

LP5813 Synchronous Boost 4 × 3 Matrix RGB LED Driver with Autonomous Control

1 Features

- Operating voltage range:
 - Input voltage (V_{IN}) range: 0.5V to 5.5V
 - 1.8V minimum input voltage for start-up
 - Logic pins compatible with 1.8V, 3.3V, and 5V
- High efficiency synchronous boost converter
 - Output voltage (V_{OUT}) range: 3V to 5.5V
 - 140m Ω (HS) / 60m Ω (LS) MOSFETs
 - 1.6A valley switching current limit
 - 95% efficiency at V_{IN} = 4.2V, V_{OUT} = 5.0V, I_{OUT}
 - Pass-through mode when VIN > VOUT setting
 - True disconnection between input and output during shutdown
- Time-cross-multiplexing (TCM) topology:
 - Drives up to 12 LEDs or 4 RGB LEDs
 - $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, 1 multiplexing ratio
 - Supports direct, TCM, and mix-drive modes
- 4 constant current sinks with high precision:
 - 0.1mA to 51mA per current sink
 - Device-to-device error: max ±5%
 - Channel-to-channel error: max ±5%
 - Ultra-low headroom voltage: 110mV (typ.) at 25.5mA; 210mV (typ.) at 51mA
 - PWM phase shift configurable for each LED
- Ultra-low power consumption:
 - Shutdown: $I_{SD} = 0.1 \mu A$ (typical) when EN = Low
 - Standby: I_{STB} = 26μA (typical) when EN = High and CHIP EN = 0 (data retained)
 - Active: I_{NOR} = 0.45mA (typical) when LED current = 25.5mA
- Analog dimming (current gain control)
 - Global 1-bit Maximum Current (MC): 25.5mA or
 - Individual 8-bit Dot Current (DC) setting
- PWM dimming up to audible-noise-free 24kHz
 - Individual 8-bit PWM dimming resolution
 - Linear or exponential dimming curves
- Autonomous animation engine control
- Individual LED dot open/short detection
- Integrated de-ghosting function
- 1MHz (max.) I²C interface
- -40°C to 85°C operating temperature range

2 Applications

LED animation and indication for:

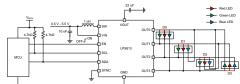
Portable and wearable electronics - earbud and charging case, E-cigarette, smart watch

- Gaming and home entertainment smart speaker, RGB mouse, VR headset, and controller
- Internet-of-Things (IOT) E-tag, video doorbell
- Networkings router, access point
- Industrial HMI EV charger, factory automation

3 Description

The LP5813 is a synchronous boost 4 × 3 matrix RGB LED driver with autonomous animation engine control. The device is ideal to support battery-powered applications with 0.5V to 5.5V input voltage range, and it has ultra-low normal operation current with 0.4mA (typical) when illuminate LEDs.

The integrated synchronous boost converter maintains excellent efficiency and keeps the brightness of LEDs stable over a wide operating voltage range. Output voltage can be selected for different LED forward voltage from 3V to 5.5V with 0.1V step. The boost converter can power not only the LEDs driven by the device itself, but also other loads in the system. If the boost converter need to be bypassed, VOUT is used as the power supply input for the LED driver blocks.


The time-cross-multiplexing (TCM) structure is adopted, which uses 4 output pins to control 12 LED dots individually. Both high-side scan switch and lowside current sink are contained in one output. The total solution size are minimized for space limited system.

The autonomous animation engine can significantly reduce the real-time loading of controller. Each LED can be configured through the related registers to realize vivid and fancy lighting effects. The device can generate 6MHz clock signal and use it for synchronizing the lighting effects among multiple devices.

Package Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LP5813	DSBGA (12)	1.84mm × 1.43mm
LF 30 13	WSON (12) ⁽¹⁾	3mm × 3mm

Product Preview

Simplified Schematic

Table of Contents

1 Features	1 7.5 Programming
2 Applications	1 8 Register Map Table30
3 Description	
4 Device Comparison	
5 Pin Configuration and Functions	4 9.2 Typical Application48
6 Specifications	6 9.3 Power Supply Recommendations56
6.1 Absolute Maximum Ratings	6 9.4 Layout56
6.2 ESD Ratings	6 10 Device and Documentation Support58
6.3 Recommended Operating Conditions	6 10.1 Documentation Support58
6.4 Thermal Information	6 10.2 Receiving Notification of Documentation Updates58
6.5 Electrical Characteristics	7 10.3 Support Resources
6.6 Timing Requirements	9 10.4 Trademarks58
6.7 Typical Characteristics	10 10.5 Electrostatic Discharge Caution58
7 Detailed Description	13 10.6 Glossary58
7.1 Overview	13 11 Revision History 58
7.2 Functional Block Diagram	14 12 Mechanical, Packaging, and Orderable
7.3 Feature Description	
7.4 Device Functional Modes	27

4 Device Comparison

PART	Max LED	Power	DAOKAGE	MATERIAL	I ² C Chip	Address	SOFTWARE
NUMBER	Number	Stage	PACKAGE	MATERIAL	Bit 4	Bit 3	COMPATIBLE
				LP5813AYBHR	0	0	
			DODOA 40	LP5813BYBHR	0	1	
			DSBGA-12	LP5813CYBHR	1	0	
L DE040	40	D 4		LP5813DYBHR	1	1	
LP5813	12	Boost		LP5813ADRRR	0	0	
			WCON 40	LP5813BDRRR	0	1	
			WSON-12	LP5813CDRRR	1	0	
				LP5813DDRRR	1	1	
			DSBGA-9	LP5812AYBHR	0	0	
			DODGA 0	LP5812BYBHR	0	1	
			DSBGA-9	LP5812CYBHR	1	0	
L DE040	40		WSON-8	LP5812DYBHR	1	1	
LP5812	12	Linear		LP5812ADSDR	0	0	
				LP5812BDSDR	0	1	
				LP5812CDSDR	1	0	
				LP5812DDSDR	1	1	V ₀ -
				LP5811AYBHR	0	0	Yes
			DODGA 40	LP5811BYBHR	0	1	
			WSON-8 DSBGA-12	LP5811CYBHR	1	0	
I DE044	4	D 4		LP5811DYBHR	1	1	
LP5811	4	Boost		LP5811ADRRR	0	0	
			1MOON 40	LP5811BDRRR	0	1	
			WSON-12	LP5811CDRRR	1	0	
				LP5811DDRRR	1	1	
				LP5810AYBHR	0	0	
			DODGA 6	LP5810BYBHR	0	1	
			DSBGA-9	LP5810CYBHR	1	0	
I DE040	_			LP5810DYBHR	1	1	
LP5810	4	Linear		LP5810ADSDR	0	0	
			MOON C	LP5810BDSDR	0	1	
			WSON-8	LP5810CDSDR	1	0	
				LP5810DDSDR	1	1	

5 Pin Configuration and Functions

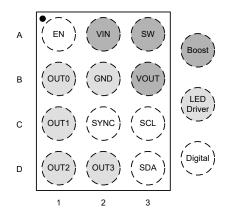


Figure 5-1. LP5813 YBH Package 12-Pin DSBGA Top View

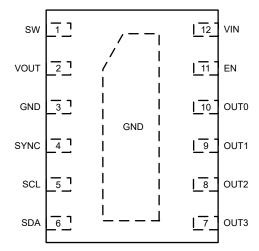


Figure 5-2. LP5813 DRR Package 12-Pin WSON Top View

Table 5-1. Pin Functions

	PIN		TYPE(1)	DESCRIPTION
NAME	YBH	DRR	ITPE	DESCRIPTION
EN	A1	11	I	Enable input of the integrated boost converter.
VIN	A2	12	Р	Power supply of the device. A 10 μ F capacitor is recommended to be connected between this pin with GND and be placed as close to the device as possible.
SW	А3	1	Р	Switch pin of the integrated boost converter, which is connected to the drain of low-side power FET and source of high-side rectifier FET. Connect the inductor to this pin
OUT0	B1	10	0	Output 0 which contains current sink 0 and high-side scan FET 0. If not used, this pin must be floating.
GND	B2	3	G	Ground. Must be connected to the common ground plane
VOUT	В3	2	Р	Boost converter output. A 22 uF capacitor is recommended to be connected between this pin with GND and be placed as close to the device as possible.
OUT1	C1	9	0	Output 1 which contains current sink 1 and high-side scan FET 1. If not used, this pin must be floating.
SYNC	C2	4	I/O	Synchronous between multiple devices. If not used, this pin can be connected to ground to save power.
SCL	C3	5	I	I ² C serial interface clock input.
OUT2	D1	8	0	Output 2 which contains current sink 2 and high-side scan FET 2. If not used, this pin must be floating.
OUT3	D2	7	0	Output 3 which contains current sink 3 and high-side scan FET 3. If not used, this pin must be floating.
SDA	D3	6	I/O	I ² C serial interface data input/output.

(1) P: Power Pin; I: Input Pin; I/O: Input/Output Pin; O: Output Pin.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage range at terminals	VIN, SW, VOUT	-0.3	6	V
	SW spike at 10 ns	-0.7	8	V
	SW spike at 1 ns	-0.7	9	V
at tomman	OUT0, OUT1, OUT2, OUT3	-0.3	6	V
	EN, SCL, SDA, SYNC	-0.3	6	V
T _J	Junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V		Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±4000	V
V _(ESD)	Electrostatic discriarge	Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{IN}	Input voltage range	0.5		5.5	V
V _{OUT}	Output voltage setting range	3		5.5	V
L	Effective inductance range	0.37	1	2.9	μH
C _{IN}	Effective input capacitance range	1	4.7		μF
C _{OUT}	Effective output capacitance range	4	10	1000	μF
OUT0, OUT1, OUT2, OUT3	Voltage on OUT0, OUT1, OUT2, OUT3 pins	0		5.5	V
EN, SCL, SDA, SYNC	Voltage on EN, SCL, SDA, SYNC pins	0		5.5	V
T _A	Ambient temperature	-40		85	°C
T _J	Operating junction temperature	-40		125	°C

6.4 Thermal Information

		LP58	310/2	LP58	311/3	
	THERMAL METRIC ⁽¹⁾	YBH (DSBGA)	DSD (WSON)	YBH (DSBGA)	DRR (WSON)	UNIT
		9 PINS	8 PINS	12 PINS	12 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	113.1	50.8	92.1	47.5	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	0.6	51.1	0.4	45.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	33.9	22.9	25.9	20.9	°C/W
$\Psi_{ m JT}$	Junction-to-top characterization parameter	0.2	1.1	0.2	0.7	°C/W

THERMAL METRIC(1)		LP58	310/2	0/2 LP5811/3		
		YBH (DSBGA)	DSD (WSON)	YBH (DSBGA)	DRR (WSON)	UNIT
		9 PINS	8 PINS	12 PINS	12 PINS	
Ψ_{JB}	Junction-to-board characterization parameter	33.8	22.8	25.8	20.9	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	8.5	n/a	6.6	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < \text{TA} < +85^{\circ}\text{C}$), $V_{\text{IN}} = 3.6 \text{ V}$, VOUT = 5 V, $C_{\text{IN}} = 1 \text{ µF}$, $C_{\text{OUT}} = 1 \text{ µF}$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Sup	ply				<u> </u>	
V _{IN}	Input voltage range		0.5		5.5	V
V	Lindar valtaga laakaut throchald	V _{IN} rising		1.7	1.8	V
V_{IN_UVLO}	Under-voltage lockout threshold	V _{IN} falling		0.4	0.5	V
I _{SD}	Shutdown current into VIN and SW pin	IC disabled (EN = Low), V_{IN} = 3.6 V, T_A = 25°C		0.1	0.35	μΑ
I _{STB}	Standby current into VIN and SW pin	CHIP_EN = 0 (bit), Boost enabled (EN = High), V _{IN} = 3.6 V, VOUT set to 3 V, Pass-through mode		26	29	μΑ
	Standby current into VOUT pin	CHIP_EN = 0 (bit), Boost disabled (EN = Low), VIN no supply, VOUT force to 5 V		25	5.5 1.8 0.5 0.35 29 28 0.65 0.66	μA
I _{NOR}	Normal operation current into VIN and SW pin	CHIP_EN = 1 (bit), Boost enabled (EN = High), V_{IN} = 3.6 V, VOUT set to 3 V, Pass-through mode, I_{OUT0} = I_{OUT1} = I_{OUT2} = I_{OUT3} = 25.5 mA (MC = 0, DC = 255, PWM = 255)		0.45	0.65	mA
	Normal operation current into VOUT pin	CHIP_EN = 1 (bit), Boost disabled (EN = LOW), VOUT force to 3.6 V, I _{OUT0} = I _{OUT1} = I _{OUT2} = I _{OUT3} = 25.5 mA (MC = 0, DC = 255, PWM = 255)		0.4	0.6	mA
Boost Outp	ut				·	
V_{OUT}	Output voltage setting range		3		5.5	V
V _{OVP}	Output over-voltage protection threshold	V _{OUT} rising	5.5	5.7	5.9	V
V _{OVP_HYS}	Over-voltage protection hysteresis			0.2		V
t _{SS}	Soft startup time	From active EN to VOUT regulation. V_{IN} = 1.8 V, C_{OUT} = 22 μ F, I_{VOUT} = 0 mA		450		μs
Boost Pow	er Switch				1	
D.	High-side MOSFET on resistance	V _{VOUT} = 5 V		140		mΩ
R _{DS(on)}	Low-side MOSFET on resistance	V _{VOUT} = 5 V		60		mΩ
£	Cuitabing fraguency	V _{IN} = 3.6 V, V _{OUT} set to 5.0 V, PWM mode		1		MHz
f _{SW}	Switching frequency	V _{IN} = 1.0 V, V _{OUT} set to 5.0 V, PFM mode		0.5		MHz
I _{LIM_SW}	Valley current limit	V _{IN} = 3.6 V, V _{OUT} set to 5.0 V		1.6		Α
I _{PRECHG}	Pre-charge current	V _{IN} = 3.6 V		350		mA
LED Driver	Output				•	
В	Scan line switch MOSFET on resistance	V _{VOUT} = 3 V		1	1.4	Ω
R _{DS(on)_SW}	Scan line switch MOSFET on resistance	V _{VOUT} = 5 V		0.7	1.1	Ω
	I .					

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < \text{TA} < +85^{\circ}\text{C}$), $V_{\text{IN}} = 3.6 \text{ V}$, VOUT = 5 V, $C_{\text{IN}} = 1 \text{ µF}$, $C_{\text{OUT}} = 1 \text{ µF}$.

•	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
1	Constant current sink output range	V _{IN} = 3.6 V, V _{OUT} set to 5 V, MC = 0, manual_pwm_x = FFh (100% ON)	0.1		25.5	mA
lcs	Constant current sink output range	V _{IN} = 3.6 V, V _{OUT} set to 5 V, MC = 1, manual_pwm_x = FFh (100% ON)	0.2			mA
I _{CS_LKG}	Constant current sink leakage current	V _{IN} = 3.6 V, OUTx = 1 V, manual_pwm_x = 0 (0%)		0.1	1	μΑ
		All LEDs turn ON. Current set to 0.1 mA (max_current = 0, manual_dc_x = 01h, manual_pwm_x = FFh)	– 5		5	%
		All LEDs turn ON. Current set to 0.2 mA (max_current = 1, manual_dc_x = 01h, manual_pwm_x = FFh)	-3		3	%
1	Device to device current error,	All LEDs turn ON. Current set to 1 mA (max_current = 0, manual_dc_x = 0Ah, manual_pwm_x = FFh)	– 5		5	%
I _{ERR_D2D}	I _{ERR_D2D} = (I _{AVE} -I _{SET})/I _{SET} ×100%	All LEDs turn ON. Current set to 1 mA (max_current = 1, manual_dc_x = 05h, manual_pwm_x = FFh)	-3		3	%
		All LEDs turn ON. Current set to 25.5 mA (max_current = 0, manual_dc_x = FFh, manual_pwm_x = FFh)	– 5		5	%
		All LEDs turn ON. Current set to 51 mA (max_current = 1, manual_dc_x = FFh, manual_pwm_x = FFh)	-3		3	%
	Channel to Channel current error	All LEDs turn ON. Current set to 0.1 mA (max_current = 0, manual_dc_x = 01h, manual_pwm_x = FFh)	- 5		5	%
		All LEDs turn ON. Current set to 0.2 mA (max_current = 1, manual_dc_x = 01h, manual_pwm_x = FFh)	-3		3	%
Inn oo		All LEDs turn ON. Current set to 1 mA (max_current = 0, manual_dc_x = 0Ah, manual_pwm_x = FFh)	- 5		5	%
lerr_c2c	I _{ERR_C2C} = (I _{OUTX} -I _{AVE})/I _{AVE} ×100%	All LEDs turn ON. Current set to 1 mA (max_current = 1, manual_dc_x = 05h, manual_pwm_x = FFh)	-3		3	%
		All LEDs turn ON. Current set to 25.5 mA (max_current = 0, manual_dc_x = FFh, manual_pwm_x = FFh)	– 5		5	%
		All LEDs turn ON. Current set to 51 mA (max_current = 1, manual_dc_x = FFh, manual_pwm_x = FFh)	-3		3	%
\/	LED driver output hearroom voltage	All LEDs turn ON. Current set to 25.5 mA (max_current = 0, manual_dc_x = FFh)		0.11	0.15	V
V _{HR}	LED driver output heartoom voltage	All LEDs turn ON. Current set to 51 mA (max_current = 1, manual_dc_x = FFh)		0.21	0.28	V
f _{LED PWM}	LED PWM frequency	pwm_fre = 0		24		kHz
_	. ,	pwm_fre = 1		12		kHz
f _{osc}	Internal oscillator frequency	vsync_out_en = 1		6		MHz
Logic Inter		V > 1.0 V	4.0			\/
V _{EN_H}	EN logic high EN logic low	V _{IN} > 1.8 V V _{IN} > 1.8 V	1.2		0.35	V
V _{EN_L}	High level input voltage of SDA, SCL,	VIN ~ 1.0 V			0.33	
V _{IH_LOGIC}	SYNC		1.4			V

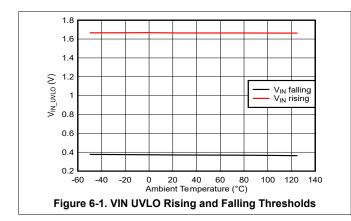
Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < \text{TA} < +85^{\circ}\text{C}$), V_{IN} = 3.6 V, VOUT = 5 V, C_{IN} = 1 μ F, C_{OUT} = 1 μ F.

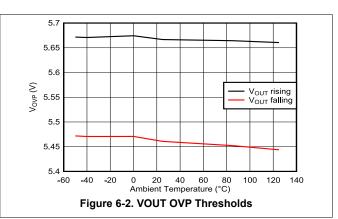
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IL_LOGIC}	Low level input voltage of SDA, SCL, SYNC				0.4	V
V _{OH_LOGIC}	High level output voltage of SYNC		V _{VOUT} - 0.2			V
V _{OL_LOGIC}	Low level output voltage of SDA, SYNC				0.4	V
Protection					•	
т	Thermal shutdown threshold for LED driver part	T _J rising		150		°C
T_{SD}	Thermal shutdown threshold for Boost converter part	T _J rising		155		°C
T _{SD_HYS}	Thermal shutdown hysteresis	T _J falling below T _{SD}		15		°C
M	LED open detection threshold	Current set to 25.5 mA (max_current = 0, manual_dc_x = FFh)	70	90	110	mV
V_{LOD_TH}	LED open detection threshold	Current set to 51 mA (max_current = 1, manual_dc_x = FFh)	150	180	220	mV
		lsd_th = 00h	0.32 × VOUT	0.35 × VOUT	0.38 × VOUT	V
V	LED short detection throughold	lsd_th = 01h	0.42 × VOUT	0.45 × VOUT	0.48 × VOUT	V
V_{LSD_TH}	LED short detection threshold	lsd_th = 10h	0.52 × VOUT	0.55 × VOUT	0.58 × VOUT	V
		lsd_th = 11h	0.62 × VOUT	0.65 × VOUT	0.68 × VOUT	V

6.6 Timing Requirements

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < \text{TA} < +85^{\circ}\text{C}$), V_{IN} = 3.6 V, V_{CC} = 5 V, C_{IN} = 1 μ F, C_{OUT} = 1 μ F.

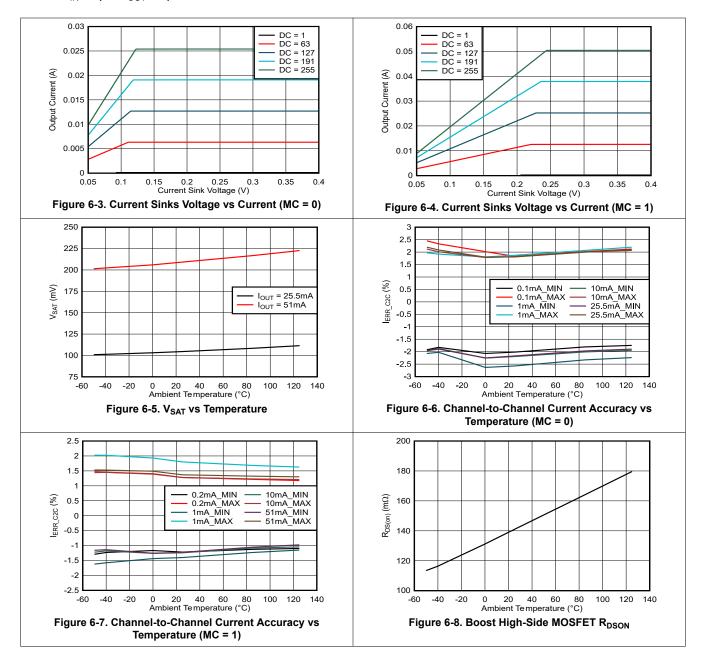
	I ² C Timing Requirements	MIN	NOM MAX	UNIT
Standard	-mode		•	
f _{SCL}	SCL clock frequency	0	100	kHz
t _{HD_STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4		μs
t _{LOW}	LOW period of the SCL clock	4.7		μs
t _{HIGH}	HIGH period of the SCL clock	4		μs
t _{SU_STA}	Set-up time for a repeated START condition	4.7		μs
t _{HD_DAT}	Data hold time	0		μs
t _{SU_DAT}	Data set-up time	250		ns
t _r	Rise time of both SDA and SCL signals		1000	ns
t _f	Fall time of both SDA and SCL signals		300	ns
t _{SU_STO}	Set-up time for STOP condition	4		μs
t _{BUF}	Bus free time between a STOP and START condition	4.7		μs
C _b	Capacitive load for each bus line		400	pF
Fast-mod	le			
f _{SCL}	SCL clock frequency	0	400	kHz
t _{HD_STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	0.6		μs
t _{LOW}	LOW period of the SCL clock	1.3		μs
t _{HIGH}	HIGH period of the SCL clock	0.6		μs



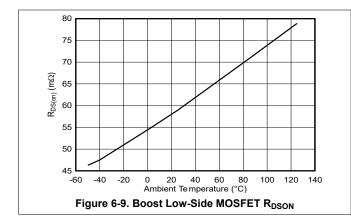

Unless specified otherwise, typical characteristics apply over the full ambient temperature range (-40° C < TA < +85°C), $V_{IN} = 3.6$ V, $V_{CC} = 5$ V, $C_{IN} = 1$ μ F, $C_{OLIT} = 1$ μ F.

	I ² C Timing Requirements	MIN	NOM N	AX	UNIT
t _{SU_STA}	Set-up time for a repeated START condition	0.6			μs
t _{HD_DAT}	Data hold time	0			μs
t _{SU_DAT}	Data set-up time	100			ns
t _r	Rise time of both SDA and SCL signals			300	ns
t _f	Fall time of both SDA and SCL signals			300	ns
t _{su_sto}	Set-up time for STOP condition	0.6			μs
t _{BUF}	Bus free time between a STOP and START condition	1.3			μs
C _b	Capacitive load for each bus line			400	pF
Fast-mod	e Plus				
f _{SCL}	SCL clock frequency	0	1	000	kHz
t _{HD_STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	0.26			μs
t _{LOW}	LOW period of the SCL clock	0.5			μs
t _{HIGH}	HIGH period of the SCL clock	0.26			μs
t _{SU_STA}	Set-up time for a repeated START condition	0.26			μs
t _{HD_DAT}	Data hold time	0			μs
t _{SU_DAT}	Data set-up time	50			ns
t _r	Rise time of both SDA and SCL signals			120	ns
t _f	Fall time of both SDA and SCL signals			120	ns
t _{su_sto}	Set-up time for STOP condition	0.26			μs
t _{BUF}	Bus free time between a STOP and START condition	0.5			μs
C _b	Capacitive load for each bus line			550	pF
Misc. Tim	ing Requirements	<u> </u>			
f _{CLK_EX}	VSYNC input clock frequency		6		MHz

6.7 Typical Characteristics


Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < T_A < +85^{\circ}\text{C}$), $V_{\text{IN}} = 3.6\text{V}$, $C_{\text{IN}} = 1\mu\text{F}$, $C_{\text{OUT}} = 1\mu\text{F}$

6.7 Typical Characteristics (continued)


Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < T_A < +85^{\circ}\text{C}$), $V_{IN} = 3.6\text{V}$, $C_{IN} = 1\mu\text{F}$, $C_{OUT} = 1\mu\text{F}$

6.7 Typical Characteristics (continued)

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < T_A < +85^{\circ}\text{C}$), $V_{IN} = 3.6\text{V}$, $C_{IN} = 1\mu\text{F}$, $C_{OUT} = 1\mu\text{F}$

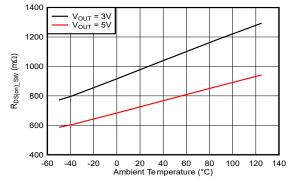


Figure 6-10. Scan Line Switch MOSFET R_{DSON}

7 Detailed Description

7.1 Overview

The LP5813 is a synchronous boost 4×3 matrix RGB LED driver with autonomous animation engine control. The device can support 1.8V minimum start-up voltage and 0.5V to 5.5V input voltage range during operation. The integrated synchronous boost converter can output 3V to 5.5V, to provide enough forward voltage of LEDs. Time-cross-multiplexing (TCM) scheme can support up to 4×3 matrix for 12 LEDs or 4 RGB LEDs, by $\frac{1}{4}$ multiplexing ratio of the scan switches.

The LP5813 has ultra-low operation current at active mode, consuming about 0.4mA when LED maximum current setting is 25.5mA. If all LEDs are turned off, the device will enter standby state to reduce power consumption with data retained. When 'chip_enable' bit setting is 0, initial state is entered with minimum power consumption to save power.

The LP5813 supports both analog dimming and PWM dimming. In analog dimming, the output current of each LED can be adjusted with 256 steps. In PWM dimming, the integrated 8-bit configurable PWM generator enables smooth brightness dimming control. Optional exponential PWM dimming can be activated for individual LED to achieve a human-eye-friendly visual performance.

The LP5813 integrates autonomous animation engine, with no need for brightness control commands from controller. Each LED has an individual animation engine which can be configured through the related registers. The device can generate a 6 MHz clock signal, which synchronizes the lighting effects among multiple devices.

The LP5813 has 4 different material versions with different I²C chip address. Up to 4 LP581x devices can be connected to the same I²C bus and controlled individually. The LP5813 materials and corresponding chip addresses are shown in Section 4.

7.2 Functional Block Diagram

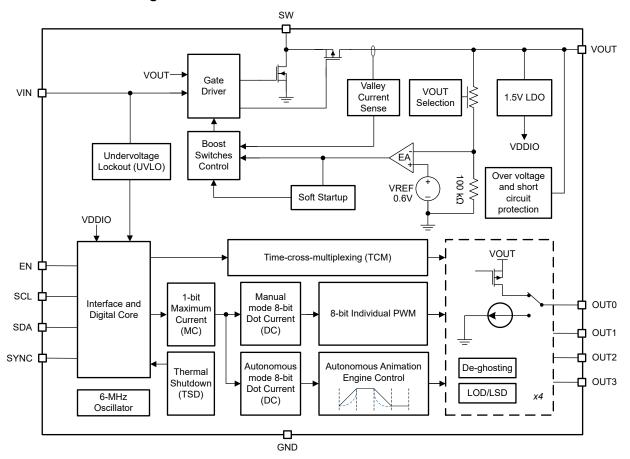


Figure 7-1. Functional Block Diagram

7.3 Feature Description

7.3.1 Synchronous Boost Converter

The integrated synchronous boost converter is designed to operate with 0.5V to 5.5V input voltage supply with 1.6A (typ.) valley switch current limit. The LP5813 operates at quasi-constant frequency pulse width modulation (PWM) mode, when driving moderate and heavy load. The switching frequency is 1MHz when the input voltage is above 1.5V. The frequency is reduced to 0.5MHz gradually when the input voltage decreases from 1.5V to 1V, and keeps at 0.5MHz when the input voltage is below 1V. At light load conditions, the boost converter operates at pulse frequency modulation (PFM) mode. During PWM operation, the converter works at adaptive constant on-time valley current mode to achieve excellent line regulation and load regulation, by which a smaller inductor and ceramic capacitors can be supported. Internal loop compensation simplifies the design complexity, and also minimizes the external components.

When powering up, the default output voltage is 3V. The output voltage can be configured at 'Dev_config_0' register from 3V to 5.5V, with 0.1V step. The integrated boost works as a general boost converter, which can power not only the LEDs driven by the device itself, but also other loads in the system.

7.3.1.1 Undervoltage Lockout

The LP5813 has a built-in undervoltage lockout (UVLO) circuit to make sure the device working properly. When the input voltage is above the UVLO rising threshold 1.8V, the boost of LP5813 can be enabled. After the LP5813 completes soft-start process and the output voltage rises above 2.2V, the LP5813 can work with the input voltage down to 0.5V. When the input voltage is below UVLO falling threshold 0.4V, the device shuts down.

7.3.1.2 Enable and Soft Start

When the input voltage is above the UVLO rising threshold 1.8V and the EN pin is pulled to a voltage above 1.2V, the boost of LP5813 is enabled and starts up. At the beginning, the LP5813 charges the boost output capacitor with a constant current when the output voltage is below 0.4V. When the output voltage is charged above 0.4V, the LP5813 has capability to drive 200mA load. After the output voltage reaches the input voltage, the boost of LP5813 starts switching, and the output voltage continually ramps up to default voltage 3V. The typical start-up time is 450 μ s from EN pulled high to output reaching default voltage 3V, at the application that input voltage is 2.5V, output effective capacitance is 10μ F, and no load. When the EN is below 0.42V, the internal enable comparator turns the device into shutdown mode. In the shutdown mode, the device is entirely turned off and the output is disconnected from input power supply.

7.3.1.3 Switching Frequency

The LP5813 switches at quasi-constant 1MHz frequency when the input voltage is above 1.5V. When the input voltage is lower than 1.5V, the switching frequency is reduced gradually to 0.5MHz, which improves the boost efficiency and gets higher boost ratio. When the input voltage is below 1V, the switching frequency is fixed at quasi-constant 0.5MHz.

7.3.1.4 Current Limit Operation

The LP5813 uses a valley current limit sensing scheme. The inductor current is detected during the switching off-time, by sensing the voltage across the synchronous rectifier.

When the load current increases, such that the inductor current is above the current limit within the whole switching cycle, the off-time increases to discharge the inductor current. The current decreases below the limit before the next on-time. When the current limit is reached, the output voltage decreases if the load current continually increases.

The maximum continuous output current (I_{OUT(CL)}), before entering current limit (CL) operation, can be defined by Equation 1.

$$I_{OUT(CL)} = (1 - D) \times \left(I_{LIM} + \frac{1}{2}\Delta I_{L(P - P)}\right) \tag{1}$$

where

- D is the duty cycle
- ΔI_{L(P-P)} is the inductor ripple current

The duty cycle can be estimated by Equation 2.

$$D = 1 - \frac{V_{IN} \times \eta}{V_{OUT}} \tag{2}$$

where

- V_{OUT} is the output voltage of the boost converter
- ullet V_{IN} is the input voltage of the boost converter
- η is the efficiency of the converter, use 90% for most applications

The peak-to-peak inductor ripple current is calculated by Equation 3.

$$\Delta I_{L(P-P)} = \frac{V_{IN} \times D}{L \times f_{SW}} \tag{3}$$

where

- · L is the inductance value of the inductor
- f_{SW} is the switching frequency
- · D is the duty cycle

V_{IN} is the input voltage of the boost converter

7.3.1.5 Boost PWM Mode

The LP5813 uses a quasi-constant 1.0MHz frequency pulse width modulation (PWM) at moderate to heavy load current. Based on the input voltage to output voltage ratio, a circuit predicts the required on-time. At the beginning of the switching cycle, the main switching low-side FET is turned on. The input voltage is applied across the inductor and the inductor current ramps up. In this phase, the output capacitor is discharged by the load current. When the on-time expires, the low-side FET is turned off, and the high-side rectifier FET is turned on. The inductor transfers its stored energy to replenish the output capacitor and supplies the load. The inductor current declines because the output voltage is higher than the input voltage. When the inductor current hits the valley current threshold determined by the output of the error amplifier, the next switching cycle starts again.

The LP5813 has a built-in compensation circuit that can accommodate a wide range of input voltage, output voltage, inductor value, and output capacitor value for stable operation.

7.3.1.6 Boost PFM Mode

The LP5813 works at PFM to improve efficiency at light load. When the load current decreases, the inductor valley current set by the output of the error amplifier no longer regulates the output voltage. When the inductor valley current hits the low limit, the output voltage exceeds the setting voltage as the load current decreases further. When the feedback voltage hits the PFM reference voltage (0.6V typical), the LP5813 works at PFM. When the feedback voltage rises and hits the PFM reference voltage, the device continues switching for several cycles because of the delay time of the internal comparator — then it stops switching. The load is supplied by the output capacitor, and the output voltage declines. When the feedback voltage falls below the PFM reference voltage, after the delay time of the comparator, the device starts switching again to ramp up the output voltage. Figure 7-2 showes the waveform of voltage when the device works at PWM and PFM.

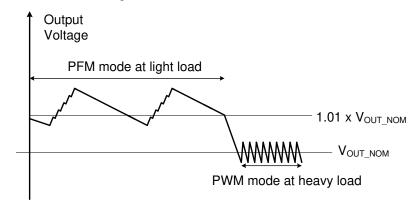


Figure 7-2. Output Voltage in PWM Mode and PFM

7.3.1.7 Pass-Through Mode

When the input voltage is higher than the setting output voltage, the output voltage is higher than the target regulation voltage. When the output voltage is 101% of the setting target voltage, the LP5813 stops switching and fully turns on the high-side FET and works in pass-through mode. The output voltage is the input voltage minus the voltage drop across the DCR of the inductor and the RDS(on) of the high-side FET. When the output voltage drops below the 97% of the setting target voltage as the input voltage declines or the load current increases, the LP5813 resumes switching again to regulate the output voltage.

7.3.2 Time-Cross-Multiplexing (TCM) Scheme

The LP5813 integrates 4 high-side PMOS scan switches and 4 constant current sinks. Each OUTx (x = 0, 1, 2, 3) has 1 PMOS scan switch and 1 constant current sink. The source of PMOS switches are connected to the boost output VOUT. During normal operation at default setting, the switches turn on sequentially from OUT0 to OUT3. At the same time, only one OUT is selected working as switch, the other 3 OUTs act as constant current

sink. Thus a 4×3 matrix is formed with $\frac{1}{4}$ multiplexing ratio. The scanning order of OUTs can be configured in 'Dev config 2' register

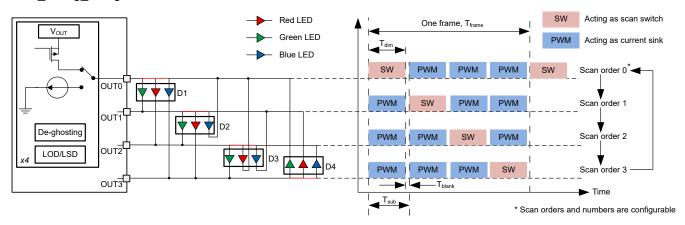


Figure 7-3. Time-cross-multiplexing (TCM) Scheme

Figure 7-3 shows the simplified TCM scheme timing diagram of the four outputs. A complete display frame includes 4 sub-periods. Each sub-period contains dimming period and blank time period. In switching period, 1 output is selected as switch and the other 3 OUTs are selected as current sinks. Blank time is applied between two adjacent switching periods for ghosting elimination.

One sub-period cycle time T_{sub} is calculated as Equation 4:

$$T_{sub} = T_{dim} + T_{blank} \tag{4}$$

- T_{dim} is the scan switch on-time for one switching cycle, which equals to one PWM cycle 42µs (PWM frequency set as 24kHz) or 84µs (PWM frequency set as 12kHz).
- T_{blank} is blank time is applied between two adjacent dimming periods, which is from 1 μs to 2μs selected by 'Blank_Time' bits in Dev_Config11 Register.

One complete frame time T_{frame} is calculated as Equation 5:

$$T_{frame} = T_{Sub} \times Scan$$
 # (5)

· Scan # is the total scan switches count.

The LP5813 can be configured to direct-drive mode, TCM-drive mode and mix-drive mode by the 'led_mode' bits in 'Dev_Config_1' register. The mix-drive mode contains both direct drive mode and TCM-drive mode for different outputs. With this method, the LP5813 can provide the maximum flexibility for LED configurations of LED average current, LED count, and PCB layouts.

7.3.2.1 Direct drive mode

The direct drive mode can drive up to 4 LEDs (or 1 RGBW / RGBA / RGBY LED) by the internal constant current sinks directly, when the 'led_mode' bit is 0h. The typical application circuit is illustrated in Figure 7-4. Each current sink can support up to 51 mA maximum current. In the register map, LED_x (x = 0, 1, 2, 3) are used as the name of each outputs for the related settings.

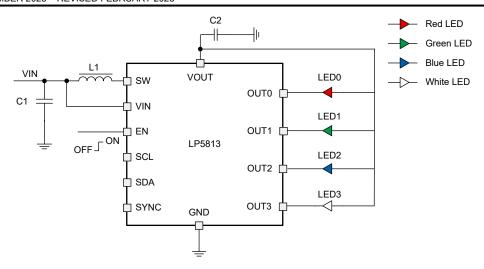


Figure 7-4. Direct Drive Mode (led_mode = 0h)

7.3.2.2 TCM Drive Mode

The TCM drive mode is used to drive up to 12 LEDs (or 4 RGB LEDs) with TCM scheme, which is configured by setting led_mode = 1h/2h/3h/4h for 1/2/3/4 scans. After setting the scan count, 'scan_order_x' (x = 1, 2, 3, 4) bits need to be written for the scan orders of each output. The default order is from OUT0 to OUT3 in 4 scans mode.

The TCM drive mode can drive 1 to 12 LEDs with 1 to 4 scans or $\frac{1}{4}$ to 1 multiplexing ratio. The names LED_xy (x = A, B, C, D; y = 0, 1, 2) are used in the register map for the corresponding LED, which is connected to OUTx (x = 0, 1, 2, 3). The detail naming rule is showed in Table 7-1.

Table 7-1. LED Names in Register Maps for TCM Drive Mode

I ED name	LED name in registers		LED Cathode							
LED Hame	in registers	OUT0	OUT1	OUT2	OUT3					
	OUT0 (A)	-	LED_A0	LED_A1	LED_A2					
LED Anode	OUT1 (B)	LED_B2	-	LED_B0	LED_B1					
LED Allode	OUT2 (C)	LED_C1	LED_C2	-	LED_C0					
	OUT3 (D)	LED_D0	LED_D1	LED_D2	-					

The typical application circuits are demonstrated as Figure 7-5 (1 scan), Figure 7-6 (2 scans), Figure 7-7 (3 scans) and Figure 7-8 (4 scans).

Note

To avoid unexpected emitting, in RGB LEDs applications, Red LEDs are recommended to be placed in LED_x1 (x = A, B, C, D) positions.

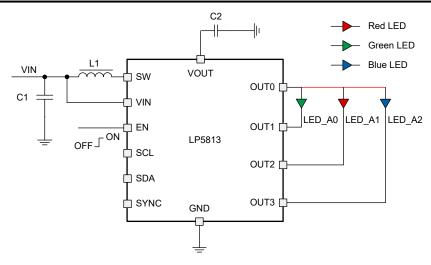


Figure 7-5. TCM Drive Mode, 1 Scan, (led_mode = 1h, scan_order_0 = 0h)

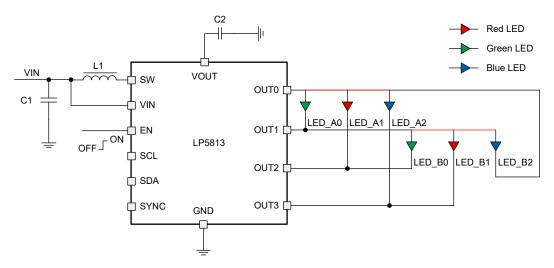


Figure 7-6. TCM Drive Mode, 2 Scans (led_mode = 2h, scan_order_0 = 0h, scan_order_1 = 1h)

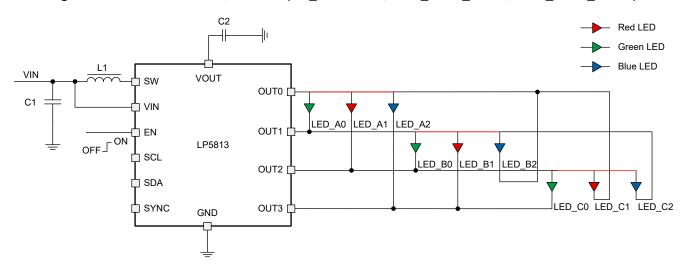


Figure 7-7. TCM Drive Mode, 3 Scans (led_mode = 3h, scan_order_0 = 0h, scan_order_1 = 1h, scan_order_2 = 2h)

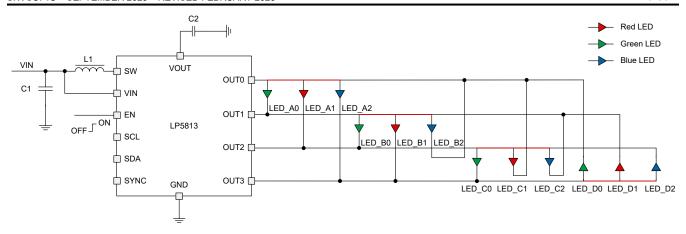


Figure 7-8. TCM Drive Mode, 4 Scans (led_mode = 4h scan_order_0 = 0h, scan_order_1 = 1h, scan_order_2 = 2h, scan_order_3 = 3h)

7.3.2.3 Mix drive mode

The mix drive mode can drive LEDs separately by direct-drive and TCM-drive in the same time. The mix drive mode is configured by setting led_mode = 5h/6h/7h for 1/2/3 scans. After setting the scan count, scan_order_x (x = 1, 2, 3, 4) needs to be written for the scan orders. Then the direct drive LEDs need to be configured by mix_sel_led in Dev_Config_1 register. To control the LEDs, LED_x (x = 0, 1, 2, 3) in the register map is for the direct drive LEDs, while LED xy (x = A, B, C, D; y = 0, 1, 2) is for the TCM drive LEDs.

The typical application diagrams are illustrated as Figure 7-9 (1 scan), Figure 7-10 (2 scans) and Figure 7-11 (3 scans).

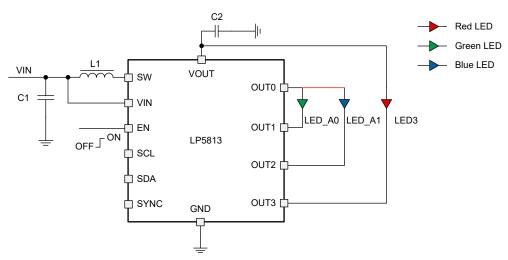


Figure 7-9. Mix drive, 1 scan (led_mode = 5h, scan_order_0 = 0h, mix_sel_led = 8h)

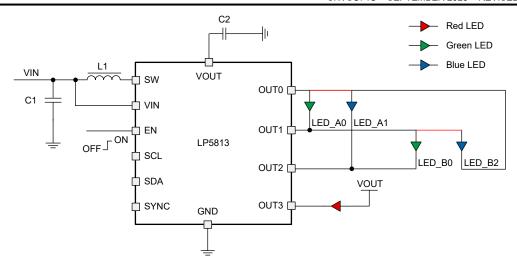


Figure 7-10. Mix drive mode, 2 scans (led_mode = 6h, scan_order_0 = 0h, scan_order_1 = 1h, mix_sel_led = 8h)

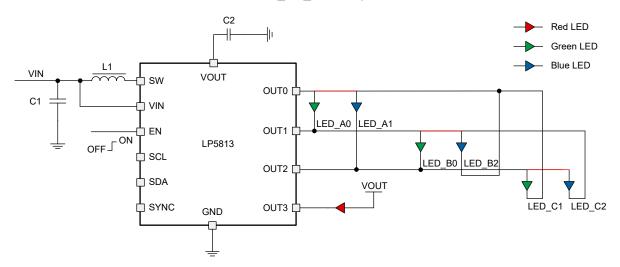


Figure 7-11. Mix drive mode, 3 scans (led_mode = 7h, scan_order_0 = 0h, scan_order_1 = 1h, scan_order_2 = 2h, mix_sel_led = 8h)

7.3.2.4 Ghosting Elimination

The LP5813 integrates ghosting elimination circuits to avoid both upside and downside ghosting phenomenon. The ghosting elimination can be disabled by setting clamp_dis = 1h, which is default as 0 and enabling the function.

Voltage on the outputs is clamped during PWM off time in the rest of switching period, or during blank time period, which is set in 'clamp_sel' bit in Dev_Config12 register. The registers below show the effect of different clamp selection.

A middle voltage V_{mid} between V_{OUT} and V_{OUT} - V_f is used to clamp the OUTx (x = 0, 1, 2, 3), where V_f is the forward voltage of LED. This scheme can achieve both pre-discharge for scan switch FET and pre-charge for current sinks, which eliminate up-side and down-side ghosting issues in time-multiplexing topology. Since the clamp voltage for scan switch FET and current sinks is the same value, the reverse voltage on LED during deghosting is avoided. There are 4 options for V_{mid} which is selected in 'vmid_sel' bits in Dev_Config12 register, which can be used for different forward voltage range of different type LEDs.

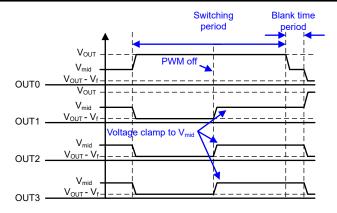


Figure 7-12. Ghosting elimination waveform when clamp_sel = 1

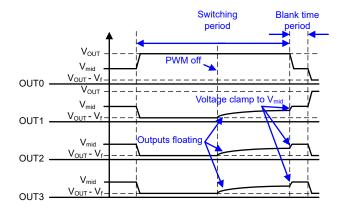


Figure 7-13. Ghosting elimination waveform when clamp sel = 0

7.3.3 Analog Dimming

The current gain of each LED can be controlled by 2 methods to achieve analog dimming in the LP5813.

- Global 1-bit Maximum Current (MC) control for all LEDs without external resistor
- Individual 8-bit Dot Current (DC) control for each LED

The maximum output current I_{OUT max} of each current sink can be programmed by the 1-bit max_current. The default value of max_current is 0h, which means the LED maximum current is set to 25.5mA in default.

Table 7-2. Maximum Current (MC) Bit Setting

1 bit Maximur	. (A)	
Binary	Decimal	I _{OUT_MAX} (mA)
0 (default)	0 (default)	25.5 (default)
1	1	51

The LP5813 can individually adjust the peak current of each LED by using Dot Current (DC) function. The brightness deviation among the LED bins can be miminized, to achieve uniform display performance. The current is adjusted with 256 steps from 0 to 100% of I_{OUT MAX.}, which is programmed in an 8-bit register whose default value is 80h.

Table 7-3. Dot Current (DC) Bits Setting

8-bits Dot Curre	ent (DC) Register	Detic of I		
Binary	Decimal	Ratio of I _{OUT_MAX}		
0000 0000	0	0%		
0000 0001	1	0.39%		
0000 0010	2	0.78%		

Table I	-3. Dot Current (DC) Dits Setting (Co	minueu)		
8-bits Dot Curr	ent (DC) Register	Datio of I		
Binary	Decimal	Ratio of I _{OUT_MAX}		
1000 0000 (default)	128 (default)	50.2% (default)		
1111 1101	253	99.2%		
1111 1110	254	99.6%		
1111 1111	255	100%		

Table 7-3. Dot Current (DC) Bits Setting (continued)

By configuring the MC and DC, the peak current of each current sink can be calculated as Equation 6:

$$I_{OUT}(mA) = I_{OUT_max} \times \frac{DC}{255}$$
 (6)

The average current of each LED in TCM drive mode and mix drive mode is shown as Equation 7:

$$I_{AVE}\left(mA\right) = \frac{I_{OUT}}{N} \times \frac{DC}{255} \times D_{PWM} \tag{7}$$

- N is the total scan number setting.
- D_{PWM} is the PWM duty.

7.3.4 PWM Dimming

The LP5813 supports 8-bit PWM dimming with 24kHz or 12kHz frequency, which is configured by 'PWM_Fre' bit in Dev_config_1 register. An internal 6MHz oscillator is used to generate the PWM clock. SYNC pin can be configured as PWM clock input or output by configure 'vsync_out_en' bit in Dev_Config_11 register. If multiple LP5813 are used in the system with autonomous animation engine control, all devices can refer the same clock signal, which comes from one of LP5813 or external controller, to avoid animation mismatch in long time operation.

Each LED can be configured into 3 different PWM alignment phases: Forward, Middle, and Backward. The alignment phase of each LED is set by 'phase_align' bits in Dev_Config_7 to Dev_Config_10 registers. By turning on the LEDs in different phase, the peak current load from boost or the system power supply is greatly decreased. The input current ripple and ceramic-capacitor audible ringing can also be reduced. Figure 7-14 shows the PWM alignment phases. In the forward alignment, the rising edge of PWM pulse is fixed at the beginning of PWM period. In the middle alignment, the middle point of PWM pulse is fixed at the middle of PWM period, while the pulse spreads to both directions. In the backward alignment, the falling edge of PWM pulse is fixed at the end of PWM period.

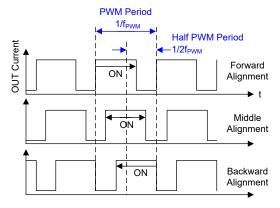


Figure 7-14. PWM Alignment Scheme

The LP5813 allow users to configure the dimming scale as exponential curve or linear curve, through the 'exp_en' bits in Dev_Config_5 and Dev_Config_6 registers. A human-eye-friendly visual performance can be achieved by using the internal exponential scale. The linear scale has great linearity between PWM duty cycle and PWM setting value, which provides flexible approach for external controlled gamma correction algorithm. The 8-bit linear and exponential curves are shown as Figure 7-15.

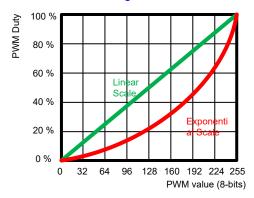


Figure 7-15. Linear and Exponential PWM Dimming Curves

7.3.5 Autonomous Animation Engine Control

The LP5813 supports both manual mode and autonomous mode to control the DC and PWM of each LED. In manual mode, the LEDs are directly controlled by the related configuration registers and reflect the value immediately. In autonomous mode, the autonomous animation engine is applied for each LED, which can realize vivid lighting effects without external processor control. The animation engine pattern is composed by 3 animation engine units (AEU) and 2 animation pause units (APU) for complex and flexible control. One AEU is formed by 4 slopers, which is used for fading effect.

After setting up all animation engine pattern configurations, sending start_cmd to the device can let the animation running autonomously, to free external controller real-time loading. The PWM value and unit status of each LED can be read from PWM_value registers and pattern_status registers. To make sure the precision of reading results, sending pause cmd to pause the animation firstly is recommended.

7.3.5.1 Animation Engine Pattern

Each LED of the LP5813 has own animation engine, to achieve premium visual lighting effects. One whole animation engine pattern is defined as Figure 7-16. 3 animation engine units (AEU) and 2 animation pause units (APU) compose the animation engine pattern. AEU2 and AEU3 can be skipped by setting the playback times to 0. The LED current of each LEDs in the autonomous mode is set through the Autonomous DC registers.

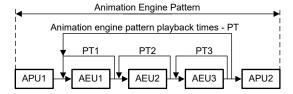


Figure 7-16. Animation engine pattern

The whole animation pattern includes two APUs and three AEUs with several playback times:

- APUx (x = 1, 2): Animation pause unit, each unit includes one timing value T.
- AEUx (x = 1, 2, 3): Animation engine unit, including 5 PWM values PWM1 to PWM5 and 4 time values T1 to T4.
- PT: Playback times of AEU1+AEU2+AEU3, which has 2-bit value to set 0/1/2/Infinite times.
- PTx: Playback times of AEUx (x=1/2/3), which has 2-bit value to set 0/1/2/Infinite times.

7.3.5.2 Sloper

Sloper is the basic element to achieve autonomous fade-in and fade-out animations. It can achieve 256 steps fade-in or fade-out effects from 'PWM_Start' to 'PWM_End' within a target time period T as Figure 7-17. The 8-bit PWM steps, which is configurable in animation pattern PWM setting registers, help to achieve extremely smooth effects. Exponential dimming curve can also be supported in the sloper.

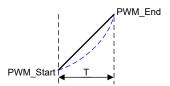


Figure 7-17. Sloper curve demonstration

The programable time T is selectable from 0 to around 8s with 16 levels shown in Table 7-4.

Table 7-4. Programable time options

Register value	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
Time (Typ.)	0 s	0.09 s	0.18 s	0.36 s	0.54 s	0.80 s	1.07 s	1.52 s	2.06 s	2.50 s	3.04 s	4.02 s	5.01 s	5.99 s	7.06 s	8.05 s

7.3.5.3 Animation Engine Unit (AEU)

The AEU is the most important unit to achieve autonomous animation effects. One AEU is formed by 4 slopers. There are 5 PWM values and 4 time values can be configured in the AEU. Each PWMx (x = 1, 2, ..., 5) can be arbitrarily programmed from 0 to 255, The Tx (x = 1, 2, 3, 4) is selectable from 0 to 8 s with 16 levels referring to Table 7-4. If two adjacent PWM values are equal, the brightness keeps unchange within the time setting. When a Tx is set to 0, this sloper is skipped. To avoid flicker happens due to PWM value suddenly changes, the begin and end PWM of this sloper need to be the same.

Typical breathing effect example is illustrated as Figure 7-18.

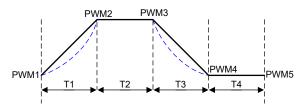


Figure 7-18. Animation engine unit - Example 1

Advanced breathing effect example is shown in Figure 7-19. 2 different fading speeds are set in the PWM rising and falling phases, to achieve a complex animation.

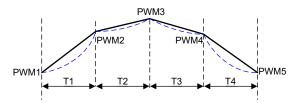


Figure 7-19. Animation engine unit - Example 2

7.3.5.4 Animation Pause Unit (APU)

The APU is defined as the pausing time at the beginning and the end of the animation pattern. The APU contains 1 time value which is selectable from 0 to 8s with 16 levels referring to Table 7-4. If the value is set as 0, the APU is skipped. The brightness of APU1 uses the PWM1 value of the AEU following the APU1, while the brightness of APU2 uses the PWM5 value of the AEU in front of APU2. One animation pattern example is shown

in Figure 7-20. Only AEU2 is enabled in the pattern, so that the brightness of APU1 uses the PWM1 value of AEU2, and the brightness of APU2 uses PWM5 value of AEU2.

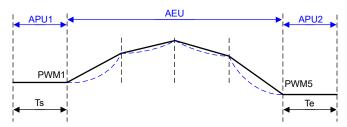


Figure 7-20. APU example

7.3.6 Protections and Diagnostics

7.3.6.1 Overvoltage Protection

The boost of LP5813 has an output overvoltage protection (OVP) to protect the device. When the output voltage is above 5.7V, the boost stops switching. Once the output voltage falls 0.1V below the OVP threshold, the boost resumes operating again.

7.3.6.2 Output Short-to-Ground Protection

The boost of LP5813 starts to limit the boost current when the boost output voltage is below 1.8V. The lower the boost output voltage reaches, the smaller the output current decreases. When the VOUT pin is short to ground and the boost output voltage is less than 0.4V, the output current is limited to approximately 350mA. Once the short circuit is released, the LP5813 goes through the soft start-up again to the regulated output voltage.

7.3.6.3 LED Open Detections

The LP5813 integrates LED open detection (LOD) for the fault caused by any open LED. The threshold for LOD is 90 mV when max current is set as 25.5 mA, and 180 mV when max current is set as 51 mA. To have enough detection time, LOD can only be performed when the PWM setting of this LED is above 25. If the voltage on the cathode of this LED is lower than the LOD threshold in continuously 3 cycles, LED open of this LED is reported to the corresponding LOD_status register.

The LOD flags can be cleared by writing 1h to 'lod_clear' bit in Fault_Clear register. If the LED open status is removed, the related 'lod_status' bit is set to 0 automatically.

The 'lod_action' bit in Dev_config_12 register can determine the action once open fault is detected. When the 'lod_action' bit is set to 1h, the dot where LED open happens is turned off to avoid any unpredictable issue. When the 'lod_action' bit is 0, no additional action is taken after LOD is detected. LED open fault detection and action is only executed in NORMAL state.

7.3.6.4 LED Short Detections

The LP5813 integrates LED short detection (LSD) for the fault caused by any short LED. The threshold of LSD is able to configure from $(0.35 \times V_{OUT})$ V to $(0.65 \times V_{OUT})$ V by configuring lsd_threshold in Dev_config_12 register. To have enough detection time, LSD can only be performed when the PWM setting of this LED is above 25. If the voltage on the cathode of this LED is higher than the LSD threshold in continuously 3 cycles, LED short of this LED is reported to the corresponding LSD_status register.

The LSD flags can be cleared by writing 1h to lsd_clear in Fault_CLR register. If the LED short status is removed, the related lsd status bit is set to 0 automatically.

The 'lsd_action' bit in Dev_config_12 register can determine the reaction once open fault is detected. When the 'lsd_action' bit is set to 1h, all LEDs are turned off which is called one fails all fail (OFAF) action, to prevent potential damage caused by the short issue. The device enters to STANDBY state after sending 'lsd_clear' command. When the 'lsd_action' bit is 0, no additional action is taken after LSD is detected. LSD detection is only executed in NORMAL state.

7.3.6.5 Thermal Shutdown

The LED driver of LP5813 goes into thermal shutdown state once the junction temperature exceeds 150°C. All LEDs turn off to avoid damaging the device. When the junction temperature drops below the thermal shutdown recovery temperature 130°C, the LED driver starts operating again.

The boost converter of LP5813 stops switching and is shutdown once the junction temperature exceeds 155°C, and the power on reset of the LED driver part is also triggered. When the junction temperature drops below the thermal shutdown recovery temperature, typically 130°C, the LP5813 enters shutdown state, and then the device needs to be configured again for normal operations.

7.4 Device Functional Modes

The Figure 7-21 shows the main state machine of the LED driver.

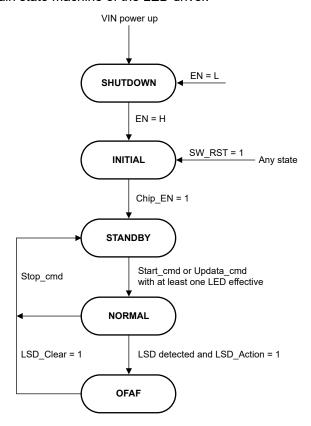


Figure 7-21. LP5813 Functional Modes

- SHUTDOWN: The device enters into SHUTDOWN after VIN power up.
- INITIAL: The device enters into INITIAL state from SHUTDOWN when EN is pulled high.
- STANDBY: The device enters into STANDBY state from INITIAL when Chip_EN is set to 1. The device can
 also enter into STANDBY from NORMAL when no LED is effective, or Stop_cmd is received, or from OFAF
 when LSD_Clear = 1.
- NORMAL: The device enters NORMAL state from STANDBY when one or more LEDs are effective: for manual mode, at least one LED is enable (PWM and DC setting is not 0); for autonomous mode, at lease one LED is enable and Start cmd is received.
- OFAF: The device enters OFAF (one fail all fail) state when LED short is detected and LSD_Action =1. In OFAF mode, all LEDs are turned off. Once LSD_Clear is writen to 1, the device enters back to STANDBY state.

7.5 Programming

The LP5813 is compatible with I²C standard specification. The device supports standard mode (100-kHz maximum), fast mode (400-kHz maximum), and fast plus mode (1-MHz maximum). The device has 4 different chip address versions, which allows connecting up to four parallel devices in one I²C bus.

I²C Data Transactions

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW. START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus leader always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus leader can generate repeated START conditions. First START and repeated START conditions are functionally equivalent.

Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the leader. The leader releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received.

There is one exception to the acknowledge after every byte rule. When the leader is the receiver, the receiver must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the follower. This negative acknowledge still includes the acknowledge clock pulse (generated by the leader), but the SDA line is not pulled down.

I²C Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which are divided into 5 bits of the chip address, 2 higher bits of the register address, and 1 read/write bit. The other 8 lower bits of register address are put in Address Byte 2. The device supports both independent mode and broadcast mode. The auto-increment feature allows writing / reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started. The Bit 4 and Bit 3 are determined by the device, which can refer to Section 4.

Table 7-5. I²C Data Format

	(Chip Address		Register	R/W						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
1	0	1	Bit 4	Bit 3	Oth hit	oth hit	R: 1 W: 0				
1	1	0	1	1	→ 9 th bit	O., Dir	R. I W. U				
Register Address											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
7 th bit	6 th bit	5 th bit	4 th bit	3 rd bit	2 nd bit	1 st bit	0 bit				
	1 1 Bit 7	Bit 7 Bit 6 1 0 1 1 Bit 7 Bit 6	Bit 7 Bit 6 Bit 5 1 0 1 1 1 0 Bit 7 Bit 6 Bit 5	1 0 1 Bit 4 1 1 0 1 Register Bit 7 Bit 6 Bit 5 Bit 4	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 1 0 1 Bit 4 Bit 3 1 1 0 1 1 Register Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 1 0 1 Bit 4 Bit 3 9 th bit 1 1 0 1 1 1 Register Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 1 0 1 Bit 4 Bit 3 9th bit 8th bit 1 1 0 1 1 8th bit 8th bit Register Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1				

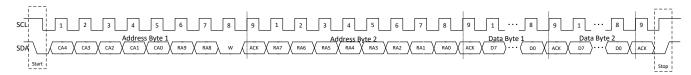


Figure 7-22. I²C Write Timming

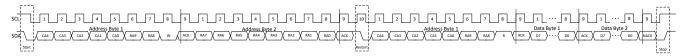


Figure 7-23. I²C Read Timing

8 Register Map Table

This section provides a summary of the register maps.

Table 8-1. Register Section/Block Access Type Codes

Access Type	Code	Description
	Oode	Description
Read Type		
R	R	Read
RC	R	Read
	С	to Clear
R-0	R	Read
	-0	Returns 0
Write Type		·
W	W	Write
W1C	W	W
	1C	1 to clear
Reset or Default Value		·
-n		Value after reset or the default value

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
Device_Enable Reg	ister	•									
Chip_en	000h	R/W	Reserved							chip_en	00h
Config Registers											
Dev_Config_0	001h	R/W	Reserved		boost_vou	t				max_curr ent	00h
Dev_Config_1	002h	R/W	pwm_fre	led_mode			mix_sel_le	ed			00h
Dev_Config_2	003h	R/W	scan_orde	r_3	scan_orde	er_2	scan_orde	r_1	scan_orde	er_0	E4h
Dev_Config_3	004h	R/W	auto_en_ b0	auto_en_ a2	auto_en_ a1	auto_en_ a0	auto_en_ 3	auto_en_ 2	auto_en_ 1	auto_en_ 0	00h
Dev_Config_4	005h	R/W	auto_en_ d2	auto_en_ d1	auto_en_ d0	auto_en_ c2	auto_en_ c1	auto_en_ c0	auto_en_ b2	auto_en_ b1	00h
Dev_Config_5	006h	R/W	exp_en_b 0	exp_en_a 2	exp_en_a 1	exp_en_a 0	exp_en_3	exp_en_2	exp_en_1	exp_en_0	00h
Dev_Config_6	007h	R/W	exp_en_d 2	exp_en_d 1	exp_en_d 0	exp_en_c 2	exp_en_c 1	exp_en_c 0	exp_en_b 2	exp_en_b 1	00h
Dev_Config_7	008h	R/W	phase_align_3 phase_align_2 phase_align_1 phase_align_0		gn_0	00h					
Dev_Config_8	009h	R/W	phase_alig	n_b0	phase_align_a2 phase		phase_alio	phase_align_a1		phase_align_a0	
Dev_Config_9	00Ah	R/W	phase_alig	jn_c1	phase_align_c0 phase		phase_alio	phase_align_b2		phase_align_b1	
Dev_Config_10	00Bh	R/W	phase_alig	n_d2	phase_alio	gn_d1	phase_alio	gn_d0	phase_alio	gn_c2	00h
Dev_Config_11	00Ch	R/W	Reserved					vsync_ou t_en	blank_time	е	00h
Dev_Config_12	00Dh	R/W	vmid_sel		clamp_se	clamp_di s	lod_actio n	lsd_actio n	Isd_thresh	old	08h
Command Register	s		1								
CMD_Update	010h	W1C	update_co	mmand							00h
CMD_Start	011h	W1C	start_com	mand							00h
CMD_Stop	012h	W1C	stop_comr	stop_command (00h	
CMD_Pause	013h	W1C	pause_cor	pause_command (00h	
CMD_Continue	014h	W1C	continue_d	command							00h
led_enable Register	rs										

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default	
-	020h	R/W	led_en_b	led_en_a	led_en_a	led_en_a	led_en_3	led_en_2	led_en_1	led_en_0	00h	
led_en_2	021h	R/W	led_en_d 2	led_en_d 1	led_en_d 0	led_en_c 2	led_en_c 1	led_en_c	led_en_b	led_en_b	00h	
Fault_Clear Register												
Fault_Clear	022h	W1C	Reserved					tsd_clear	lsd_clear	lod_clear	00h	
Reset Register												
Reset	023h	W1C	sw_reset								00h	
Manual_DC Register	s											
Manual_DC_0	030h	R/W	manual_do	c_0							00h	
Manual_DC_1	031h	R/W	manual_do	al_dc_1 (
Manual_DC_2	032h	R/W	manual_do	2_2							00h	
Manual_DC_3	033h	R/W	manual_do	2_3							00h	
Manual_DC_4	034h	R/W	manual_do	c_a0							00h	
Manual_DC_5	035h	R/W	manual_do	a1							00h	
Manual_DC_6	036h	R/W	manual_do	c_a2							00h	
Manual_DC_7	037h	R/W	manual_do	c_b0							00h	
Manual_DC_8	038h	R/W	manual_do	c_b1							00h	
Manual_DC_9	039h	R/W	manual_do	c_b2							00h	
Manual_DC_10	03Ah	R/W	manual_do	c_c0							00h	
Manual_DC_11	03Bh	R/W	manual_do	c_c1							00h	
Manual_DC_12	03Ch	R/W	manual_do	c2							00h	
Manual_DC_13	03Dh	R/W	manual_do	c_d0							00h	
Manual_DC_14	03Eh	R/W	manual_do	c_d1							00h	
Manual_DC_15	03Fh	R/W	manual_do								00h	
Manual PWM Registe	ers											
Manual_PWM_0	040h	R/W	manual_p\	wm_0							00h	
Manual_PWM_1	041h	R/W	manual_p\	wm_1							00h	
Manual_PWM_2	042h	R/W	manual_p\								00h	
Manual_PWM_3	043h	R/W	manual p	vm 3							00h	
Manual_PWM_4	044h	R/W	manual p	 wm_a0							00h	
Manual_PWM_5	045h	R/W	manual_p\	 wm_a1							00h	
	046h	R/W	manual_p\								00h	
	047h	R/W	manual_p\	wm_b0							00h	
	048h	R/W	manual_p\								00h	
	049h	R/W	manual_p\								00h	
Manual_PWM_10	04Ah	R/W	manual_p\	wm_c0							00h	
	04Bh	R/W	manual_p\								00h	
	04Ch	R/W	manual_p\								00h	
	04Dh	R/W	manual_p\								00h	
	04Eh	R/W	manual_p\								00h	
	04Fh	R/W	manual_p\								00h	
Autonomous_DC Re	gisters										1	
	050h	R/W	auto_dc_0	1							00h	
	051h	R/W	auto_dc_1	auto_dc_1 0							00h	
	052h	R/W	auto_dc_2								00h	
		R/W	auto_dc_3								00h	

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
Auto_DC_4	054h	R/W	auto_dc_a	0					<u>'</u>		00h
Auto_DC_5	055h	R/W	auto_dc_a	1							00h
Auto_DC_6	056h	R/W	auto_dc_a	2							00h
Auto_DC_7	057h	R/W	auto_dc_b	0							00h
Auto_DC_8	058h	R/W	auto_dc_b	1							00h
Auto_DC_9	059h	R/W	auto_dc_b	2							00h
Auto_DC_10	05Ah	R/W	auto_dc_c	0							00h
Auto_DC_11	05Bh	R/W	auto_dc_c	1							00h
Auto_DC_12	05Ch	R/W	auto_dc_c	2							00h
Auto_DC_13	05Dh	R/W	auto_dc_d	0							00h
Auto_DC_14	05Eh	R/W	auto_dc_d	1							00h
Auto_DC_15	05Fh	R/W	auto_dc_d	2							00h
LED_0_Autonomous	s_Animatio	n Regi	sters								
LED_0_Auto_Paus e	080h	R/W	led_0_pau	se_start			led_0_pa	ause_stop			00h
LED_0_Auto_Playb	081h	R/W	Reserved		led_0_aeı	u_num	LED_0_	pt			00h
LED_0_AEU1_PWM	082h	R/W	led_0_aeu	1_pwm1							00h
LED_0_AEU1_PWM	083h	R/W	led_0_aeu	1_pwm2							00h
LED_0_AEU1_PWM	084h	R/W	led_0_aeu	1_pwm3							00h
LED_0_AEU1_PWM	085h	R/W	led_0_aeu	_0_aeu1_pwm4							
LED_0_AEU1_PWM _5	086h	R/W	led_0_aeu	1_pwm5							00h
LED_0_AEU1_T12	087h	R/W	led_0_aeu	1_t2			led_0_a	eu1_t1			00h
LED_0_AEU1_T34	088h	R/W	led_0_aeu	1_t4			led_0_a	eu1_t3			00h
LED_0_AEU1_Play back	089h	R/W	Reserved				'		led_0_ae	u1_pt	00h
LED_0_AEU2_PWM _1	08Ah	R/W	led_0_aeu	2_pwm1							00h
LED_0_AEU2_PWM _2	08Bh	R/W	led_0_aeu	2_pwm2							00h
LED_0_AEU2_PWM _3	08Ch	R/W	led_0_aeu	2_pwm3							00h
LED_0_AEU2_PWM _4	08Dh	R/W	led_0_aeu	2_pwm4							00h
LED_0_AEU2_PWM _5	08Eh	R/W	led_0_aeu	2_pwm5							00h
LED_0_AEU2_T12	08Fh	R/W	led_0_aeu	2_t2			led_0_a	eu2_t1			00h
LED_0_AEU2_T34	090h	R/W	led_0_aeu	2_t4			led_0_a	eu2_t3			00h
LED_0_AEU2_Play back	091h	R/W	Reserved						led_0_ae	u2_pt	00h
LED_0_AEU3_PWM _1	092h	R/W	led_0_aeu	3_pwm1							00h
LED_0_AEU3_PWM _2	093h	R/W	led_0_aeu	3_pwm2							00h
LED_0_AEU3_PWM _3	094h	R/W	led_0_aeu	3_pwm3							00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_0_AEU3_PWM	095h	R/W	led_0_aeu3_pwm4								00h
_4	2001	- n									
LED_0_AEU3_PWM _5	096h	R/W	led_0_aeu	3_pwm5							00h
LED_0_AEU3_T12	097h	R/W	led_0_aeu	3_t2			led_0_ae	u3_t1			00h
LED_0_AEU3_T34	098h	R/W	led_0_aeu	3_t4			led_0_ae	u3_t3			00h
LED_0_AEU3_Play	099h	R/W	Reserved						led_0_ae	eu3_pt	00h
LED_1 Autonomous	Animation	Regis	⊥ ters								
LED_1_Auto_Paus	09Ah	R/W	led_1_pau	se_start			led_1_pa	use_stop			00h
LED_1_Auto_Playb	09Bh	R/W	Reserved		led_1_aeu	_num	led_1_pt				00h
LED_1_AEU1_PWM _1	09Ch	R/W	led_1_aeu	1_pwm1	'		'				00h
LED_1_AEU1_PWM	09Dh	R/W	led_1_aeu	1_pwm2							00h
LED_1_AEU1_PWM	09Eh	R/W	led_1_aeu	1_pwm3							00h
LED_1_AEU1_PWM _4	09Fh	R/W	led_1_aeu	1_pwm4							00h
LED_1_AEU1_PWM _5	0A0h	R/W	led_1_aeu	1_pwm5							00h
LED_1_AEU1_T12	0A1h	R/W	led_1_aeu	1_t2			led_1_ae	u1_t1			00h
LED_1_AEU1_T34	0A2h	R/W	led_1_aeu	1_t4			led_1_ae	u1_t3			00h
LED_1_AEU1_Play back	0A3h	R/W	Reserved						led_1_ae	eu1_pt	00h
LED_1_AEU2_PWM _1	0A4h	R/W	led_1_aeu	2_pwm1							00h
LED_1_AEU2_PWM _2	0A5h	R/W	led_1_aeu	2_pwm2							00h
LED_1_AEU2_PWM _3	0A6h	R/W	led_1_aeu	2_pwm3							00h
LED_1_AEU2_PWM _4	0A7h	R/W	led_1_aeu	2_pwm4							00h
LED_1_AEU2_PWM _5	0A8h	R/W	led_1_aeu	2_pwm5							00h
LED_1_AEU2_T12	0A9h	R/W	led_1_aeu	1_t2			led_1_ae	u1_t1			00h
LED_1_AEU2_T34	0AAh	R/W	led_1_aeu	1_t4			led_1_ae	u1_t3			00h
LED_1_AEU2_Play back	0ABh	R/W	Reserved						led_1_ae	eu2_pt	00h
LED_1_AEU3_PWM _1	0ACh	R/W	led_1_aeu	3_pwm1					•		00h
LED_1_AEU3_PWM _2	0ADh	R/W	led_1_aeu	3_pwm2							00h
LED_1_AEU3_PWM _3	0AEh	R/W	led_1_aeu	3_pwm3							00h
LED_1_AEU3_PWM _4	0AFh	R/W	led_1_aeu	3_pwm4							00h
LED_1_AEU3_PWM _5	0B0h	R/W	led_1_aeu	3_pwm5							00h
LED_1_AEU3_T12	0B1h	R/W	led_1_aeu	3_t2			led_1_ae	u3_t1			00h
LED_1_AEU3_T34	0B2h	R/W	led_1_aeu	3_t4			led_1_ae	u3_t3			00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1 D0	Default		
LED_1_AEU3_Play back	0B3h	R/W	Reserved						led_1_aeu3_pt	00h		
LED_2 Autonomous	Animation	Regis	ters							•		
LED_2_Auto_Paus e	0B4h	R/W	led_2_pau	se_start			led_2_pa	use_stop		00h		
LED_2_Auto_Playb ack	0B5h	R/W	Reserved		led_2_aeı	u_num	led_2_pt			00h		
LED_2_AEU1_PWM _1	0B6h	R/W	led_2_aeu	1_pwm1			'			00h		
LED_2_AEU1_PWM _2	0B7h	R/W	led_2_aeu	d_2_aeu1_pwm2								
LED_2_AEU1_PWM _3	0B7h	R/W	led_2_aeu	1_pwm3						00h		
LED_2_AEU1_PWM _4	0B9h	R/W	led_2_aeu	1_pwm4						00h		
LED_2_AEU1_PWM _5	0BAh	R/W	led_2_aeu	1_pwm5						00h		
LED_2_AEU1_T12	0BBh	R/W	led_2_aeu	1_t2			led_2_ae	u1_t1		00h		
LED_2_AEU1_T34	0BCh	R/W	led_2_aeu	1_t4			led_2_ae	u1_t3		00h		
LED_2_AEU1_Play back	0BDh	R/W	Reserved				-		led_2_aeu1_pt	00h		
LED_2_AEU2_PWM _1	0BEh	R/W	led_2_aeu	2_pwm1						00h		
LED_2_AEU2_PWM _2	0BFh	R/W	led_2_aeu	2_pwm2						00h		
LED_2_AEU2_PWM _3	0C0h	R/W	led_2_aeu	2_pwm3						00h		
LED_2_AEU2_PWM _4	0C1h	R/W	led_2_aeu	2_pwm4						00h		
LED_2_AEU2_PWM _5	0C2h	R/W	led_2_aeu	d_2_aeu2_pwm5								
LED_2_AEU2_T12	0C3h	R/W	led_2_aeu	2_t2			led_2_ae	u2_t1		00h		
LED_2_AEU2_T34	0C4h	R/W	led_2_aeu	2_t4			led_2_ae	u2_t3		00h		
LED_2_AEU2_Play back	0C5h	R/W	Reserved						led_2_aeu2_pt	00h		
LED_2_AEU3_PWM _1	0C6h	R/W	led_2_aeu	3_pwm1						00h		
LED_2_AEU3_PWM _2	0C7h	R/W	led_2_aeu	3_pwm2						00h		
LED_2_AEU3_PWM _3	0C8h	R/W	led_2_aeu	3_pwm3						00h		
LED_2_AEU3_PWM _4	0C9h	R/W	led_2_aeu	3_pwm4						00h		
LED_2_AEU3_PWM _5	0CAh	R/W	led_2_aeu	3_pwm5						00h		
LED_2_AEU3_T12	0CBh	R/W	led_2_aeu	3_t2			led_2_ae	u3_t1		00h		
LED_2_AEU3_T34	0CCh	R/W	led_2_aeu	3_t4			led_2_ae	u3_t3		00h		
LED_2_AEU3_Play back	0CDh	R/W	Reserved						led_2_aeu3_pt	00h		
LED_3 Autonomous	Animation	Regis	ters									
LED_3_Auto_Paus e	0CEh	R/W	led_3_pau	se_start			led_3_pa	use_stop		00h		

Register Acronym	Address	Туре	D7 D6		D5 [)4	D3	D2	D1	D0	Default
LED_3_Auto_Playb	0CFh	R/W	Reserved led_3_aeu_num led_3_pt							00h	
ack	0D0b	R/W	led 3 aeu1 p								00h
LED_3_AEU1_PWM	UDUN	FK/VV	led_3_aeu1_p	owiii							00h
LED_3_AEU1_PWM _2	0D1h	R/W	led_3_aeu1_p	wm2							00h
LED_3_AEU1_PWM _3	0D2h	R/W	led_3_aeu1_p	owm3							00h
LED_3_AEU1_PWM	0D3h	R/W	led_3_aeu1_p	wm4							00h
LED_3_AEU1_PWM _5	0D4h	R/W	led_3_aeu1_p	wm5							00h
LED_3_AEU1_T12	0D5h	R/W	led_3_aeu1_t	2			led_3_aeu	ı1_t1			00h
LED_3_AEU1_T34	0D6h	R/W	led_3_aeu1_t	ed_3_aeu1_t4 led_3_aeu1_t3							
LED_3_AEU1_Play back	0D7h	R/W	Reserved						led_3_ae	u1_pt	00h
LED_3_AEU2_PWM _1	0D8h	R/W	led_3_aeu2_p	wm1							00h
LED_3_AEU2_PWM _2	0D9h	R/W	led_3_aeu2_p	wm2							00h
LED_3_AEU2_PWM _3	0DAh	R/W	led_3_aeu2_p	wm3							00h
LED_3_AEU2_PWM _4	0DBh	R/W	led_3_aeu2_p	wm4							00h
LED_3_AEU2_PWM _5	0DCh	R/W	led_3_aeu2_p	ed_3_aeu2_pwm5							
LED_3_AEU2_T12	0DDh	R/W	led_3_aeu2_t2								00h
LED_3_AEU2_T34	0DEh	R/W	led_3_aeu2_t3								00h
LED_3_AEU2_Play back	0DFh	R/W	Reserved led_3_aeu2_pt								00h
LED_3_AEU3_PWM _1	0E0h	R/W	led_3_aeu3_p	ed_3_aeu3_pwm1							
LED_3_AEU3_PWM _2	0E1h	R/W	led_3_aeu3_p	led_3_aeu3_pwm2							00h
LED_3_AEU3_PWM _3	0E2h	R/W	led_3_aeu3_p	wm3							00h
LED_3_AEU3_PWM _4	0E3h	R/W	led_3_aeu3_p	wm4							00h
LED_3_AEU3_PWM _5	0E4h	R/W	led_3_aeu3_p	wm5							00h
LED_3_AEU3_T12	0E5h	R/W	led_3_aeu3_t	2			led_3_aeu	13_t1			00h
LED_3_AEU3_T34	0E6h	R/W	led_3_aeu3_t	4			led_3_aeu	13_t3			00h
LED_3_AEU3_Play back	0E7h	R/W	Reserved						led_3_ae	u3_pt	00h
LED_A0 Autonomou	s Animatio	on Regi	sters								
LED_A0_Auto_Pau se	0E8h	R/W	led_a0_pause	_start			led_a0_pa	use_stop			00h
LED_A0_Auto_Play back	0E9h	R/W	Reserved		led_a0_aeu	_num	led_a0_pt				00h
LED_A0_AEU1_PW M_1	0EAh	R/W	led_a0_aeu1_	_pwm1	1		1				00h
LED_A0_AEU1_PW M_2	0EBh	R/W	led_a0_aeu1_	_pwm2							00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default	
LED_A0_AEU1_PW M_3	0ECh	R/W	led_a0_a	eu1_pwm3						,	00h	
LED_A0_AEU1_PW M_4	0EDh	R/W	led_a0_ae	eu1_pwm4							00h	
LED_A0_AEU1_PW M_5	0EEh	R/W	led_a0_ae	eu1_pwm5							00h	
LED_A0_AEU1_T12	0EFh	R/W	led_a0_a	eu1_t2			led_a0_a	eu1_t1			00h	
LED_A0_AEU1_T34	0F0h	R/W	led_a0_ae	eu1_t4			led_a0_a	neu1_t3			00h	
LED_A0_AEU1_Pla yback	0F1h	R/W	Reserved						LED_a0	_aeu1_pt	00h	
LED_A0_AEU2_PW M_1	0F2h	R/W	led_a0_ae	d_a0_aeu2_pwm1								
LED_A0_AEU2_PW M_2	0F3h	R/W	led_a0_ae	eu2_pwm2							00h	
LED_A0_AEU2_PW M_3	0F4h	R/W	led_a0_ae	eu2_pwm3							00h	
LED_A0_AEU2_PW M_4	0F5h	R/W	led_a0_ae	eu2_pwm4							00h	
LED_A0_AEU2_PW M_5	0F6h	R/W	led_a0_ae	eu2_pwm5							00h	
LED_A0_AEU2_T12	0F7h	R/W	led_a0_ae	eu2_t2			led_a0_a	eu2_t1			00h	
LED_A0_AEU2_T34	0F8h	R/W	led_a0_ae	eu2_t4			led_a0_a	eu2_t3			00h	
LED_A0_AEU2_Pla yback	0F9h	R/W	Reserved	Reserved LED_a0_aeu2_pt							00h	
LED_A0_AEU3_PW M_1	0FAh	R/W	led_a0_ae	ed_a0_aeu3_pwm1								
LED_A0_AEU3_PW M_2	0FBh	R/W	led_a0_ae	ed_a0_aeu3_pwm2								
LED_A0_AEU3_PW M_3	0FCh	R/W	led_a0_ae	eu3_pwm3							00h	
LED_A0_AEU3_PW M_4	0FDh	R/W	led_a0_ae	ed_a0_aeu3_pwm4								
LED_A0_AEU3_PW M_5	0FEh	R/W	led_a0_ae	eu3_pwm5							00h	
LED_A0_AEU3_T12	0FFh	R/W	led_a0_ae	eu3_t2			led_a0_a	eu3_t1			00h	
LED_A0_AEU3_T34	100h	R/W	led_a0_a	eu3_t4			led_a0_a	eu3_t3			00h	
LED_A0_AEU3_Pla yback	101h	R/W	Reserved						LED_a0_	_aeu3_pt	00h	
LED_A1 Autonomou	s Animatio	n Reg	isters									
LED_A1_Auto_Pau se	102h	R/W	led_a1_pa	use_start			'	oause_stop			00h	
LED_A1_Auto_Play back	103h	R/W	Reserved		led_a1_a	eu_num	led_a1_p	ot			00h	
LED_A1_AEU1_PW M_1	104h	R/W	led_a1_ae	eu1_pwm1							00h	
LED_A1_AEU1_PW M_2	105h	R/W	led_a1_ae	eu1_pwm2							00h	
LED_A1_AEU1_PW M_3	106h	R/W	led_a1_ae	eu1_pwm3							00h	
LED_A1_AEU1_PW M_4	107h	R/W	led_a1_ae	eu1_pwm4							00h	
LED_A1_AEU1_PW M_5	108h	R/W	led_a1_ae	eu1_pwm5							00h	

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_A1_AEU1_T12	109h	R/W	led_a1_ae	u1_t2			led_a1_a	 eu1_t1			00h
LED_A1_AEU1_T34	10Ah	R/W	led_a1_ae	eu1_t4			led_a1_a	eu1_t3			00h
LED_A1_AEU1_Pla yback	10Bh	R/W	Reserved				1		led_a1_a	eu1_pt	00h
LED_A1_AEU2_PW M_1	10Ch	R/W	led_a1_ae	eu2_pwm1							00h
LED_A1_AEU2_PW M_2	10Dh	R/W	led_a1_ae	eu2_pwm2							00h
LED_A1_AEU2_PW M_3	10Eh	R/W	led_a1_ae	eu2_pwm3							00h
LED_A1_AEU2_PW M_4	10Fh	R/W	led_a1_ae	eu2_pwm4							00h
LED_A1_AEU2_PW M_5	110h	R/W	led_a1_ae	eu2_pwm5							00h
LED_A1_AEU2_T12	111h	R/W	led_a1_ae	eu2_t2			led_a1_a	eu2_t1			00h
LED_A1_AEU2_T34	112h	R/W	led_a1_ae	eu2_t4			led_a1_a	eu2_t3			00h
LED_A1_AEU2_Pla yback	113h	R/W	Reserved						led_a1_a	aeu2_pt	00h
LED_A1_AEU3_PW M_1	114h	R/W	led_a1_ae	eu3_pwm1							00h
LED_A1_AEU3_PW M_2	115h	R/W	led_a1_ae	eu3_pwm2							00h
LED_A1_AEU3_PW M_3	116h	R/W	led_a1_ae	eu3_pwm3							00h
LED_A1_AEU3_PW M_4	117h	R/W	led_a1_ae	eu3_pwm4							00h
LED_A1_AEU3_PW M_5	118h	R/W	led_a1_ae	eu3_pwm5							00h
LED_A1_AEU3_T12	119h	R/W	led_a1_ae	eu3_t2			led_a1_a	eu3_t1			00h
LED_A1_AEU3_T34	11Ah	R/W	led_a1_ae	eu3_t4			led_a1_a	eu3_t3			00h
LED_A1_AEU3_Pla yback	11Bh	R/W	Reserved						led_a1_a	aeu3_pt	00h
LED_A2 Autonomou	is Animatic	n Regi	sters								
LED_A2_Auto_Pau se	11Ch	R/W	led_a2_pa	use_start			led_a2_pa	ause_stop			00h
LED_A2_Auto_Play back	11Dh	R/W	Reserved		led_a2_a	eu_num	led_a2_p	t			00h
LED_A2_AEU1_PW M_1	11Eh	R/W	led_a2_ae	eu1_pwm1							00h
LED_A2_AEU1_PW M_2	11Fh	R/W	led_a2_ae	eu1_pwm2							00h
LED_A2_AEU1_PW M_3	120h	R/W	led_a2_ae	eu1_pwm3							00h
LED_A2_AEU1_PW M_4	121h	R/W	led_a2_ae	eu1_pwm4							00h
LED_A2_AEU1_PW M_5	122h	R/W	led_a2_ae	eu1_pwm5							00h
LED_A2_AEU1_T12	123h	R/W	led_a2_ae	eu1_t2			led_a2_a	eu1_t1			00h
LED_A2_AEU1_T34	124h	R/W	led_a2_ae	eu1_t4			led_a2_a	eu1_t3			00h
LED_A2_AEU1_Pla yback	125h	R/W	Reserved						led_a2_a	eu1_pt	00h
LED_A2_AEU2_PW M_1	126h	R/W	led_a2_ae	eu2_pwm1							00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_A2_AEU2_PW M_2	127h	R/W	led_a2_ae	eu2_pwm2			·				00h
LED_A2_AEU2_PW M_3	128h	R/W	led_a2_ae	eu2_pwm3							00h
LED_A2_AEU2_PW M_4	129h	R/W	led_a2_a	eu2_pwm4							00h
LED_A2_AEU2_PW M_5	12Ah	R/W	led_a2_ae	eu2_pwm5							00h
LED_A2_AEU2_T12	12Bh	R/W	led_a2_ae	eu2_t2			led_a2_a	aeu2_t1			00h
LED_A2_AEU2_T34	12Ch	R/W	led_a2_ae	eu2_t4			led_a2_a	aeu2_t3			00h
LED_A2_AEU2_Pla yback	12Dh	R/W	Reserved				·		led_a2_a	aeu2_pt	00h
LED_A2_AEU3_PW M_1	12Eh	R/W	led_a2_ae	eu3_pwm1							00h
LED_A2_AEU3_PW M_2	12Fh	R/W	led_a2_ae	eu3_pwm2							00h
LED_A2_AEU3_PW M_3	130h	R/W	led_a2_ae	eu3_pwm3							00h
LED_A2_AEU3_PW M_4	131h	R/W	led_a2_ae	eu3_pwm4							00h
LED_A2_AEU3_PW M_5	132h	R/W	led_a2_ae	eu3_pwm5							00h
LED_A2_AEU3_T12	133h	R/W	led_a2_ae	eu3_t2			led_a2_a	aeu3_t1			00h
LED_A2_AEU3_T34	134h	R/W	led_a2_ae	eu3_t4			led_a2_a	aeu3_t3			00h
LED_A2_AEU3_Pla yback	135h	R/W	Reserved						led_a2_a	aeu3_pt	00h
LED_B0 Autonomou	s Animatio	on Reg	isters								
LED_B0_Auto_Pau se	136h	R/W	led_b0_pa	ause_start			led_b0_p	pause_stop			00h
LED_B0_Auto_Play back	137h	R/W	Reserved		led_b0_a	eu_num	led_b0_p	ot			00h
LED_B0_AEU1_PW M_1	138h	R/W	led_b0_ae	eu1_pwm1							00h
LED_B0_AEU1_PW M_2	139h	R/W	led_b0_ae	eu1_pwm2							00h
LED_B0_AEU1_PW M_3	13Ah	R/W	led_b0_ae	eu1_pwm3							00h
LED_B0_AEU1_PW M_4	13Bh	R/W	led_b0_ae	eu1_pwm4							00h
LED_B0_AEU1_PW M_5	13Ch	R/W	led_b0_ae	eu1_pwm5							00h
LED_B0_AEU1_T12	13Dh	R/W	led_b0_ae	eu1_2			led_b0_a	aeu1_1			00h
LED_B0_AEU1_T34	13Eh	R/W	led_b0_ae	eu1_4			led_b0_a	aeu1_3			00h
LED_B0_AEU1_Pla yback	13Fh	R/W	Reserved						led_b0_a	aeu1_pt	00h
LED_B0_AEU2_PW M_1	140h	R/W	led_b0_ae	eu2_pwm1							00h
LED_B0_AEU2_PW M_2	141h	R/W	led_b0_ae	eu2_pwm2							00h
LED_B0_AEU2_PW M_3	142h	R/W	led_b0_ae	eu2_pwm3							00h
LED_B0_AEU2_PW M_4	143h	R/W	led_b0_ae	eu2_pwm4							00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_B0_AEU2_PW	144h	R/W	led_b0_ae	u2_pwm5							00h
M_5											
LED_B0_AEU2_T12	145h	R/W	led_b0_ae				led_b0_a	_			00h
LED_B0_AEU2_T34	146h	R/W	led_b0_ae	u2_4			led_b0_a	aeu2_3			00h
LED_B0_AEU2_Pla yback	147h	R/W	Reserved						led_b0_a	aeu2_pt	00h
LED_B0_AEU3_PW M_1	148h	R/W	led_b0_ae	eu3_pwm1							00h
LED_B0_AEU3_PW M_2	149h	R/W	led_b0_ae	u3_pwm2							00h
LED_B0_AEU3_PW M_3	14Ah	R/W	led_b0_ae	eu3_pwm3							00h
LED_B0_AEU3_PW M_4	14Bh	R/W	led_b0_ae	eu3_pwm4							00h
LED_B0_AEU3_PW M_5	14Ch	R/W	led_b0_ae	u3_pwm5							00h
LED_B0_AEU3_T12	14Dh	R/W	led_b0_ae	u3_2			led_b0_a	aeu3_1			00h
LED_B0_AEU3_T34	14Eh	R/W	led_b0_ae	eu3_4			led_b0_a	aeu3_3			00h
LED_B0_AEU3_Pla yback	14Fh	R/W	Reserved						led_b0_a	aeu3_pt	00h
LED_B1 Autonomou	s Animatio	on Regi	isters						1		l
LED_B1_Auto_Pau se	150h	R/W	led_b1_pa	use_start			led_b1_p	pause_stop			00h
LED_B1_Auto_Play back	151h	R/W	Reserved		led_b1_ae	u_num	led_b1_p	ot			00h
LED_B1_AEU1_PW M_1	152h	R/W	led_b1_ae	u1_pwm1							00h
LED_B1_AEU1_PW M_2	153h	R/W	led_b1_ae	u1_pwm2							00h
LED_B1_AEU1_PW M_3	154h	R/W	led_b1_ae	u1_pwm3							00h
LED_B1_AEU1_PW M_4	155h	R/W	led_b1_ae	u1_pwm4							00h
LED_B1_AEU1_PW M_5	156h	R/W	led_b1_ae	u1_pwm5							00h
LED_B1_AEU1_T12	157h	R/W	led_b1_ae	u1_t2			led_b1_a	aeu1_t1			00h
LED_B1_AEU1_T34	158h	R/W	led_b1_ae	u1_t4			led_b1_a	aeu1_t3			00h
LED_B1_AEU1_Pla yback	159h	R/W	Reserved						led_b1_a	aeu1_pt	00h
LED_B1_AEU2_PW M_1	15Ah	R/W	led_b1_ae	u2_pwm1							00h
LED_B1_AEU2_PW M_2	15Bh	R/W	led_b1_ae	eu2_pwm2							00h
LED_B1_AEU2_PW M_3	15Ch	R/W	led_b1_ae	eu2_pwm3							00h
LED_B1_AEU2_PW M_4	15Dh	R/W	led_b1_ae	eu2_pwm4							00h
LED_B1_AEU2_PW M_5	15Eh	R/W	led_b1_ae	eu2_pwm5							00h
LED_B1_AEU2_T12	15Fh	R/W	led_b1_ae	:u2_t2			led_b1_a	aeu2_t1			00h
LED_B1_AEU2_T34	160h	R/W	led_b1_ae	eu2_t4			led_b1_a	aeu2_t3			00h
LED_B1_AEU2_Pla yback	161h	R/W	Reserved						led_b1_a	aeu2_pt	00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_B1_AEU3_PW M_1	162h	R/W	led_b1_ae	eu3_pwm1							00h
LED_B1_AEU3_PW M_2	163h	R/W	led_b1_ae	eu3_pwm2							00h
LED_B1_AEU3_PW M_3	164h	R/W	led_b1_ae	eu3_pwm3							00h
LED_B1_AEU3_PW M_4	165h	R/W	led_b1_ae	eu3_pwm4							00h
LED_B1_AEU3_PW M_5	166h	R/W	led_b1_ae	eu3_pwm5							00h
LED_B1_AEU3_T12	167h	R/W	led_b1_ae	eu3_t2			led_b1_a	eu3_t1			00h
LED_B1_AEU3_T34	168h	R/W	led_b1_ae	eu3_t4			led_b1_a	eu3_t3			00h
LED_B1_AEU3_Pla yback	169h	R/W	Reserved						led_b1_a	eu3_pt	00h
LED_B2 Autonomou	s Animatio	on Regi	isters								
LED_B2_Auto_Pau se	16Ah	R/W	led_b2_pa	use_start			led_b2_p	ause_stop			00h
LED_B2_Auto_Play back	16Bh	R/W	Reserved		led_b2_a	eu_num	led_b2_p	t			00h
LED_B2_AEU1_PW M_1	16Ch	R/W	led_b2_ae	eu1_pwm1							00h
LED_B2_AEU1_PW M_2	16Dh	R/W	led_b2_ae	eu1_pwm2							00h
LED_B2_AEU1_PW M_3	16Eh	R/W	led_b2_ae	eu1_pwm3							00h
LED_B2_AEU1_PW M_4	16Fh	R/W	led_b2_ae	eu1_pwm4							00h
LED_B2_AEU1_PW M_5	170h	R/W	led_b2_ae	eu1_pwm5							00h
LED_B2_AEU1_T12	171h	R/W	led_b2_a	eu1_t2			led_b2_a	eu1_t1			00h
LED_B2_AEU1_T34	172h	R/W	led_b2_ae	eu1_t4			led_b2_a	eu1_t3			00h
LED_B2_AEU1_Pla yback	173h	R/W	Reserved						led_b2_a	eu1_pt	00h
LED_B2_AEU2_PW M_1	174h	R/W	led_b2_ae	eu2_pwm1							00h
LED_B2_AEU2_PW M_2	175h	R/W	led_b2_ae	eu2_pwm2							00h
LED_B2_AEU2_PW M_3	176h	R/W	led_b2_ae	eu2_pwm3							00h
LED_B2_AEU2_PW M_4	177h	R/W	led_b2_ae	eu2_pwm4							00h
LED_B2_AEU2_PW M_5	178h	R/W	led_b2_ae	eu2_pwm5							00h
LED_B2_AEU2_T12	179h	R/W	led_b2_ae	eu2_t2			led_b2_a	eu2_t1			00h
LED_B2_AEU2_T34	17Ah	R/W	led_b2_a	eu2_t4			led_b2_a	eu2_t3			00h
LED_B2_AEU2_Pla yback	17Bh	R/W	Reserved						led_b2_a	eu2_pt	00h
LED_B2_AEU3_PW M_1	17Ch	R/W	led_b2_a	eu3_pwm1							00h
LED_B2_AEU3_PW M_2	17Dh	R/W	led_b2_ae	eu3_pwm2							00h
LED_B2_AEU3_PW M_3	17Eh	R/W	led_b2_ae	eu3_pwm3							00h

D7 D6 D5 D4 D3 D2 D1 D0 Default **Register Acronym** Address Type LED B2 AEU3 PW 17Fh R/W led b2 aeu3 pwm4 00h LED_B2_AEU3_PW 180h R/W led b2 aeu3 pwm5 00h M_5 LED B2 AEU3 T12 181h R/W led b2 aeu3 t2 led b2 aeu3 t1 00h LED_B2_AEU3_T34 182h R/W led b2 aeu3 t4 led b2 aeu3 t3 00h LED B2 AEU3 Pla R/W 00h 183h Reserved led_b2_aeu3_pt yback LED_C0 Autonomous Animation Registers LED_C0_Auto_Pau R/W 00h 184h led_c0_pause_start led_c0_pause_stop se R/W 00h LED_C0_Auto_Play 185h Reserved led_c0_aeu_num led_c0_pt back LED_C0_AEU1_PW 186h R/W 00h led_c0_aeu1_pwm1 M_1 LED_C0_AEU1_PW 187h R/W 00h led_c0_aeu1_pwm2 M 2 LED_C0_AEU1_PW 188h R/W led_c0_aeu1_pwm3 00h M_3 R/W 00h LED_C0_AEU1_PW 189h led c0 aeu1 pwm4 M 4 00h LED_C0_AEU1_PW 18Ah R/W led_c0_aeu1_pwm5 M 5 LED C0 AEU1 T12 18Bh R/W led c0 aeu1 t2 led c0 aeu1 t1 00h LED_C0_AEU1_T34 18Ch R/W led_c0_aeu1_t4 led_c0_aeu1_t3 00h LED C0 AEU1 Pla R/W 18Dh 00h Reserved led_c0_aeu1_pt yback LED_C0_AEU2_PW 18Eh R/W led_c0_aeu2_pwm1 00h M 1 R/W 00h LED_C0_AEU2_PW 18Fh led_c0_aeu2_pwm2 M 2 LED_C0_AEU2_PW 190h R/W led_c0_aeu2_pwm3 00h M 3 LED_C0_AEU2_PW 191h R/W 00h led c0 aeu2 pwm4 M_4 LED_C0_AEU2_PW 192h R/W led_c0_aeu2_pwm5 00h M 5 R/W 00h LED_C0_AEU2_T12 193h led c0 aeu2 t2 led c0 aeu2 t1 R/W 00h LED_C0_AEU2_T34 194h led_c0_aeu2_t4 led_c0_aeu2_t3 LED_C0_AEU2_Pla R/W 00h 195h Reserved led_c0_aeu2_pt yback LED_C0_AEU3_PW 196h R/W led_c0_aeu3_pwm1 00h M_1 R/W LED_C0_AEU3_PW 197h led c0 aeu3 pwm2 00h M 2 LED_C0_AEU3_PW R/W 00h 198h led_c0_aeu3_pwm3 M 3 LED_C0_AEU3_PW 199h R/W 00h led_c0_aeu3_pwm4 M 4 LED_C0_AEU3_PW 19Ah R/W led c0 aeu3 pwm5 00h M_5 LED C0 AEU3 T12 19Bh R/W led c0 aeu3 t2 led c0 aeu3 t1 00h LED_C0_AEU3_T34 19Ch R/W led c0 aeu3 t4 led c0 aeu3 t3 00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1 D0	Default	
LED_C0_AEU3_Pla yback	19Dh	R/W	Reserved						led_c0_aeu3_pt	00h	
LED_C1 Autonomou	ıs Animatio	on Reg	isters							·	
LED_C1_Auto_Pau se	19Eh	R/W	led_c1_pa	use_start			led_c1_p	ause_stop		00h	
LED_C1_Auto_Play back	19Fh	R/W	Reserved		led_c1_a	eu_num	led_c1_p	t		00h	
LED_C1_AEU1_PW M_1	1A0h	R/W	led_c1_ae	u1_pwm1						00h	
LED_C1_AEU1_PW M_2	1A1h	R/W	led_c1_ae	u1_pwm2						00h	
LED_C1_AEU1_PW M_3	1A2h	R/W	led_c1_ae	:1_aeu1_pwm3							
LED_C1_AEU1_PW M_4	1A3h	R/W	led_c1_ae	1_aeu1_pwm4							
LED_C1_AEU1_PW M_5	1A4h	R/W	led_c1_ae	u1_pwm5						00h	
LED_C1_AEU1_T12	1A5h	R/W	led_c1_ae	u1_t2			led_c1_a	eu1_t1		00h	
LED_C1_AEU1_T34	1A6h	R/W	led_c1_ae	u1_t4			led_c1_a	eu1_t3		00h	
LED_C1_AEU1_Pla yback	1A7h	R/W	Reserved						led_c1_aeu1_pt	00h	
LED_C1_AEU2_PW M_1	1A8h	R/W	led_c1_ae	u2_pwm1						00h	
LED_C1_AEU2_PW M_2	1A9h	R/W	led_c1_ae	u2_pwm2						00h	
LED_C1_AEU2_PW M_3	1AAh	R/W	led_c1_ae	u2_pwm3						00h	
LED_C1_AEU2_PW M_4	1ABh	R/W	led_c1_ae	u2_pwm4						00h	
LED_C1_AEU2_PW M_5	1ACh	R/W	led_c1_ae	u2_pwm5						00h	
LED_C1_AEU2_T12	1ADh	R/W	led_c1_ae	u2_t2			led_c1_a	eu2_t1		00h	
LED_C1_AEU2_T34	1AEh	R/W	led_c1_ae	u2_t4			led_c1_a	eu2_t3		00h	
LED_C1_AEU2_Pla yback	1AFh	R/W	Reserved						led_c1_aeu2_pt	00h	
LED_C1_AEU3_PW M_1	1B0h	R/W	led_c1_ae	u3_pwm1						00h	
LED_C1_AEU3_PW M_2	1B1h	R/W	led_c1_ae	u3_pwm2						00h	
LED_C1_AEU3_PW M_3	1B2h	R/W	led_c1_ae	u3_pwm3						00h	
LED_C1_AEU3_PW M_4	1B3h	R/W	led_c1_ae	u3_pwm4						00h	
LED_C1_AEU3_PW M_5	1B4h	R/W	led_c1_ae	u3_pwm5						00h	
LED_C1_AEU3_T12	1B5h	R/W	led_c1_ae	u3_t2			led_c1_a	eu3_t1		00h	
LED_C1_AEU3_T34	1B6h	R/W	led_c1_ae	u3_t4			led_c1_a	eu3_t3		00h	
LED_C1_AEU3_Pla yback	1B7h	R/W	Reserved						led_c1_aeu3_pt	00h	
LED_C2 Autonomou	ıs Animatio	on Reg	isters								
LED_C2_Auto_Pau se	1B8h	R/W	led_c2_pa	use_start			led_c2_p	ause_stop		00h	

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_C2_Auto_Play	1B9h	R/W	Reserved		led_c2_aeu	_num	led_c2_pt				00h
back LED_C2_AEU1_PW	1BAh	R/W	led c2 ae	u1 pwm1							00h
M_1	IDAII	17,44	led_cz_ae	u i_pwiii i							0011
LED_C2_AEU1_PW M_2	1BBh	R/W	led_c2_ae	u1_pwm2							00h
LED_C2_AEU1_PW M_3	1BCh	R/W	led_c2_ae	u1_pwm3							00h
LED_C2_AEU1_PW M_4	1BDh	R/W	led_c2_ae	u1_pwm4							00h
LED_C2_AEU1_PW M_5	1BEh	R/W	led_c2_ae	u1_pwm5							00h
LED_C2_AEU1_T12	1BFh	R/W	led_c2_ae	u1_t2			led_c2_ae	u1_t1			00h
LED_C2_AEU1_T34	1C0h	R/W	led_c2_ae	u1_t4			led_c2_ae	u1_t3			00h
LED_C2_AEU1_Pla yback	1C1h	R/W	Reserved						led_c2_ae	eu1_pt	00h
LED_C2_AEU2_PW M_1	1C2h	R/W	led_c2_ae	u2_pwm1							00h
LED_C2_AEU2_PW M_2	1C3h	R/W	led_c2_ae	u2_pwm2							00h
LED_C2_AEU2_PW M_3	1C4h	R/W	led_c2_ae	u2_pwm3							00h
LED_C2_AEU2_PW M_4	1C5h	R/W	led_c2_ae	u2_pwm4							00h
LED_C2_AEU2_PW M_5	1C6h	R/W	led_c2_ae	u2_pwm5							00h
LED_C2_AEU2_T12	1C7h	R/W	led_c2_ae	u2_t2			led_c2_ae	u2_t1			00h
LED_C2_AEU2_T34	1C8h	R/W	led_c2_ae	u2_t4			led_c2_ae	u2_t3			00h
LED_C2_AEU2_Pla yback	1C9h	R/W	Reserved						led_c2_a	eu2_pt	00h
LED_C2_AEU3_PW M_1	1CAh	R/W	led_c2_ae	u3_pwm1							00h
LED_C2_AEU3_PW M_2	1CBh	R/W	led_c2_ae	u3_pwm2							00h
LED_C2_AEU3_PW M_3	1CCh	R/W	led_c2_ae	u3_pwm3							00h
LED_C2_AEU3_PW M_4	1CDh	R/W	led_c2_ae	u3_pwm4							00h
LED_C2_AEU3_PW M_5	1CEh	R/W	led_c2_ae	u3_pwm5							00h
LED_C2_AEU3_T12	1CFh	R/W	led_c2_ae	u3_t2			led_c2_ae	u3_t1			00h
LED_C2_AEU3_T34	1D0h	R/W	led_c2_ae	u3_t4			led_c2_ae	u3_t3			00h
LED_C2_AEU3_Pla yback	1D1h	R/W	Reserved						led_c2_a	eu3_pt	00h
LED_D0 Autonomou	is Animatio	on Regi	sters								
LED_D0_Auto_Pau se	1D2h	R/W	led_d0_pa	use_start			led_d0_pa	use_stop			00h
LED_D0_Auto_Play back	1D3h	R/W	Reserved		led_d0_aeu	_num	led_d0_pt				00h
LED_D0_AEU1_PW M_1	1D4h	R/W	led_d0_ae	u1_pwm1	•		•				00h
LED_D0_AEU1_PW M_2	1D5h	R/W	led_d0_ae	u1_pwm2							00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_D0_AEU1_PW M_3	1D6h	R/W	led_d0_ae	eu1_pwm3							00h
LED_D0_AEU1_PW M_4	1D7h	R/W	led_d0_ae	eu1_pwm4							00h
LED_D0_AEU1_PW M_5	1D8h	R/W	led_d0_ae	eu1_pwm5							00h
LED_D0_AEU1_T12	1D9h	R/W	led_d0_ae	eu1_t2			led_d0_a	neu1_t1			00h
LED_D0_AEU1_T34	1DAh	R/W	led_d0_a	eu1_t4			led_d0_a	neu1_t3			00h
LED_D0_AEU1_Pla yback	1DBh	R/W	Reserved						led_d0_a	aeu1_pt	00h
LED_D0_AEU2_PW M_1	1DCh	R/W	led_d0_ae	eu2_pwm1							00h
LED_D0_AEU2_PW M_2	1DDh	R/W	led_d0_ae	eu2_pwm2							00h
LED_D0_AEU2_PW M_3	1DEh	R/W	led_d0_ae	eu2_pwm3							00h
LED_D0_AEU2_PW M_4	1DFh	R/W	led_d0_a	eu2_pwm4							00h
LED_D0_AEU2_PW M_5	1E0h	R/W	led_d0_ae	eu2_pwm5							00h
		R/W	led_d0_a				led_d0_a	eu2_t1			00h
LED_D0_AEU2_T34	1E2h	R/W	led_d0_ae	eu2_t4			led_d0_a	eu2_t3			00h
LED_D0_AEU2_Pla yback	1E3h	R/W	Reserved						led_d0_a	aeu2_pt	00h
LED_D0_AEU3_PW M_1	1E4h	R/W	led_d0_ae	eu3_pwm1							00h
LED_D0_AEU3_PW M_2	1E5h	R/W	led_d0_ae	eu3_pwm2							00h
LED_D0_AEU3_PW M_3	1E6h	R/W	led_d0_ae	eu3_pwm3							00h
LED_D0_AEU3_PW M_4	1E7h	R/W	led_d0_ae	eu3_pwm4							00h
LED_D0_AEU3_PW M_5	1E8h	R/W	led_d0_ae	eu3_pwm5							00h
LED_D0_AEU3_T12	1E9h	R/W	led_d0_a	eu3_t2			led_d0_a	eu3_t1			00h
LED_D0_AEU3_T34		R/W	led_d0_ae				led_d0_a	eu3_t3			00h
LED_D0_AEU3_Pla yback	1EBh	R/W	Reserved						led_d0_a	aeu3_pt	00h
LED_D1 Autonomou			1								
LED_D1_Auto_Pau se	1ECh	R/W	led_d1_pa	ause_start				pause_stop			00h
LED_D1_Auto_Play back	1EDh	R/W	Reserved		led_d1_a	eu_num	led_d1_p	ot			00h
LED_D1_AEU1_PW M_1	1EEh	R/W	led_d1_ae	eu1_pwm1							00h
LED_D1_AEU1_PW M_2	1EFh	R/W	led_d1_ae	eu1_pwm2							00h
LED_D1_AEU1_PW M_3	1F0h	R/W	led_d1_ae	eu1_pwm3							00h
LED_D1_AEU1_PW M_4	1F1h	R/W	led_d1_a	eu1_pwm4							00h
LED_D1_AEU1_PW M_5	1F2h	R/W	led_d1_ae	eu1_pwm5							00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_D1_AEU1_T12	1F3h	R/W	led_d1_ae	eu1_t2			led_d1_a	eu1_t1			00h
LED_D1_AEU1_T34	1F4h	R/W	led_d1_ae	eu1_t4			led_d1_a	eu1_t3			00h
LED_D1_AEU1_Pla yback	1F5h	R/W	Reserved						led_d1_aeu	u1_pt	00h
LED_D1_AEU2_PW M_1	1F6h	R/W	led_d1_ae	eu2_pwm1							00h
LED_D1_AEU2_PW M_2	1F7h	R/W	led_d1_ae	eu2_pwm2							00h
LED_D1_AEU2_PW M_3	1F8h	R/W	led_d1_ae	eu2_pwm3							00h
LED_D1_AEU2_PW M_4	1F9h	R/W	led_d1_ae	eu2_pwm4							00h
LED_D1_AEU2_PW M_5	1FAh	R/W	led_d1_ae	eu2_pwm5							00h
LED_D1_AEU2_T12	1FBh	R/W	led_d1_ae	eu2_t2			led_d1_a	eu2_t1			00h
LED_D1_AEU2_T34	1FCh	R/W	led_d1_ae	eu2_t4			led_d1_a	eu2_t3			00h
LED_D1_AEU2_Pla yback	1FDh	R/W	Reserved						led_d1_aeu	u2_pt	00h
LED_D1_AEU3_PW M_1	1FEh	R/W	led_d1_ae	eu3_pwm1							00h
LED_D1_AEU3_PW M_2	1FFh	R/W	led_d1_ae	eu3_pwm2							00h
LED_D1_AEU3_PW M_3	200h	R/W	led_d1_ae	eu3_pwm3							00h
LED_D1_AEU3_PW M_4	201h	R/W	led_d1_ae	eu3_pwm4							00h
LED_D1_AEU3_PW M_5	202h	R/W	led_d1_ae	eu3_pwm5							00h
LED_D1_AEU3_T12	203h	R/W	led_d1_ae	eu3_t2			led_d1_a	eu3_t1			00h
LED_D1_AEU3_T34	204h	R/W	led_d1_ae	eu3_t4			led_d1_a	eu3_t3			00h
LED_D1_AEU3_Pla yback	205h	R/W	Reserved						led_d1_aeu	u3_pt	00h
LED_D2 Autonomou	ıs Animatio	on Regi	sters								
LED_D2_Auto_Pau se	206h	R/W	led_d2_pa	ause_start			led_d2_pa	ause_stop			00h
LED_D2_Auto_Play back	207h	R/W	Reserved		led_d2_ae	eu_num	led_d2_pt				00h
LED_D2_AEU1_PW M_1	208h	R/W	led_d2_ae	eu1_pwm1							00h
LED_D2_AEU1_PW M_2	209h	R/W	led_d2_ae	eu1_pwm2							00h
LED_D2_AEU1_PW M_3	20Ah	R/W	led_d2_ae	eu1_pwm3							00h
LED_D2_AEU1_PW M_4	20Bh	R/W	led_d2_ae	eu1_pwm4							00h
LED_D2_AEU1_PW M_5	20Ch	R/W	led_d2_ae	eu1_pwm5							00h
LED_D2_AEU1_T12	20Dh	R/W	led_d2_ae	eu1_t2			led_d2_a	eu1_t1			00h
LED_D2_AEU1_T34	20Eh	R/W	led_d2_ae	eu1_t4			led_d2_a	eu1_t3			00h
LED_D2_AEU1_Pla yback	20Fh	R/W	Reserved						led_d2_aeu	u1_pt	00h
LED_D2_AEU2_PW M_1	210h	R/W	led_d2_ae	eu2_pwm1							00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
LED_D2_AEU2_PW M_2	211h	R/W	led_d2_ae	u2_pwm2							00h
LED_D2_AEU2_PW M_3	212h	R/W	led_d2_ae	u2_pwm3							00h
LED_D2_AEU2_PW M_4	213h	R/W	led_d2_ae	u2_pwm4							00h
LED_D2_AEU2_PW M_5	214h	R/W	led_d2_ae	u2_pwm5							00h
LED_D2_AEU2_T12	215h	R/W	led_d2_ae	u2_t2			led_d2_a	eu2_t1			00h
LED_D2_AEU2_T34	216h	R/W	led_d2_ae	u2_t4			led_d2_a	eu2_t3			00h
LED_D2_AEU2_Pla yback	217h	R/W	Reserved						led_d2_ae	eu2_pt	00h
LED_D2_AEU3_PW M_1	218h	R/W	led_d2_ae	u3_pwm1							00h
LED_D2_AEU3_PW M_2	219h	R/W	led_d2_ae	u3_pwm2							00h
LED_D2_AEU3_PW M_3	21Ah	R/W	led_d2_ae	u3_pwm3							00h
LED_D2_AEU3_PW M_4	21Bh	R/W	led_d2_ae	eu3_pwm4							00h
LED_D2_AEU3_PW M_5	21Ch	R/W	led_d2_ae	u3_pwm5							00h
LED_D2_AEU3_T12	21Dh	R/W	led_d2_ae	u3_t2			led_d2_a	eu3_t1			00h
LED_D2_AEU3_T34	21Eh	R/W	led_d2_ae	u3_t4			led_d2_a	eu3_t3			00h
LED_D2_AEU3_Pla yback	21Fh	R/W	Reserved						led_d2_ae	eu3_pt	00h
Flag Registers											
TSD_Config_Status	300h	R	Reserved						tsd_Statu s	config_er r_status	00h
LOD_Status_0	301h	R	lod_statu s_b0	lod_statu s_a2	lod_statu s_a1	lod_statu s_a0	lod_statu s_3	lod_statu s_2	lod_statu s_1	lod_statu s_0	00h
LOD_Status_1	302h	R	lod_statu s_d0	lod_statu s_d1	lod_statu s_d0	lod_statu s_c2	lod_statu s_c1	lod_statu s_c0	lod_statu s_b2	lod_statu s_b1	00h
LSD_Status_0	303h	R	lsd_statu s_b0	lsd_statu s_a2	lsd_statu s_a1	lsd_statu s_a0	Isd_statu s_3	lsd_statu s_2	lsd_statu s_1	lsd_statu s_0	00h
LSD_Status_1	304h	R	lsd_statu s_d0	lsd_statu s_d1	lsd_statu s_d0	lsd_statu s_c2	lsd_statu s_c1	lsd_statu s_c0	lsd_statu s_b2	lsd_statu s_b1	00h
Auto_PWM_0	305h	R	pwm_auto	_0							00h
Auto_PWM_1	306h	R	pwm_auto	_1							00h
Auto_PWM_2	307h	R	pwm_auto	_2							00h
Auto_PWM_3	308h	R	pwm_auto	_3							00h
Auto_PWM_4	309h	R	pwm_auto	_a0							00h
Auto_PWM_5	30Ah	R	pwm_auto	_a1							00h
Auto_PWM_6	30Bh	R	pwm_auto	_a2							00h
Auto_PWM_7	30Ch	R	pwm_auto	_b0							00h
Auto_PWM_8	30Dh	R	pwm_auto	_b1							00h
Auto_PWM_9	30Eh	R	pwm_auto	_b2							00h
Auto_PWM_10	30Fh	R	pwm_auto	_c0							00h
Auto_PWM_11	310h	R	pwm_auto	_c1							00h
Auto_PWM_12	311h	R	pwm_auto	_c2							00h
Auto_PWM_13	312h	R	pwm_auto	40							00h

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
Auto_PWM_14	313h	R	pwm_auto	vm_auto_d1							00h
Auto_PWM_15	314h	R	pwm_auto	_auto_d2							
AEP_Status_0	315h	R	Reserved	served aep_status_1 aep_status_0						3Fh	
AEP_Status_1	316h	R	Reserved		aep_statu	s_3		aep_statu	s_2		3Fh
AEP_Status_2	317h	R	Reserved	Reserved aep_status_a1 aep_status_a0							3Fh
AEP_Status_3	318h	R	Reserved		aep_status	s_b0		aep_statu	s_a2		3Fh
AEP_Status_4	319h	R	Reserved		aep_status	s_b2		aep_statu	s_b1		3Fh
AEP_Status_5	31Ah	R	Reserved		aep_statu	s_c1		aep_statu	s_c0		3Fh
AEP_Status_6	31Bh	R	Reserved aep_status_d0 aep_status_c2						3Fh		
AEP_Status_7	31Ch	R	Reserved aep_status_d2 aep_status_d1					3Fh			

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The LP5813 is a 12 LEDs synchronous boost RGB LED driver with autonomous animation engine control. The device is ideal to support battery-powered applications with 0.5V to 5.5V input voltage range. The LP5813 has ultra-low operation current at active mode, and it only consumes 0.4mA when LED current is set at 25mA. In battery powered applications like e-tag, earbud, e-cigarettes, VR headset, RGB mouse, smart speaker, and other handheld devices, LP5813 is ideal to provide premimum LED lighting effects with low power consumption and small package.

9.2 Typical Application

9.2.1 Application

Figure 9-1 shows an example of typical application, which uses one LP5813 to drive RGB LEDs through I²C communication.

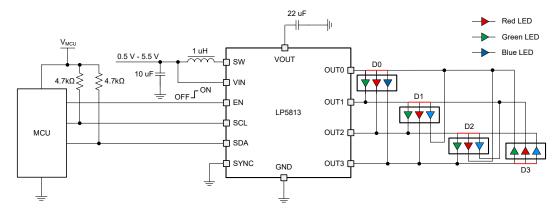


Figure 9-1. Typical Application - LP5813 Driving RGB LEDs

Figure 9-2 shows an example when the boost converter is not need to be used. Directly supply the power the VOUT and pull EN to low can bypass the integrated boost converter and operate the LED driver blocks.

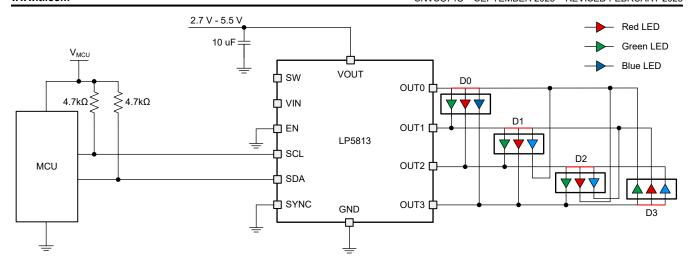


Figure 9-2. Typical Application - LP5813 Bypassing the Boost Converter

Figure 9-3 shows the connection for 2 pcs LP5813 to drive 8 RGB LEDs (24 LEDs). One LP5813 (Device 0) can work as main part to provide boost voltage for all 8 RGB LEDs, while another LP5813 (Device 1) can work as bypassing boost converter application to save one inductor. If autonomous animation need to be performed, to avoid animation mismatch between two devices in long-time operation, 'vsync_out_en' bit in Dev_Config_11 register of one device need to be set as 1h to provide the same clock to another device.

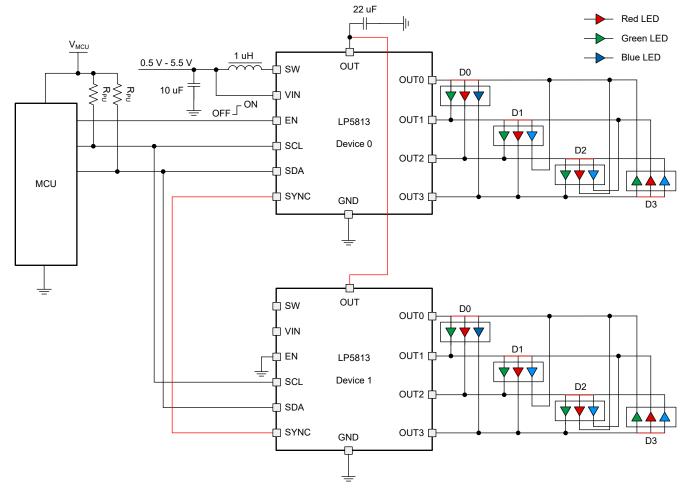


Figure 9-3. Typical Application - Dual LP5813 Application Example

9.2.2 Design Parameters

Design Parameters shows the typical design parameters of Figure 9-1.

Table 9-1. Design Parameters

PARAMETER	VALUE
Input voltage	3.6V to 4.2V by one Li-on battery cell
Output voltage	4.5V
Inductor	1μH
Output capacitor	22µF
RGB LED count	4
LED maximum average current (red, green, blue)	12.75mA, 10.2mA, 10.2mA
LED peak current (red, green, blue)	51mA, 40.8mA, 40.8mA
LED PWM frequency	6kHz

The different color of LEDs are put as below configuration.

Red LEDs: LED A1, LED B1, LED C1, LED D1

Green LEDs: LED_A0, LED_B0, LED_C0, LED_D0
Blue LEDs: LED_A2, LED_B2, LED_C2, LED_D2

9.2.3 Detailed Design Procedure

This section will showcase the detailed design procedures for LP5813 including boost components selection, LED driver manual and autonomous modes application examples.

9.2.3.1 Inductor Selection

The inductor is the most important component in power regulator design, which affects steady-state operation, transient behavior, and loop stability. There are three important inductor specifications, inductor value, saturation current, and dc resistance (DCR).

The integrated boost converter in LP5813 is designed to work with inductor values between $0.37\mu H$ and $2.9\mu H$. $1\mu H$ is recommended in typical application. The inductor peak current can be calculated by Equation 10. Using the minimum input voltage, maximum output voltage, and maximum load current of the application can calculate the worst case.

In a boost regulator, the inductor dc current can be calculated by Equation 8.

$$\Delta I_{L(DC)} = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times \eta}$$
 (8)

where

- V_{OUT} is the output voltage of the boost converter
- I_{OUT} is the output current of the boost converter
- V_{IN} is the input voltage of the boost converter
- η is the power-conversion efficiency, use 90% for most cases

The inductor ripple current is calculated by Equation 9.

$$\Delta I_{L(P-P)} = \frac{V_{IN} \times D}{L \times f_{SW}} \tag{9}$$

where

- · D is the duty cycle, which can be calculated by
- · L is the inductance value of the inductor
- f_{SW} is the switching frequency

• V_{IN} is the input voltage of the boost converter

Therefore, the inductor peak current is calculated by Equation 10.

$$\Delta I_{L(P)} = \Delta I_{L(DC)} + \frac{\Delta I_{L(P-P)}}{2} \tag{10}$$

Inductor peak-to-peak current is recommended to be designed less than 40% of the average inductor current, with maximum output current setting. Large inductor value reduces the magnetic hysteresis losses in the inductor and improves EMI performance with small inductor ripple, but the load transient response time increases. The saturation current of the inductor must be higher than the calculated peak inductor current.

9.2.3.2 Output Capacitor Selection

The output capacitor is selected to meet the requirements of output ripple and loop stability. The ripple voltage is related to capacitor capacitance and equivalent series resistance (ESR). Assuming a ceramic capacitor with zero ESR, the minimum capacitance for a given ripple voltage can be calculated by Equation 11.

$$C_{OUT} = \frac{I_{OUT} \times D_{MAX}}{f_{SW} \times V_{RIPPLE}} \tag{11}$$

where

- D_{MAX} is the maximum switching duty cycle
- V_{RIPPI F} is the peak-to-peak output ripple voltage
- I_{OUT} is the maximum output current
- f_{SW} is the switching frequency

The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are used. The output peak-to-peak ripple voltage caused by the ESR of the output capacitors can be calculated by Equation 12.

$$V_{RIPPLE(ESR)} = I_{L(P)} \times R_{ESR} \tag{12}$$

The derating of a ceramic capacitor under dc bias voltage, aging, and ac signal need to be considered during design. For example, the dc bias voltage can significantly reduce capacitance. A ceramic capacitor can lose more than 50% of capacitance at the rated voltage. Therefore, enough the voltage rating margin must be left to get adequate capacitance at the required output voltage. Increasing the output capacitor can make the output ripple voltage smaller in PWM mode.

TI recommends using the X5R or X7R ceramic output capacitor in the range of $4\mu F$ to $1000\mu F$ effective capacitance. $10\mu F$ effective capacitance is recommended in typical application, which means around $22\mu F$ rated capacitance. If the output capacitor is below the range, the boost regulator can potentially become unstable.

9.2.3.3 Input Capacitor Selection

Multilayer X5R or X7R ceramic capacitors are excellent choices for the input decoupling of the integrated boost converter, because of the extremely low ESR and small footprint. Input capacitors must be located as close as possible to the device. While a 10µF input capacitor is sufficient for most applications, large capacitance is used to reduce input current ripple. When the input power is supplied through long wire and only ceramic capacitor is put, the load step at the output induces ringing at the VIN pin. This ringing couples back to the output and influence loop stability or even damage the device. In this circumstance, placing additional bulk capacitance (tantalum or aluminum electrolytic capacitor) between ceramic input capacitor and the power supply can reduce the ringing

9.2.3.4 Program Procedure

After VIN powering up, the boost converter can be enabled by pulling EN to High. After around 1ms for boost output and internal oscillator stable, the device can be initialized by configuring chip_en = 1 after executing I²C slave addressing. Then the CONFIG registers can be set to the excepted configuration. After updating the CONFIG registers, one update command must to be sent to make the configuration effective. Either manual mode or autonomous mode can be seleted for each LED. A new configuration is only effective once update command is received.

The detailed program procedure is illustrated as:

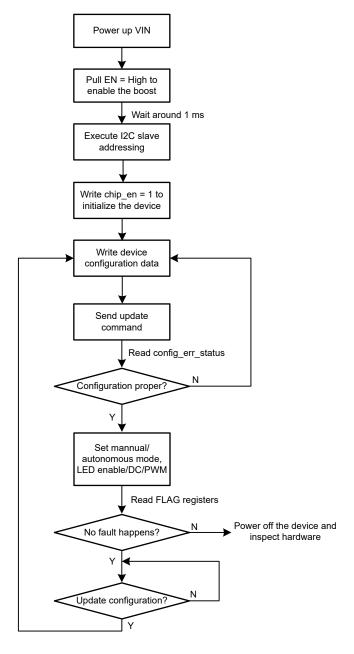
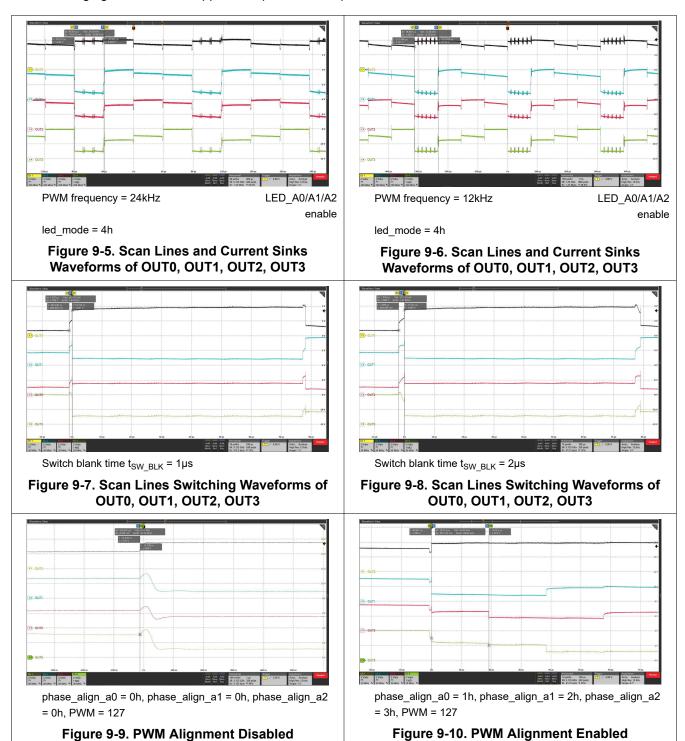
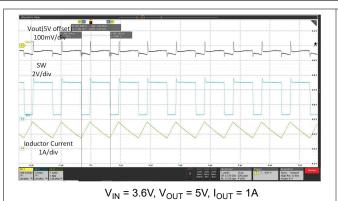


Figure 9-4. Program Procedure

9.2.3.5 Programming Example

To get the design parameters in Section 9.2.2, the following program steps can be referred.


After VIN powering up, the boost converter being enabled by pulling EN to High and waiting around 1 ms,


- 1. Execute I²C slave addressing, for details refer to the sample code
- 2. Set chip_en = 1 to enable the device (Write 01h to register 000h)
- Set boost_vout = Fh to set 4.5V boost output voltage, and max_current = 1h to set 51mA maximum output LED current (Write 1Fh to register 001h)
- 4. Set led_mode = 4h to configure the LED drive mode as scan drive mode with 4 scans (**Write 40h to register 002h**)
- 5. Set lsd_threshold = 3h is recommended to avoid incorrect LSD detection. (Write 0Bh to register 00Dh)
 - Leave the PWM frequency, scan order, manual or autonomous mode, linear or exponential dimming curve, phase align method, vsync mode, blank time, clamp settings as default (In other application requirements, these functions can be set)
- 6. Send update command to complete configuration settings (Write 55h to register 010h)
- 7. Read back config_err_status to check if the configuration is proper (Read register 300h)
- 8. Enable all 12 LEDs (Write F0h to register 020h and FFh to register 021h)
- 9. Set 51mA peak current for red LEDs (Write FFh to registers 035h, 038h, 03Bh, 03Bh, 03Bh), and 40mA peak current for green and blue LEDs (Write CCh to registers 034h, 036h, 037h, 039h, 03Ah, 03Ch, 03Dh, 03Fh)
- 10. Set 100% duty cycle to illuminate the LEDs (Write FFh to registers 044h 04Fh)

9.2.4 Application Performance Plots

The following figures show the application performance plots.

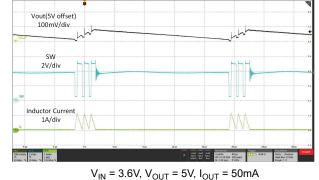
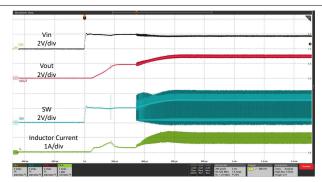
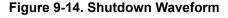
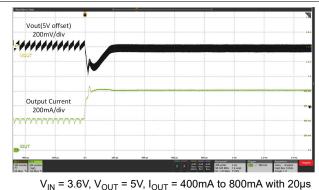
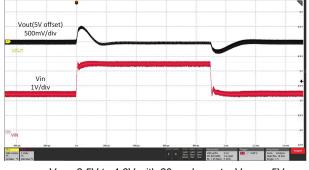



Figure 9-12. Switching Waveform at Light Load

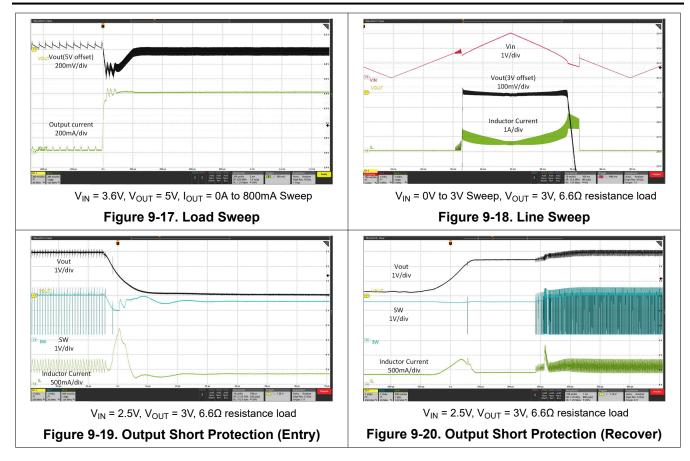



 V_{IN} = 2.0V, V_{OUT} = 3.3V, 6.6 Ω resistance load

Vout SW 2V/div 1A/div


 V_{IN} = 2.0V, V_{OUT} = 3.3V, 6.6 Ω resistance load

slew rate



 V_{IN} = 2.5V to 4.6V with 20 μ s slew rate, V_{OUT} = 5V I_{OUT} = 800mA

Figure 9-16. Line Transient

Figure 9-15. Load Transient

9.3 Power Supply Recommendations

The device is designed to operate from an input voltage supply range from 0.5V to 5.5V, with minimum 1.8V start up input voltage. This input supply must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk capacitance is required near to the ceramic bypass capacitors. A typical choice is a tantalum or aluminum electrolytic capacitor with a value of 100µF.

9.4 Layout

9.4.1 Layout Guidelines

As for all switching power supplies, especially those running at high switching frequency and high currents, layout is an important design step. If the layout is not carefully done, the regulator could suffer from instability and noise problems. To maximize efficiency, switch rise and fall time are very fast. To prevent radiation of high frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under the switching regulator to minimize interplane coupling. The input capacitor needs not only to be close to the VIN pin, but also to the GND pin in order to reduce input supply ripple. The most critical current path for all boost converters is from the switching FET, through the rectifier FET, then the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise and fall time and must be kept as short as possible. Therefore, the output capacitor not only must be close to the VOUT pin, but also to the GND pin to reduce the overshoot at the SW pin and VOUT pin. For OUTx (x = 0, 1, 2, 3), low inductive and resistive path of switch load loop can help to provide a high slew rate. Therefore, path of adjecent outputs must be short and wide and avoid parallel wiring and narrow trace. For better thermal performance, TI suggest to make copper polygon connected with each pin bigger.

9.4.2 Layout Example

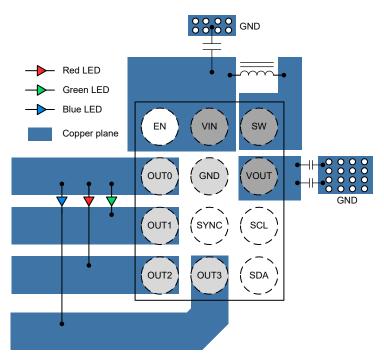


Figure 9-21. LP5813 DSBGA Package Layout Example

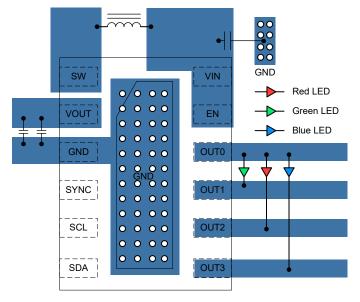


Figure 9-22. LP5813 WSON Package Layout Example

10 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

10.1 Documentation Support

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

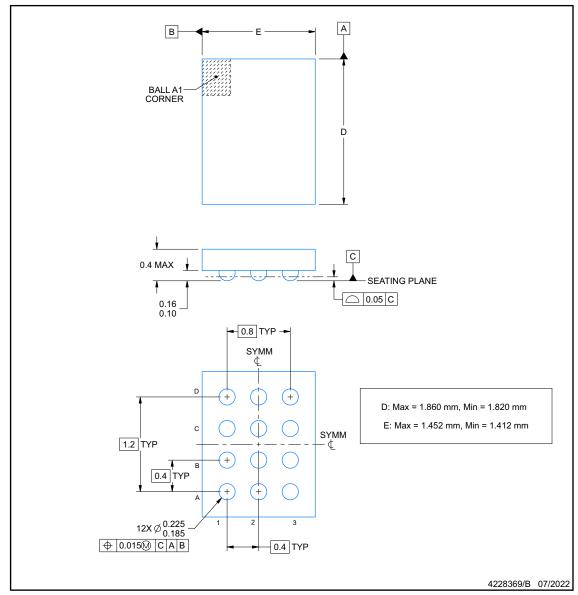
11 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (December 2024) to Revision C (February 2025)	Page						
Added URL to Sample Code							
Changes from Revision A (July 2024) to Revision B (December 2024)	Page						
Added Pin Configuration Section	4						
Removed Recommended Inductors table	50						
Changed Program Procedure	52						
Changed Program Example	52						
Changes from Revision * (September 2023) to Revision A (July 2024)	Page						
Added OUT0, OUT1, OUT2, OUT3, EN, SCL, SDA, SYNC Voltage on parameter to the Rec							
Operating Conditions							
Added LP5810/2 and LP5813 WSON information to the Thermal Information Table							
Updated Standby Current in the Electrical Characteristics Table							

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.


YBH0012-C01

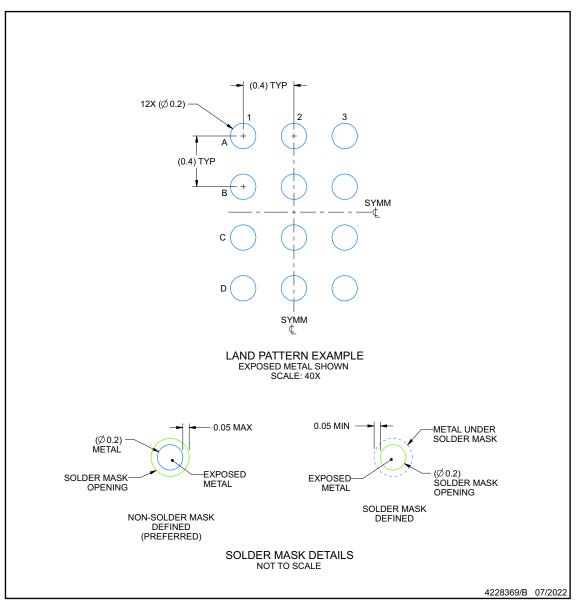
PACKAGE OUTLINE

DSBGA - 0.4 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.



EXAMPLE BOARD LAYOUT

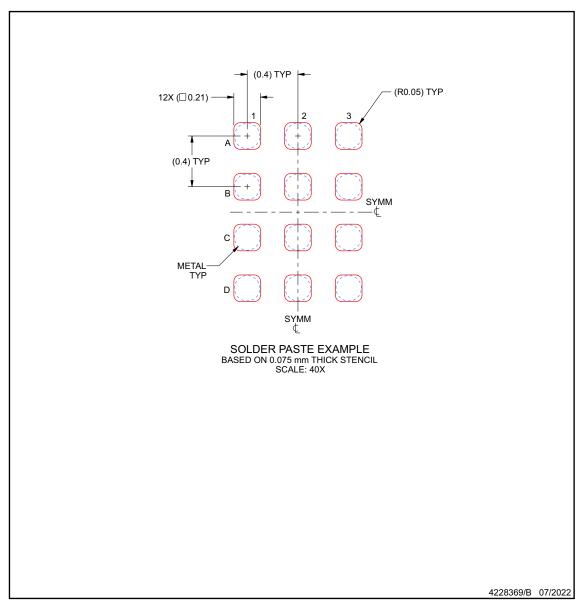
YBH0012-C01

DSBGA - 0.4 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
 See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).



EXAMPLE STENCIL DESIGN

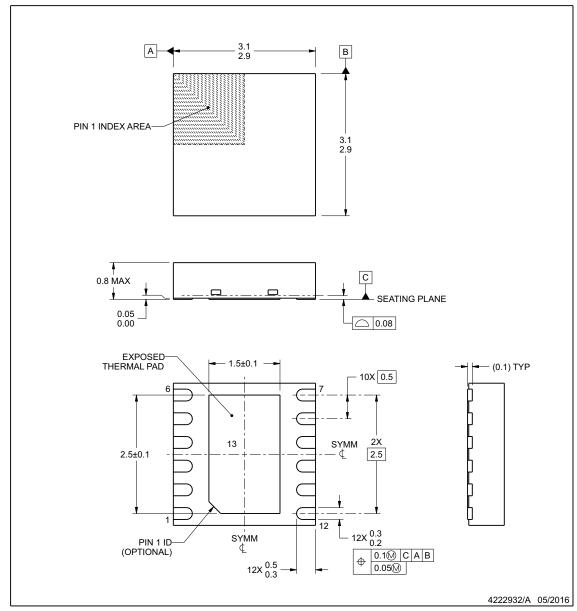
YBH0012-C01

DSBGA - 0.4 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



DRR0012C

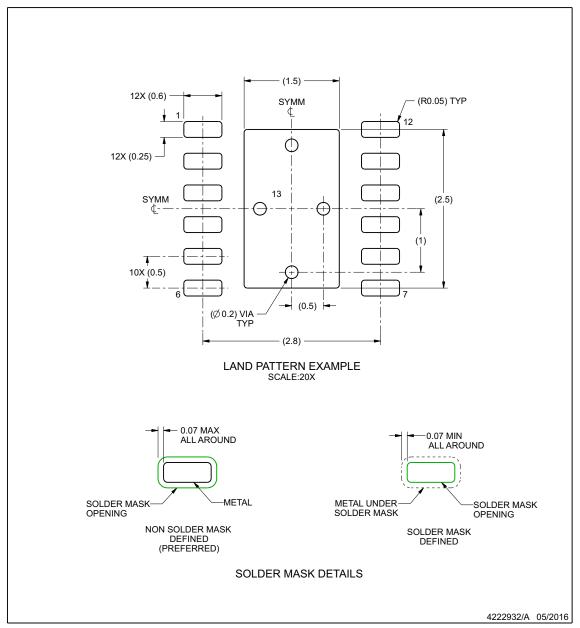
PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

DRR0012C

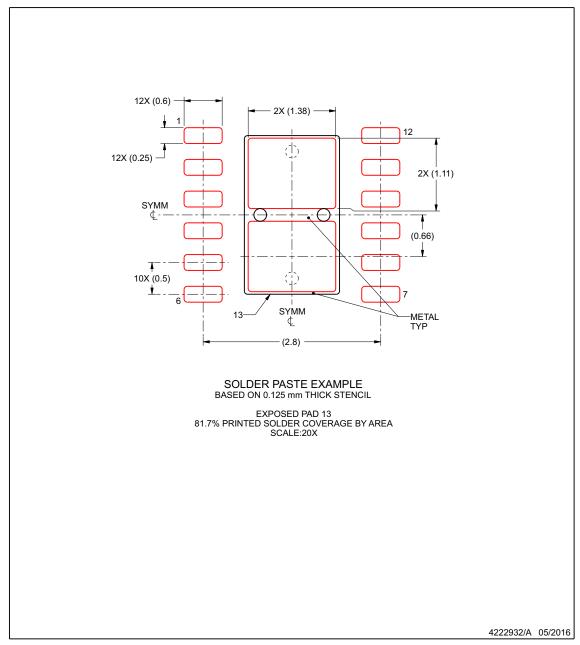
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature
- number SLUA271 (www.ti.com/lit/slua271).

 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

DRR0012C

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(0)
LP5813AYBHR	Active	Production	DSBGA (YBH) 12	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5813A
LP5813AYBHR.A	Active	Production	DSBGA (YBH) 12	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5813A
LP5813BDRRR	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	5813B
LP5813BDRRR.A	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	5813B
LP5813BYBHR	Active	Production	DSBGA (YBH) 12	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5813B
LP5813BYBHR.A	Active	Production	DSBGA (YBH) 12	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5813B
LP5813CDRRR	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	5813C
LP5813CDRRR.A	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	5813C
LP5813CYBHR	Active	Production	DSBGA (YBH) 12	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5813C
LP5813CYBHR.A	Active	Production	DSBGA (YBH) 12	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5813C
LP5813DDRRR	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	5813D
LP5813DDRRR.A	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	5813D
LP5813DYBHR	Active	Production	DSBGA (YBH) 12	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5813D
LP5813DYBHR.A	Active	Production	DSBGA (YBH) 12	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5813D

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

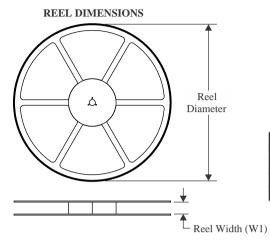
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

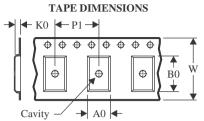
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

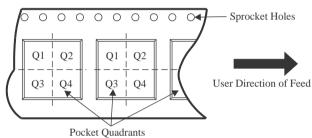
www.ti.com 7-Nov-2025

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

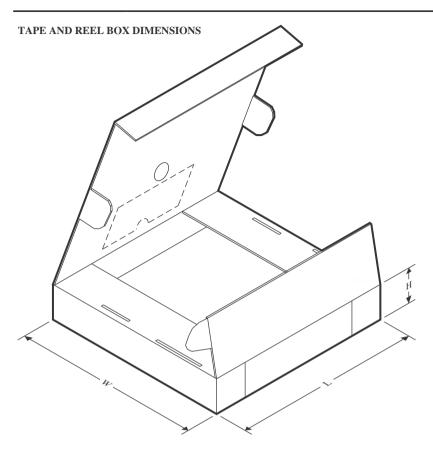

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 14-Feb-2025


TAPE AND REEL INFORMATION

_	Tanana and a same and a same and a same and a same a s
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

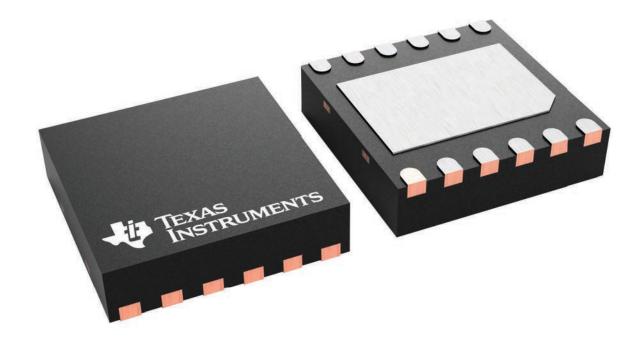
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP5813AYBHR	DSBGA	YBH	12	3000	180.0	8.4	1.54	2.0	0.54	4.0	8.0	Q1
LP5813BDRRR	WSON	DRR	12	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
LP5813BYBHR	DSBGA	YBH	12	3000	180.0	8.4	1.54	2.0	0.54	4.0	8.0	Q1
LP5813CDRRR	WSON	DRR	12	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
LP5813CYBHR	DSBGA	YBH	12	3000	180.0	8.4	1.54	2.0	0.54	4.0	8.0	Q1
LP5813DDRRR	WSON	DRR	12	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
LP5813DYBHR	DSBGA	YBH	12	3000	180.0	8.4	1.54	2.0	0.54	4.0	8.0	Q1

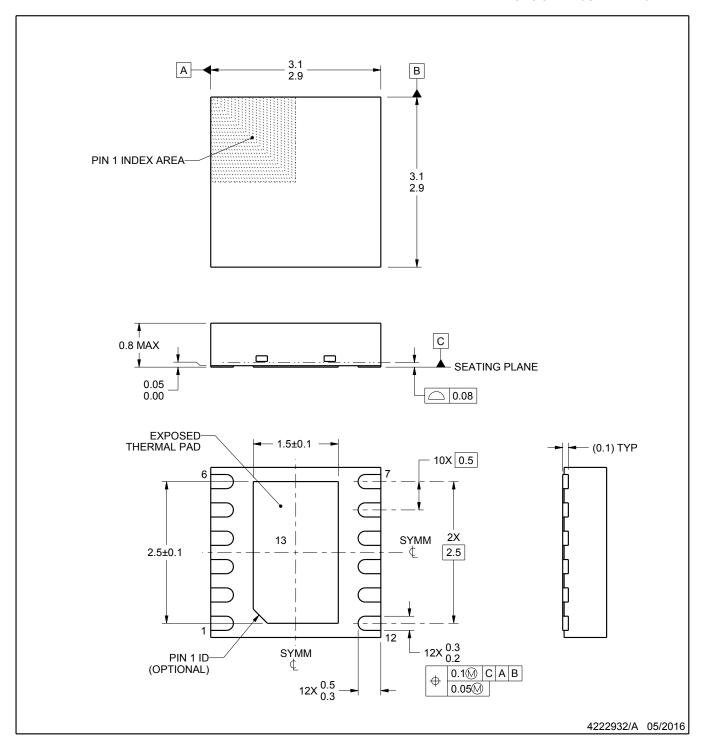
www.ti.com 14-Feb-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP5813AYBHR	DSBGA	YBH	12	3000	182.0	182.0	20.0
LP5813BDRRR	WSON	DRR	12	3000	367.0	367.0	35.0
LP5813BYBHR	DSBGA	YBH	12	3000	182.0	182.0	20.0
LP5813CDRRR	WSON	DRR	12	3000	367.0	367.0	35.0
LP5813CYBHR	DSBGA	YBH	12	3000	182.0	182.0	20.0
LP5813DDRRR	WSON	DRR	12	3000	367.0	367.0	35.0
LP5813DYBHR	DSBGA	YBH	12	3000	182.0	182.0	20.0

3 x 3, 0.5 mm pitch

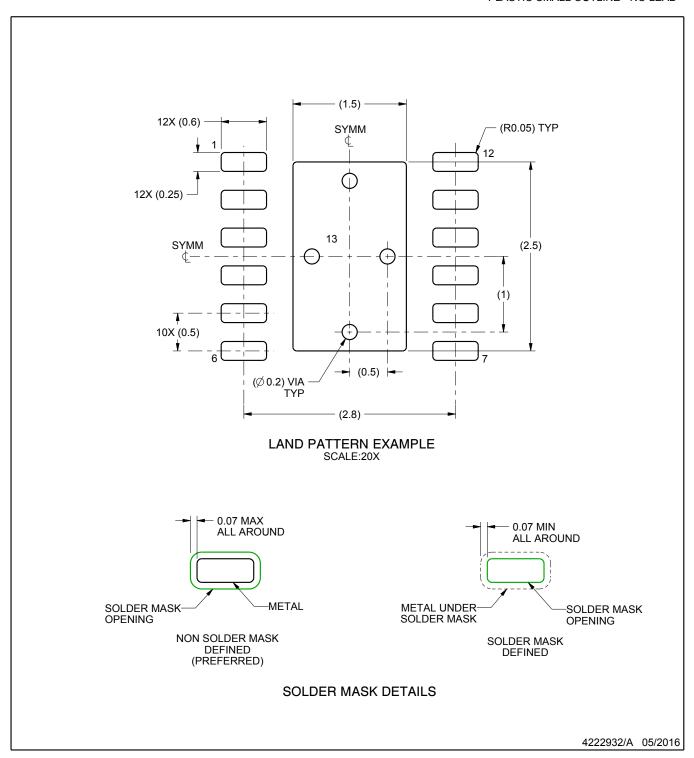
PLASTIC SMALL OUTLINE - NO LEAD


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

PLASTIC SMALL OUTLINE - NO LEAD

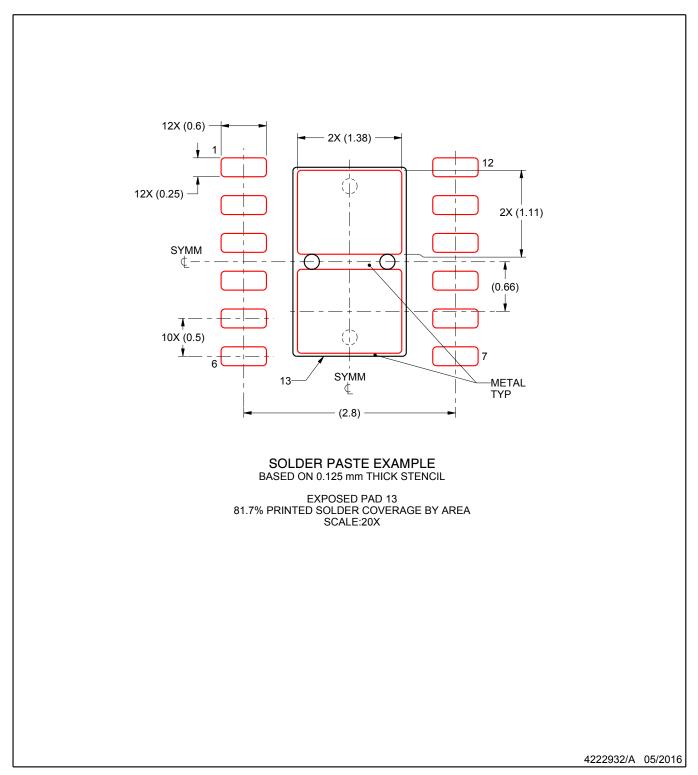
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025