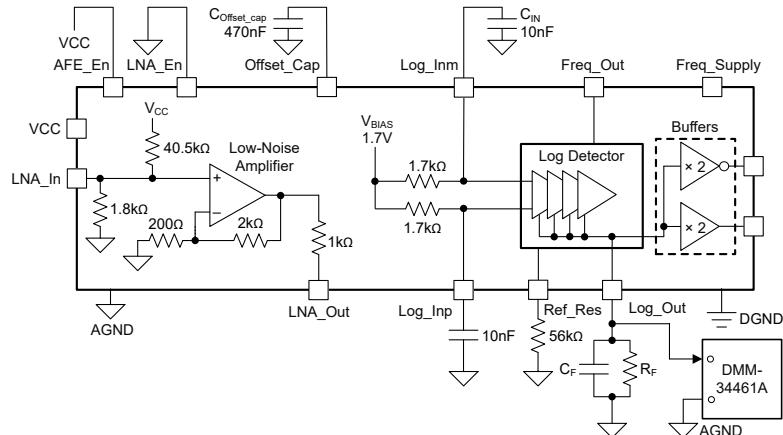
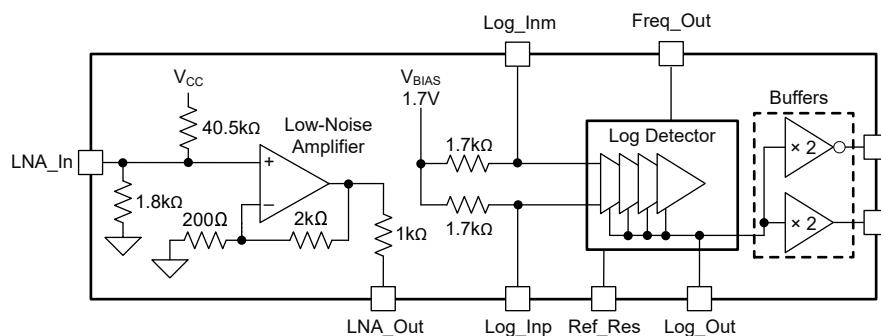

6 Parameter Measurement Information

Figure 6-1. AFE (LNA + Log Detector) Slope Characterization

Figure 6-2. Log Detector Slope Characterization


Figure 6-3. Log Detector Minimum Output Voltage Measurement

7 Detailed Description

7.1 Overview

The LOG300 is a highly sensitive analog front-end system for power measurements of up to 40MHz signals with a typical dynamic range of 98dB. The LOG300 is intended for use in a wide variety of applications like ultrasonic Rx signal chains, amplitude demodulation, signal power measurement, grid monitoring and so on. The LOG300 provides an analog envelope of an amplitude proportional to the log of the input signal. This behavior provides the application circuit precise input signal amplitude measurement without the need of high-speed signal acquisition components. The integrated frequency-detect feature enables zero-crossing and frequency measuring capability of the incoming signal.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Offset Correction Loop (OCL)

The LOG300 comes with an internal offset correction loop (OCL) designed to correct for any small offset voltage errors due to external factors or due to the internal gain mismatch. The LOG300 internal gain blocks offer very high gain; therefore, any small error voltage is sufficient to saturate the respective gain block resulting in degradation of dynamic range.

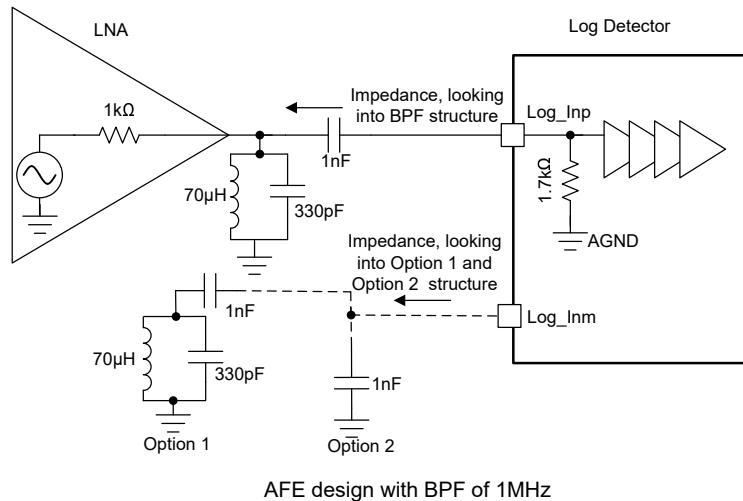
The Offset_Cap pin (see [Section 6](#)) sets the time constant of the OCL. Set the value of the OCL pole to less than the incoming signal frequency so that the OCL does not respond to the incoming signal. Use the following formula to calculate the value of $C_{\text{Offset_Cap}}$ based on the frequency of the incoming signal.

$$C_{\text{Offset_Cap}} (\text{nF}) \geq \frac{6000}{\text{Frequency of input signal (kHz)}} \quad (1)$$

where

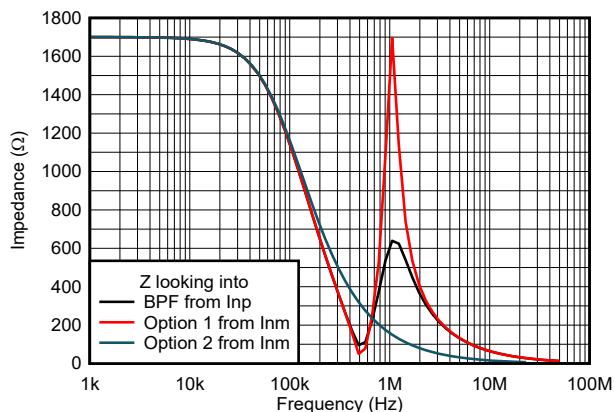
- $C_{\text{Offset_Cap}}$ is never less than 1nF. If the formula yields a value of $C_{\text{Offset_Cap}}$ less than 1nF, use 1nF.
- When the value of $C_{\text{Offset_Cap}}$ is greater than the calculated value, using [Equation 1](#) is acceptable because the OCL loop is set to a lower frequency.
- If the frequency of the input signal is in kHz, then by default the $C_{\text{Offset_Cap}}$ value is in nF.

7.3.2 Single and Differential Input


The Log Detector block of the LOG300 supports both single-ended and differential input signals. Irrespective of the type of input signal, the impedances from the Log_Inp and Log_Inm pins to AGND have to be matched.

The requirement for impedance matching arises from the fact that any supply noise or externally coupled noise passes through these impedances and generates an input voltage. If the impedances are mismatched at the two inputs a differential voltage is seen by the Log Detector block thereby increasing the minimum output voltage at the Log_Out pin. This results in degradation of the dynamic range.

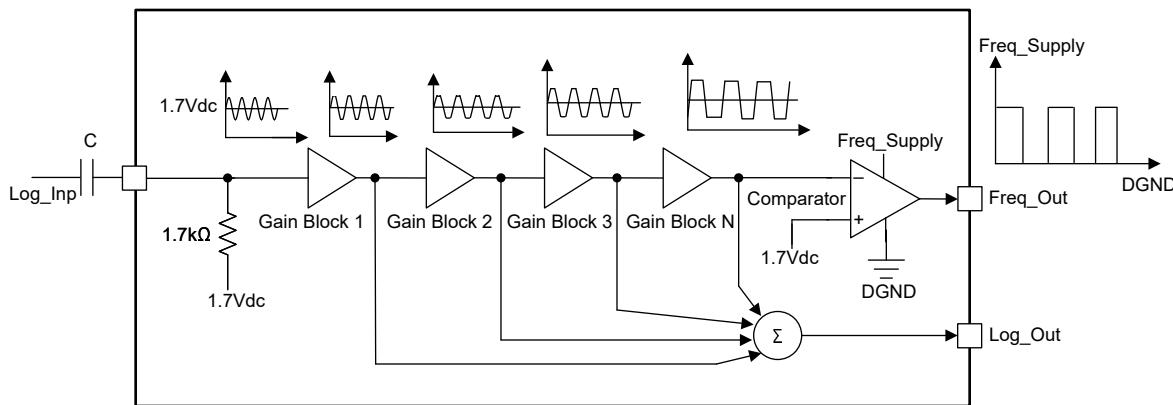
Impedance matching for differential input case can be easily achieved by replicating source impedance on both pins.


However for single-ended inputs, impedance matching can be quite complex. If board space is not limited TI recommends to copy the input structure at the Log_Inp pin as, is on to the Log_Inm input. Please take note of the default internal output impedance of the LNA of $1\text{k}\Omega$ when copying the structure to the Log_Inm pin.

If the above recommendation is not possible, match the impedances between the two pins at the frequency with the highest probability of noise coupling. For example if the VCC supply is being derived by a DC/DC converter switching at a frequency of 500kHz, using option 1 gives the best impedance matching between Log_Inp and Log_Inm. If the VCC ripple is at 100kHz then both option 1 and option 2 result in the same rejection response.

AFE design with BPF of 1MHz

Figure 7-1. Impedance Structure at Log_Inp and Log_Inm


Figure 7-2. Impedance vs Frequency at Log_Inp and Log_Inm

7.3.3 Input Frequency Detect

The Log_Out pin creates an envelope proportional to the incoming signal; therefore, the frequency and phase information of the input signal is lost. The frequency detect feature enables the LOG300 to recover this frequency information. The frequency detect pin toggles at the same frequency as the input, and can therefore be used to calculate the input signal frequency or the input signal zero crossing points.

The internal circuit consists of a comparator with one of the inputs connected to the pin Log_In bias voltage and the other input of the comparator connected to the last stage of the Log Detector gain block (see [Figure 7-3](#)). Log_In is ac coupled; therefore, the incoming signal is biased to the internal bias voltage.

The comparator compares the gained Log_In (both single-ended and differential) signal biased at the internal bias voltage with the DC internal bias voltage, thereby toggling at every instance of a zero crossing. If the incoming signal is not a symmetric waveform or consists of multiple frequency content, the frequency detect feature compares the zero crossings of the incoming signal.

Figure 7-3. Internal Block Diagram for Frequency Detect

7.4 Device Functional Modes

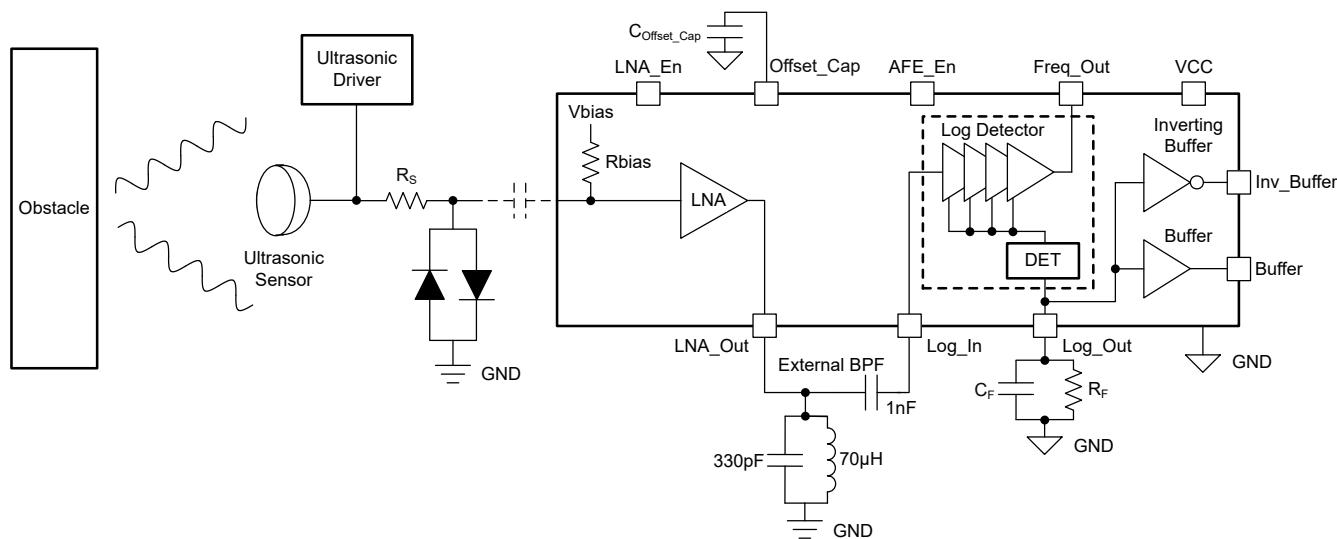
The LOG300 offers three functional modes:

- AFE Disabled
 - In this mode, the complete AFE (LOG300) is disabled and consumes only about 100µA.
- LNA Disabled
 - In this mode, the LNA is disabled, while the Log Detector block is still operational. See [Section 5.6](#) for detailed parameters in this mode.
 - Typically, this mode is used when the input sensitivity required is relaxed and the application prioritizes a lower quiescent current. Disabling the LNA helps save 2mA of quiescent current originally consumed by the LNA.
- Normal operating mode
 - In this mode, all blocks of the LOG300 are operational. See [Section 5.7](#) for detailed parameters such as power consumption, acceptable supply, and input output range.
 - This mode can be entered by floating the LNA_En and AFE_En pins or by tying them to VCC.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.


8.1 Application Information

The LOG300 is a good fit for multiple applications involving ultrasound receive signal measurement, power, and energy measurements. The wide dynamic range and high input sensitivity makes the LOG300 an excellent option for applications such as the example in [Section 8.2.1](#) involving measurement of low amplitude signals without the need of expensive, high-bandwidth, low-noise components.

8.2 Typical Application

8.2.1 Ultrasonic Distance Measurement

This design example demonstrates the circuit calculations and discrete component selection around the LOG300 to achieve a highly sensitive receive signal chain for a typical ultrasonic distance based measurement sensor.

Figure 8-1. Ultrasonic Distance Sensor

8.2.1.1 Design Requirements

Table 8-1. Design Parameters

PARAMETER	VALUE
Supply (VCC)	5V
Minimum input signal measuring capability	7 μ V _P
Maximum input signal measuring capability: Linear	200mV _P
Maximum input signal handling capability (V _{max})	100V _P
Frequency of Tx and Rx signal	1MHz
Log_Out; Output range	0.5V to 4.5V

8.2.1.2 Detailed Design Procedure

The LOG300 supports a 5V VCC. Add a 10Ω and $10\mu\text{F} \parallel 10\text{nF}$ close to the VCC pin to provide sufficient decoupling and immunity from external noise. This supply filter has a pole of 1.59kHz that is sufficiently less than the frequency of interest, which is 1MHz.

The absolute maximum voltage rating of pin LNA_In is $\pm 1\text{V}$. Add a back-to-back diode along with a series resistor (R_S) at the input of the LNA (see also [Figure 8-1](#)). The back-to-back diode protects the LNA_In pin from being exposed to any high voltages, especially during the transmit operation. Choose the series resistance value in accordance to the maximum power rating (P_{MAX}) of the back-to-back diode. The added series resistor contributes to the input noise and deteriorates the minimum input sensitivity.

$$R_S = \frac{(0.7\text{V} \times (V_{\text{max}} - 0.7\text{V}))}{P_{\text{max}}} \quad (2)$$

The maximum expected output voltage of the LNA with a back-to-back diode placed at the input is:

$$11\text{V}/\text{V} \times 0.7\text{V}_P = 7.7\text{V}_P \quad (3)$$

Since the LNA is only powered from a 5V supply; the maximum output is only 2.5V_P .

The maximum input for the Log_Inp pin is 1.7V_P for 5VCC (see also [Section 5.1](#)); therefore, add a band-pass filter (BPF) of appropriate attenuation in the pass-band region so that the detector block absolute maximum voltage rating is not violated. In this particular case, ensure that the BPF has an attenuation of at least -3.3dB . A BPF of -4.3dB is shown in [Figure 8-1](#).

Choose an Offset_Cap value based on [Section 7.3.1](#).

Choose the value of C_F based on the required rise time of the Log_Out pin voltage ($V_{\text{Log_Out}}$). A lower-value C_F improves the rise time at the cost of higher ripple on the output envelope. For reference plots see also [Section 5.8](#). Connect an oscilloscope at the Log_Out pin, triggered during the receive burst operation, to find the correct balance between the required rise time and the acceptable ripple.

The R_F resistor decides the input-to-output slope. The value of R_F in $\text{k}\Omega$ equals the input-to-output slope in mV/dB . In this example, calculate R_F using the below set of equations:

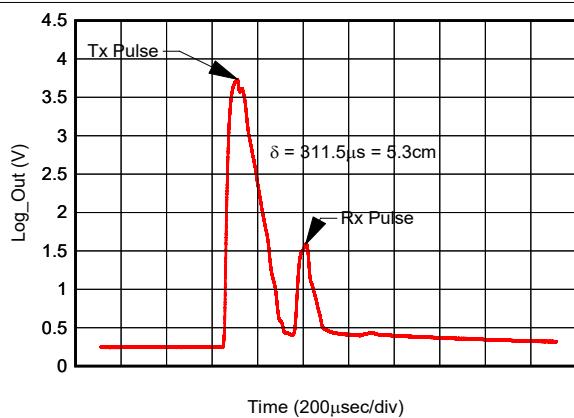
$$\text{Slope (mV/dB)} = R_F \text{ k}\Omega = \frac{(\text{Saturated output voltage} - \text{Minimum output voltage})}{(20 \times \log (\text{Maximum LNA_In} / \text{Minimum LNA_In}))} \quad (4)$$

$$\text{Slope (mV/dB)} = R_F \text{ k}\Omega = \frac{(4.5\text{V} - 0.5\text{V})}{(20 \times \log (200\text{mV} - 7\mu\text{V}))} \quad (5)$$

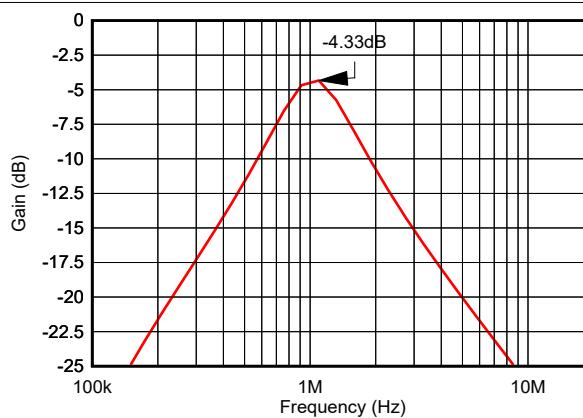
$$\text{Slope (mV/dB)} = 44\text{mV/dB}, \text{ hence use } R_F \text{ k}\Omega = 44\text{k}\Omega \quad (6)$$

Note

The maximum and minimum Log_Out values have been relaxed to design for the output to operate well within the linear range. R_F accuracy effects the slope accuracy.


The voltage measured at Log_Out can be traced back to calculate the input amplitude using the below equation:

$$\text{Log_Out}_A = \text{Slope} \times 20 \times \log \left(\frac{\text{Log_In}_A}{\text{Log_In}_B} \right) + \text{Log_Out}_B \quad (7)$$


$$\text{Log_In}_A = 10 \left(\frac{\text{Log_Out}_A - \text{Log_Out}_B}{\text{Slope} \times 20} \right) \times \text{Log_In}_B \quad (8)$$

Where : A stands for values of Log_Out and Log_In at the required measurement point and B stands for Log_Out and Log_In values at a known input value measured during factory calibration or production.

8.2.1.3 Application Curves

Figure 8-2. Log_Out Response for Ultrasonic Distance Measurement

Figure 8-3. Band-Pass Filter Frequency Response

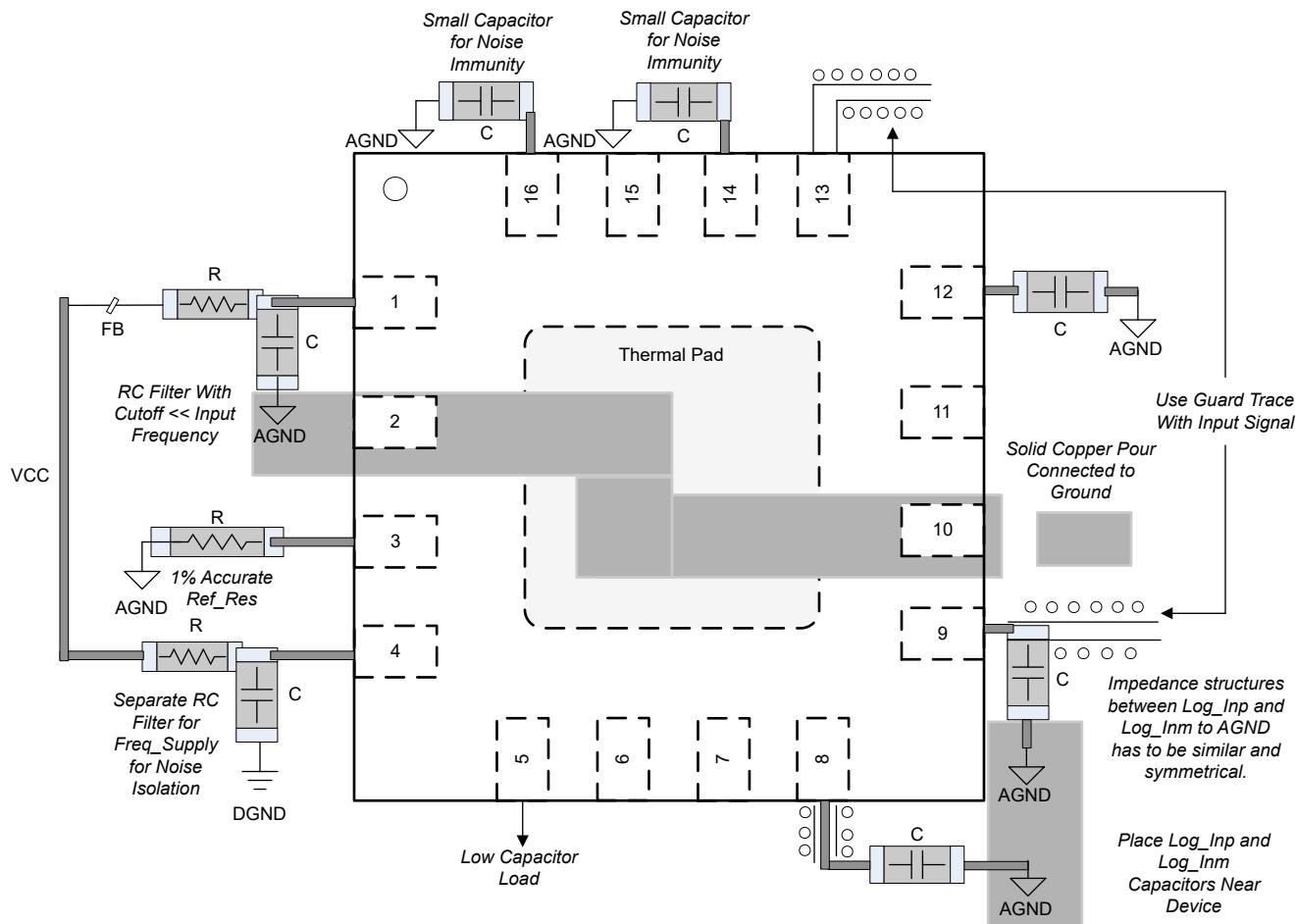
8.3 Power Supply Recommendations

The LOG300 contains two supply pins. The analog power supply pin (VCC) and the frequency detect block supply pin (Freq_Supply). Both pins can be biased at any voltage between 3V to 5.25V with respect to the AGND. While both these pins are connected to different circuitry internally, TI recommends to connect both of these pins to the same potential. Provide separate decoupling capacitors, resistors, and ferrite beads to these supply pins (see [Section 8.4.2](#)) to maintain sufficient immunity against cross coupling.

The LOG300 is sensitive to the noise coupling through the supply pins. Use a low-pass filter on the supply line with a cutoff frequency less than the incoming frequency signal.

For example if the incoming signal is 100kHz, and the band-pass filter has been tuned to achieve a center frequency of 100kHz, design a RC filter on the supply with a cut off frequency of at least 10kHz. For a higher signal frequency the RC values start diminishing to smaller values and hence the cut off frequency can be parked to any appropriate value.

An external band-pass filter if used between the LNA and the LOG detector block, along with a low-pass filter on the supply pins provides enough power-supply rejection to keep Log_Out unaffected.


8.4 Layout

8.4.1 Layout Guidelines

Follow these instructions to improve the performance and noise immunity of the LOG300:

- Provide a star connection style supply for Freq_Supply and VCC. This connection enables better noise immunity and decoupling.
- Design Log_Inp, Log_Inm and LNA_In traces with guard traces to improve immunity against noise pickup. Use shielding when possible to improve radiated noise immunity.
- Place small capacitors on the AFE and LNA enable pins to allow high-frequency noise to be grounded before entering into the device.
- As per [Section 7.3.2](#), keep the impedance seen from Log_Inp and Log_Inm to the external circuit the same. Keep the trace length to Log_Inp and Log_Inm similar to keep impedance matched.
- Keep minimal capacitance at the Freq_Out pin either by placing the load circuit close to the pin or by removing the analog ground plane under the output trace or both.
- Dedicate one layer of the PCB for a solid analog ground pour to terminate all the capacitors used across the pins using sufficient vias.

8.4.2 Layout Example

Figure 8-4. Layout Example

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

9.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (December 2024) to Revision C (September 2025)	Page
• Updated <i>Features and Description</i> to highlight support for single-ended and differential inputs and signal detection from 50Hz to 40MHz.....	1
• Updated <i>Logarithmic Detector and Envelope Detector</i> in <i>Description</i>	1
• Changed Figure 5-33 title from <i>Slope vs Frequency</i> to <i>Log_Out Flatness for a Given Log_Inp</i>	9
• Added Figure 5-34, <i>Low Frequency Sweep</i>	9
• Updated all figures in <i>Parameter Measurement Information</i> to show symmetrical inputs for Log_Inm and Log_Inp pins, and added 1.7kΩ to both the inputs.....	16
• Updated <i>Functional Block Diagram</i> to show symmetrical inputs for Log_Inm and Log_Inp pins, and added 1.7kΩ to both the inputs.....	17
• Updated <i>Offset Correction Loop (OCL)</i> for clarity.....	17

Changes from Revision A (October 2024) to Revision B (December 2024)	Page
• Added RGT package to data sheet.....	1
• Added minimum output voltage for RGT package.....	6
• Updated minimum output voltage at $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ in <i>Electrical Characteristics LNA + Log Detector (AFE)</i>	8
• Updated Figure 5-34, <i>Log-Detector Output at Various Frequencies</i> , to fix broken X-axis scale.....	15
• Updated Figure 7-1, <i>Impedance Structure at Log_Inp and Log_Inm</i>	18
• Updated Figure 7-2, <i>Impedance vs Frequency at Log_Inp and Log_Inm</i>	18

Changes from Revision * (September 2024) to Revision A (October 2024)	Page
• Changed document status from advanced information (preview) to production data (active).....	1

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

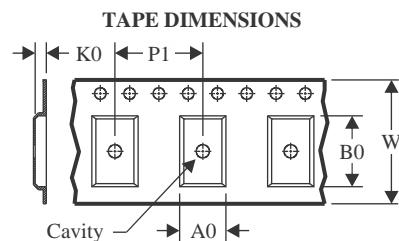
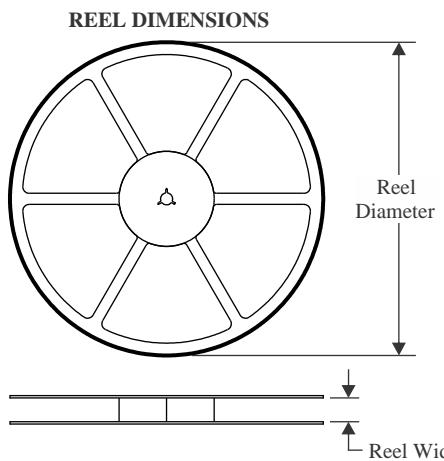
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
LOG300DR	Active	Production	SOIC (D) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LOG300D
LOG300DR.B	Active	Production	SOIC (D) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LOG300D
LOG300RGTR	Active	Production	VQFN (RG) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LOG300
LOG300RGTR.B	Active	Production	VQFN (RG) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LOG300

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

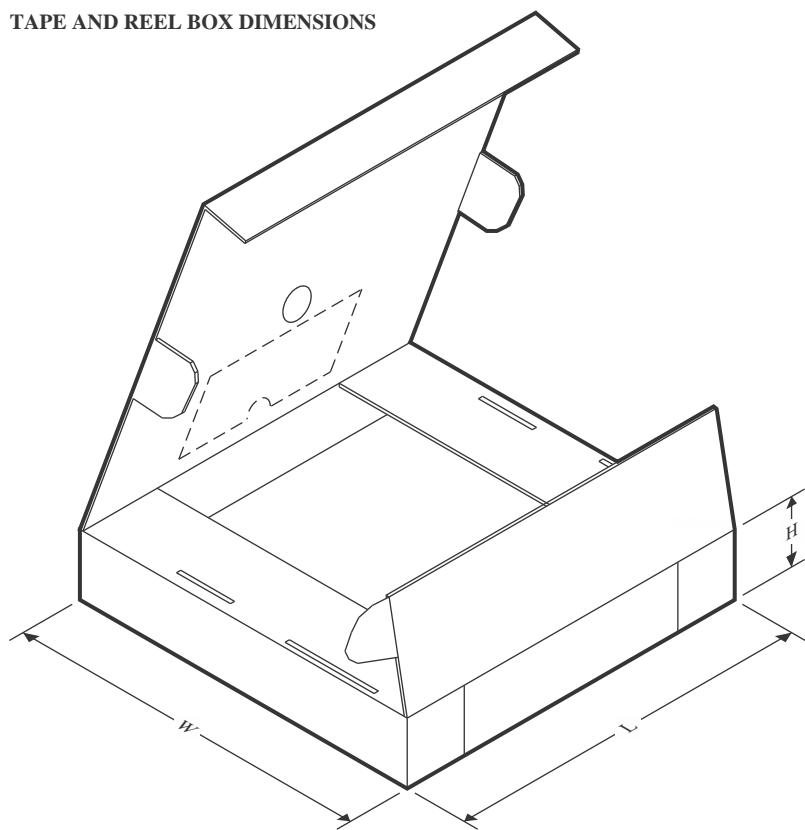


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LOG300DR	SOIC	D	16	3000	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
LOG300RGTR	VQFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LOG300DR	SOIC	D	16	3000	353.0	353.0	32.0
LOG300RGTR	VQFN	RG	16	3000	367.0	367.0	35.0

D (R-PDSO-G16)

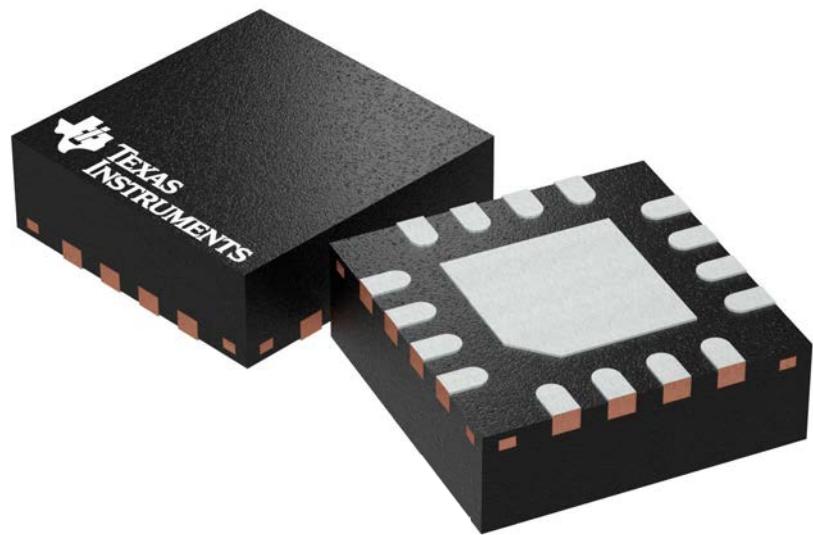
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

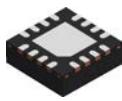
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.


E. Reference JEDEC MS-012 variation AC.

GENERIC PACKAGE VIEW

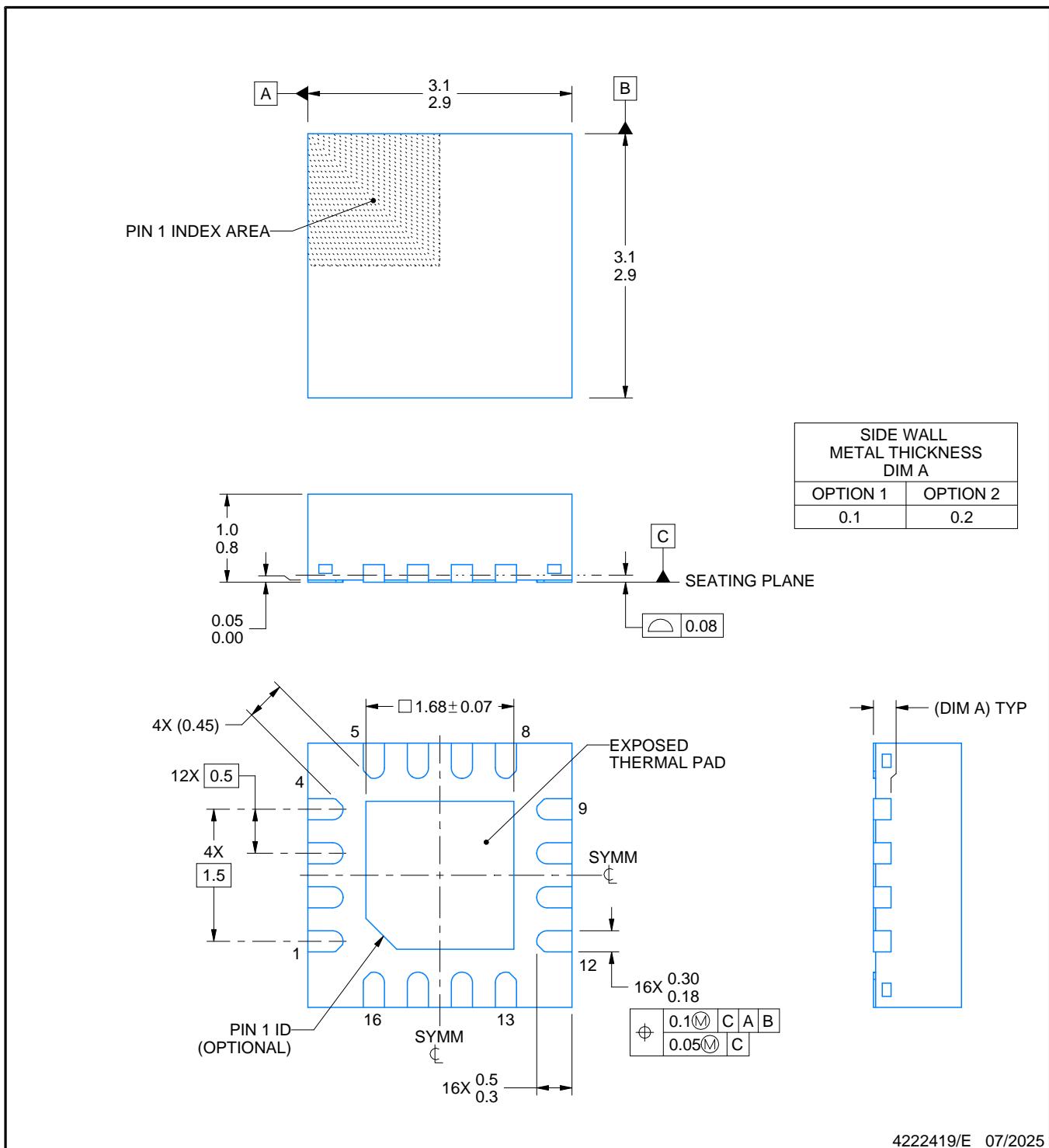
RGT 16

VQFN - 1 mm max height


PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4203495/I


RGT0016C

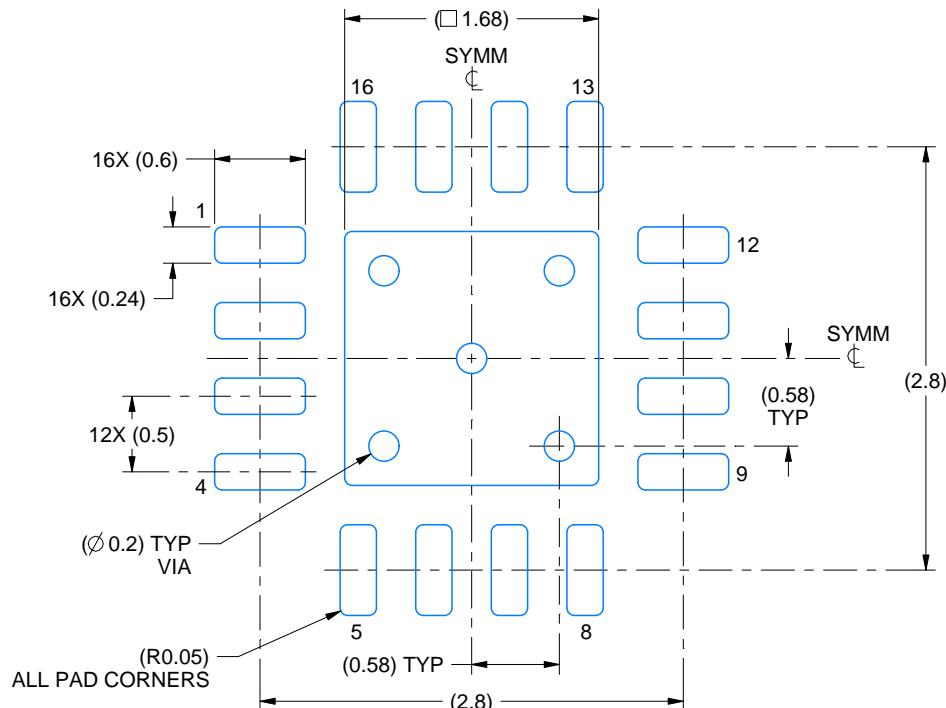
PACKAGE OUTLINE

VQFN - 1 mm max height

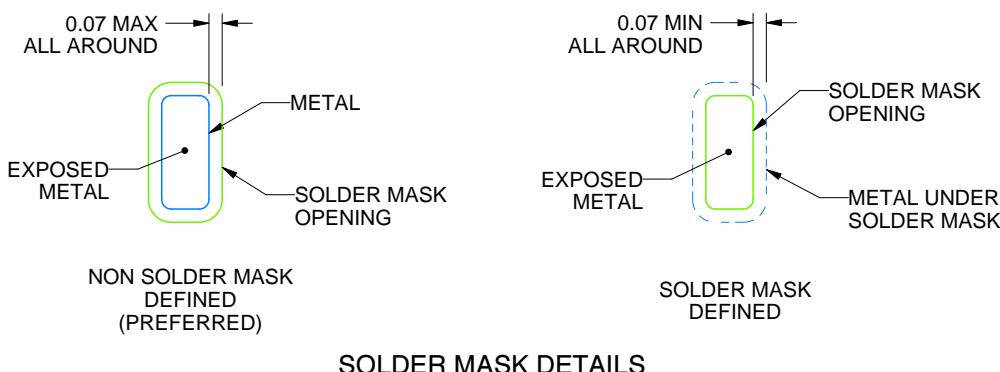
PLASTIC QUAD FLATPACK - NO LEAD

4222419/E 07/2025

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT


RGT0016C

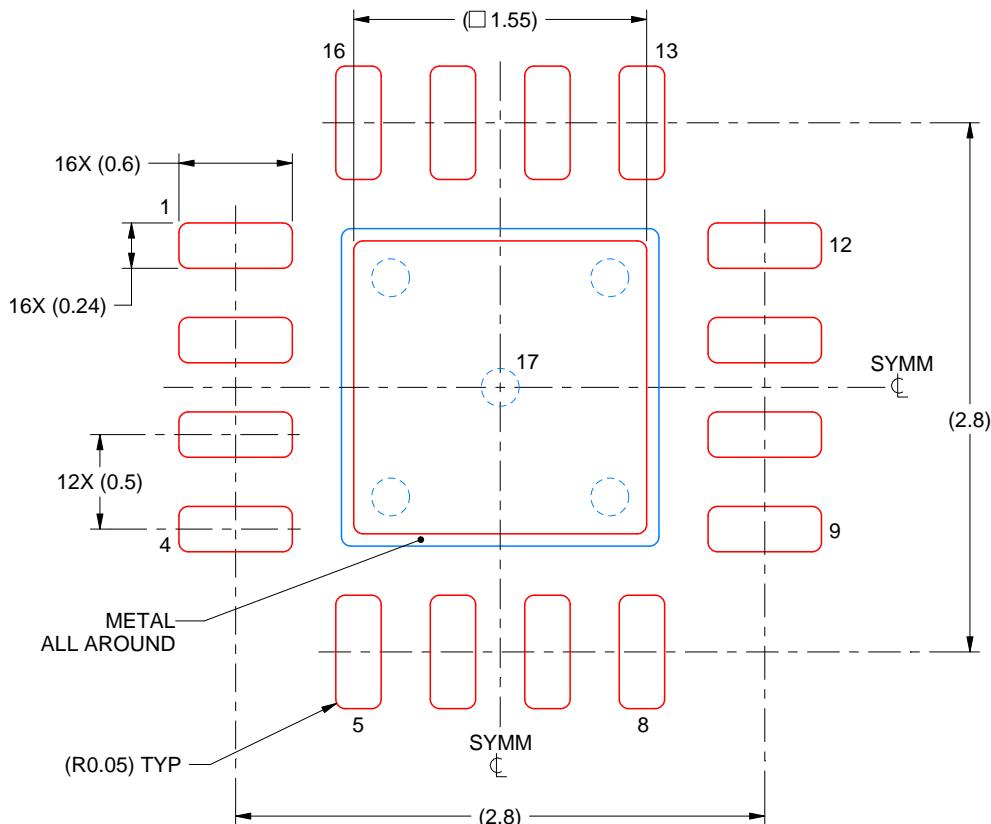
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:20X

4222419/E 07/2025

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RGT0016C

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

EXPOSED PAD 17:
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
SCALE:25X

4222419/E 07/2025

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025