

SN65LBC176-Q1

SGLS211B - OCTOBER 2003 - REVISED JANUARY 2023

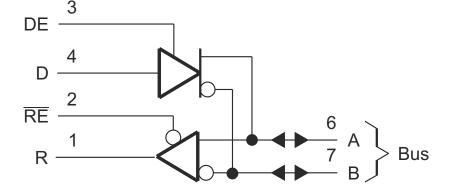
SN65LBC176-Q1 Differential Bus Transceiver

1 Features

- Qualified for automotive applications
- Bidirectional transceiver
- Meet or exceed the requirements of ANSI standard RS-485 and ISO 8482:1987(E)
- High-speed low-power LinBiCMOS circuitry
- Designed for high-speed operation in both serial and parallel applications
- Low skew
- Designed for multipoint transmission on long bus lines in noisy environments
- Very low disabled supply-current requirements: 200 µA maximum
- Wide positive and negative input/output bus voltage ranges
- Driver Output Capacity: ±60 mA
- Thermal-Shutdown Protection
- Driver positive-and negative-current limiting
- Open-Circuit Fail-Safe Receiver Design
- Receiver input sensitivity: ±200 mV max
- Receiver input hysteresis: 50 mV typical
- Operate from a single 5-V supply
- Glitch-free power-up and power-down protection

2 Description

The SN65LBC176 differential bus transceiver is a monolithic, integrated circuit designed for bidirectional data communication on multipoint bus-transmission lines. It is designed for balanced transmission lines and meets ANSI Standard RS-485 and ISO 8482:1987(E).


The SN65LBC176 combines a 3-state, differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can externally connect together to function as a direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/ output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC = 0. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party-line applications. Very low device supply current can be achieved by disabling the driver and the receiver. Both the driver and receiver are available as cells in the Texas Instruments LinASIC Library.

This transceiver is suitable for ANSI Standard RS-485 and ISO 8482:1987 (E) applications to the extent that they are specified in the operating conditions and characteristics section of this data sheet. Certain limits contained in the ANSI Standard RS-485 and ISO 8482:1987 (E) are not met or cannot be tested over the entire extended temperature range.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)	
SN65LBC176-Q1	D (SOIC) (8)	4.90 mm x 3.91 mm	

For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 Features	Parameter Measurement Information8
2 Description	
3 Revision History	
4 Pin Configuration and Functions	
5 Specifications4	7.1 Documentation Support12
5.1 Absolute Maximum Ratings4	7.2 Receiving Notification of Documentation Updates12
5.2 Recommended Operating Conditions4	7.3 Support Resources12
5.3 Thermal Resistance Characteristics	7.4 Trademarks12
5.4 Electrical Characteristics - Driver	7.5 Electrostatic Discharge Caution12
5.5 Switching Characteristics - Driver6	7.6 Glossary12
5.6 Electrical Characteristics - Reciever	, 5 5,

3 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (October 2003) to Revision B (January 2023)

Page

4 Pin Configuration and Functions

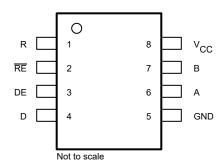


Figure 4-1. D Package, SOIC 8 Pins (Top View)

Table 4-1. Pin Functions

NO	NO NAME TYPE DESCRIPTION		
1	R	0	Receive data output
2	RE	I	Receiver enable, active low
3	DE	I	Driver enable, active high
4	D	I	Driver data input
5	GND	GND	Device ground
6	A	I/O	Bus I/O port, A (complementary to B)
7	В	I/O	Bus I/O port, B(complementary to A)
8	V _{CC}	Р	5 V Supply Pin

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

		MIN	MAX	UNIT
V _{CC}	Supply voltage		7	V
	Voltage range at any bus terminal	-10	15	V
	Input voltage, VI (D, DE, R, or RE)	-0.3	V _{CC} + 0.5	V
T _A	Operating free-air temperature range	-40	125	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.75	5	5.25	V
\/ or\/	Voltage at any bus terminal (separately				12	V
V _I or V _{IC}	or common mode),			,	-7	V
V _{IH}	High-level input voltage,	D, DE, and RE	2			V
V _{IL}	Low-level input voltage,	D, DE, and RE			0.8	V
V _{ID}	Differential input voltage ⁽¹⁾				±12	V
	High-level output current	Driver			60	mA
I _{OH}		Receiver		,	-400	μA
1	Low level output ourrent	Driver			-60	mA
I _{OL}	Low-level output current	Receiver			8	mA
T _A	Operating free-air temperature,		-40		125	°C

(1) Differential input /output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

⁽²⁾ All voltage values are with respect to network ground terminal GND.

5.3 Thermal Resistance Characteristics

		SN65LBC176-Q1	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	UNIT
		8 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	116.7	°C/W
R _{0JC}	Junction-to-case thermal resistance	56.3	°C/W
R _{θJB}	Junction-to-board thermal resistance	63.4	°C/W
Ψ ЈТ	Junction-to-top characterization parameter	8.8	°C/W
Ψ ЈВ	Junction-to-board characterization parameter	62.6	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

5.4 Electrical Characteristics - Driver

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = - 18 mA				-1.5	V
Vo	Output voltage	I _O = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0	I _O = 0			6	V
V _{OD3}	Differential output voltage	V _{test} = -7 V to 12 V	See Fig 2, ⁽²⁾	1.1			V
V _{OD2}	Differential output voltage	R _L = 54 Ω	See Fig 1, (2)	1.1			V
Δ V _{OD}	Change in magnitude of differential output voltage ⁽¹⁾	R_L = 54 Ω or 100 Ω See Fig 1				±0.2	V
V _{OC}	Common-mode output voltage					-1	V
Δ V _{OC}	Change in magnitude of common- mode output voltage ⁽¹⁾					±0.2	V
	Output current	Output disabled,	V _O = 12 V			1	mA
I _O			V _O = -7 V			-0.8	mA
I _{IH}	High-level input current	V _I = 2.4 V	•			-100	μΑ
I _{IL}	Low-level input current	V _I = 0.4 V				-100	μA
		V _O = -7 V				-250	mA
		V _O = 0 V				-150	mA
Ios	Short-circuit output current	$V_O = V_{CC}$				250	mA
		V _O = 12 V				250	mA
I _{cc}	Supply current	V _I = 0 or V _{CC} , No Load	Receiver disabled and driver enabled			1.75	mA
		INO LUAU	Receiver and driver disabled			0.25	mA

⁽¹⁾ $\Delta \mid V_{OD} \mid$ and $\Delta \mid V_{OC} \mid$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input changes from a high level to a low level.

Copyright © 2023 Texas Instruments Incorporated

⁽²⁾ This device meets the ANSI Standard RS-485 VOD requirements above 0°C only.

⁽³⁾ This applies for both power on and off; refer to ANSI Standard RS-485 for exact conditions.

5.5 Switching Characteristics - Driver

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
$t_{d(OD)}$	Differential output delay time	R _I = 54 Ω	8		31	ns
$t_{t(OD)}$	Differential output transition time	C _L = 50 pF		12		ns
t _{sk(p)}	Pulse skew (t _{d(ODH)} - t _{d(ODL)})	See Fig 3			6	ns
t _{PZH}	Output enable time to high level	R _L = 110 Ω See Figure 4			65	ns
t _{PZL}	Output enable time to low level	R_L = 110 Ω See Figure 5			65	ns
t _{PHZ}	Output disable time from high level	R_L = 110 Ω See Figure 4			105	ns
t _{PLZ}	Output disable time from low level	R _L = 110 Ω See Figure 5			105	ns

(1) All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

5.5.1 Symbol Equivalents

Data Sheet Parameter	RS-485
Vo	V _{oa} , V _{ob}
V _{OD1}	Vo
V _{OD2}	$V_t (R_L = 54 \Omega)$
V _{OD3}	V _t (test termination measurement 2)
Δ V _{OD}	V _t - V _t
V _{oc}	V _{OS}
Δ V _{OC}	Vos-Vos
I _{OS}	None
Io	l _{ia} , l _{ib}

Submit Document Feedback

5.6 Electrical Characteristics - Reciever

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CO	TEST CONDITIONS		TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	V _O = 2.7 V	I _O = -0.4 mA			0.2	V
V _{IT-}	Negative-going input threshold voltage	V _O = 0.5 V	I _O = 8 mA	-0.2 ⁽²⁾			V
V _{hys}	Hysteresis voltage (V _{IT} + - V _{IT} -)	(see Figure 4)			50		mV
V _{IK}	Enable-input clamp voltage	I _I = -18 mA				-1.5	V
V _{OH}	High-level output voltage	V _{ID} = 200 mV I _{OH} = -400 μA	See Fig 6	2.7			V
V _{OL}	Low-level output voltage	V _{ID} = 200 mV I _{OL} = 8 mA	See Fig 6			0.45	V
l _{OZ}	High-impedance-state output current	V _O = 0.4 V to 2.4	V			±20	μA
	Line input current	Other input = 0 V _I = 12 V				1	mA
I _I	Line input current	V ⁽³⁾	V _I = -7			-0.8	mA
I _{IH}	High-level enable-input current	V _{IH} = 2.7 V	•			-100	μΑ
I _{IL}	Low-level enable-input current	V _{IL} = 0.4 V				-100	μA
r _l	Input resistance			12			kΩ
I _{CC}		V _I = 0 or V _{CC} , No Load	Receiver disabled and driver enabled			3.9	mA
			Receiver and driver disabled			0.25	mA

⁽¹⁾ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

5.7 Switching Characteristics - Reciever

over operating free-air temperature range (unless otherwise noted), C_L = 15 pF

	PARAMETER	TEST CONDITIONS	MIN	TYP MA	UNIT
t _{PLH}	Propagation delay time, low- to high-level single-ended output		11	3	7 ns
t _{PHL}	Propagation delay time, high- to low-level single-ended output	V _{ID} = -1.5 V to 1.5 V See Figure 7	11	3	7 ns
t _{sk(p)}	Pulse skew ($ t_{d(ODH)} - t_{d(ODL)} $)			1) ns
t _{PZH}	Output enable time to high level	See Figure 8		3	5 ns
t _{PZL}	Output enable time to low level	See Figure 0		3	5 ns
t _{PHZ}	Output disable time from high level	See Figure 8		3	5 ns
t _{PLZ}	Output disable time from low level			3	5 ns

⁽²⁾ The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

⁽³⁾ This applies for both power on and off; refer to ANSI Standard RS-485 for exact conditions.

Parameter Measurement Information

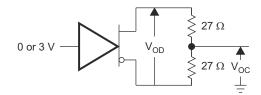


Figure 6-1. Driver V_{OD} and V_{OC}

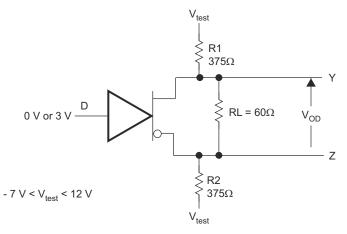
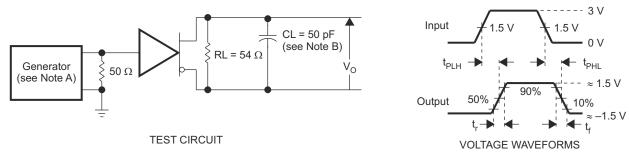
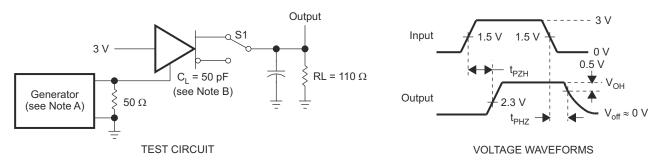




Figure 6-2. Driver V_{OD3}

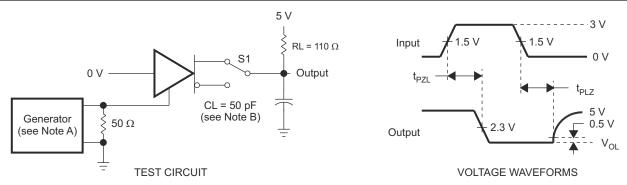

- A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 ns, t_f ≤ 6 ns, Z_O = 50 O
- B. C_L includes probe and jig capacitance.

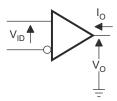
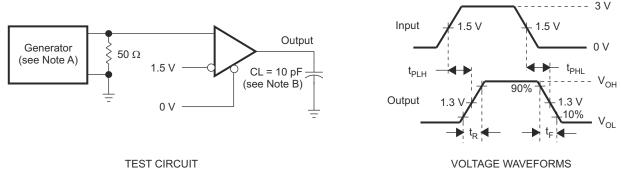
Figure 6-3. Driver Test Circuit and Voltage Waveforms

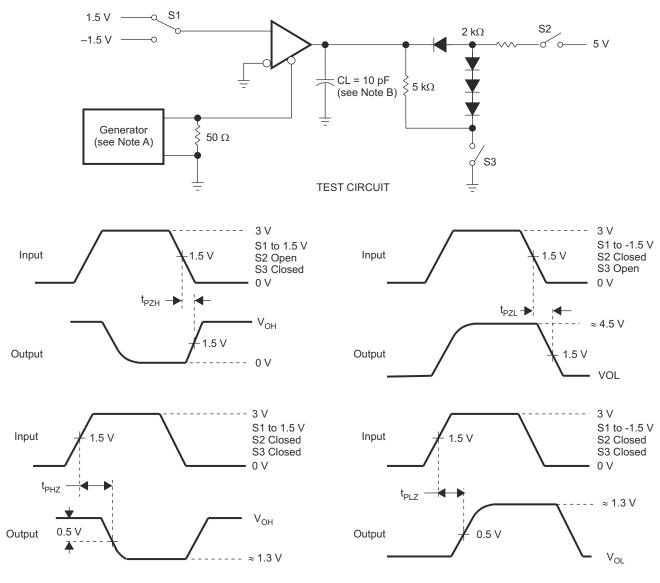
- A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 ns, t_f ≤ 6 ns, Z_O = 50 Ω.
- B. C_L includes probe and jig capacitance.

Figure 6-4. Driver Test Circuit and Voltage Waveforms

- A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, Z_O = 50 Ω.
- B. C_L includes probe and jig capacitance.

Figure 6-5. Driver Test Circuit and Voltage Waveforms


Figure 6-6. Receiver VOH and VOL

- A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 ns, t_f ≤ 6 ns, Z_O = 50 O
- B. C_L includes probe and jig capacitance.

Figure 6-7. Receiver Test Circuit and Voltage Waveforms

- VOLTAGE WAVEFORMS
- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O =$ 50 Ω .
- B. C_L includes probe and jig capacitance.

Figure 6-8. Receiver Test Circuit and Voltage Waveforms

6 Detailed Description

6.1 Device Functional Modes

Table 6-1. Function Table - Driver

Input ⁽¹⁾	Output	Outputs	
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
Х	L	Z	Z

(1) H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

Table 6-2. Function Table - Receiver

Differential Inputs	ENABLE	Output		
A-B	RE	R		
VID ≥ 0.2 V	L	Н		
-0.2 V < VID < 0.2 V	L	?		
VID ≤ - 0.2 V	L	L		
X	Н	Z		
Open	L	Н		

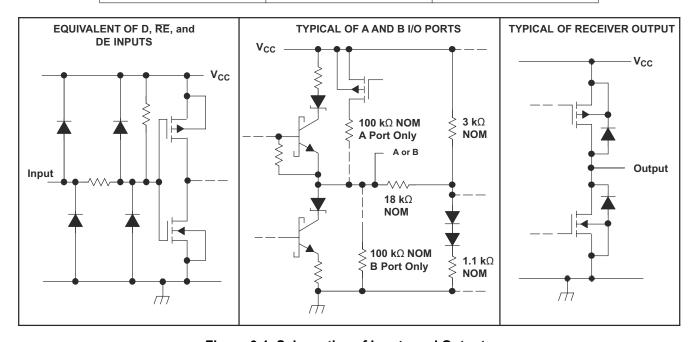


Figure 6-1. Schematics of Inputs and Outputs

7 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

7.1 Documentation Support

7.1.1 Related Documentation

7.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

7.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

7.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

7.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

8 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
SN65LBC176QDRG4Q1	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	J176Q1
SN65LBC176QDRG4Q1.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	J176Q1
SN65LBC176QDRQ1	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	J176Q1
SN65LBC176QDRQ1.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	J176Q1

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN65LBC176-Q1:

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

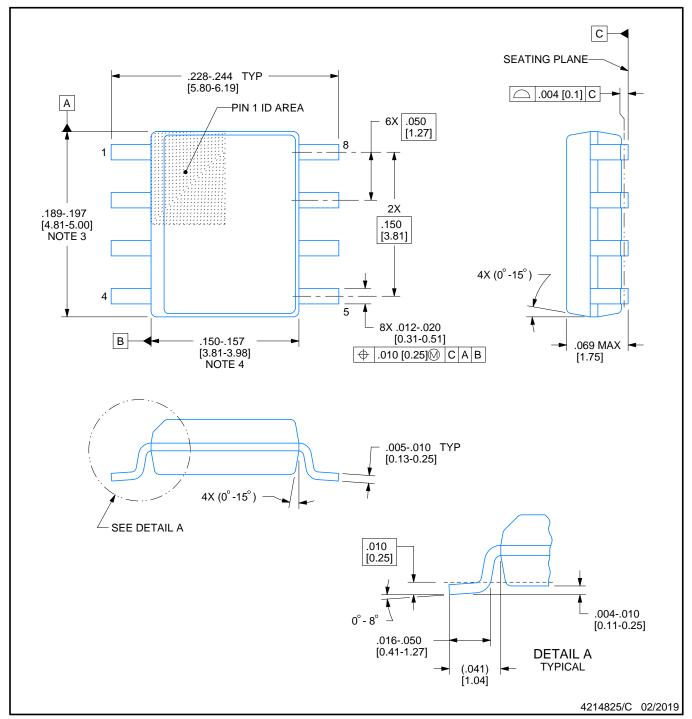
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

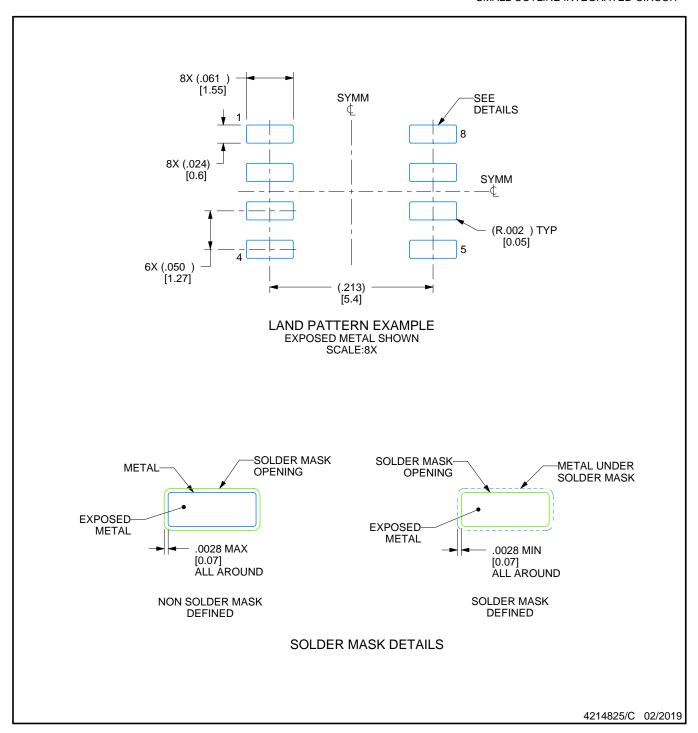
www.ti.com 9-Nov-2025


Catalog : SN65LBC176

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

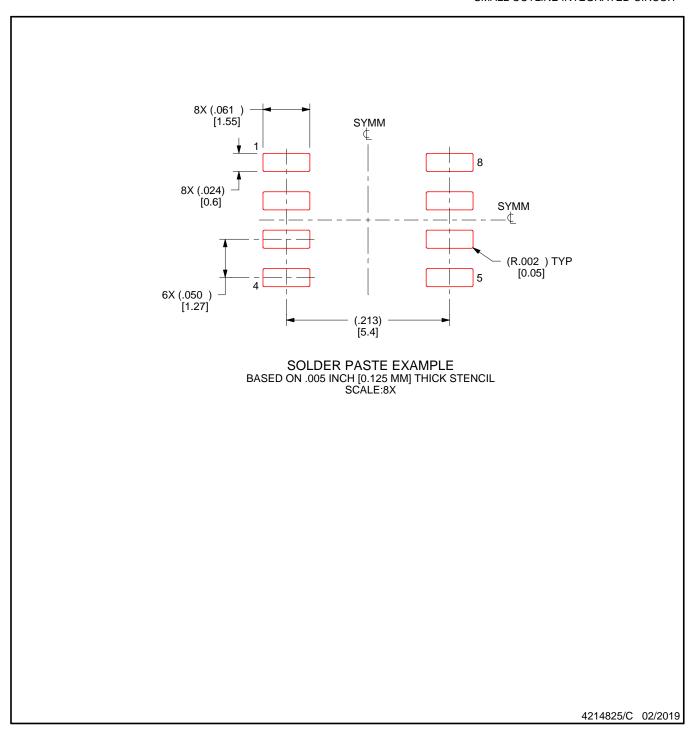
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025