- 14-Bit Resolution for TLC3574/78, 12-Bit for TLC2574/2578
- Maximum Throughput 200-KSPS
- Multiple Analog Inputs:
- 8 Single-Ended Channels for TLC3578/2578
- 4 Single-Ended Channels for TLC3574/2574
- Analog Input Range: $\pm 10 \mathrm{~V}$
- Pseudodifferential Analog Inputs
- SPI/DSP-Compatible Serial Interfaces With SCLK up to $25-\mathrm{MHz}$
- Built-In Conversion Clock and 8x FIFO
- Single 5-V Analog Supply; 3-/5-V Digital Supply
- Low-Power
- 5.8 mA in Normal Operation
- $20 \mu \mathrm{~A}$ in Power Down
- Programmable Autochannel Sweep and Repeat
- Hardware-Controlled, Programmable Sampling Period
- Hardware Default Configuration
- INL: TLC3574/78: ± 1 LSB; TLC2574/78: ± 0.5 LSB
- DNL: TLC3574/78: ± 0.5 LSB; TLC2574/78: ± 0.5 LSB
- SINAD: TLC3574/78: 79 dB ; TLC2574/78: 72 dB
- THD: TLC3574/78: -82 dB;

TLC2574/78: -82 dB

TLC3578, TLC2578 DW OR PW PACKAGE
(TOP VIEW)

TLC3574, TLC2574 DW, N, OR PW PACKAGE
(TOP VIEW)

description

The TLC3574, TLC3578, TLC2574, and TLC2578 are a family of high-performance, low-power, CMOS analog-to-digital converters (ADC). TLC3574/78 is a 14-bit ADC; TLC2574/78 is a 12-bit ADC. All parts operate from single $5-\mathrm{V}$ analog power supply and $3-\mathrm{V}$ to $5-\mathrm{V}$ digital supply. The serial interface consists of four digital input [chip select ($\overline{\mathrm{CS}}$), frame sync (FS), serial input-output clock (SCLK), serial data input (SDI)], and a 3 -state serial data output (SDO). $\overline{C S}$ (works as $\overline{S S}$, slave select), SDI, SDO and SCLK form an SPI interface. FS, SDI, SDO, and SCLK form DSP interface. The frame sync signal (FS) indicates the start of a serial data frame being transferred. When multiple converters connect to one serial port of a DSP, $\overline{\mathrm{CS}}$ works as the chip select to allow the host DSP to access the individual converter. $\overline{\mathrm{CS}}$ can be tied to ground if only one converter is used. FS must be tied to $D V_{D D}$ if it is not used (such as in an SPI interface). When SDI is tied to $V_{D D}$, the device is set in hardware default mode after power on and no software configuration is required. In the simplest case, only three wires (SDO, SCLK, and $\overline{\mathrm{CS}}$ or FS) are needed to interface with the host.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TLC3574, TLC3578, TLC2574, TLC2578
 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL
 SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

SLAS262C - OCTOBER 2000 - REVISED MAY 2003

description (continued)

In addition to being a high-speed ADC with versatile control capability, these devices have an on-chip analog multiplexer (MUX) that can select any analog input or one of three self-test voltages. The sample-and-hold function is automatically started after the fourth SCLK (normal sampling) or can be controlled by a special pin, $\overline{\text { CSTART, to extend the sampling period (extended sampling). The normal sampling period can also be }}$ programmed as short sampling (12 SCLKs) or long sampling (44 SCLKs) to accommodate the faster SCLK operation popular among high-performance signal processors. The TLC3574/78 and TLC2574/78 are designed to operate with low-power consumption. The power saving feature is further enhanced with autopower-down mode and programmable conversion speeds. The conversion clock (internal OSC) is built in. The converter can also use an external SCLK as the conversion clock for maximum flexibility. The TLC3574/78 and TLC2574/78 are specified with bipolar input and a full scale range of $\pm 10 \mathrm{~V}$.

AVAILABLE OPTIONS

$\mathbf{T A}_{\mathbf{A}}$	PACKAGED DEVICES				
	20-TSSOP (PW)	20-SOIC (DW)	20-PDIP (N)	24-SOIC (DW)	24-TSSOP (PW)
	TLC2574IPW	TLC2574IDW	TLC2574IN	TLC2578IDW	TLC2578IPW
	TLC3574IPW	TLC3574IDW	TLC3574IN	TLC3578IDW	TLC3578IPW

functional block diagram

\dagger TLC3578, TLC2578
キ TLC3574, TLC2574
NOTE: 4-Bit counter counts the CLOCK, SCLK. The CLOCK is gated in by $\overline{C S}$ falling edge if $\overline{C S}$ initiates the conversion operation cycle, or gated in by the rising edge of FS if FS initiates the operation cycle. SCLK is disabled for serial interface when $\overline{\mathrm{CS}}$ is high.

equivalent input circuit

Equivalent Digital Input Circuit

Diode Turn on Voltage: 35 V
Equivalent Analog Input Circuit
Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	NO.			
	$\begin{array}{\|l\|} \hline \text { TLC3574 } \\ \text { TLC2574 } \end{array}$	$\begin{array}{\|l\|} \hline \text { TLC3578 } \\ \text { TLC2578 } \end{array}$		
A0 A0 A1 A1 A2 A2 A3 A3 A4 A5 A6 A7	$\begin{gathered} \hline 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	$\begin{gathered} 9 \\ 10 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 15 \\ \hline \end{gathered}$	1	Analog signal inputs. Analog input signals applied to these terminals are internally multiplexed. The driving source impedance should be less than or equal to 25Ω for normal sampling. For larger source impedance, use the external hardware conversion start signal CSTART (the low time of CSTART controls the sampling period) or reduce the frequency of SCLK to increase the sampling time.
AGND	14, 18	18, 22	1	Analog ground return for the internal circuitry. Unless otherwise noted, all analog voltage measurements are with respect to AGND.
$\mathrm{AV}_{\mathrm{DD}}$	13, 19	17, 23	1	Analog supply voltage
COMP	17	21	1	Internal compensation pin. Install compensation capacitors $0.1 \mu \mathrm{~F}$ between this pin and AGND.
$\overline{\mathrm{CS}}$	8	8	1	Chip select. When $\overline{\mathrm{CS}}$ is high, SDO is in high-impedance state, SDI is ignored, and SCLK is disabled to clock data, but works as conversion clock source if programmed. The falling edge of $\overline{\mathrm{CS}}$ input resets the internal 4-bit counter, enables SDI and SCLK, and removes SDO from high-impedance state. If $F S$ is high at $\overline{C S}$ falling edge, $\overline{C S}$ falling edge initiates the operation cycle. $\overline{\mathrm{CS}}$ works as slave select $(\overline{\mathrm{SS}})$ to provide an SPI interface. If $F S$ is low at $\overline{C S}$ falling edge, $F S$ rising edge initiates the operation cycle. $\overline{C S}$ can be used as chip select to allow host to access the individual converter.
$\overline{\text { CSTART }}$	20	24	1	External sampling trigger signal, which initiates the sampling from a selected analog input channel when the device works in extended sampling mode (asynchronous sampling). A high-to-low transition starts the sampling of the analog input signal. A low-to-high transition puts the S / H in hold mode and starts the conversion. The low time of the CSTART signal controls the sampling period. CSTART signal must stay low long enough for proper sampling. CSTART must stay high long enough after the low-to-high transition for the conversion to finish maturely. The activation of $\overline{\text { CSTART }}$ is independent of SCLK and the level of $\overline{\mathrm{CS}}$ and FS. However, the first $\overline{\text { CSTART }}$ cannot be issued before the rising edge of the eleventh SCLK. Tie this pin to DV ${ }_{D D}$ if not used.
DGND	6	6	1	Digital ground return for the internal circuitry
DV ${ }_{\text {DD }}$	7	7	I	Digital supply voltage

Terminal Functions (Continued)

TERMINAL			I/O	DESCRIPTION
NAME	NO.			
	$\begin{aligned} & \hline \text { TLC3574 } \\ & \text { TLC2574 } \end{aligned}$	$\begin{aligned} & \hline \text { TLC3578 } \\ & \text { TLC2578 } \end{aligned}$		
EOC(INT)	4	4	0	End of conversion (EOC) or interrupt to host processor (INT) EOC: used in conversion mode 00 only. EOC goes from high to low at the end of the sampling and remains low until the conversion is complete and data is ready. $\overline{\mathrm{INT}}$: Interrupt to the host processor. The falling edge of $\overline{\mathrm{INT}}$ indicates data is ready for output. $\overline{\mathrm{NT}}$ is cleared by the following $\overline{\mathrm{CS}} \downarrow$, $\mathrm{FS} \uparrow$, or $\overline{\mathrm{CSTART}} \downarrow$.
FS	2	2	I	Frame sync input from DSP. The rising edge of FS indicates the start of a serial data frame being transferred (coming into or being sent out of the device). If FS is low at the falling edge of $\overline{C S}$, the rising edge of FS initiates the operation cycle, resets the internal 4-bit counter, and enables SDI, SDO, and SCLK. Tie this pin to DV DD if FS is not used to initiate the operation cycle.
REFM	16	20	I	External low reference input. Connect REFM to AGND.
REFP	15	19	1	External positive reference input. The range of maximum input voltage is determined by the difference between the voltage applied to this terminal and to the REFM terminal. Always install decoupling capacitors ($10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$) between REFP and REFM.
SCLK	1	1	I	Serial clock input from the host processor to clock in the input from SDI and clock out the output via SDO. It can also be used as the conversion clock source when the external conversion clock is selected (see Table 2). When $\overline{\mathrm{CS}}$ is low, SCLK is enabled. When $\overline{\mathrm{CS}}$ is high, SCLK is disabled for the data transfer, but can still work as the conversion clock source.
SDI	3	3	1	Serial data input. The first 4 MSBs, ID[15:12], are decoded as one 4-bit command. All trailing bits, except for the WRITE CFR command, are filled with zeros. The WRITE CFR command requires additional 12 -bit data. The MSB of input data, ID(15), is latched at the first falling edge of SCLK following FS falling edge if FS starts the operation, or latched at the falling edge of first SCLK following $\overline{\mathrm{CS}}$ falling edge when $\overline{\mathrm{CS}}$ initiates the operation. The remaining input data (if any) is shifted in on the rising edge of SCLK and latched on the falling edge of SCLK. The input via SDI is ignored after the 4 -bit counter counts to 16 (clock edges) or a low-to-high transition of $\overline{\mathrm{CS}}$, whichever happens first. Refer to the timing specification for the timing requirements. Tie SDI to DVDD if using hardware default mode (refer to Device Initialization).
SDO	5	5	0	The 3-state serial output for the A/D conversion result. All data bits are shifted out through SDO. SDO is in the high-impedance state when $\overline{\mathrm{CS}}$ is high. SDO is released after a $\overline{\mathrm{CS}}$ falling edge. The output format is MSB (OD15) first. When FS initiates the operation, the MSB of output via SDO, OD(15), is valid before the first falling edge of SCLK following the falling edge of FS. When $\overline{C S}$ initiates the operation, the MSB, OD(15), is valid before the first falling edge of SCLK following the $\overline{C S}$ falling edge. The remaining data bits (if any) are shifted out on the rising edge of SCLK and are valid before the falling edge of SCLK. Refer to the timing specification for the details. In select/conversion operation, the first 14 bits (for TLC3574/78) or the first 12 bits (for TLC2574/78) are the results from the previous conversion (data). In a READ FIFO operation, this data is from FIFO. In both cases, the last two bits (for TLC3574/78) or the last four bits (for TLC2574/78) are don't care. In a WRITE operation, the output from SDO must be ignored. SDO goes into high-impedance state at the 16th falling edge of SCLK after the operation cycle is initiated. SDO is in high-impedance state during conversions in modes 01, 10, and 11.

TLC3574, TLC3578, TLC2574, TLC2578 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

Supply voltage, $G N D$ to $A V_{D D}$ and $D V_{D D}$ -0.3 V to 6.5 V
Analog input voltage range -17 V to 17 V
Analog input current 100 mA MAX
Reference input voltage $A V_{D D}+0.3 \mathrm{~V}$
Digital input voltage range -0.3 V to $\mathrm{DV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating virtual junction temperature range, T_{J} $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating free-air temperature range, T_{A} $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range, $T_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1.16 inch) from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under electrical characteristics and timing characteristics is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
general electrical characteristics over recommended operating free-air temperature range, single-ended input, normal long sampling, $200 \mathrm{KSPS}, \mathrm{AV}$ DD $=5 \mathrm{~V}, \mathrm{~V}_{\text {REFP }}=4 \mathrm{~V}, \mathrm{~V}_{\text {REFM }}=0 \mathrm{~V}$, SCLK frequency $=25 \mathrm{MHz}$, fixed channel at CONV mode 00, analog input signal source resistance $=25 \Omega$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS			MIN	TYP†	MAX	UNIT			
Digital Input												
$\mathrm{V}_{\mathrm{IH}} \quad \mathrm{H}$	High-level digital input voltage		DV ${ }_{\text {DD }}=5 \mathrm{~V}$			3.8			V			
			$\mathrm{DV}_{\mathrm{DD}}=3 \mathrm{~V}$			2.1						
VIL L	Low-level digital input voltage		$\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}$					0.8	V			
			$\mathrm{DV}_{\mathrm{DD}}=3 \mathrm{~V}$					0.6				
$\mathrm{IIH}^{\text {H }}$	High-level digital input current		$\mathrm{V}_{1}=\mathrm{DV}_{\text {DD }}$				0.005	2.5	$\mu \mathrm{A}$			
IIL Low	Low-level digital input current		$\mathrm{V}_{1}=$ DGND			-2.5	-0.005		$\mu \mathrm{A}$			
	Input capacitance						20	25	pF			
Digital Output												
$\mathrm{VOH}^{\text {O }}$	High-level digital output at 30 pF load		$\mathrm{I}_{0}=-0.2 \mathrm{~mA}$	$D V_{D D}=5 \mathrm{~V}$		4.2			V			
			$\mathrm{DV}_{\mathrm{DD}}=3 \mathrm{~V}$									
V_{OL}	Low-level digital output at 30 pF load			$D V_{D D}=5 \mathrm{~V}$	$\mathrm{I}_{0}=0.8 \mathrm{~mA}$				0.4	V		
			$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$					0.1				
			DV ${ }_{\text {DD }}=3 \mathrm{~V}$	$\mathrm{I}_{\mathrm{O}}=0.8 \mathrm{~mA}$				0.4				
			$\mathrm{I}_{0}=50 \mu \mathrm{~A}$				0.1					
IOz	Off-state output current (high-impedance state)			$\mathrm{V}_{\mathrm{O}}=\mathrm{DV} \mathrm{VD}$	$\overline{\mathrm{CS}}=\mathrm{DV}_{\mathrm{DD}}$			0.02	1	$\mu \mathrm{A}$		
			$\mathrm{V}_{\mathrm{O}}=$ DGND	-1			0.02					
Power Supply												
$\mathrm{AV}_{\text {DD }}$	Supply voltage					4.75	5	5.5	V			
$\mathrm{DV}_{\text {DD }}$			2.7	5	5.5	V						
ICC P	Power supply current	AV ${ }_{\text {DD }}$ current AlCC				Conversion clock is internal OSC, $\mathrm{AV}_{\mathrm{DD}}=5.5 \mathrm{~V}-4.5 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{DGND}$, Excluding bipolar input biasing current				4.2	5	mA
		DVDD current DICC DICC		1.6	2.0							
ICC (autopwrdn): Autopower-down power supply current			For all digital inputs = DVDD or DGND, AV $\mathrm{DD}=5.5 \mathrm{~V}$, Excluding bipolar input biasing current, external reference		SCLK OFF		20		$\mu \mathrm{A}$			
			SCLK ON		175	230						
Operating temperature								-40		85	${ }^{\circ} \mathrm{C}$	

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TLC3574, TLC3578, TLC2574, TLC2578
 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL
 SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

SLAS262C - OCTOBER 2000 - REVISED MAY 2003
general electrical characteristics over recommended operating free-air temperature range, singleended input, normal long sampling, $200 \mathrm{KSPS}, \mathrm{AV}$ DD $=5 \mathrm{~V}, \mathrm{~V}_{\text {REFP }}=4 \mathrm{~V}, \mathrm{~V}_{\text {REFM }}=0 \mathrm{~V}$, SCLK frequency $=25 \mathrm{MHz}$, fixed channel at CONV mode 00, analog input signal source resistance $=25 \Omega$ (unless otherwise noted)

TLC3574/78 and TLC2574/78

PARAMETER	TEST CONDITIONS		MIN	TYP†	MAX	UNIT
Resolution			14			bits
Analog Input						
Voltage range			-10		10	V
Selected analog input channel bias current	Selected channel at 10 V			0.8	1.6	mA
	Selected channel at -10 V		-1.6	-1.2		
Impedance			10			k Ω
Capacitance			30			pF
Reference						
$V_{\text {REFP }}$ Positive reference voltage			3.96	4	4.04	V
$\mathrm{V}_{\text {REFM }}$ Negative reference voltage			0	AGND		V
Input impedance	No conversion $\left(A V_{D D}=5 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{DV}\right.$ DD, SCLK=DGND)		100			M Ω
	Normal long sampling ($\mathrm{AV} \mathrm{DD}_{\mathrm{DD}}=5 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{DGND}$, SCLK $=25 \mathrm{MHz}$, External conversion clock)		8.3	12.5		k Ω
Reference current	$\begin{aligned} & \text { No conversion }(\mathrm{AV} D \mathrm{D}=5 \mathrm{~V}, \\ & \text { SCLK }=\mathrm{DGND}, \mathrm{CS}=\mathrm{DV} \text { DD }) \end{aligned}$				1.5	$\mu \mathrm{A}$
	Normal long sampling ($\mathrm{AV} \mathrm{DD}=5 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{DGND}$, External conversion clock, SCLK $=25 \mathrm{MHz}$, $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$)			0.4	0.6	mA
Internal oscillation frequency	DV ${ }_{\text {DD }}=2.7 \mathrm{~V}-5.5 \mathrm{~V}$		6.5			MHz
t(conv) Conversion time	Internal OSC, 6.5 MHz minimum	TLC3574/78			2.785	$\mu \mathrm{S}$
		TLC2574/78			2.015	
	Conversion clock is external source, SCLK $=25 \mathrm{MHz}$ (see Note 1)	TLC3574/78	2.895			
		TLC2574/78	2.095			
Acquisition time	Normal short sampling		1.2			$\mu \mathrm{S}$
Throughput rate (see Note 2)	Normal long sampling, fixed channel in mode 00 or 01		200			KSPS

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 1. Conversion time ${ }^{\text {(conv) }}$ is $(18 \times 4 \times$ SCLK) +15 ns for TLC3574/78. Conversion time is $(13 \times 4 \times$ SCLK $)+15 \mathrm{~ns}$ for TLC2574/78.
2. This is for a fixed channel in conversion mode 00 or 01 . When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC.

AC/DC performance over recommended operating free-air temperature range, single-ended input, normal long sampling, $200 \mathrm{KSPS}, \mathrm{AV}_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REFP }}=4 \mathrm{~V}, \mathrm{~V}_{\text {REFM }}=0 \mathrm{~V}$, SCLK frequency $=25 \mathrm{MHz}$, fixed channel at CONV mode 00, analog input signal source resistance $=25 \Omega$ (unless otherwise noted)

TLC3574/78 DW and PW package device AC/DC performance

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
DC Accuracy-Normal Long Sampling						
E_{L}	Integral linearity error	See Note 3	-1.5	± 1	1.5	LSB
E_{D}	Differential linearity error		-1	± 0.5	1	LSB
EO	Bipolar zero error	See Note 4	-0.30	± 0.08	0.36	\%FS
$\mathrm{EFSS}_{(+)}$	Positive full scale error	See Note 4	-0.55	± 0.04	0.61	\%FS
EFS(-)	Negative full scale error	See Note 4	-0.30	± 0.13	0.79	\%FS
DC Accuracy-Normal Short Sampling						
E_{L}	Integral linearity error	See Note 3		± 1		LSB
E_{D}	Differential linearity error			± 0.5		LSB
EO	Bipolar zero error	See Note 4		± 0.08		\%FS
$\mathrm{EFSS}_{(+)}$	Positive full scale error	See Note 4		± 0.04		\%FS
EFS(-)	Negative full scale error	See Note 4		± 0.13		\%FS
AC Accuracy (see Note 3)-Normal Long Sampling						
SINAD	Signal-to-noise ratio + distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	76	79		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		75		
THD	Total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$		-82	-77	dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		-78		
SNR	Signal-to-noise ratio	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	78	80		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		78		
ENOB	Effective number of bits	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	12.3	12.8		Bits
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		12.2		
SFDR	Spurious free dynamic range	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	78	84		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		79		
	Channel-to-channel isolation	Fixed channel in conversion mode $00, \mathrm{f}_{\mathrm{i}}=35 \mathrm{kHz}$, See Notes 2 and 5		81		dB
Analog input bandwidth		Full power bandwidth, -3 dB		1		MHz
		Full power bandwidth, -1 dB		700		kHz

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 2. This is for a fixed channel in conversion mode 00 or 01 . When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC.
3. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics.
4. Bipolar zero error is the difference between 10000000000000 and the converted output for zero input voltage; positive full-scale error is the difference between 11111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error is the difference between 00000000000000 and the converted output for negative full-scale input voltage (-10 V).
5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately.

TLC3574/78 DW and PW package device AC/DC performance (continued)

	PARAMETER	TEST CONDITIONS	MIN TYP \dagger	MAX	UNIT
AC Accuracy-Normal Short Sampling					
SINAD	Signal-to-noise ratio + distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	79		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	75		
THD	Total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	-82		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	-78		
SNR	Signal-to-noise ratio	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	80		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	78		
ENOB	Effective number of bits	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	12.8		Bits
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	12.2		
SFDR	Spurious free dynamic range	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	84		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	79		
	Channel-to-channel isolation	Fixed channel in conversion mode $00, \mathrm{f}_{\mathrm{i}}=35 \mathrm{kHz}$, See Notes 2 and 5	81		dB
Analog input bandwidth		Full power bandwidth, -3 dB	1		MHz
		Full power bandwidth, -1 dB	700		kHz

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 2. This is for a fixed channel in conversion mode 00 or 01 . When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC.
5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately.

TLC3574I N package device AC/DC performance

	PARAMETER	TEST CONDITIONS	MIN	TYP \dagger	MAX	UNIT
DC Accuracy-Normal Long Sampling						
E_{L}	Integral linearity error	See Note 3	-1.5	± 1	1.5	LSB
E_{D}	Differential linearity error		-1	± 0.8	1.5	LSB
EO	Bipolar zero error	See Note 4	-0.30	± 0.08	0.36	\%FS
$\mathrm{E}_{\mathrm{FS}(+)}$	Positive full scale error	See Note 4	-0.55	± 0.04	0.61	\%FS
EFS(-)	Negative full scale error	See Note 4	-0.30	± 0.13	0.79	\%FS
DC Accuracy-Normal Short Sampling						
E_{L}	Integral linearity error	See Note 3		± 1.8		LSB
E_{D}	Differential linearity error			± 0.8		LSB
EO	Bipolar zero error	See Note 4		± 0.08		\%FS
$\mathrm{EFSS}_{(+)}$	Positive full-scale error	See Note 4		± 0.04		\%FS
$\mathrm{E}_{\text {FS (-) }}$	Negative full-scale error	See Note 4		± 0.13		\%FS
AC Accuracy (see Note 3)-Normal Long Sampling						
SINAD	Signal-to-noise ratio + distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	75	78		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		75		
THD	Total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$		-82	-77	dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		-75		
SNR	Signal-to-noise ratio	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	78	80		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		76		
ENOB	Effective number of bits	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	12.2	12.7		Bits
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		12.2		
SFDR	Spurious free dynamic range	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	78	83		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		75		
	Channel-to-channel isolation	Fixed channel in conversion mode $00, \mathrm{f}_{\mathrm{i}}=35 \mathrm{kHz}$, See Notes 2 and 5		81		dB
Analog input bandwidth		Full power bandwidth, -3 dB		1		MHz
		Full power bandwidth, -1 dB		700		kHz

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 2. This is for a fixed channel in conversion mode 00 or 01 . When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC.
3. Linear error is the maximum deviation from the best fit straight line through the A / D transfer characteristics.
4. Bipolar zero error is the difference between 10000000000000 and the converted output for zero input voltage; positive full-scale error is the difference between 11111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error is the difference between 00000000000000 and the converted output for negative full-scale input voltage (-10 V).
5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately.

TLC3574I N package device AC/DC performance (continued)

	PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text {d }}$	MAX	UNIT
AC Accuracy-Normal Short Sampling					
SINAD	Signal-to-noise ratio + distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	76		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	70		
THD	Total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	-81		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	-74		
SNR	Signal-to-noise ratio	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	78		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	75		
ENOB	Effective number of bits	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	12.3		Bits
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	11.3		
SFDR	Spurious free dynamic range	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	83		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$	75		
	Channel-to-channel isolation	Fixed channel in conversion mode $00, \mathrm{f}_{\mathrm{j}}=35 \mathrm{kHz}$, See Notes 2 and 5	81		dB
Analog input bandwidth		Full power bandwidth, -3 dB	1		MHz
		Full power bandwidth, -1 dB	700		kHz

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 2. This is for a fixed channel in conversion mode 00 or 01 . When switching the channels, additional multiplexer setting time is required to overcome the memory effect of the charge redistribution DAC.
5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately.

TLC2574/78 DW and PW package devices AC/DC performance

PARAMETER		TEST CONDITIONS	MIN	TYP†	MAX	UNIT
DC Accuracy						
E_{L}	Integral linearity error	See Note 6	-1	± 0.5	1	LSB
E_{D}	Differential linearity error		-1	± 0.5	1	LSB
EO	Bipolar zero error	See Note 7	-0.30	± 0.08	0.36	\%FS
$\mathrm{EFSS}_{\text {(+) }}$	Positive full scale error	See Note 7	-0.55	± 0.04	0.61	\%FS
$\mathrm{E}_{\text {FS }(-)}$	Negative full scale error	See Note 7	-0.30	± 0.13	0.79	\%FS

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 6. Linear error is the maximum deviation from the best fit straight line through the A / D transfer characteristics.
7. Bipolar zero error is the difference between 100000000000 and the converted output for zero input voltage; positive full-scale error is the difference between 111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error is the difference between 000000000000 and the converted output for negative full-scale input voltage (-10 V).
8. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately.

TLC3574, TLC3578, TLC2574, TLC2578

5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS
SLAS262C - OCTOBER 2000 - REVISED MAY 2003

TLC2574I N package device AC/DC performance

	PARAMETER	TEST CONDITIONS	MIN	TYPt	MAX	UNIT
DC Accuracy						
E_{L}	Integral linearity error	see Note 6	-1	± 0.7	1	LSB
E_{D}	Differential linearity error		-1	± 0.7	1	LSB
EO	Bipolar zero error	see Note 7	-0.30	± 0.08	0.36	\%FS
$\mathrm{EFSS}_{(+)}$	Positive full-scale error	see Note 7	-0.55	± 0.04	0.61	\%FS
EFS(-)	Negative full-scale error	see Note 7	-0.30	± 0.13	0.79	\%FS
AC Accuracy						
SINAD	Signal-to-noise + distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	70	72		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		70		
THD	Total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$		-82	-76	dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		-75		
SNR	Signal-to-noise ratio	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	70	72		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		71		
ENOB	Effective number of bits	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	11.3	11.7		Bits
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		11.3		
SFDR	Spurious free dynamic range	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{kHz}$	77	83		dB
		$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$		75		
	Analog input bandwidth	Full power bandwidth, -3 dB		1		MHz
		Full power bandwidth, -1 dB		700		kHz
	Channel-to-channel Isolation	Fixed channel in conversion mode $00, \mathrm{f}_{\mathrm{i}}=35 \mathrm{kHz}$, See Note 8		81		dB

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 6. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics.
7. Bipolar zero error is the difference between 100000000000 and the converted output for zero input voltage; positive full-scale error is the difference between 111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error is the difference between 000000000000 and the converted output for negative full-scale input voltage (-10 V).
8. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the converter samples different channels alternately.
timing requirements over recommended operating free-air temperature range, $\mathrm{AV} \mathrm{DD}_{\mathrm{DD}}=5 \mathrm{~V}$, $D V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REFP }}=4 \mathrm{~V}, \mathrm{~V}_{\text {REFM }}=0 \mathrm{~V}$, SCLK frequency $=25 \mathrm{MHz}$ (unless otherwise noted)
SCLK, SDI, SDO, EOC and INT

PARAMETERS			MIN	TYP MAX	UNIT
$\mathrm{t}_{\mathrm{C}(1)}$	Cycle time of SCLK, 25 pF load (see Note 10)	DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$	100		ns
		DV $\mathrm{DD}=5 \mathrm{~V}$	40		
$\mathrm{t}_{\mathrm{w}(1)}$	Pulse width of SCLK High, at $25-\mathrm{pF}$ load		40\%	60\%	$\mathrm{t}_{\mathrm{c}(1)}$
$\operatorname{tr}_{\text {(}}$ ($)$	Rise time for $\overline{\mathrm{INT}}$ and EOC, at 10-pF load	$D V_{\text {DD }}=5 \mathrm{~V}$		6	ns
		$\mathrm{DV}_{\mathrm{DD}}=2.7 \mathrm{~V}$		10	
$\mathrm{t}_{\mathrm{f}}(1)$	Fall time for $\overline{\mathrm{NT}}$ and EOC, at $10-\mathrm{pF}$ load	$D V_{D D}=5 \mathrm{~V}$		6	ns
		DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$		10	
$\mathrm{t}_{\text {su }}(1)$	Setup time, new SDI valid (reaches 90\% final level) before the falling edge of SCLK, at 25-pF load		6	-	ns
$\mathrm{th}_{\mathrm{h}}(1)$	Hold time, old SDI hold (reaches 10\% of old data level) after falling edge of SCLK, at 25-pF load		0	-	ns
$t_{d}(1)$	Delay time, new SDO valid (reaches 90% of final level) after SCLK rising edge, at 10-pF load (see Note 11)	$D V_{D D}=5 \mathrm{~V}$	0	10	ns
		DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$	0	23	
$\mathrm{th}_{\mathrm{h}}(2)$	Hold time, old SDO hold (reaches 10\% of old data level) after SCLK rising edge, at 10-pF load		0	-	ns
td(2)	Delay time, delay from the falling edge of 16th SCLK to EOC falling edge, normal sampling, at 10-pF load		0	6	ns
$\mathrm{t}_{\mathrm{d}(3)}$	Delay time, delay from the falling edge of 16th SCLK to $\overline{\mathrm{NT}}$ falling edge, at 10-pF load (see Notes 11 and 12)		t(conv)	${ }_{\text {t }}$ conv) ${ }^{+6}$	ns

NOTES: 9. The minimum pulse width of SCLK high and low is 12.5 ns .
10. Specified by design
11. For normal short sampling, $\mathrm{t}_{\mathrm{d}(3)}$ is the delay from the falling edge of 16 th SCLK to the falling edge of INT. For normal long sampling, $\mathrm{t}_{\mathrm{d}}(3)$ is the delay from the falling edge of 48 th SCLK to the falling edge of INT. Conversion time, t (conv), is equal to $18 \times$ OSC +15 ns (for TLC3574 and TLC3578) or $13 \times$ OSC +15 ns (for TLC2574 and TLC2578) when using internal OSC as conversion clock, or $72 \times \mathrm{t}_{\mathrm{C}(1)}+15 \mathrm{~ns}$ (for TLC3574 and TLC3578) or $52 \times \mathrm{t}_{\mathrm{C}(1)}+15 \mathrm{~ns}$ (for TLC2574 and TLC2578) when external SCLK is conversion clock source.

[^0]- - - - The dotted line means signal may or may not exist, depending on application. It must be ignored.

Normal sampling mode, $\overline{\mathrm{CS}}$ initiatesthe conversion, FS must be tied to high. When $\overline{\mathrm{CS}}$ is high, SDO is in Hi-Z, all inputs (FS, SCLK, SDI) are inactive and are ignored.

Figure 1. Critical Timing for SCLK, SDI, SDO, EOC and INT

TLC3574，TLC3578，TLC2574，TLC2578
 5－V ANALOG，3－／5－V DIGITAL，14－／12－BIT，200－KSPS，4－／8－CHANNEL
 SERIAL ANALOG－TO－DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

SLAS262C－OCTOBER 2000 －REVISED MAY 2003
timing requirements over recommended operating free－air temperature range，$A V_{D D}=5 \mathrm{~V}$ ， $D V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REFP }}=4 \mathrm{~V}, \mathrm{~V}_{\text {REFM }}=0 \mathrm{~V}$ ，SCLK frequency $=25 \mathrm{MHz}$（unless otherwise noted）（continued）
$\overline{\mathrm{CS}}$ trigger

PARAMETERS			MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {su }}(2)$	Setup time，$\overline{\mathrm{CS}}$ falling edge before SCLK rising edge，at $25-\mathrm{pF}$ load		12			ns
$\mathrm{t}_{\mathrm{d}}(4)$	Delay time，delay time from the falling edge of 16 th SCLK to $\overline{\mathrm{CS}}$ rising edge，at 25 pF load （see Note 12）		5			ns
$\mathrm{t}_{\mathrm{w}}(2)$	Pulse width of $\overline{\mathrm{CS}}$ high，at $25-\mathrm{pF}$ load		1			$\mathrm{t}_{\mathrm{c}(1)}$
$\mathrm{t}_{\mathrm{d}(5)}$	Delay time，delay from $\overline{C S}$ falling edge to MSB of SDO valid（reaches 90% final level），at 10 pF load	$D V_{D D}=5 \mathrm{~V}$	0		12	ns
		DV $\mathrm{DD}=2.7 \mathrm{~V}$	0		$30 \dagger$	
$\mathrm{t}_{\mathrm{d}(6)}$	Delay time，delay from $\overline{\mathrm{CS}}$ rising edge to SDO 3 －state，at $10-\mathrm{pF}$ load		0		6	ns
$\mathrm{t}_{\mathrm{d}}(7)$	Delay time，delay from $\overline{\mathrm{CS}}$ falling edge to $\overline{\mathrm{NT}}$ rising edge，at $10-\mathrm{pF}$ load	$D V_{D D}=5 \mathrm{~V}$	0		6	ns
		$D V_{\text {DD }}=2.7 \mathrm{~V}$	0		$16 \dagger$	

\dagger Specified by design
NOTE 12：For normal short sampling， $\mathrm{t}_{\mathrm{d}(4)}$ is the delay time from the falling edge of 16 th SCLK to $\overline{\mathrm{CS}}$ rising edge．
For normal long sampling， $\mathrm{t}_{\mathrm{d}(4)}$ is the delay time from the falling edge of 48th SCLK to $\overline{\mathrm{CS}}$ rising edge．

[^1]Figure 2．Critical Timing for $\overline{\mathrm{CS}}$ Trigger
timing requirements over recommended operating free-air temperature range, $\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$, $D V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REFP }}=4 \mathrm{~V}, \mathrm{~V}_{\text {REFM }}=0 \mathrm{~V}$, SCLK frequency $=25 \mathrm{MHz}$ (unless otherwise noted) (continued)

FS trigger

PARAMETERS			MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{d}}(8)$	Delay time, delay from $\overline{\mathrm{CS}}$ falling edge to FS rising edge at $25-\mathrm{pF}$ load		0.5			$\mathrm{t}_{\mathrm{C}(1)}$
$\mathrm{t}_{\text {su }}(3)$	Setup time, FS rising edge before SCLK falling edge at $25-\mathrm{pF}$ load		$0.25 \times \mathrm{t}_{\mathrm{c}(1)}$		$0.5 \times \mathrm{t}_{\mathrm{c}(1)}+5$	ns
$\mathrm{t}_{\mathrm{w}}(3)$	Pulse width of FS high, at $25-\mathrm{pF}$ load		$0.75 \times \mathrm{t}_{\mathrm{c}}(1)$	$\mathrm{t}_{\mathrm{c}(1)}$	$1.25 \times \mathrm{t}_{\mathrm{c}}(1)$	ns
$\mathrm{t}_{\mathrm{d}}(9)$	Delay time, delay from FS rising edge to MSB of SDO valid (reaches 90% final level), at $10-\mathrm{pF}$ load	$D V_{D D}=5 \mathrm{~V}$			26	ns
		$\mathrm{DV}_{\mathrm{DD}}=2.7 \mathrm{~V}$			30†	
$\mathrm{t}_{\mathrm{d}}(10)$	Delay time, delay from FS rising edge to next FS rising edge, at $25-\mathrm{pF}$ load		Required sampling time + conversion time			ns
$t_{d(11)}$	Delay time, delay from FS rising edge to $\overline{\mathrm{NT}}$ rising edge, at 10-pF load	$D V_{D D}=5 \mathrm{~V}$	0		6	ns
		DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$	0		$16 \dagger$	

\dagger Specified by design

- ー ー - The dotted line means signal may or may not exist, depending on application. It must be ignored.

Normal sampling mode, FS initiates the conversion, $\overline{\mathrm{CS}}$ can be tied to low. When $\overline{\mathrm{CS}}$ is high, SDO is in Hi-Z, all inputs (FS, SCLK, SDI) are inactive and are ignored.

Figure 3. Critical Timing for FS Trigger

TLC3574, TLC3578, TLC2574, TLC2578
 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

SLAS262C - OCTOBER 2000 - REVISED MAY 2003
timing requirements over recommended operating free-air temperature range, $A V_{D D}=5 \mathrm{~V}$, $D V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REFP }}=4 \mathrm{~V}, \mathrm{~V}_{\text {REFM }}=0 \mathrm{~V}$, SCLK frequency $=25 \mathrm{MHz}$ (unless otherwise noted) (continued)

CSTART trigger

PARAMETERS		MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{d}}(12)$	Delay time, delay from $\overline{\text { CSTART }}$ rising edge to EOC falling edge, at $10-\mathrm{pF}$ load	0	15	21	ns
$\mathrm{t}_{\mathrm{w}}(4)$	Pulse width of CSTART low, at $25-\mathrm{pF}$ load (see Note 13)	${ }^{\text {t }}$ (sample_reg) ${ }^{\text {a }} 0.4$			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d}}(13)$	Delay time, delay from $\overline{\text { CSTART }}$ rising edge to $\overline{\text { CSTART }}$ falling edge, at $25-\mathrm{pF}$ load (see Note 13 and 14)	${ }^{t}$ (conv) ${ }^{15}$			ns
$\mathrm{t}_{\mathrm{d}}(14)$	Delay time, delay from $\overline{\text { CSTART }}$ rising edge to $\overline{\mathrm{INT}}$ falling edge, at $10-\mathrm{pF}$ load (see Note 13 and 14)	${ }^{t}($ conv $)+15$		${ }^{\text {t }}$ (conv) ${ }^{\text {2 }}$ 21	ns
$\mathrm{t}_{\mathrm{d}}(15)$	Delay time, delay from $\overline{\mathrm{CSTART}}$ falling edge to $\overline{\mathrm{INT}}$ rising edge, at $10-\mathrm{pF}$ load	0		6	ns

NOTES: 13. The pulse width of the CSTART must be not less than the required sampling time.
The delay from CSTART rising edge to following CSTART falling edge must be not less than the required conversion time. The delay from $\overline{\text { CSTART }}$ rising edge to the $\overline{\mathrm{INT}}$ falling edge is equal to the conversion time.
14. The maximum rate of SCLK is 25 MHz for normal long sampling and 10 MHz for normal short sampling.

Figure 4. Critical Timing for Extended Sampling (CSTART Trigger)

TLC3574, TLC3578, TLC2574, TLC2578 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

circuit description

converter

The converters include a successive-approximation ADC utilizing a charge redistribution DAC. Figure 5 shows a simplified block diagram of the ADC. The sampling capacitor acquires the signal on Ain during the sampling period. When the conversion process starts, the control logic directs the charge redistribution DAC to add and subtract fixed amounts of charge from the sampling capacitor to bring the comparator into a balanced condition. When balanced, the conversion is complete and the ADC output code is generated.

Figure 5. Simplified Block Diagram of the Successive-Approximation System

analog input range and internal test voltages

TLC3578 and TLC2578 have 8 analog inputs (TLC3574 and TLC2574 have 4) and three test voltages. The inputs are selected by the analog multiplexer according to the command entered (see Table 1). The input multiplexer is a break-before-make type to reduce input-to-input noise injection resulting from channel switching.

All converters are specified for bipolar input range of $\pm 10 \mathrm{~V}$. The input signal is scaled to $0-4 \mathrm{~V}$ at the SAR ADC input via the bipolar scaling circuit (see the functional block diagram and the equivalent analog input circuit): -10 V to $0 \mathrm{~V}, 10 \mathrm{~V}$ to 4 V , and 0 V to 2 V .

analog input mode

Two input signal modes can be selected: single-ended input and pseudodifferential input.

Figure 6. Simplified Pseudodifferential Input Circuit
Pseudodifferential input refers to the negative input, Ain(-). Its voltage is limited in magnitude to $\pm 1 \mathrm{~V}$. The input frequency limit of $\operatorname{Ain}(-)$ is the same as the positive input Ain(+). This mode is normally used for ground noise rejection or dc offset.

TLC3574, TLC3578, TLC2574, TLC2578
 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL
 SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS
 SLAS262C - OCTOBER 2000 - REVISED MAY 2003

analog input mode (continued)
When pseudodifferential mode is selected, only two analog input channel pairs are available for the TLC3574 and TLC2574 and four channel pairs for the TLC3578 and TLC2578, because half the inputs are used as the negative input.

Single Ended

Pseudodifferential

\dagger TLC3578 and TLC2578
\ddagger TLC3574 and TLC2574
Figure 7. Pin Assignment of Single-Ended Input vs Pseudodifferential Input
reference voltage
The external reference is applied to the reference-input pins (REFP and REFM). REFM should connect to analog ground. REFP is 4 V . Install decoupling capacitors ($10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$) between REFP and REFM, and compensation capacitors ($0.1 \mu \mathrm{~F}$) between COMP and AGND.
ideal conversion characteristics
Bipolar Analog Input Voltage

TLC3574, TLC3578, TLC2574, TLC2578 5-V ANALOG, 3-/5-V DIGITAL, 14-12-BIT, 200-KSPS, 4-88-CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

circuit description (continued)

data format

INPUT DATA FORMAT (BINARY)	
MSB	LSB
$\mathrm{ID}[15: 12]$	ID[11:0]
Command	Configuration data field or filled with zeros

OUTPUT DATA FORMAT (READ CONVERSION/FIFO)			
TLC3574 and TLC3578		TLC2574 and TLC2578	
MSB	LSB	MSB	LSB
OD[15:2]	OD[1:0]	OD[15:4]	OD[3:0]
Conversion result	Don't Care	Conversion result	Don't Care

14-BIT (TLC3574/78)
Bipolar Input, Offset Binary: $($ BOB $)$
Negative full scale code $=$ VFS $-=0000 \mathrm{~h}, \mathrm{Vcode}=-10 \mathrm{~V}$
Midscale code $=$ VBZS $=2000 \mathrm{~h}, \mathrm{Vcode}=0 \mathrm{~V}$
Positive full scale code $=$ VFS $+=3 F F F \mathrm{~V}, \mathrm{Vcode}=10 \mathrm{~V}-1 \mathrm{LSB}$
Bipolar Input, Binary 2s Complement: $($ BTC $)$
Negative full scale code $=$ VFS $-=2000 \mathrm{~h}, \mathrm{Vcode}=-10 \mathrm{~V}$
Midscale code $=$ VBZS $=0000 \mathrm{~h}, \mathrm{Vcode}=0 \mathrm{~V}$
Positive full scale code $=$ VFS $+=1$ FFFh, Vocde $=10 \mathrm{~V}-1 \mathrm{LSB}$

```
12-BIT (TLC2574/78)
Bipolar Offset Binary Output: (BOB)
Negative full scale code = 000h, Vcode = -10 V
Midscale code = 800h, Vcode = 0 V
Positive full scale code = FFFh, Vcode = 10 V - 1 LSB
Bipolar Input, Binary 2s Complement: (BTC)
Negative full scale code = 800 h, Vcode = -10 V
Midscale code = 000h, Vcode = 0 V
Positive full scale code = 7FFh, Vocde = 10 V - 1 LSB
```


operation description

The converter samples the selected analog input signal, then converts the sample into digital output according to the selected output format. The converter has four digital input pins (SDI, SCLK, $\overline{C S}$, and FS) and one digital output pin (SDO) to communicate with the host device. SDI is a serial data input pin, SDO is a serial data output pin, and SCLK is a serial clock from host device. This clock is used to clock the serial data transfer. It can also be used as conversion clock source (see Table 2). $\overline{\mathrm{CS}}$ and FS are used to start the operation. The converter has a CSTART pin for external hardware sampling and conversion trigger, and INT/EOC for interrupt purpose.

device initialization

After power on, the status of EOC/INT is initially high, and the input data register is set to all zeros. The device must be initialized before starting conversion. The initialization procedure depends on the working mode. The first conversion result must be ignored after power on.
Hardware Default Mode: Nonprogrammed mode, default. After power on, two consecutive active cycles initiated by $\overline{\mathrm{CS}}$ or FS put the device into hardware default mode if $S D I$ is tied to $\mathrm{DV}_{\mathrm{DD}}$. Each of these cycles must last 16 SCLK at least. These cycles initialize the converter and load CFR register with 800 h (bipolar offset binary output code, normal long sampling, internal OSC, single-ended input, one-shot conversion mode, and EOC/INT pin as INT). No additional software configuration is required.

Software Programmed Mode: Programmed. If the converter needs to be configured, The host must write A 000 H into converters first after power on, then performs the WRITE CFR operation to configure the device.

start of operation cycle

Each operation consists of several actions that the converter takes according to the command from the host. The operation cycle includes three periods: command period, sampling period, and conversion period. In the command period, the device decodes the command from host. In the sampling period, the device samples the selected analog signal according to the command. In the conversion period, the sample of the analog signal is converted to digital format. The operation cycle starts from the command period, which is followed by one or several sampling and conversion periods (depending on the setting), and finishes at the end of last conversion period. The operation is initiated by the falling edge of $\overline{\mathrm{CS}}$ or the rising edge of FS .

start of operation cycle (continued)

$\overline{\mathrm{CS}}$ initiates the operation: If FS is high at the falling edge of $\overline{\mathrm{CS}}$, the falling edge of $\overline{\mathrm{CS}}$ initiates the operation. When $\overline{\mathrm{CS}}$ is high, SDO is in high-impedance state, the signals on SDI are ignored, and SCLK is disabled to clock the serial data. The falling edge of $\overline{C S}$ resets the internal 4 -bit counter and enables SDO, SDI, and SCLK. The MSB of the input data via SDI, ID(15), is latched at the first falling edge of SCLK following the falling edge of $\overline{C S}$. The MSB of output data from SDO, OD(15), is valid before this SCLK falling edge. This mode works as an SPI interface when $\overline{\mathrm{CS}}$ is used as SLAVE SELECT ($\overline{\mathrm{SS}}$). It also can be used as normal DSP interface if $\overline{\mathrm{CS}}$ connects to the frame sync output of the host DSP. FS must be tied to high in this mode.
FS initiates the operation: If $F S$ is low at the falling edge of $\overline{C S}$, the rising edge of FS initiates the operation. It resets the internal 4-bit counter, and enables SDI, SDO, and SCLK. The ID(15) is latched at the first falling edge of SCLK following the falling edge of FS. OD(15) is valid before this falling edge of SCLK. This mode is used to interface the converter with a serial port of the host DSP. The FS of the device is connected to the frame sync of the host DSP. When several devices are connected to one DSP serial port, $\overline{\mathrm{CS}}$ is used as chip select to allow the host DSP to access each device individually. If only one converter is used, $\overline{C S}$ can be tied to low.
After the initiation, the remaining SDI data bits (if any) are shifted in and the remaining bits of SDO (if any) are shifted out at the rising edge of SCLK. The input data are latched at the falling edge of SCLK, and the output data are valid before the falling edge of SCLK. After the 4 -bit counter reaches 16, the SDO goes to high-impedance state. The output data from SDO is the previous conversion result in one shot conversion mode, or the contents in the top of FIFO when FIFO is used (refer to Figure 20).

command period

After the rising edge of FS (FS triggers the operation) or the falling edge of $\overline{\mathrm{CS}}$ ($\overline{\mathrm{CS}}$ triggers the operation), SDI, SDO, and SCLK are enabled. The first four SCLK clocks form the command period. The four MSBs of input data, ID[15:12], are shifted in and decoded. These bits represent one of the 4-bit commands from the host, which defines the required operation (see Table 1). The four MSB of output, OD[15:12], are also shifted out via SDO during this period.
The commands are SELECT/CONVERSION, WRITE CFR, FIFO READ, and HARDWARE DEFAULT. The SELECT/CONVERSION command includes SELECT ANALOG INPUT and SELECT TEST commands. All cause a select/conversion operation. They select the analog signal being converted, and start the sampling/conversion process after the selection. WRITE CFR causes the configuration operation, which writes the device configuration information into CFR register. FIFO READ reads the contents in FIFO. Hardware default mode sets the device into the hardware default mode.
After the command period, the remaining 12 bits of SDI are written into the CFR register to configure the device if the command is WRITE CFR. Otherwise, these bits are ignored. The configuration is retained in the autopower-down state. If the SCLK stops (while $\overline{\mathrm{CS}}$ remains low) after the first eight bits are entered, the next eight bits can be entered after the SCLK resumes. The data on SDI are ignored after the 4-bit counter counts to 16 (falling edge of SCLK) or the low-to-high transition of $\overline{\mathrm{CS}}$, whichever happens first.
The remaining 12 bits of output data are shifted out from SDO if the command is SELECT/CONVERSION or FIFO READ. Otherwise, the data on SDO must be ignored. In any case, the SDO goes into high-impedance state after the 4 -bit counter counts to 16 (falling edge of SCLK) or the low-to-high transition of $\overline{\mathrm{CS}}$, whichever happens first.

Table 1. Command Set (CMR)

SDI Bit D[15:12]		TLC3578 / 2578 COMMAND	TLC3574 / 2574 COMMAND
BINARY	HEX		
0000b	Oh	SELECT analog input channel 0	SELECT analog input channel 0
0001b	1h	SELECT analog input channel 1	SELECT analog input channel 1
0010b	2 h	SELECT analog input channel 2	SELECT analog input channel 2
0011b	3h	SELECT analog input channel 3	SELECT analog input channel 3
0100b	4h	SELECT analog input channel 4	SELECT analog input channel 0
0101b	5 h	SELECT analog input channel 5	SELECT analog input channel 1
0110b	6h	SELECT analog input channel 6	SELECT analog input channel 2
0111b	7h	SELECT analog input channel 7	SELECT analog input channel 3
1000b	8h	Reserved	
1001b	9h	Reserved	
1010b	Ah	WRITE CFR, the last 12 bits of SDI are written into CFR. This command resets FIFO.	
1011b	Bh	SELECT TEST, voltage = (REFP+REFM)/2 (see Note 15)	
1100b	Ch	SELECT TEST, voltage = REFM (see Note 16)	
1101b	Dh	SELECT TEST, voltage = REFP (see Note 17)	
1110b	Eh	FIFO READ, FIFO contents is shown on SDO; (see Note 18)	
1111b	Fh	HARDWARE DEFAULT mode, CFR is loaded with 800h	

NOTES: 15. The output code $=$ mid-scale code + bipolar zero error
16. The output code $=$ negative full-scale code + negative full-scale error
17. The output code $=$ positive full-scale code + positive full-scale error
18. The TLC3574 and TLC3578, OD [15:2] is conversion result, OD [1:0] don't care The TLC2574 and TLC2578, OD [15:4] is conversion result, OD [3:0] don't care

TLC3574, TLC3578, TLC2574, TLC2578
 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL
 SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

SLAS262C - OCTOBER 2000 - REVISED MAY 2003
detailed description (continued)
Table 2. Configuration Register (CFR) Bit Definition

sampling period

The sampling period follows the command period. The selected signal is sampled during this time. The device has three different sampling modes: normal short mode, normal long mode, and extended mode.

Normal Short Sampling Mode: Sampling time is controlled by the SCLK and lasts 12 SCLK periods. At the end of sampling, the converter automatically starts the conversion period. After the configuration, the normal sampling starts automatically after the falling edge of fourth SCLK that follows the falling edge of $\overline{\mathrm{CS}}$ if $\overline{\mathrm{CS}}$ triggers the operation, or follows the rising edge of FS if FS initiates the operation, except the FIFO READ and WRITE CFR commands.

TLC3574, TLC3578, TLC2574, TLC2578 5-V ANALOG, 3-/5-V DIGITAL, 14-12-BIT, 200-KSPS, 4-/8-CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

SLAS262C - OCTOBER 2000 - REVISED MAY 2003

sampling period (continued)

Normal Long Sampling Mode: It is the same as normal short sampling, except that it lasts 44 SCLKs periods to complete the sampling.

Extended Sampling Mode: The external signal, CSTART, triggers sampling and conversion. SCLK is not used for sampling. SCLK is also not needed for conversion if the internal conversion clock is selected. The falling edge of CSTART begins the sampling of the selected analog input. The sampling continues while CSTART is low. The rising edge of CSTART ends the sampling, and starts the conversion (with about 15 ns internal delay). The occurrence of $\overline{\text { CSTART }}$ is independent of SCLK clock, $\overline{\mathrm{CS}}$, and FS. However, the first $\overline{\text { CSTART }}$ cannot occur before the rising edge of the 11th SCLK. In other words, the falling edge of first CSTART can happen at or after the rising edge of 11th SCLK, but not before. The device enters the extended sampling mode at the falling edge of CSTART and exits this mode once $\overline{\text { CSTART }}$ goes to high followed by two consecutive falling edges of $\overline{C S}$ or two consecutive rising edges of FS (such as one read data operations followed by WRITE CFR). The first $\overline{\mathrm{CS}}$ or FS does not cause conversion. Extended mode is used when a fast SCLK is not suitable for sampling, or when extended sampling period is needed to accommodate different input signal source impedance.

conversion period

The conversion period is the third portion of the operation cycle. It begins after the falling edge of 16th SCLK for the normal short sampling mode, or after the falling edge of 48th SCLK for the normal long sampling, or on the rising edge of CSTART (with 15 ns internal delay) for the extended sampling mode.

The conversion takes 18 conversion clocks plus 15 ns for TLC3574/78, 13 conversion clocks plus 15 ns for the TLC2574/78. The conversion clock source can be an internal oscillator, OSC, or an external clock, SCLK. The conversion clock is equal to the internal OSC if the internal clock is used, or equal to four SCLKs when the external clock is programmed. To avoid the premature termination of conversion, enough time for the conversion must be allowed between consecutive triggers. $\overline{\mathrm{EOC}}$ goes to low at the beginning of the conversion period and goes to high at the end of the conversion period. INT goes to low at the end of this period, too.

conversion mode

Four different conversion modes (mode 00, 01, 10, 11) are available. The operation of each mode is slightly different, depending on how the converter samples and what host interface is used. Do not mix different types of triggers throughout the repeat or sweep operations.
ONE SHOT Mode (Mode 00): Each operation cycle performs one sampling and one conversion for the selected channel. FIFO is not used. When $\overline{\mathrm{EOC}}$ is selected, it is generated while the conversion period is in progress. Otherwise, $\overline{\text { INT }}$ is generated after the conversion is done. The result is output through the SDO pin during the next select/conversion operation.
REPEAT Mode (Mode 01): Each operation cycle performs multiple samplings and conversions for a fixed channel selected according to the 4-bit command. The results are stored in the FIFO. The number of samples to be taken equals the FIFO threshold programmed via D[1:0] in CFR register. Once the threshold is reached, INT is generated, and the operation ends. If the FIFO is not read after the conversions, the data is replaced in the next operation. The operation of this mode starts with the WRITE CFR commands to set conversion mode 01, then the SELECT/CONVERSION commands, followed by a number of samplings and conversions of the fixed channel (triggered by $\overline{\mathrm{CS}}, \mathrm{FS}$, or $\overline{\mathrm{CSTART}}$) until the FIFO threshold is hit. If $\overline{\mathrm{CS}}$ or FS triggers the sampling, the data on SDI must be any one of the SELECT CHANNEL commands. However, this data is a dummy code for setting the converter in conversion state. It does not change the existing channel selection set at the start of the operation until the FIFO is full. After the operation finishes, the host can read the FIFO, then reselect the channel and start the next REPEAT operation again; or immediately reselect the channel and start next REPEAT operation (by issuing $\overline{\mathrm{CS}}$ or FS or $\overline{\text { CSTART }}$); or reconfigure the converter then start new operation according to the new setting. If CSTART triggers the sampling, host can also immediately start the next REPEAT operation (on the current channel) after the FIFO is full. Besides, if FS initiates the operation and CSTART triggers the samplings and conversions, $\overline{\mathrm{CS}}$ must not toggle during the conversion. This mode allows the host to set up the converter, continue monitoring a fixed input, and to get a set of samples as needed.

TLC3574, TLC3578, TLC2574, TLC2578
 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS
 SLAS262C - OCTOBER 2000 - REVISED MAY 2003

conversion mode (continued)
SWEEP Mode (Mode 10): During each operation, all of the channels listed in the SWEEP SEQUENCE (D[4:3] of CFR register) are sampled and converted one time according to the programmed sequence. The results are stored in the FIFO. When the FIFO threshold is reached, an interrupt (INT) is generated, and the operation ends. If the FIFO threshold is reached before all of the listed channels are visited, the remaining channels are ignored. This allows the host to change the sweep sequence length. The mode 10 operation starts with the WRITE CFR command to set the sweep sequence. The following triggers ($\overline{\mathrm{CS}}, \mathrm{FS}$, or $\overline{\mathrm{CSTART}}$, depending on the interface) start the samplings and conversions of the listed channels in sequence until the FIFO threshold is hit. If $\overline{\mathrm{CS}}$ or FS starts the sampling, the SDI data must be any one of the SELECT commands to set the converter in conversion state. However, this command is a dummy code. It does not change the existing conversion sequence. After the FIFO is full, the converter waits for FIFO READ. It does nothing before the FIFO READ or WRITE CFR command is issued. The host must read the FIFO completely or WRITE CFR. If CSTART triggers the samplings, the host must issue an extra SELECT/CONVERSION command (select any channel) via CS or FS after the FIFO READ or WRITE CFR. This extra period is named the arm period and is used to set the converter into conversion state, but does not affect the existing conversion sequence. If FS initiates the operation and $\overline{\text { CSTART }}$ triggers the samplings and conversions, $\overline{\mathrm{CS}}$ must not toggle during the conversion.

REPEAT SWEEP Mode (Mode 11): This mode works in the same way as mode 10, except that it is not necessary to read the FIFO before the next operation after the FIFO threshold is hit. The next sweep can repeat immediately, but the contents in the FIFO are replaced by the new results. The host can read the FIFO completely, then issue next SWEEP; or repeat the SWEEP immediately (with the existing sweep sequence) by issuing sampling/conversion triggers ($\overline{\mathrm{CS}}, \mathrm{FS}$ or $\overline{\mathrm{CSTART}}$); or change the device setting with the WRITE CFR command.

The memory effect of charge redistribution DAC exists when the mux switches from one channel to another. This degrades the channel-to-channel isolation if the channel changes after each conversion. For example, in mode 10 and 11 , the isolation is about 70 dB for the sweep sequence $0-1-2-3-4$. The memory effect can be reduced by increasing the sampling time or using sweep sequence $0-0-2-2-4-4-6-6$ and ignoring the first sample of each channel.
operation cycle timing

$\overline{\text { CSTAR }}$ (For Extended Sampling) occurs at or after the rising edge of eleventh SCLK

\dagger Non JEDEC terms used.
$\ddagger 18$ internal OSC or 72 SCLK for TLC3574 and TLC3578,
13 internal OSC or 52 SCLK for TLC2574 and TLC2578.
§ For TLC3574 and TLC3578, 14-bits are result of previous conversion, last two bits are don't care. For TLC2574 and TLC2578, 12-bits are result of previous conversion, last four bits are don't care.

TLC3574, TLC3578, TLC2574, TLC2578
 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL
 SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

SLAS262C - OCTOBER 2000 - REVISED MAY 2003
operation cycle timing (continued)
After the operation finished, the host has several choices. Table 3 summarizes of operation options.
Table 3. Operation Options

MODE	CONVERSION IS INITIATED BY		
	$\overline{\mathrm{CS}}$	FS	CSTART
00	1. Issue new Select/Read operation to read data and start new conversion. 2. Reconfigure the device.	1. Issue new Select/Read operation to read data and start new conversion. 2. Reconfigure the device.	1. Issue new CSTART to start next conversion; old data lost. 2. Issue new Select/Read operation to read data-Issue new CSTART to start new conversion. 3. Reconfigure the device.
01	1. Read FIFO-Select Channel-Start new conversion. Channel must be selected after FIFO READ. 2. Select Channel-Start new conversion (old data lost) 3. Configure device again.	1. Read FIFO-Select Channel-Start new conversion. Channel must be selected after FIFO READ. 2. Select Channel-Start new conversion (old data lost) 3. Configure device again.	1. Read FIFO-Select channel-Start new conversion. Channel must be selected after FIFO READ. 2. Start new conversion (old data lost) with existing setting. 3. Configure device again.
10	1. Read FIFO-Start new conversion with existing setting. 2. Configure device-New conversion (old data lost)	1. Read FIFO-Start new conversion with existing setting. 2. Configure device-New conversion (old data lost)	1. Read FIFO—Arm Period-Start new conversion with existing setting 2. Configure device-Arm Period-New conversion (old data lost)
11	1. Read FIFO-Start new conversion with existing setting. 2. Start new conversion with the existing setting. 3. Configure device-Start new conversion with new setting.	1. Read FIFO-Start new conversion with existing setting 2. Start new conversion with the existing setting. 3. Configure Device-Start new conversion with new setting.	1. Read FIFO—Arm Period—Start new Conversion with existing setting 2. Start new conversion with existing setting. (old data lost) 3. Configure device-Arm Period-New conversion with new setting.

operation timing diagrams

The nonconversion operation includes FIFO READ and WRITE CFR. Both do not perform a conversion. The conversion operation performs one of four types of conversion: mode 00, 01, 10 and 11
write cycle (WRITE CFR Command): Write cycle does not generate EOC or $\overline{\mathrm{INT}}$, nor does it carry out any conversion.

Figure 8. Write Cycle, FS Initiates Operation
operation timing diagrams (continued)

- - - - The dotted lines means signal may or may not exist.
$\square \backslash$ Don't Care
Figure 9. Write Cycle, $\overline{\mathrm{CS}}$ Initiates Operation, $\mathrm{FS}=1$
FIFO READ Operation: When the FIFO is used, the first command after $\overline{\text { NT }}$ is generated is assumed to be the FIFO READ. The first FIFO content is output immediately before the command is decoded. If this command is not FIFO READ, the output is terminated. Using more layers of FIFO reduces the time taken to read multiple conversion results, because the read cycle does not generate an EOC or INT, nor does it make a data conversion. Once the FIFO is read, the entire contents in FIFO must be read out. Otherwise, the remaining data is lost.

- - - - The dotted lines means signal may or may not exist.

OD[15:2] (for TLC3574/78) or OD[15:4](for TLC2574/78) is the FIFO content.
$\square /$ Don't Care
Figure 10. FIFO Read Cycle, CS Initiates Operation, FS = 1

TLC3574, TLC3578, TLC2574, TLC2578

5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS
SLAS262C - ОСTOBER 2000 - REVISED MAY 2003
conversion operation

Figure 11. Mode 00, $\overline{\text { CS }}$ Initiates Operation

Figure 12. Mode 00, FS Initiates Operation

conversion operation (continued)

- - Possible Signal

Select Channel
Don't Care
Figure 13. Mode 00, CSTART Triggers Sampling/Conversion, FS Initiates Select

Figure 14. Mode 01, FS Initiates Operations

Figure 15. Mode 01, CSTART Triggers Samplings/Conversions

TLC3574, TLC3578, TLC2574, TLC2578
 5-V ANALOG, 3-/5-V DIGITAL, 14-/12-BIT, 200-KSPS, 4-/8-CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH $\pm 10-\mathrm{V}$ INPUTS

SLAS262C - OCTOBER 2000 - REVISED MAY 2003

conversion operation (continued)

Read FIFO After FIFO Threshold Is Hit

Command = Configure Write for Mode 10, FIFO
Threshold = 1/2 Full, Sweep Sequence: 0-1-2-3
** COMMAND = Select Any Channel
COMMAND = Read FIFO

Figure 16. Mode 10, FS Initiates Operations

Figure 17. Mode 10, CSTART Initiates Operations

Figure 18. Mode 11, $\overline{\mathrm{CS}}$ Initiates Operations

conversion operation (continued)

\square Don't Care
*** Command = Configure Write for Mode 11, FIFO
** Threshold = $1 / 2$ Full, Sweep Sequence: $0-0-2-2$
** COMMAND = Select Any Channel

* \quad COMMAND $=$ Read FIFO
- - - Possible Signal

Figure 19. Mode 11, CSTART Triggers Samplings/Conversions, FS Initiates SELECT Operation

conversion clock and conversion speed

The conversion clock source can be the internal OSC, or the external clock, SCLK. The conversion clock is equal to the internal OSC if the internal clock is used, or equal to SCLK/4 when the external clock is selected. It takes 18 conversion clocks plus 15 ns to finish the conversion for TLC3574 and TLC3578, and 13 conversion clocks plus 15 ns for the TLC2574 and TLC2578. If the external clock is selected, the conversion time (not including sampling time) is $18 \mathrm{X}(4 / \mathrm{f}$ SCLK $)+15 \mathrm{~ns}$ for TLC3574 and TLC3578 and $13 \mathrm{X}(4 / \mathrm{f}$ SCLK $)+15 \mathrm{~ns}$ for TLC2574 and TLC2578. Table 4 shows the maximum conversion rate (including sampling time) when the analog input source resistor is 25Ω.

Table 4. Maximum Conversion Rate

DEVICE	SAMPLING MODE	CONVERSION CLK		$\begin{aligned} & \text { MAX SCLK } \\ & (\mathrm{MHz}) \end{aligned}$	CONVERSION TIME ($\mu \mathrm{s}$)	$\begin{aligned} & \text { RATE } \\ & \text { (KSPS) } \end{aligned}$
$\begin{aligned} & \text { TLC3574/78 } \\ & \text { (Rs = } 25 \Omega \text {) } \end{aligned}$	SHORT (16 SCLK)	External	SCLK/4	10	8.815	113.4
	LONG (48 SCLK)	External	SCLK/4	25	4.815	207.7
	SHORT (16 SCLK)	Internal	6.5 MHz	10	4.384	228.0
	LONG (48 SCLK)	Internal	6.5 MHz	25	4.705	212.5
$\begin{aligned} & \text { TLC2574/78 } \\ & (\text { Rs }=25 \Omega) \end{aligned}$	SHORT (16 SCLK)	Exernal	SCLK/4	10	6.815	146.7
	LONG (48 SCLK)	External	SCLK/4	25	4.015	249.1
	SHORT (16 SCLK)	Internal	6.5 MHz	10	3.615	276.6
	LONG (48 SCLK)	Internal	6.5 MHz	25	3.935	254.1

FIFO operation

FIFO Threshold Pointer
Figure 20. FIFO Structure

FIFO operation (continued)

The device has an 8-level FIFO that can be programmed for different thresholds. An interrupt is sent to the host after the preprogrammed threshold is reached. The FIFO is used to store conversion results in mode 01, 10, and 11 , from either a fixed channel or a series of channels according to the preprogrammed sweep sequence. For example, an application may require eight measurements from channel 3 . In this case, if the threshold is set to full, the FIFO is filled with 8 data conversions sequentially taken from channel 3. Another application may require data from channel $0,2,4$, and 6 in that order. The threshold is set to $1 / 2$ full and sweep sequence is selected as $0-2-4-6-0-2-4-6$. An interrupt is sent to the host as soon as all four data conversions are in the FIFO. FIFO is reset after power on and WRITE CFR operation. The contents of the FIFO are retained during autopower down.

Autopower-Down Mode: The device enters the autopower-down state at the end of conversion. The power current is about $20 \mu \mathrm{~A}$ if SCLK stops, and $120 \mu \mathrm{~A}$ maximum if SCLK is running. Active $\overline{\mathrm{CS}}$, FS, or $\overline{\text { CSTART }}$ resumes the device from power-down state. The bipolar input current is not turned off when device is in power-down mode.
The configuration register is not affected by the power-down mode but the SWEEP operation sequence must be started over again. All FIFO contents are retained in power-down mode.

TYPICAL CHARACTERISTICS

INTEGRAL NONLINEARITY
vs
DIGITAL OUTPUT CODE

Figure 21

DIFFERENTIAL NONLINEARITY
vs
DIGITAL OUTPUT CODE

Figure 22

TYPICAL CHARACTERISTICS

Figure 23

BIPOLAR ZERO ERROR, POSITIVE FULL SCALE ERROR AND NEGATIVE FULL SCALE ERROR (\% FS)
vs
FREE-AIR TEMPERATURE

Figure 24

FFT OF SNR (dB)

Figure 25

TYPICAL CHARACTERISTICS

Figure 26

TOTAL HARMONIC DISTORTION
vs
INPUT SIGNAL FREQUENCY

Figure 28

Figure 27

Figure 29

TYPICAL CHARACTERISTICS

Figure 30

SUPPLY CURRENT AT AUTOPOWER DOWN
vs
FREE-AIR TEMPERATURE

Figure 31

APPLICATION INFORMATION

interface with host

Figure 32 shows the examples of the interface between a single converter and host DSP (TMS320C54x ${ }^{\text {TM }}$ DSP) or microprocessor. The C54x is set as FWID=1 (active pulse width=1CLK); (R/X) DATDLY=1 (1 bit data delay); $\operatorname{CLK}(\mathrm{X} / \mathrm{R}) \mathrm{P}=0$ (transmit data are clocked out at rising edge of CLK, receive data are sampled on falling edge of $C L K$); and $F S(X / R) P=1$ ($F S$ is active high). If multiple converters connect to the same $C 54 x$, use $\overline{\mathrm{CS}}$ as chip select.

The host microprocessor is set as the SPI master, CPOL=0 (active high clock), and CPHA=1 (transmit data is clock out at rising edge of CLK, receive data are sampled at falling edge of CLK). 16 bits (or more) per transfer is required.

Single Converter Connects to DSP

Converter Connects to Microprocessor

Figure 32. Typical Interface to Host DSP and Microprocessor

sampling time analysis

Figure 33 shows the equivalent circuit to evaluate the required sampling time. Req is the Thevenin equivalent resistor ($\mathrm{Req}=3.5 \mathrm{~K}$). The $\mathrm{C}_{\text {(sampling) }}$ is sampling capacitor (30 pF maximum).
To get 1/4 LSB accuracy, the sampling capacitor, $\mathrm{C}_{\text {sampling }}$, has to be charged to

$$
\begin{aligned}
\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{S}} \pm \text { voltage of } 1 / 4 \mathrm{LSB} & =\mathrm{V}_{\mathrm{S}} \pm\left(\mathrm{V}_{\mathrm{S}} / 65532\right) \text { for } 14 \text { bit converter (TLC3574 and TLC3578) } \\
& =\mathrm{V}_{\mathrm{S}} \pm\left(\mathrm{V}_{\mathrm{S}} / 16384\right) \text { for } 12 \text { bit converter (TLC2574 and TLC2578) }
\end{aligned}
$$

During the sampling time $\mathrm{t}_{\text {(sampling) }}, \mathrm{C}_{\text {(sampling) }}$ is charge to

$$
V_{C}=V_{S}\left[1-\exp \left(\frac{-t}{} \frac{t_{\text {sampling) }}}{\operatorname{Req} \times C_{(\text {sampling })}}\right)\right]
$$

Therefore, the required sampling time is

$$
\begin{aligned}
& \mathrm{t}_{(\text {sampling })}=\operatorname{Req} \times \mathrm{C}_{(\text {sampling })} \times \ln (65532) \text { for 14-bit (TLC3574 and TLC3578) } \\
& \mathrm{t}_{(\text {sampling })}=\text { Req } \times \mathrm{C}_{(\text {sampling })} \times \ln (16384) \text { for 12-bit }(\mathrm{TLC2574} \text { and TLC2578) } .
\end{aligned}
$$

APPLICATION INFORMATION

Figure 33. Equivalent Input Circuit Including the Driving Source

TEXAS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TLC2574IDW	LIFEBUY	SOIC	DW	20	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC2574I	
TLC2574IPW	LIFEBUY	TSSOP	PW	20	70	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y2574	
TLC2578IDW	LIFEBUY	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC2578I	
TLC2578IPW	LIFEBUY	TSSOP	PW	24	60	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	Y2578	
TLC2578IPWR	LIFEBUY	TSSOP	PW	24	2000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	Y2578	
TLC3574IDW	LIFEBUY	SOIC	DW	20	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC3574I	
TLC3574IDWG4	LIFEBUY	SOIC	DW	20	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC3574I	
TLC3574IDWR	LIFEBUY	SOIC	DW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC3574I	
TLC3574IPW	LIFEBUY	TSSOP	PW	20	70	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y3574	
TLC3578IDW	LIFEBUY	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC3578I	
TLC3578IDWG4	LIFEBUY	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC3578I	
TLC3578IDWR	LIFEBUY	SOIC	DW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC3578I	
TLC3578IPW	LIFEBUY	TSSOP	PW	24	60	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	Y3578	
TLC3578IPWR	LIFEBUY	TSSOP	PW	24	2000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	Y3578	

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TLC2578IPWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
TLC3574IDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TLC3578IDWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
TLC3578IPWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC2578IPWR	TSSOP	PW	24	2000	350.0	350.0	43.0
TLC3574IDWR	SOIC	DW	20	2000	350.0	350.0	43.0
TLC3578IDWR	SOIC	DW	24	2000	350.0	350.0	43.0
TLC3578IPWR	TSSOP	PW	24	2000	350.0	350.0	43.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	$\mathbf{W}(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	B (mm)
TLC2574IDW	DW	SOIC	20	25	506.98	12.7	4826	6.6
TLC2574IPW	PW	TSSOP	20	70	530	10.2	3600	3.5
TLC2578IDW	DW	SOIC	24	25	506.98	12.7	4826	6.6
TLC2578IPW	PW	TSSOP	24	60	530	10.2	3600	3.5
TLC3574IDW	DW	SOIC	20	25	506.98	12.7	4826	6.6
TLC3574IDWG4	DW	SOIC	20	25	506.98	12.7	4826	6.6
TLC3574IPW	PW	TSSOP	20	70	530	10.2	3600	3.5
TLC3578IDW	DW	SOIC	24	25	506.98	12.7	4826	6.6
TLC3578IDWG4	DW	SOIC	24	25	506.98	12.7	4826	6.6
TLC3578IPW	PW	TSSOP	24	60	530	10.2	3600	3.5

PACKAGE OUTLINE
TSSOP - 1.2 mm max height

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

DW (R-PDSO-G24) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

[^0]: † For normal long sampling, $\mathrm{t}_{\mathrm{d}(2)}$ is the delay time of EOC low after the falling edge of 48th SCLK.
 \ddagger For normal long sampling, $\mathrm{t}_{\mathrm{d}(3)}$ is the delay time of $\overline{\mathrm{INT}}$ low after the falling edge of 48th SCLK.

[^1]: ーーーー The dotted line means signal may or may not exist，depending on application．It must be ignored．
 Normal sampling mode，$\overline{\mathrm{CS}}$ initiates the conversion，FS must be tied to high．When $\overline{\mathrm{CS}}$ is high，SDO is in Hi－Z，all inputs（FS，SCLK， SDI）are inactive and are ignored

