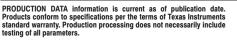
SGLS319 - NOVEMBER 2005

Features

- Single 5-V Supply
- 3-State Driver Output Circuitry
- TTL-Compatible Driver Inputs
- TTL-Compatible Receiver Output
- Differential Line Operation
- Receiver Output Strobe
- Designed for Party-Line (Data-Bus) Applications

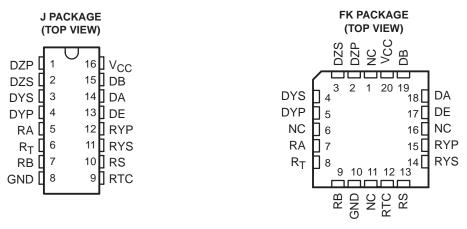
- Independent Driver and Receiver
- Choice of Open-Collector or Totem-Pole Outputs on Both Driver and Receiver
- Dual Data Inputs on Driver
- Optional Line-Termination Resistor in Receiver
- ±15-V Receiver Common-Mode Capability
- Receiver Frequency-Response Control

description


This integrated circuit is designed for use in interfacing between TTL-type digital systems and differential data-transmission lines. It is especially useful for party-line (data-bus) applications. This circuit type combines in one package a 3-state differential line driver and a differential-input line receiver, both of which operate from a single 5-V power supply. The driver inputs and the receiver outputs are TTL compatible. The driver employed is similar to the SN55113 and SN75113 3-state line drivers and the receiver is similar to the SN55115 and SN75115 line receivers.

The SN55116 offers all the features of the SN55113 and SN75113 drivers and the SN55115 and SN75115 receivers combined. The driver performs the dual input AND and NAND functions when enabled or presents a high impedance to the load when in the disabled state. The driver output stages are similar to TTL totem-pole outputs, but have the current-sinking portion separated from the current-sourcing portion and both are brought out to adjacent package terminals. This feature allows the user the option of using the driver in the open-collector output configuration or, by connecting the adjacent source and sink terminals together, using the driver in the normal totem-pole output configuration.

The receiver portion of the SN55116 features a differential-input circuit having a common-mode voltage range of ± 15 V. An internal 130- Ω equivalent resistor also is provided, which optionally can be used to terminate the transmission line. A frequency-response control terminal allows the user to reduce the speed of the receiver or to improve differential noise immunity. The receiver of the SN55116 has an output strobe and a split totem-pole output. The receiver section of the circuit is independent of the driver section, except for the V_{CC} and ground terminals.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description (continued)

The SN55116 is characterized for operation over the full military temperature range of -55°C to 125°C.

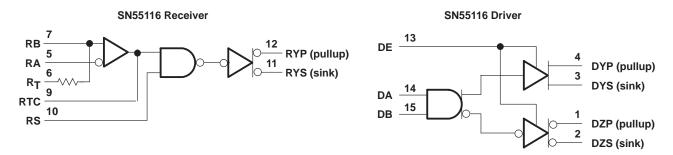
NC - No internal connection

AVAILABLE OPTIONS

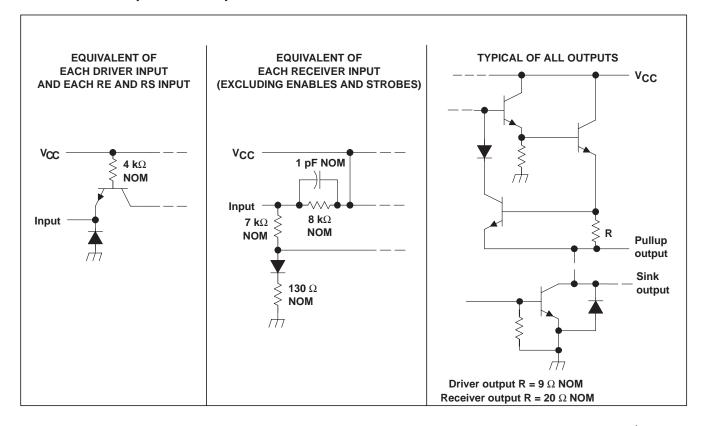
TA	CHIP CARRIER (FK)	CERAMIC DIP (J)
–55°C to 125°C	SN55116FK	SN55116J

Function Tables

SN55116 DRIVER


ll li	NPUTS		OUTPUTS			
DE	DA	DB	DY	DZ		
L	Χ	Х	Z	Z		
Н	L	Χ	L	Н		
Н	X	L	L	Н		
Н	Н	Н	Н	L		

'SN55116 RECEIVER


RS/RE	DIFF INPUT	OUTPUTS RY
L	Χ	Н
Н	L	Н
Н	Н	L

 $H = high level (V_I \ge V_{IL} min or V_{ID} more positive than V_{TH} max), L = low level (V_I \le V_{IL} max or V_{ID} more negative than V_{TL} max), X = irrelevant, Z = high impedance (off)$

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1 and Note 2)	7 V
Input voltage, V _I : DA, DB, DE, DI, RE, and RS	5.5 V
RA, RB, R _T	±25 V
Off-state voltage applied to open-collector outputs:	12 V
Continuous total power dissipation (see Note 2)	See Dissipation Rating Table
Case temperature for 60 seconds, T _C : FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package .	300°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11 mW/°C	880 mW	275 mW
J	1375 mW	11 mW/°C	880 mW	275 mW

NOTES: 1. All voltage values are with respect to the network ground terminal.

^{2.} In the FK and J packages, the SN55116 chip is alloy mounted.

SN55116 DIFFERENTIAL LINE TRANSCEIVERS

SGLS319 - NOVEMBER 2005

recommended operating conditions

	PARAMETER	R	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage					V
VIL	Low-level input voltage	All inputs except differential inputs			8.0	V
	I Park Javed and an extract	Drivers			-40	4
ЮН	High-level output current	Receivers			-5	mA
		Drivers			40	
IOL	Low-level output current	Receivers			15	mA
٧ _I	Receiver input voltage				±15	V
VICR	Common-mode receiver input voltage				±15	V
TA	Operating free-air temperature		-55		125	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

driver section

	PARAMETER		TEST CONDITIONS†				TYP‡	MAX	UNIT
VIK	Input clamp voltage		$V_{CC} = MIN$, $I_I = -12 \text{ mA}$				-0.9	-1.5	V
				T 25°C	$I_{OH} = -10 \text{ mA}$	2.4	3.4		
\/	High-level output voltage	$V_{CC} = MIN,$	T _A = 25°C	$I_{OH} = -40 \text{ mA}$	2	3		V	
VOH	VOH Trigit-level output voltage		$V_{IL} = 0.8 \text{ V},$ $I_{IH} = 2 \text{ V}$	$T_A = -55^{\circ}C$ to	$I_{OH} = -10 \text{ mA}$	2			V
			-111 = 1	$T_A = -55^{\circ}C$ to 125°C	$I_{OH} = -40 \text{ mA}$	1.8			
VOL	Low-level output voltage		$V_{CC} = MIN,$	$V_{IH} = 2 V$, $V_{IL} = 0$.	8 V, I _{OL} = 40 mA			0.4	V
Vok	Output clamp voltage		$V_{CC} = MAX$,	$I_O = -40$ mA, DE a	at 0.8 V			-1.5	V
lo (-m	O(off) Off-state open-collector output current		$V_{CC} = MAX$, $T_A = 25^{\circ}C$			1	10	μА	
iO(off)			$V_0 = 12 \text{ V}$	$T_A = MAX$				200	μΑ
			V _{CC} = MAX,	$V_O = 0$ to V_{CC} , DE at 0.8 V, $T_A = 25$ °C				±10	
loz	Off-state (high-impedance output current	state)		V _O = 0				-300	μΑ
			$T_A = MAX$	DE at 0.8 V, $T_A = MAX$ $V_O = 0.4 \text{ V to V}_{CC}$				±150	
łį	Input current at maximum input voltage	Driver or	V _{CC} = MAX,	ζ, V _I = 5.5 V				1	mA
lн	High-level input current	enable input	$V_{CC} = MAX$,	V _I = 2.4 V				45	μΑ
I _I L	Low-level input current		$V_{CC} = MAX$, $V_I = 0.4 V$				-1.6	mA	
los	Short-circuit output current§		$V_{CC} = MAX$,	MAX, $V_O = 0$, $T_A = 25^{\circ}C$		-40		-120	mA
Icc	Supply current (driver and receiver combined)		$V_{CC} = MAX$,	T _A = 25°C			42	60	mA

[†] All parameters, with the exception of off-state open-collector output current, are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25°C driver section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation-delay time, low-to-high level output	0 5: 40		14	30	
tPHL	Propagation-delay time, high-to-low level output	See Figure 13		12	30	ns
^t PZH	Output-enable time to high level	$R_L = 180 \Omega$, See Figure 14		8	20	ns
tPHZ	Output-disable time from high level	$R_L = 180 \Omega$, See Figure 14		16	30	ns

[‡] All typical values are at V_{CC} = 5 V and T_A = 25°C. § Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

receiver section

	PARAMETER		TEST	CONDITIONS	t	MIN	TYP‡	MAX	UNIT
\/	Desiring against the selection		Va 04V la 45	n Λ	$V_{CC} = MIN, V_I$ $CR = 0,$ See Note 3			0.5	V
VIT+	V _{IT+} Positive-going threshold voltage §		V _O = 0.4 V, I _{OL} = 15 r	ПА	V _{CC} = 5 V, V _I CR = MAX, See Note 4			1	V
V	No gotino going throubold u	oltogo 8	$V_0 = 2.4 \text{ V}, I_{0L} = -5 \text{ r}$	n^	V _{CC} = MIN, V _I CR = 0, See Note 3	-0.5¶			V
V _{IT} _	T_ Negative-going threshold voltage \$		V() = 2.4 V, I() = -5 I	IIIA	V _{CC} = 5 V, V _I CR = MAX, See Note 4	-1¶			V
٧ _I	Input voltage range #		$V_{CC} = 5 \text{ V}, V_{ID} = -1 \text{ V}$	or 1 V		15 to -15			٧
Vон	High-level output voltage		I _{OH} = -5 mA	$V_{CC} = MIN,$ $V_{ICR} = 0,$	V _{ID} = -1 V, See Note 3	2.4			V
VOH	riigii-level output voltage		IOH = -3 IIIV	$V_{CC} = 5 V$, $V_{ICR} = MAX$,	$V_{ID} = -1 V$, See Note 5	2.4			V
Vol	Low-level output voltage	lovel output voltage		$V_{CC} = MIN,$ $V_{ICR} = 0,$	V _{ID} = 1 V, See Note 3			0.4	V
VOL	VOL Low-level output voltage		I _{OL} = 15 mA	$V_{CC} = 5 V$, $V_{ICR} = MAX$,	V _{ID} = 1 V, See Note 5			0.4	V
			V _I = 0, 0		input at 0 V		-0.5	-0.9	
I _{I(rec)}	Receiver input current		V _{CC} = MAX	V _I = 0.4 V,	Other input at 2.4 V		-0.4	-0.7	mA
				$V_{I} = 2.4 \text{ V, Ot}$	her input at 0.4 V		0.1	0.3	
IJ	Input current at maximum input voltage	Strobe	$V_{CC} = MIN, V_{ID} = -0.$	5 V, V _{strobe} = 4	.5 V			5	μΑ
ij	Low-level input current	Strobe	V _{CC} = MAX, V _{strobe} = 0.4 V,	V _{ID} = 1 V, See Note 3				-2.4	mA
I(RTC)	Response-time-control curr (RTC)	rent	VCC = MAX, RC at 0 V,	$V_{CC} = MAX$, $V_{ID} = 1 V$, $T_{AB} = 25^{\circ}$		-1.2			mA
IO(off)	Off-state open-collector output cur-		$V_{CC} = MAX,$ $V_{O} = 12 V,$	T _A = 25°C			1	10	μA
-0(011)	rent		V _{ID} = -1 V	$T_A = MAX$				200	F '
R _T	Line-terminating resistance		V _{CC} = 5 V	T _A = 25°C		77		167	Ω
los	Short-circuit output current§		$V_{CC} = MAX,$ $V_{ID} = -0.5 V,$	$V_O = 0$, See Note 3	T _A = 25°C	-15		-80	mA
Icc	Short current (driver and receiver combined)		$V_{CC} = MAX, V_{ID} = 0.5$	V, See Note 3	T _Á = 25°C		42	60	mA

[†] Unless otherwise noted, V_{Strobe} = 2.4 V. All parameters, with the exception of off-state open-collector output current, are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 3. This applies with the less-positive receiver input grounded.

4. This applies with the more-positive receiver input at 15 V or the more negative receiver input at -15 V.

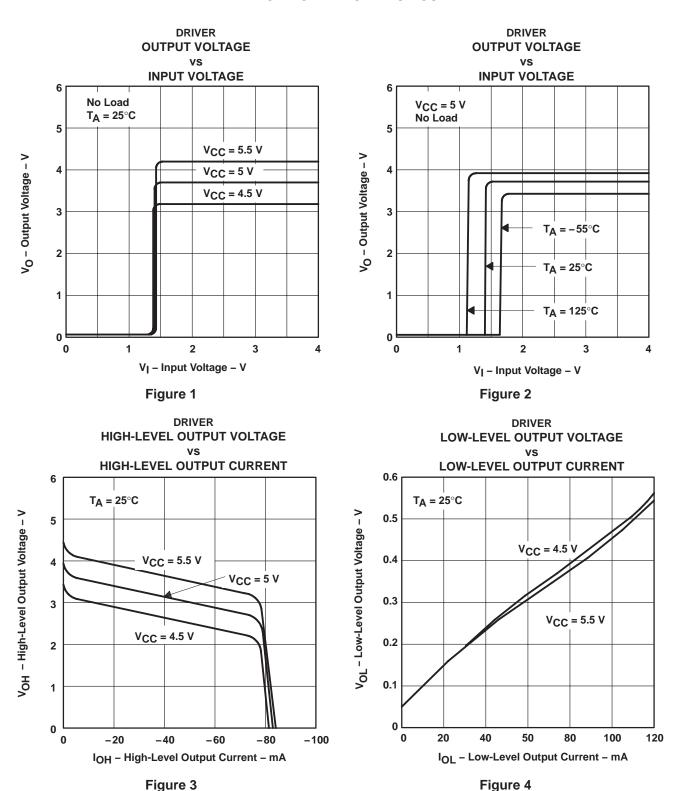
[‡] All typical values are at $V_{CC} = 5$ V, $T_A = 25$ °C, and $V_{IC} = 0$.

[§] Differential voltages are at the B input terminal with respect to the A input terminal.

The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltages only.

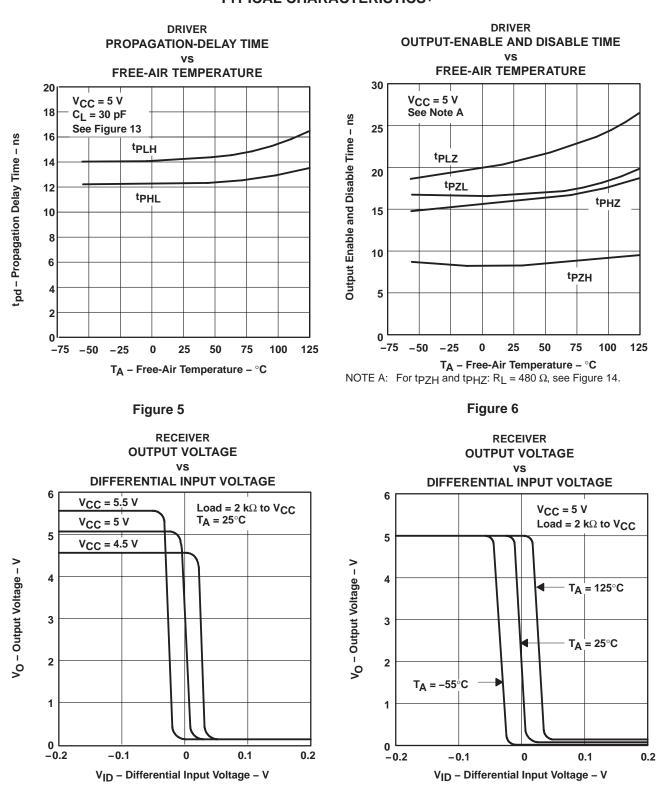
[#] Input voltage range is the voltage range that, if exceeded at either input, will cause the receiver to cease functioning properly.

SN55116 DIFFERENTIAL LINE TRANSCEIVERS


SGLS319 - NOVEMBER 2005

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25°C

receiver section


	PARAMETER	TEST C	CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation-delay time, low to high-level output	D 400.0	Con Figure 45		20	75	ns
t _{PHL}	Propagation-delay time, high to low-level output	$R_L = 400 \Omega$,	See Figure 15		17	75	ns
^t PZH	Output-enable time to high level	$R_L = 480 \Omega$,	See Figure 14		9	20	ns
tPHZ	Output-disable time from high level	$R_L = 480 \Omega$,	See Figure 14		12	30	ns

TYPICAL CHARACTERISTICS[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

TYPICAL CHARACTERISTICS[†]

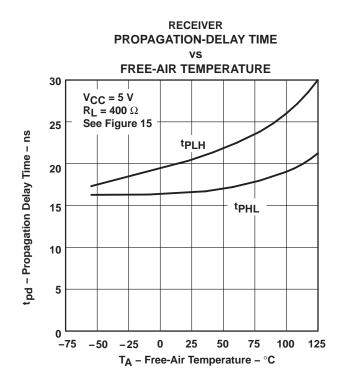

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

Figure 8

Figure 7

TYPICAL CHARACTERISTICS[†]

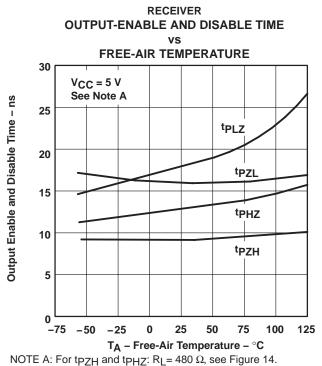
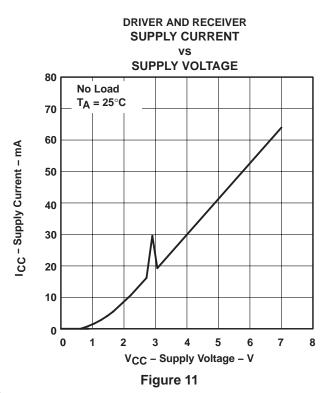
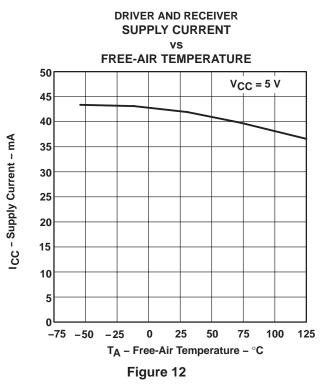
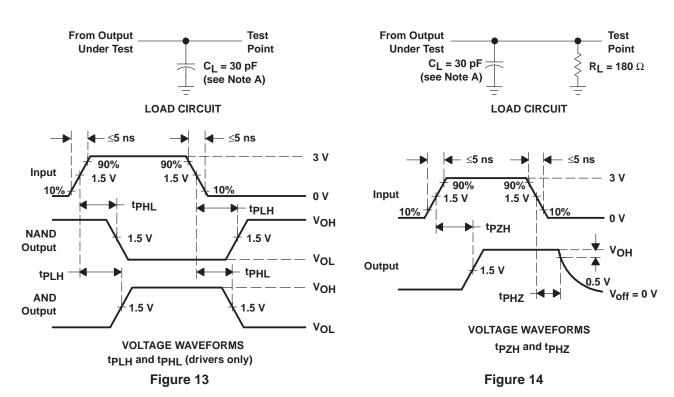
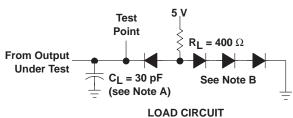
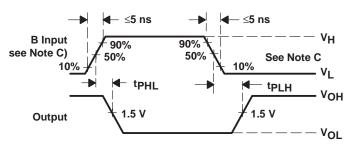


Figure 9


Figure 10



[†]Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

tpLH and tpHL (receivers only)

Figure 15

NOTES: A. C_L includes probe and jig capacitance.

- B. All diodes are 1N3064 or equivalent.
- C. $V_H = 3 \text{ V}$, $V_L = -3 \text{ V}$, the A input is at 0 V.
- D. When testing the receiver sections, the response-time control and the termination-resistor pins are left open.

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-88511012A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 88511012A SNJ55 116FK
5962-8851101EA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8851101EA SNJ55116J
SNJ55116FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 88511012A SNJ55 116FK
SNJ55116FK.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 88511012A SNJ55 116FK
SNJ55116J	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8851101EA SNJ55116J
SNJ55116J.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8851101EA SNJ55116J

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

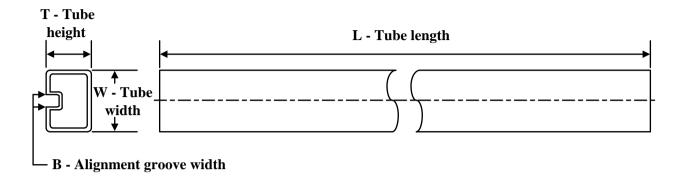
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55116:

Catalog: SN75116

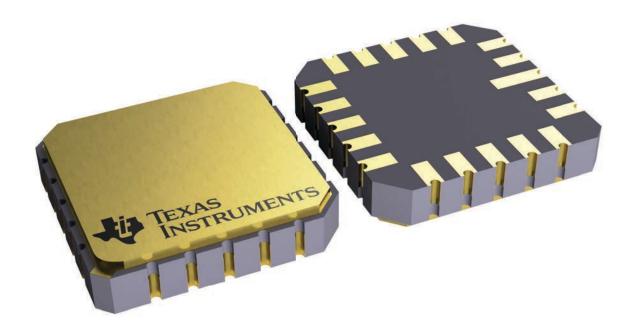

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

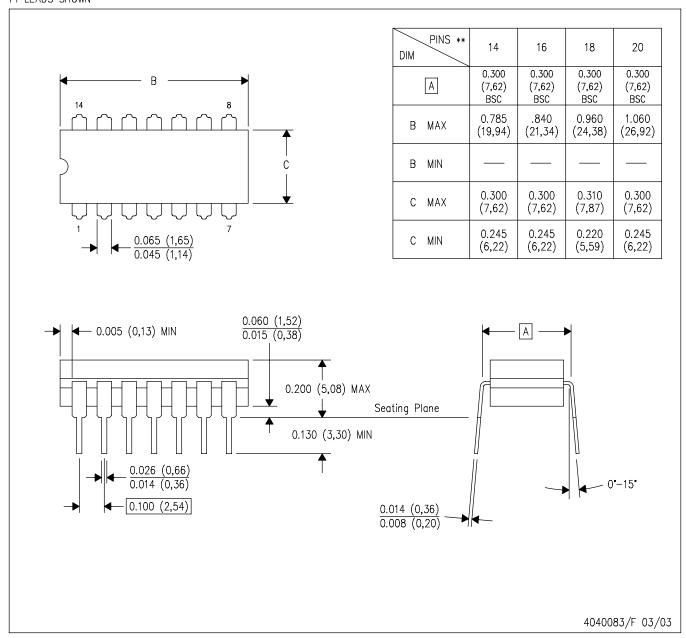
www.ti.com 23-May-2025

TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-88511012A	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ55116FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ55116FK.A	FK	LCCC	20	55	506.98	12.06	2030	NA

8.89 x 8.89, 1.27 mm pitch


LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025