

FEATURES

- Member of the Texas Instruments Widebus™ Family
- Output Ports Have Equivalent 26- Ω Series Resistors, So No External Resistors Are Required
- Diodes on Inputs Clamp Overshoot
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION

This 1-bit to 2-bit address driver is designed for 2.3-V to 3.6-V V_{CC} operation.

Diodes to V_{CC} have been added on the inputs to clamp overshoot.

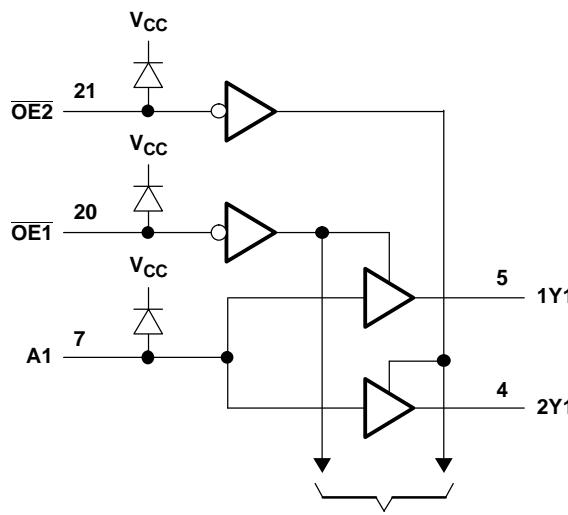
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

The outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, the output-enable (OE) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

DBB PACKAGE
(TOP VIEW)

2Y2	1	80	1Y3
1Y2	2	79	2Y3
GND	3	78	GND
2Y1	4	77	1Y4
1Y1	5	76	2Y4
V_{CC}	6	75	V_{CC}
A1	7	74	1Y5
A2	8	73	2Y5
GND	9	72	GND
A3	10	71	1Y6
A4	11	70	2Y6
GND	12	69	GND
A5	13	68	1Y7
A6	14	67	2Y7
V_{CC}	15	66	V_{CC}
A7	16	65	1Y8
A8	17	64	2Y8
GND	18	63	GND
A9	19	62	1Y9
$OE1$	20	61	2Y9
$OE2$	21	60	1Y10
A10	22	59	2Y10
GND	23	58	GND
A11	24	57	1Y11
A12	25	56	2Y11
V_{CC}	26	55	V_{CC}
A13	27	54	1Y12
A14	28	53	2Y12
GND	29	52	GND
A15	30	51	1Y13
A16	31	50	2Y13
GND	32	49	GND
A17	33	48	1Y14
A18	34	47	2Y14
V_{CC}	35	46	V_{CC}
2Y18	36	45	1Y15
1Y18	37	44	2Y15
GND	38	43	GND
2Y17	39	42	1Y16
1Y17	40	41	2Y16


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

FUNCTION TABLE

INPUTS			OUTPUTS	
OE1	OE2	A	1Yn	2Yn
L	H	H	H	Z
L	H	L	L	Z
H	L	H	Z	H
H	L	L	Z	L
L	L	H	H	H
L	L	L	L	L
H	H	X	Z	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6
V_I	Input voltage range ⁽²⁾		-0.5	4.6
V_O	Output voltage range ⁽²⁾⁽³⁾	-0.5	$V_{CC} + 0.5$	V
I_{IK}	Input clamp current $V_I < 0$		-50	mA
I_{OK}	Output clamp current $V_O < 0$		-50	mA
I_O	Continuous output current		± 50	mA
	Continuous current through each V_{CC} or GND		± 100	mA
θ_{JA}	Package thermal impedance ⁽⁴⁾		64	$^{\circ}\text{C}/\text{W}$
T_{stg}	Storage temperature range	-65	150	$^{\circ}\text{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2.3	3.6	V
V_{IH}	High-level input voltage	$V_{CC} = 2.3\text{ V to }2.7\text{ V}$	1.7		V
		$V_{CC} = 2.7\text{ V to }3.6\text{ V}$	2		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3\text{ V to }2.7\text{ V}$		0.7	V
		$V_{CC} = 2.7\text{ V to }3.6\text{ V}$		0.8	
V_I	Input voltage		0	V_{CC}	V
V_O	Output voltage		0	V_{CC}	V
I_{OH}	High-level output current	$V_{CC} = 2.3\text{ V}$		-6	mA
		$V_{CC} = 2.7\text{ V}$		-8	
		$V_{CC} = 3\text{ V}$		-12	
I_{OL}	Low-level output current	$V_{CC} = 2.3\text{ V}$		6	mA
		$V_{CC} = 2.7\text{ V}$		8	
		$V_{CC} = 3\text{ V}$		12	
$\Delta t/\Delta V$	Input transition rise or fall rate			10	ns/V
T_A	Operating free-air temperature		-40	85	°C

(1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74ALVCHS162830

1-BIT TO 2-BIT ADDRESS DRIVER
WITH 3-STATE OUTPUTS

SCES097H-APRIL 1997-REVISED SEPTEMBER 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	I _I = -18 mA	2.3 V			-1.2	V
	I _I = 18 mA	2.3 V			V _{CC} + 1.2	
V _{OH}	I _{OH} = -100 μ A	2.3 V to 3.6 V	V _{CC} - 0.2			V
	I _{OH} = -4 mA, V _{IH} = 1.7 V	2.3 V	1.9			
	I _{OH} = -6 mA	V _{IH} = 1.7 V	2.3 V	1.7		
		V _{IH} = 2 V	3 V	2.4		
	I _{OH} = -8 mA, V _{IH} = 2 V	2.7 V	2			
V _{OL}	I _{OL} = -12 mA, V _{IL} = 2 V	3 V	2			V
	I _{OL} = 100 μ A	2.3 V to 3.6 V		0.2		
	I _{OL} = 4 mA, V _{IL} = 0.7 V	2.3 V		0.4		
	I _{OL} = 6 mA	V _{IL} = 0.7 V	2.3 V	0.55		
		V _{IL} = 0.8 V	3 V	0.55		
I _I	I _{OL} = 8 mA, V _{IL} = 0.8 V	2.7 V		0.6		μ A
	I _{OL} = 12 mA, V _{IL} = 0.8 V	3 V		0.8		
	V _I = V _{CC} or GND	3.6 V		\pm 5		
	V _I = 0.7 V	2.3 V	45			
	V _I = 1.7 V	2.3 V	-45			
I _{I(hold)}	V _I = 0.8 V	3 V	75			μ A
	V _I = 2 V	3 V	-75			
	V _I = 0 to 3.6 V ⁽²⁾	3.6 V		\pm 500		
I _{OZ}	V _O = V _{CC} or GND	3.6 V		\pm 10		μ A
I _{CC}	V _I = V _{CC} or GND, I _O = 0	3.6 V		40		μ A
ΔI_{CC}	One input at V _{CC} - 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V		750		μ A
C _i	Control inputs	V _I = V _{CC} or GND	3.3 V	5.5		pF
	Data inputs			7		
C _o	Outputs	V _O = V _{CC} or GND	3.3 V	7.5		pF

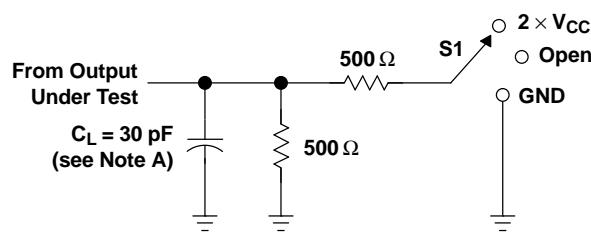
(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

(2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

SWITCHING CHARACTERISTICS

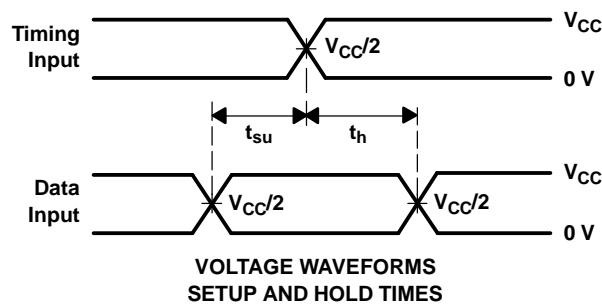
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 and Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 2.5\text{ V} \pm 0.2\text{ V}$		$V_{CC} = 2.7\text{ V}$		$V_{CC} = 3.3\text{ V} \pm 0.3\text{ V}$	
			MIN	MAX	MIN	MAX	MIN	MAX
t_{pd}	A	Y	1.2	3.8	4	1.7	3.5	ns
t_{en}	\overline{OE}	Y	1	5.7	5.7	1	4.8	ns
t_{dis}	\overline{OE}	Y	1	4.9	5.4	1.7	5.2	ns

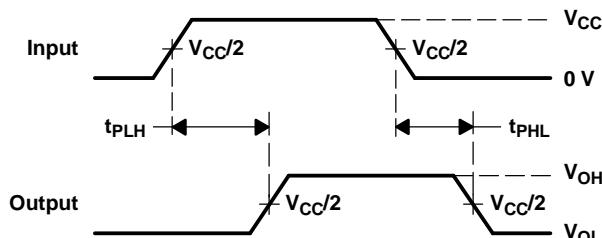

OPERATING CHARACTERISTICS

$T_A = 25^\circ\text{C}$

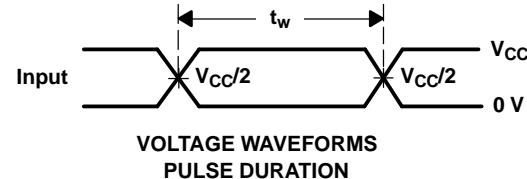
PARAMETER	TEST CONDITIONS	$V_{CC} = 2.5\text{ V}$		$V_{CC} = 3.3\text{ V}$		UNIT
		TYP	TYP	TYP	TYP	
C_{pd} Power dissipation capacitance per bit (two outputs switching)	All outputs enabled	$C_L = 0, f = 10\text{ MHz}$	49	53	6	7.5
	All outputs disabled					

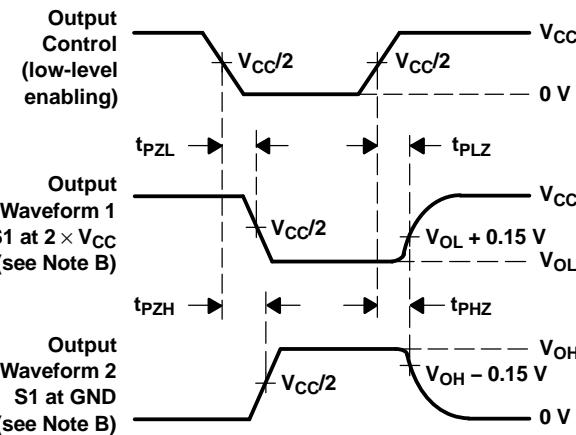

PARAMETER MEASUREMENT INFORMATION

$$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$$



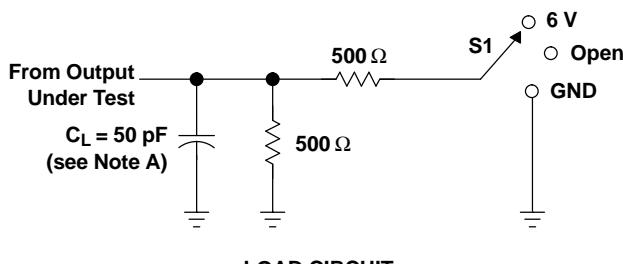
TEST	S1
t_{pd}	Open
t_{PLZ}/t_{PZL}	$2 \times V_{CC}$
t_{PHZ}/t_{PZH}	GND


LOAD CIRCUIT


VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS PULSE DURATION


VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES:

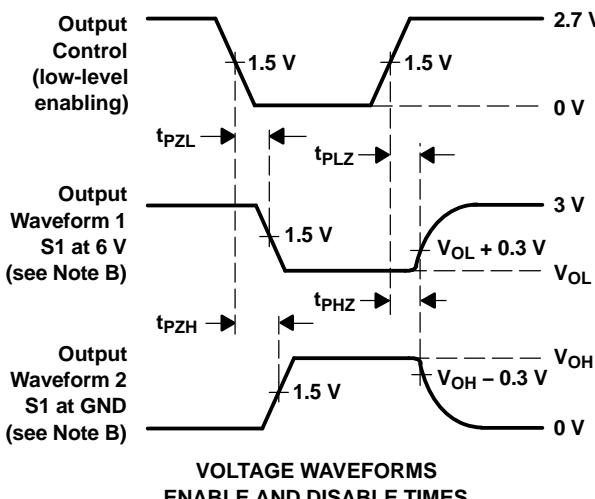
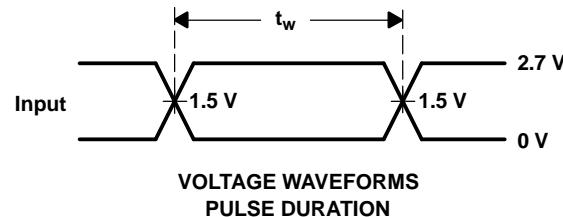
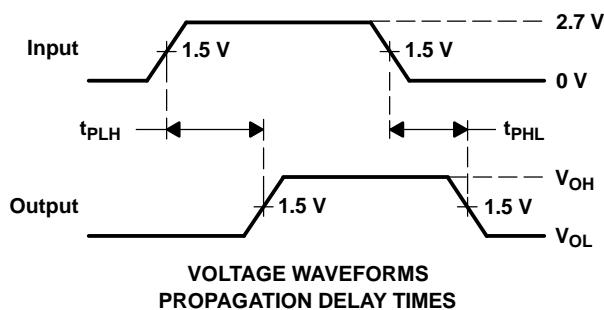
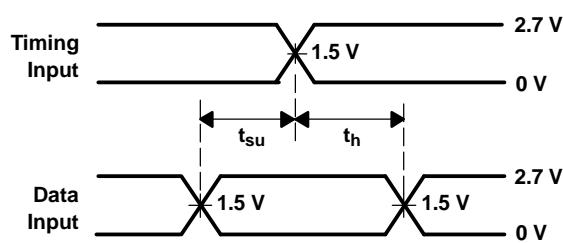




- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2 \text{ ns}$, $t_f \leq 2 \text{ ns}$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION
 $V_{CC} = 2.7\text{ V AND }3.3\text{ V} \pm 0.3\text{ V}$

TEST	S1
t_{pd}	Open
t_{PLZ}/t_{PZL}	6 V
t_{PHZ}/t_{PZH}	GND

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10\text{ MHz}$, $Z_O = 50\text{ }\Omega$, $t_r \leq 2.5\text{ ns}$, $t_f \leq 2.5\text{ ns}$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

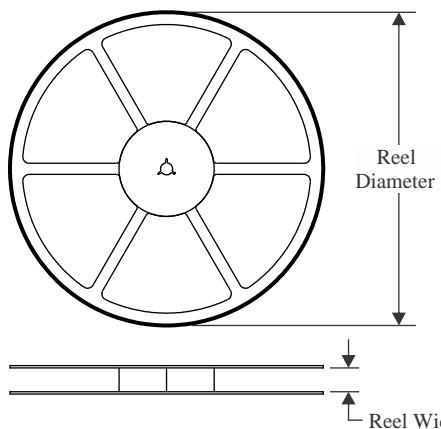
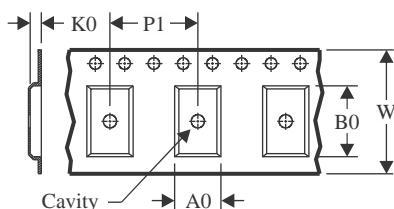
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN74ALVCHS162830GR	Active	Production	TSSOP (DBB) 80	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCHS162830
SN74ALVCHS162830GR.B	Active	Production	TSSOP (DBB) 80	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCHS162830

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

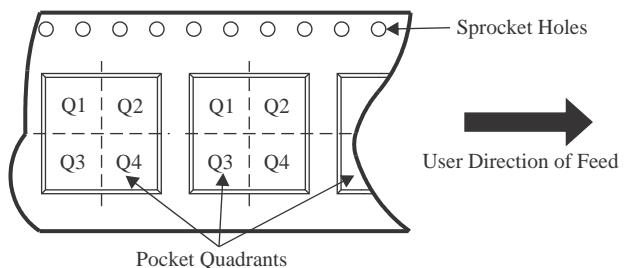
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

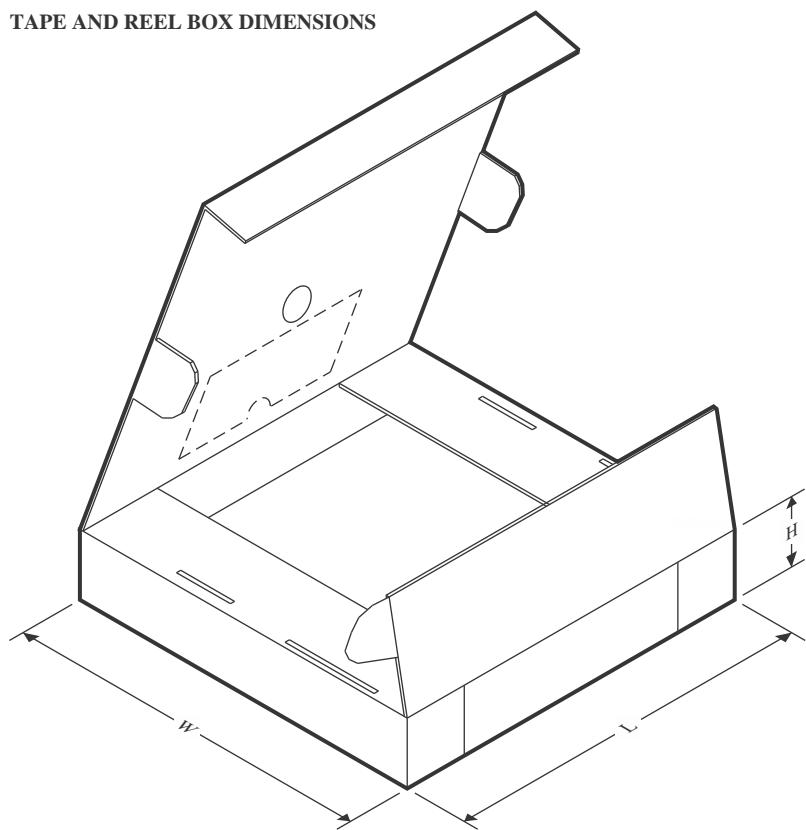


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

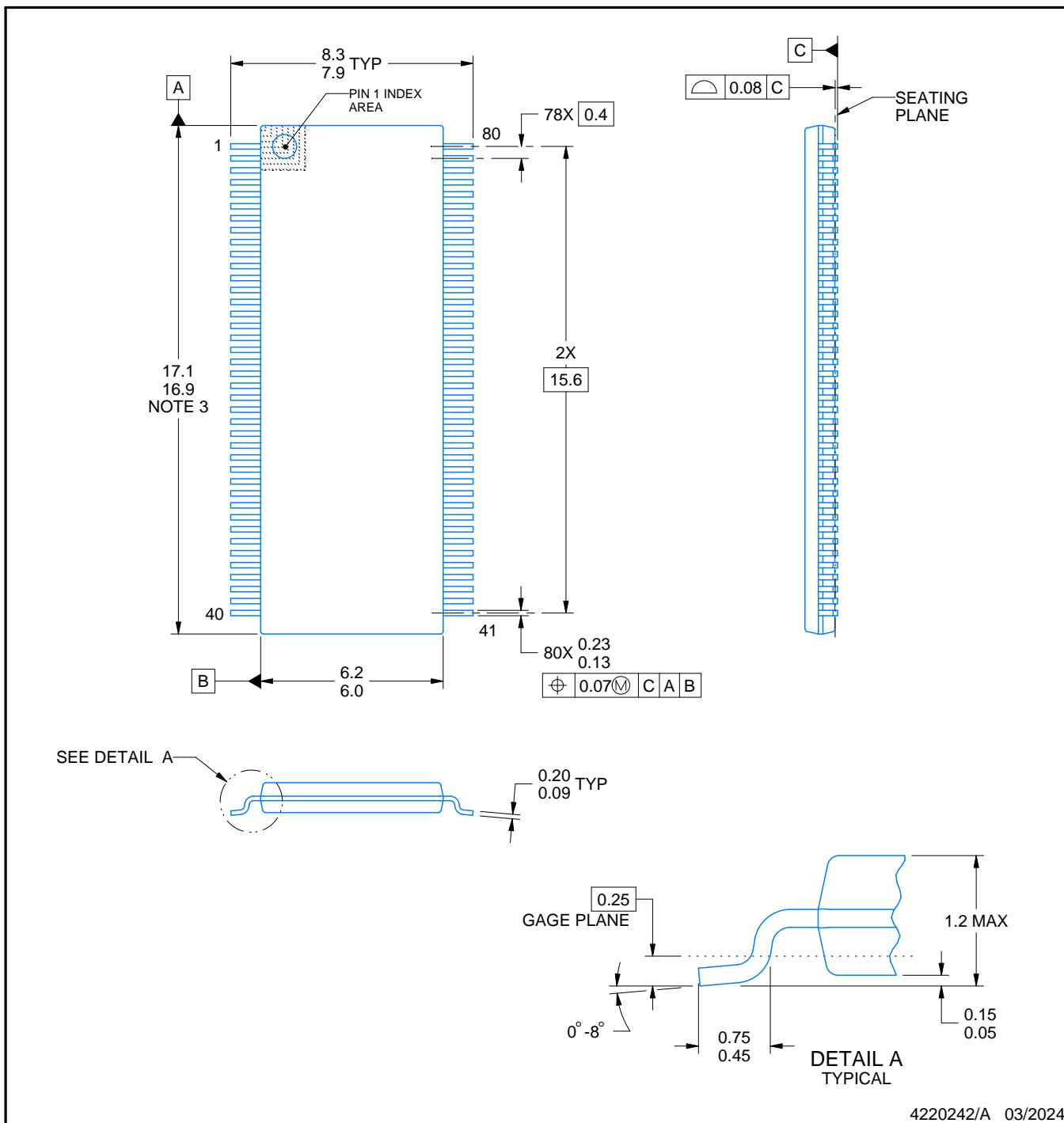
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVCHS162830GR	TSSOP	DBB	80	2000	330.0	24.4	8.4	17.3	1.7	12.0	24.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCHS162830GR	TSSOP	DBB	80	2000	356.0	356.0	45.0

PACKAGE OUTLINE

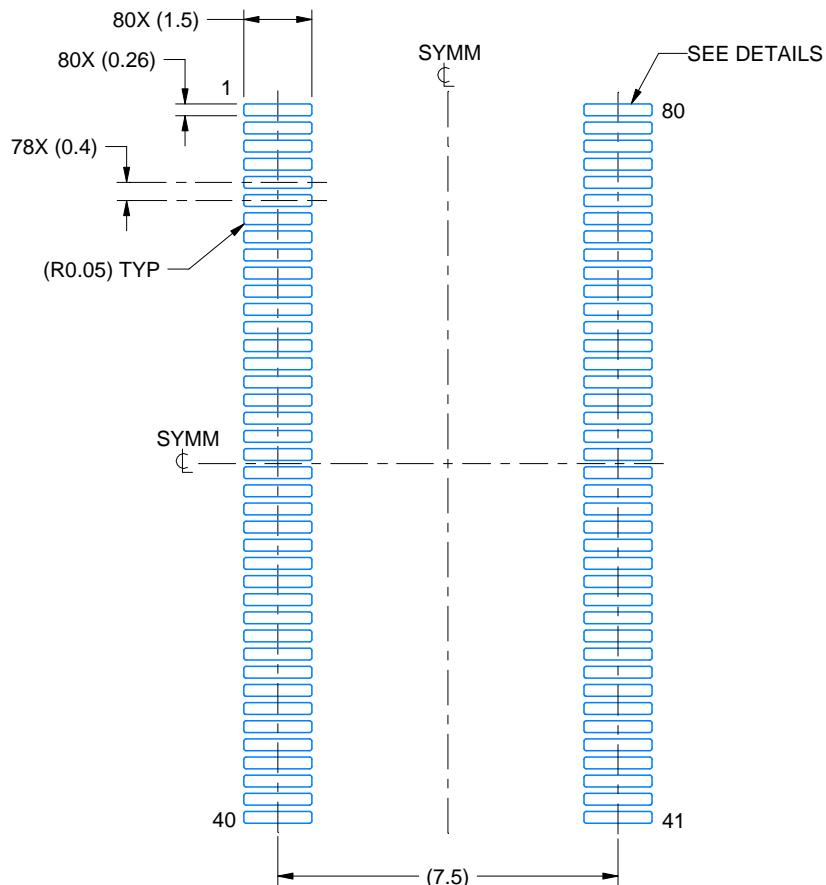
DBB0080A

TVSOP - 1.2 mm max height

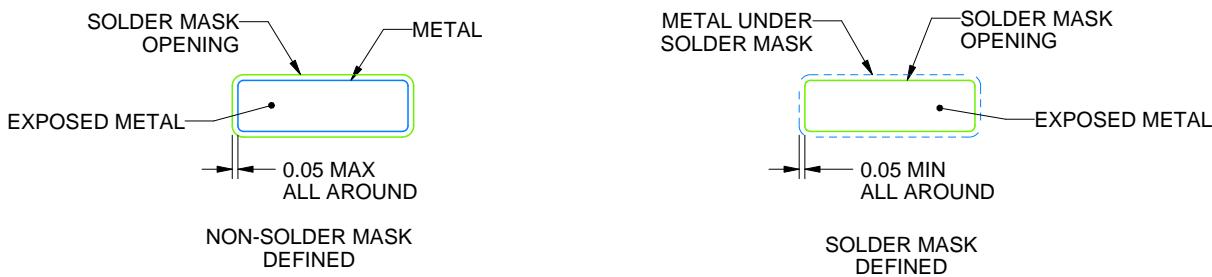
SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153, Variation FF.

EXAMPLE BOARD LAYOUT


DBB0080A

TVSOP - 1.2 mm max height

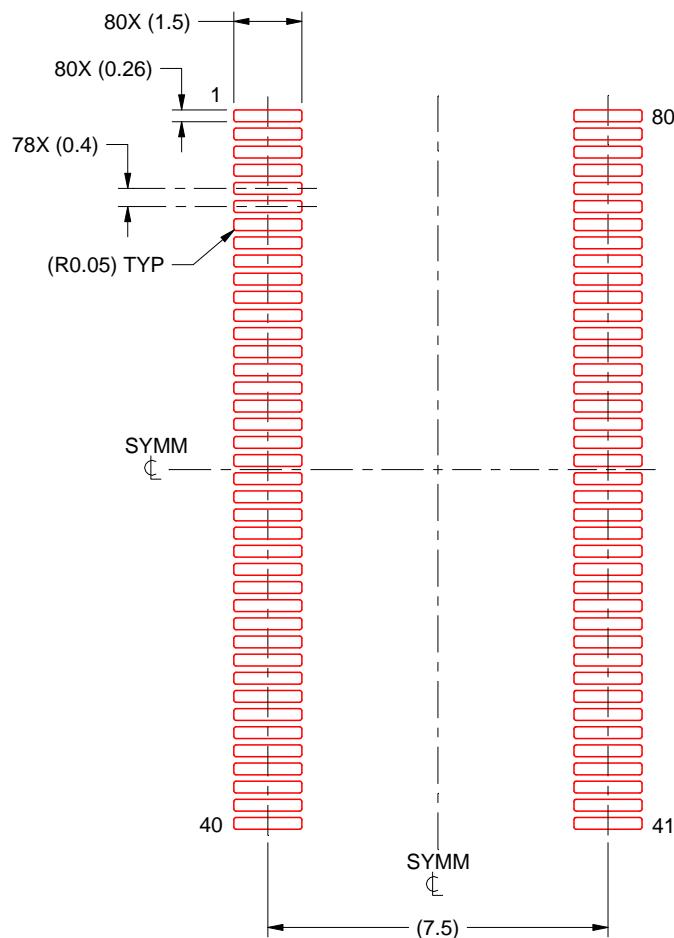
SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 6X

SOLDER MASK DETAILS

4220242/A 03/2024

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
8. Size of metal pad may vary due to creepage requirement.
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

DBB0080A

TVSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 6X

4220242/A 03/2024

NOTES: (continued)

10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
11. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025