

3-TO-1 DVI/HDMI SWITCH

FEATURES

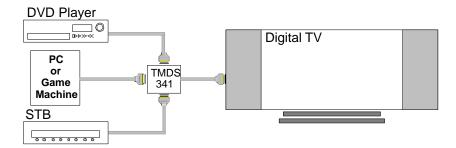
- Designed for Signaling Rates up to 1.65 Gbps in Support of UXGA Display
- Differential Interface Compatible with Transition Minimized Differential Signaling (TMDS) Electrical Specification
- Each Port Supports HDMI or DVI Inputs
- Isolated Digital Display Control (DDC) Bus for Unused Ports
- 5-V Tolerance to all DDC and HPD_SINK Inputs
- Integrated Receiver Termination
- Inter-Pair Output Skew < 100 ps
- 8-dB Receiver Equalization to Compensate for 5-m DVI Cable Losses
- High Impedance Outputs When Disabled

- HBM ESD Protection Exceeds 3 kV
- 3.3-V Supply Operation
- 80-Pin TQFP Package
- ROHS Compatible and 260°C Reflow Rated

APPLICATIONS

- Switching From Three Digital-Video (DVI) or Digital-Audio Visual (HDMI) Sources
- Digital TV
- Digital Projector
- Audio Video Receiver

DESCRIPTION

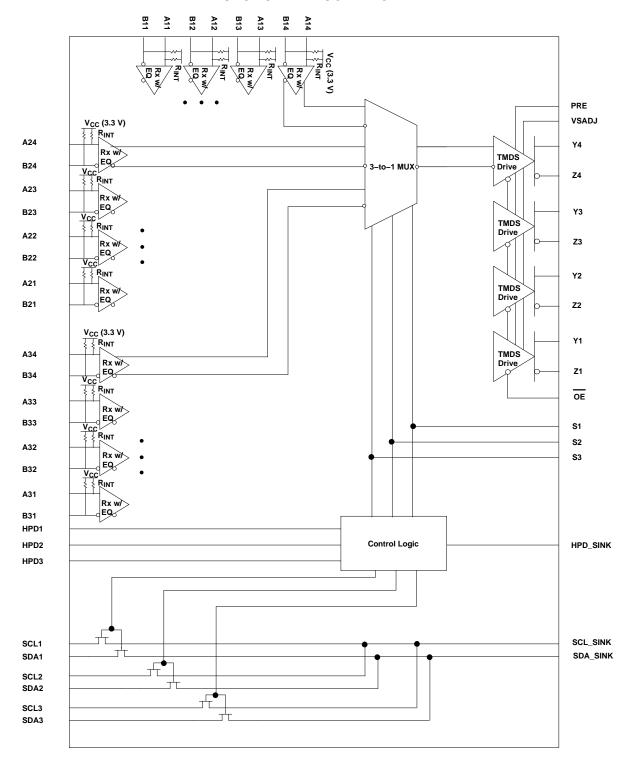

The TMDS341 is a 3-port digital video interface (DVI) or high-definition multimedia interface (HDMI) switch that allows up to 3 DVI or HDMI ports to be switched to a single display terminal. Four TMDS channels, one hot plug detector, and an I²C interface are supported on each port. Each TMDS channel allows signaling rates up to 1.65 Gbps.

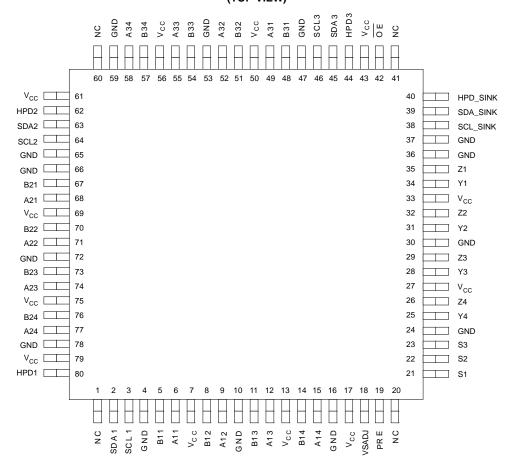
The active source is selected by configuring source selectors, S1, S2, and S3. The selected TMDS inputs from each port are switched through a 3-to-1 multiplexer. The I^2C interface of the selected input port is linked to the I^2C interface of the output port, and the hot plug detector (HPD) of the selected input port is output to HPD SINK. For the unused ports, the I^2C interfaces are isolated, and the HPD pins are kept low.

Termination resistors (50- Ω), pulled up to V_{CC}, are integrated at each receiver input pin. External terminations are not required. A precision resistor is connected externally from the VSADJ pin to ground for setting the differential output voltage to be compliant with the TMDS standard. When the output is connected to a standard TMDS termination and \overline{OE} is high, the output is high impedance.

The TMDS341 provides fixed 8-dB input equalization and selectable 3-dB output de-emphasis to optimize system performance through 5-meter or longer DVI compliant cables. The device is characterized for operation from 0°C to 70°C.

TYPICAL APPLICATION


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

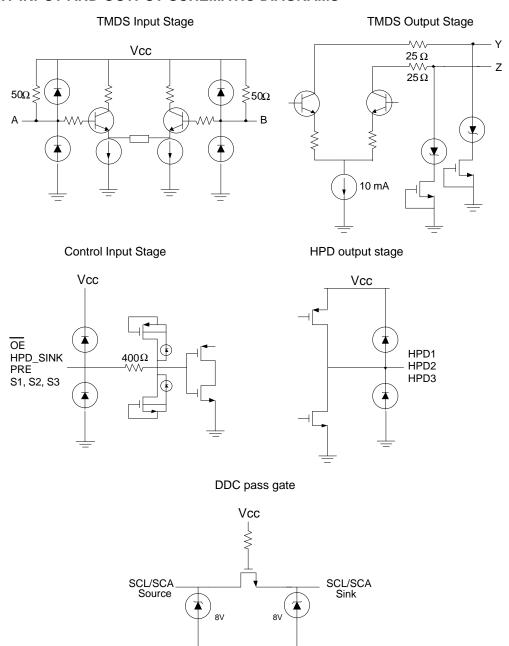

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTIONAL BLOCK DIAGRAM

PFC PACKAGE (TOP VIEW)

TERMINAL FUNCTIONS

TERMINAL		1/0	DECODITION		
NAME	NO.	I/O	DESCRIPTION		
A11, A12, A13, A14	6, 9, 12, 15	I	Port 1 TMDS positive inputs		
A21, A22, A23, A24	68, 71, 74, 77	I	Port 2 TMDS positive inputs		
A31, A32, A33, A34	49, 52, 55, 58	I	Port 3 TMDS positive inputs		
B11, B12, B13, B14	5, 8, 11, 14	I	Port 1 TMDS negative inputs		
B21, B22, B23, B24	67, 70, 73, 76	I	Port 2 TMDS negative inputs		
B31, B32, B33, B34	48, 51, 54, 57	I	Port 3 TMDS negative inputs		
GND	4, 10, 16 24, 30, 36, 37, 47, 53, 59, 65, 66, 72, 78		Ground		
HPD1	80	0	Port 1 hot plug detector output		
HPD2	62	0	Port 2 hot plug detector output		
HPD3	44	0	Port 3 hot plug detector output		
HPD_SINK	40	I	Sink side hot plug detector input High: 5-V power signal asserted from source to sink and EDID is ready Low: No 5-V power signal asserted from source to sink, or EDID is not ready		
NC	1, 20, 41,60		No connect		
ŌĒ	42	I	Output enable, active low		
PRE	19	I	Output de-emphasis adjustment High: 3 dB Low: 0 dB		
SCL1	3	I/O	Port 1 DDC bus clock line		
SCL2	64	I/O	Port 2 DDC bus clock line		
SCL3	46	I/O	Port 3 DDC bus clock line		
SCL_SINK	38	I/O	Sink side DDC bus clock line		
SDA1	2	I/O	Port 1 DDC bus data line		
SDA2	63	I/O	Port 2 DDC bus data line		
SDA3	45	I/O	Port 3 DDC bus data line		
SDA_SINK	39	I/O	Sink side DDC bus data line		
S1, S2, S3	21, 22, 23	I	Source selector input		
V _{CC}	7, 13, 17 27, 33, 43, 50, 56 61, 69, 75, 79		Power supply		
VSADJ	18	I	TMDS compliant voltage swing control		
Y1, Y2, Y3, Y4	34, 31, 28, 25	0	TMDS positive outputs		
Z1, Z2, Z3, Z4	35, 32, 29, 26	0	TMDS negative outputs		


Table 1. Source Selection Lookup⁽¹⁾

CC	CONTROL PINS			I/O SELECTED		HOT PLUG DETECT STATUS			
S1	S2	S 3	Y/Z	SCL_SINK SDA_SINK HPD1		HPD2	HPD3		
Н	х	х	A1/B1	SCL1 SDA1	HPD_SINK	L	L		
L	Н	х	A2/B2	SCL2 SDA2	L	HPD_SINK	L		
L	L	Н	A3/B3	SCL3 SDA3		L	HPD_SINK		
L	L	L	None (Z)	None (Z)	L	L	L		

⁽¹⁾ H: Logic high; L: Logic low; X: Don't care; Z: High impedance

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

ORDERING INFORMATION(1)

PART NUMBER	PART MARKING	PACKAGE
TMDS341PFC	TMDS341	80-PIN TQFP
TMDS341PFCR	TMDS341	80-PIN TQFP Tape/Reel

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

		UNIT
Supply voltage range, V _{CC}	(2)	–0.5 V to 4 V
	Anm ⁽³⁾ , Bnm	1.7 V to 4 V
Voltage range	Ym, Zm, VSADJ, PRE, Sn, $\overline{\text{OE}}$, HPDn	-0.5V to 4 V
	SCLn, SCL_SINK, SDAn, SDA_SINK, HPD_SINK	–0.5 V to 6 V
	Human body model (4) (all pins)	±3 kV
Electrostatic discharge	Charged-device model ⁽⁵⁾ (all pins)	±1500 V
	Machine model ⁽⁶⁾ (all pins)	± 200 V
Continuous power dissipation		See Dissipation Rating Table

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	$T_A \le 25^{\circ}C$	DERATING FACTOR ⁽¹⁾ ABOVE T _A = 25°C	T _A = 70°C POWER RATING	
80-TQFP	1342 mW	13.42 mW/°C	738 mW	

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	3	3.3	3.6	V
T _A	Operating free-air temperature	0		70	Ô
TMDS DIFF	FERENTIAL PINS (A/B)				
V_{ID}	Receiver peak-to-peak differential input voltage	150		1560	mVp-p
V_{IC}	Input common mode voltage	2		V _{CC} -0.04	V
R _{VSADJ}	Resistor for TMDS compliant voltage swing range	4.6	4.64	4.68	kΩ
AV _{CC}	TMDS output termination voltage, see Figure 1	3	3.3	3.6	٧
R_T	Termination resistance, see Figure 1	45	50	55	Ω
	Signaling rate	0		1.65	Gbps
CONTROL	PINS (PRE; S, $\overline{\text{OE}}$)				
V_{IH}	LVTTL High-level input voltage	2		V_{CC}	٧
V_{IL}	LVTTL Low-level input voltage	GND		8.0	٧
DDC I/O PI	NS (SCL, SCL_SINK, SDA, SDA_SINK)				
$V_{I(DDC)}$	Input voltage	GND		5.3	V
STATUS P	INS (HPD_SINK)				
V _{IH}	LVTTL High-level input voltage	2		5.3	V
V_{IL}	LVTTL Low-level input voltage	GND		0.8	V

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽³⁾ n = 1, 2, 3; m = 1, 2, 3, 4

⁽⁴⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-B

⁽⁵⁾ Tested in accordance with JEDEC Standard 22, Test Method C101-A

⁽⁶⁾ Tested in accordance with JEDEC Standard 22, Test Method A115-A

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

Po Power dissipation Value Va	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
Power dissipation RT = 50 Ω, NCc = 3.3 V An/Bn = 1.65 Gbps HDMI data pattern, m = 2, 3, 4 A1/B1 = 165 MHz clock A1	I _{CC}	Supply current	$R_T = 50 \Omega$, $AV_{CC} = 3.3 V$ Am/Bm = 1.65 Gbps HDMI data pattern, m = 2, 3, 4		190	230	mA
VOH. Single-ended high-level output voltage AV _{cc} +10 AV _{cc} +10 AV _{cc} +10 MV VOL. Single-ended low-level output voltage Single-ended output swing voltage 400 600 mV VO _{COL(U)} Undershoot of output differential voltage 6% 15% 2× V _{semin} ΔV _{COL(SS}) Change in steady-state common-mode output voltage between logic states 0.5 5 mV II _{(OOFF} Single-ended standby output current See Figure 3 −10 10 µA VO _{COE(SS)} Steady state output differential voltage with de-emphasis See Figure 4, PRE = V _{CC} . ArrWam = 250 Mbps HDMI data pattern, m = 2, 3, 4 A1/81 = 25 MHz clock 800 1200 mV _{P-P} V(Coes) Single-ended input voltage under high impedance input or open input woltage with signal with a put to the properties of the properties with a put to the	P_D	Power dissipation	$R_T = 50 \ \Omega$, $AV_{CC} = 3.3 \ V$ $Am/Bm = 1.65 \ Gbps \ HDMI \ data pattern, m = 2, 3, 4$		394	657	mW
Vol. Vol. Single-ended low-level output voltage See Figure 2, AV _{CC} = 3.3 V, R _T = 50 Ω, PRE = 0 V AV _{CC} =600 AV _{CC} =400 mV Vol(O) Overshoot of output differential voltage 400 600 mV ΔV _{CO(S)} Undershoot of output differential voltage 12% 25% 2× V _{swint} ΔV _{CO(S)} Change in steady-state common-mode output voltage between logic states 0.5 5 mV I(loosF Single-ended standby output current See Figure 3 -10 10 μA I(loosF) Single-ended standby output current See Figure 4, PRE = V _{CC} , Ar/V _{CC} = 3.3 V, R _T = 50 Ω -10 10 μA V _{ODE(SS)} Steady state output differential voltage with de-emphasis See Figure 4, PRE = V _{CC} , Ar/V _{CC} = 3.2 M/V _{CC}	TMDS DI	FFERENTIAL PINS (A/B; Y/Z)					
	V _{OH}	Single-ended high-level output voltage		AV _{CC} -10		AV _{CC} +10	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{OL}	Single-ended low-level output voltage		AV _{CC} -600		AV _{CC} -400	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{swing}	Single-ended output swing voltage	Con Figure 0 AV	400		600	mV
$ \frac{\Delta V_{OC(SS)}}{\Delta V_{OC(SS)}} $	V _{OD(O)}	Overshoot of output differential voltage			6%	15%	2× V _{swing}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{OD(U)}$	Undershoot of output differential voltage			12%	25%	2× V _{swing}
Note Single-ended sanday output current AV $_{CC} = 3.3 \text{ V}$, $R_T = 50 \Omega$ 10 pA AV $_{CC} = 3.3 \text{ V}$, $R_T = 50 \Omega$ 12 mA Note See Figure 3 See Figure 4 See Figure 5 See Figure 5 See Figure 6 See	$\Delta V_{OC(SS)}$				0.5	5	mV
$V_{ODE(SS)} \begin{array}{c} \text{Steady state output differential voltage with de-emphasis} \\ V_{ODE(pp)} \end{array} \begin{array}{c} \text{Steady state output differential voltage} \\ \text{V}_{ODE(pp)} \end{array} \begin{array}{c} \text{Steady state output differential voltage} \\ \text{V}_{IO(pen)} \end{array} \begin{array}{c} \text{Steady state output differential voltage} \\ \text{A1/B1 = 250 Mbps HDMI data pattern, m = 2, 3, 4} \\ \text{A1/B1 = 250 Mbps HDMI data pattern, m = 2, 3, 4} \\ \text{A1/B1 = 250 Mbps HDMI data pattern, m = 2, 3, 4} \\ \text{B00} \end{array} \begin{array}{c} \text{B00} \end{array} \end{array} \begin{array}{c} \text{B00} \end{array} \end{array} \begin{array}{c} \text{MVp-p} \\ \text{DOE}(pp) \end{array} \begin{array}{c} \text{Single-ended input voltage under high impedance input or open input}} \\ \text{II}_{I} = 10 \ \mu\text{A} \end{array} \begin{array}{c} \text{V}_{CC} = 10 \end{array} \begin{array}{c} \text{V}_{CC} = 10 \end{array} \begin{array}{c} \text{MVp-p} \\ \text{MV} \end{array} \begin{array}{c} \text{Single-ended input voltage under high impedance input or open input}} \\ \text{II}_{I} = 10 \ \mu\text{A} \end{array} \begin{array}{c} \text{V}_{I} = 10 \ \mu\text{A} \end{array} \begin{array}{c} \text{V}_{CC} = 10 \end{array} \begin{array}{c} \text{MVp-p} \\ \text{MV} \end{array} \begin{array}{c} \text{MVp-p} \\ \text{MVp-p} \end{array} \begin{array}{c} \text{MVp-p} \\ MVp-$	I _{(O)OFF}	Single-ended standby output current		-10		10	μA
VoDE(SS) de-emphasis Am/Bm = 250 Mbps HDMI data pattern, m = 2, 3, 4 860 840 mVp-p VoDE(pp) Peak-to-peak output differential voltage A1/B1 = 25 MHz clock 800 1200 mVp-p V(coen) Single-ended input voltage under high impedance input or open input I ₁ = 10 μA V _{CC} -10 V _{CC} +10 mV R _{INT} Input termination resistance V _{IN} = 2.9 V 45 50 55 Ω DDC I/O PINS (SCL, SCL, SINK, SDA, SDA_SINK) Input termination resistance V _I = 0.1 V _{CC} to 0.9 V _{CC} to isolated DDC ports 0.1 2 μA Clo Input/output capacitance V _I = 0.1 V _{CC} to 0.9 V _{CC} to isolated DDC ports 0.1 2 μA R _{ON} Switch resistance I _O = 3 mA, V _O = 0.4 V 25 50 Ω V _{PASS} Switch output voltage V _I = 3.3 V, I _O = 100 μA 1.5(2) 2.0 2.5(3) V STATUS PINS (HPD) V _{OL(TTL)} TIL Low-level output voltage I _O = 8 mA 2.4 V CONTROL PINS (PRE, S, Œ) II _{II} H <td> I_(OS) </td> <td>Short circuit output current</td> <td>See Figure 3</td> <td></td> <td></td> <td>12</td> <td>mA</td>	I _(OS)	Short circuit output current	See Figure 3			12	mA
$V_{(lopen)} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	V _{ODE(SS)}			560		840	mVp-p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{ODE(pp)}	Peak-to-peak output differential voltage	A1/B1 = 25 MHz clock	800		1200	mVp-p
DDC I/O PINS (SCL, SCL_SINK, SDA, SDA_SINK)	V _{I(open)}		Ι _Ι = 10 μΑ	V _{CC} -10		V _{CC} +10	mV
$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	R _{INT}	Input termination resistance	V _{IN} = 2.9 V	45	50	55	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DDC I/O I	PINS (SCL, SCL_SINK, SDA, SDA_SINK)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ I_{lkg} $	Input leakage current	V_{I} = 0.1 V_{CC} to 0.9 V_{CC} to isolated DDC ports		0.1	2	μA
$V_{PASS} \text{Switch output voltage} \qquad V_{I} = 3.3 \text{ V, } I_{O} = 100 \text{ μA} \qquad \qquad 1.5^{(2)} \qquad 2.0 \qquad 2.5^{(3)} \text{V}$ $\textbf{STATUS PINS (HPD)}$ $V_{OH(TTL)} \text{TTL High-level output voltage} \qquad I_{OH} = -8 \text{ mA} \qquad \qquad 2.4 \qquad \qquad \text{V}$ $V_{OL(TTL)} \text{TTL Low-level output voltage} \qquad I_{OL} = 8 \text{ mA} \qquad \qquad 0.4 \text{V}$ $\textbf{CONTROL PINS (PRE, S, \overline{OE})}$ $ I_{II_{II}} \text{High-level digital input current} \qquad V_{IL} = GND \text{ or } 0.8 \text{ V} \qquad \qquad 0.1 \qquad 2 \mu A$ $\textbf{STATUS PINS (HPD_SINK)}$ $ I_{II_{II}} \text{High-level digital input current} \qquad \frac{V_{IH} = 5.3 \text{ V}}{V_{IH} = 2 \text{ V or V}_{CC}} \qquad \qquad 0.1 \qquad 2 \mu A$	C_{IO}	Input/output capacitance	V _I = 0 V		7.5		pF
STATUS PINS (HPD) V _{OH(TTL)} TTL High-level output voltage $I_{OH} = -8 \text{ mA}$ 2.4 V V _{OL(TTL)} TTL Low-level output voltage $I_{OL} = 8 \text{ mA}$ 0.4 V CONTROL PINS (PRE, S, \overline{OE}) $ I_{IH} $ High-level digital input current $V_{IH} = 2 \text{ V or } V_{CC}$ 0.1 2 μA STATUS PINS (HPD_SINK) $ I_{IH} $ High-level digital input current $V_{IL} = GND \text{ or } 0.8 \text{ V}$ 0.1 2 μA STATUS PINS (HPD_SINK) $ I_{IH} $ High-level digital input current $V_{IH} = 5.3 \text{ V}$ 23 100 V_{CC} 0.1 2	R _{ON}	Switch resistance	$I_O = 3 \text{ mA}, V_O = 0.4 \text{ V}$		25	50	Ω
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{PASS}	Switch output voltage	$V_1 = 3.3 \text{ V}, I_0 = 100 \mu\text{A}$	1.5(2)	2.0	2.5(3)	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STATUS	PINS (HPD)					
CONTROL PINS (PRE, S, $\overline{\text{OE}}$) $ I_{IH} \text{High-level digital input current} \qquad V_{IH} = 2 \text{ V or V}_{CC} \qquad \qquad 0.1 \qquad 2 \qquad \mu A$ $ I_{IL} \text{Low-level digital input current} \qquad V_{IL} = \text{GND or } 0.8 \text{ V} \qquad \qquad 0.1 \qquad 2 \qquad \mu A$ STATUS PINS (HPD_SINK) $ I_{IH} \text{High-level digital input current} \qquad \frac{V_{IH} = 5.3 \text{ V}}{V_{IH} = 2 \text{ V or V}_{CC}} \qquad \qquad 0.1 \qquad 2 \qquad \mu A$	V _{OH(TTL)}	TTL High-level output voltage	I _{OH} = -8 mA	2.4			V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$V_{OL(TTL)}$	TTL Low-level output voltage	I _{OL} = 8 mA			0.4	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CONTRO	L PINS (PRE, S, OE)			-	.	
STATUS PINS (HPD_SINK) $ I_{IH} \text{High-level digital input current} \frac{V_{IH} = 5.3 \text{ V}}{V_{IH} = 2 \text{ V or } V_{CC}} \qquad \qquad \frac{23}{0.1} \frac{100}{2} \text{pA}$	I _{IH}	High-level digital input current	$V_{IH} = 2 \text{ V or } \overline{V_{CC}}$		0.1	2	μA
$ I_{IH} $ High-level digital input current $egin{array}{c c} V_{IH} = 5.3 \ V \\ \hline V_{IH} = 2 \ V \ or \ V_{CC} \\ \hline \end{array}$ 23 100 μA	I _{IL}	Low-level digital input current	V _{IL} = GND or 0.8 V		0.1	2	μA
$ I_{H} $ High-level digital input current $V_{H} = 2 \text{ V or V}_{CC}$ 0.1 2	STATUS	PINS (HPD_SINK)					
$V_{IH} = 2 \text{ V or } V_{CC}$ 0.1 2		High level digital input current	V _{IH} = 5.3 V		23	100	
$ I_{IL} $ Low-level digital input current $V_{IL} = GND \text{ or } 0.8 \text{ V}$ 0.1 2 μA	IHH	nigii-ievei digitai input current	V _{IH} = 2 V or V _{CC}		0.1	2	μΑ
	I _{IL}	Low-level digital input current	V _{IL} = GND or 0.8 V		0.1	2	μA

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.
(2) The value is tested in full temperature range at 3.0 V.
(3) The value is tested in full temperature range at 3.6 V.

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
TMDS D	IFFERENTIAL PINS (Y/Z)					
t _{PLH}	Propagation delay time, low-to-high-level output		250		800	ps
t _{PHL}	Propagation delay time, high-to-low-level output		250		800	ps
t _r	Differential output signal rise time (20% - 80%)		75		240	ps
t _f	Differential output signal fall time (20% - 80%)	See Figure 2, AV _{CC} = 3.3 V,	75		240	ps
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})	$R_T = 50 \Omega$, PRE = 0 V		7	50	ps
t _{sk(D)}	Intra-pair differential skew, see Figure 5			23	50	ps
t _{sk(o)}	Inter-pair channel-to-channel output skew(2)				100	ps
t _{sk(pp)}	Part-to-part skew (3)				200	ps
t _{jit(pp)}	Peak-to-peak output jitter from Y/Z(1) residual jitter	See Figure 8, PRE = 0 V		15	30	ps
t _{jit(pp)}	Peak-to-peak output jitter from Y/Z(2:4) residual jitter	Am/Bm = 1.65 Gbps HDMI data pattern, m = 2, 3, 4 A1/B1 = 165 MHz clock		18	50	ps
t _{PRE}	De-emphasis duration	See Figure 4, PRE = V _{CC} Am/Bm = 250 Mbps HDMI data pattern, m = 2, 3, 4 A1/B1 = 25 MHz clock		240(4)		ps
t _{SX}	Select to switch output			6	10	ns
t _{en}	Enable time	See Figure 6		6	10	ns
t _{dis}	Disable time			6	10	ns
DDC I/O	PINS (SCL, SCL_SINK, SDA, SDA_SINK)		•		',	
t _{pd(DDC)}	Propagation delay from SCLn to SCL_SINK or SDAn to SDA_SINK or SDA_SINK to SDAn	See Figure 7, C _L = 10 pF		0.4	2.5	ns
CONTRO	OL AND STATUS PINS (S, HPD_SINK, HPD)		•		'	
t _{pd(HPD)}	Propagation delay (from HPD_SINK to the active port of HPD)	See Figure 7. C. 40 pF		2	6.0	ns
t _{sx(HPD)}	Switch time (from port select to the latest valid status of HPD)	See Figure 7, C _L = 10 pF		3	6.5	ns

 ⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.
 (2) t_{sk(o)} is the magnitude of the difference in propagation delay times between any specified terminals of channel 2 to 4 of a device when inputs are tied together.
 (3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of channel 2 to 4 of two devices, or the part of the devices when help devices are the same appropriate the same appr

between channel 1 of two devices, when both devices operate with the same source, the same supply voltages, at the same temperature, and have identical packages and test circuits. The typical value is ensured by simulation.

PARAMETER MEASUREMENT INFORMATION

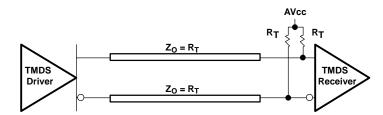
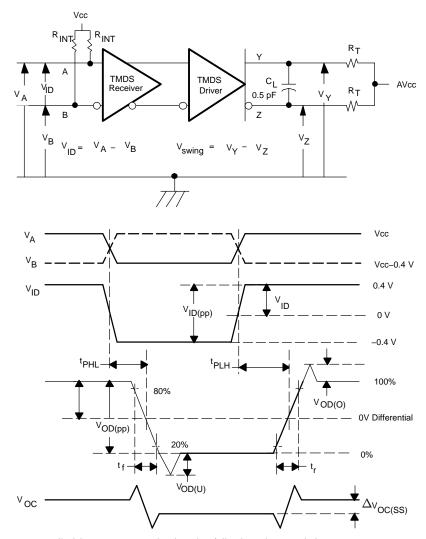
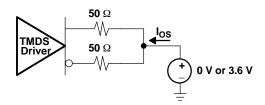



Figure 1. Termination for TMDS Output Driver



NOTE: All input pulses are supplied by a generator having the following characteristics: t_r or t_f < 100 ps, 100 MHz from Agilent 81250. C_L includes instrumentation and fixture capacitance within 0.06 m of the D.U.T. Measurement equipment provides a bandwidth of 20 GHz minimum.

Figure 2. Timing Test Circuit and Definitions

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 3. Short Circuit Output Current Test Circuit

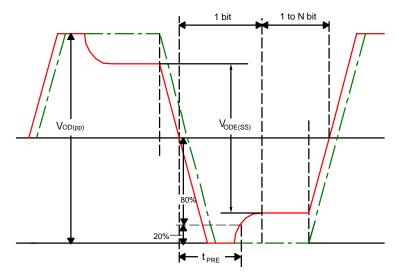
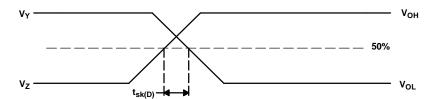
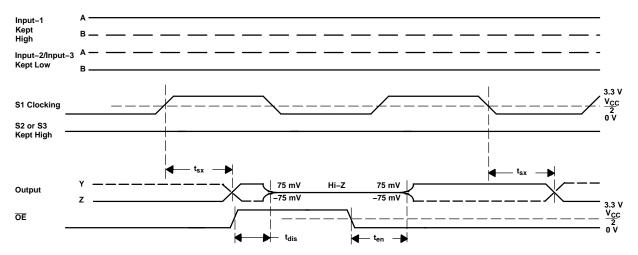
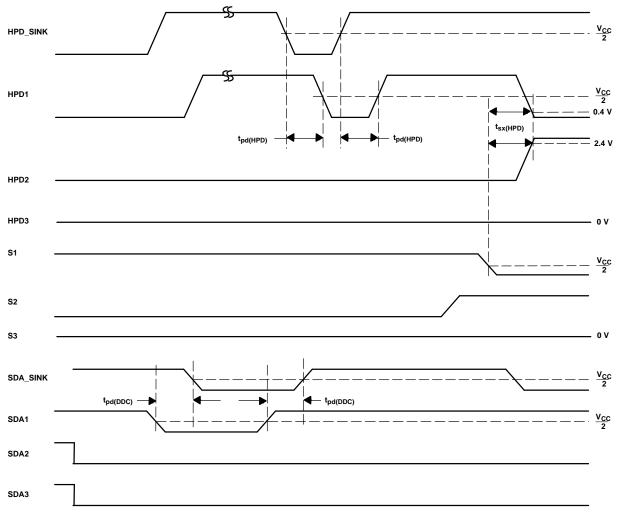


Figure 4. De-Emphasis Output Voltage Waveforms and Duration Measurement Definitions


Figure 5. Definition of Intra-Pair Differential Skew

PARAMETER MEASUREMENT INFORMATION (continued)

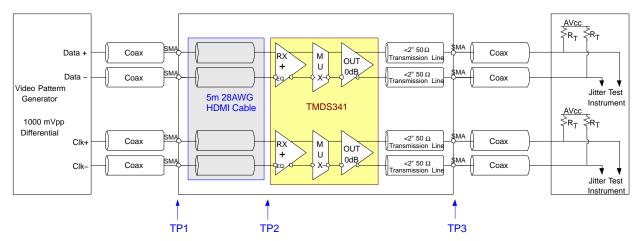

Figure 6. TMDS Outputs Control Timing Definitions

Figure 7. HPD Timing Definitions

PARAMETER MEASUREMENT INFORMATION (continued)

- A. All jitters are measured in BER of 10⁻¹²
- B. The residual jitter reflects the total jitter measured at the TMDS341 output, TP3, subtract the total jitter from the signal generator, TP1

Figure 8. Jitter Test Circuit

Figure 9 shows the frequency loss response from a 5m 28AWG HDMI cable and a 5m 28AWG DVI cable. The TMDS341 built-in passive input equalizer compensates for ISI. For an 8-dB loss HDMI cable, the TMDS341 typically reduces jitter by 60 ps from the device input to the device output.

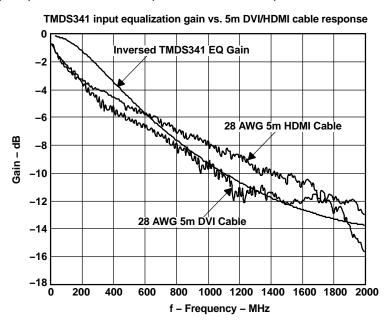


Figure 9. S-Parameter Plots of 5-m DVI and HDMI Cables

TYPICAL CHARACTERISTICS

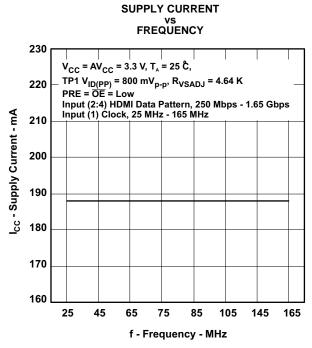
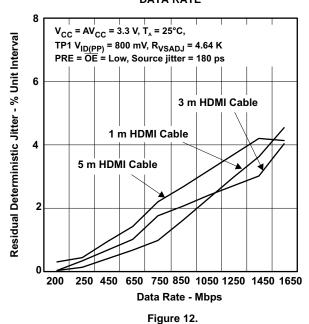



Figure 10.

RESIDUAL DETERMINISTIC JITTER VS DATA RATE

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

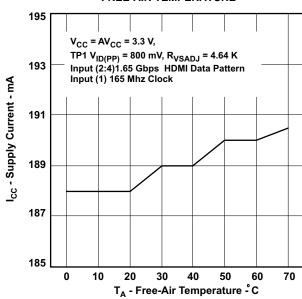


Figure 11.

RESIDUAL PEAK-TO-PEAK JITTER vs CLOCK FREQUENCY

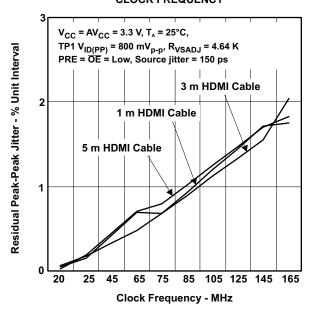
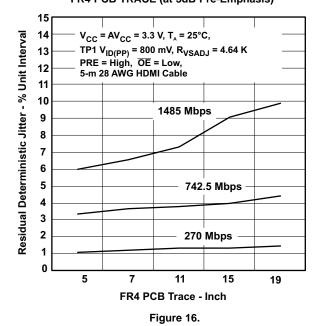


Figure 13.


TYPICAL CHARACTERISTICS (continued)

RESIDUAL DETERMINISTIC JITTER VS DIFFERENTIAL INPUT VOLTAGE

Figure 14.

RESIDUAL DETERMINISTIC JITTER vs FR4 PCB TRACE (at 3dB Pre-Emphasis)

RESIDUAL PEAK-TO-PEAK JITTER VS DIFFERENTIAL INPUT VOLTAGE

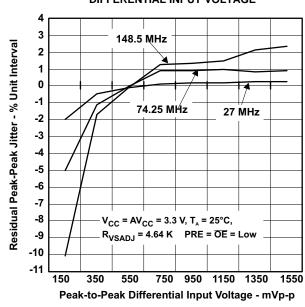
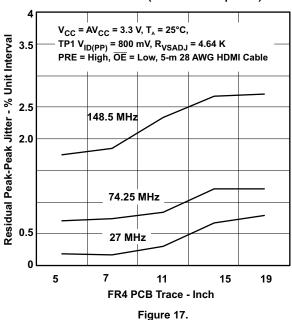



Figure 15.

RESIDUAL PEAK-TO-PEAK JITTER vs FR4 PCB TRACE (at 3dB Pre-Emphasis)

TYPICAL CHARACTERISTICS (continued)

HDMI Cables Running at 165-MHz Pixel Clock

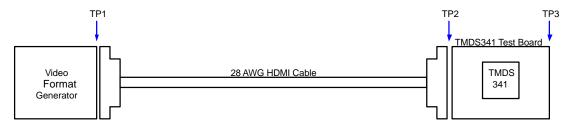


Figure 18. 1-m and 5-m HDMI Cable Test Point Configuration

1-m Cable Length Eye Patterns

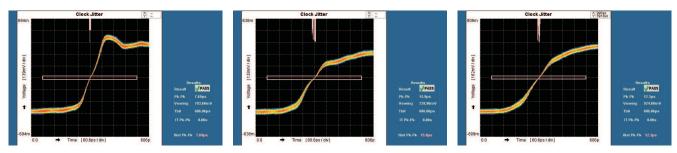
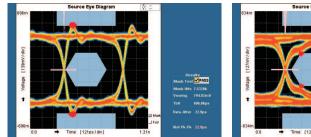
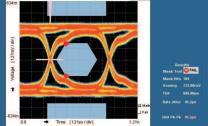




Figure 19. Clock at TP1

Figure 20. Clock at TP2

Figure 21. Clock at TP3

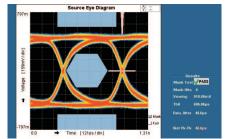
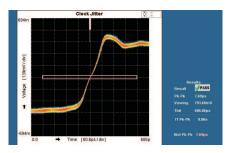
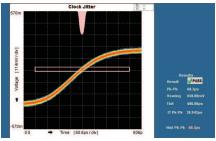


Figure 22. Data at TP1


Figure 23. Data at TP2


Figure 24. Data at TP3

TYPICAL CHARACTERISTICS (continued)

5-m Cable Length Eye Patterns

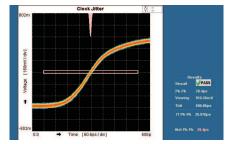
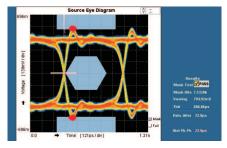
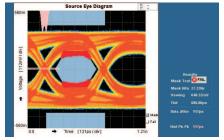




Figure 25. Clock at TP1

Figure 26. Clock at TP2

Figure 27. Clock at TP3

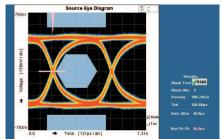


Figure 28. Data at TP1

Figure 29. Data at TP2

Figure 30. Data at TP3

APPLICATION INFORMATION

Supply Voltage

All V_{CC} pins can be tied to a single 3.3-V power source. A 0.01- μF capacitor is connected from each V_{CC} pin directly to ground to filter supply noise.

TMDS Inputs

Standard TMDS terminations are integrated on all TMDS inputs. External terminations are not required. Each input channel contains an 8-dB equalization circuit to compensate for cable losses. The voltage at the TMDS input pins must be limited per the absolute maximum ratings. An unused input should not be connected to ground as this would result in excessive current flow damaging the device.

TMDS Input Fail-Safe

TMDS input pins do not incorporate fail-safe circuits. An unused input channel can be externally biased to prevent output oscillation. One pin can be left open with the other grounded through a 1-k Ω resistor as shown in Figure 31.

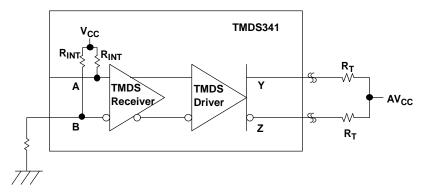


Figure 31. TMDS Input Fail-Safe Recommendation

TMDS Outputs

A 1% precision resister, 4.64-k Ω , connected from VSADJ to ground is recommended to allow the differential output swing to comply with TMDS signal levels. The differential output driver provides a typical 10-mA current sink capability, which provides a typical 500-mV voltage drop across a 50- Ω termination resistor.

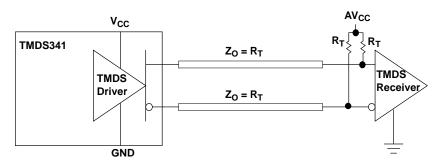


Figure 32. TMDS Driver and Termination Circuit

As shown in Figure 32, if V_{CC} (TMDS341 supply) and AV_{CC} (sink termination supply) are powered, the TMDS output signals are high impedance when \overline{OE} is high. Normal operation is with both supplies active.

Also shown in Figure 32, if V_{CC} is on and AV_{CC} is off, the TMDS outputs source a typical 5-mA current through each termination resistor to ground. The terminations consume a total of 10 mW of power independent of the \overline{OE} logical selection. When AV_{CC} is powered on, normal operation (\overline{OE} controls output impedance) is resumed.

When the power source of the device, V_{CC} , is off and the power source to termination, AV_{CC} , is on, the output leakage current ($I_{o(off)}$) specification ensures leakage current is limited to 10- μ A or less.

The PRE pin provides 3-dB de-emphasis, allowing output signal pre-conditioning to offset interconnect losses from the TMDS341 outputs to a TMDS receiver. PRE is recommended to be low to the circuit design of a stand-alone switch box.

HPD Pins

The input of the HPD_SINK is 5-V tolerant, allowing direct connection to 5-V signals. The HPD pin output resistance is $35-\Omega$ typically. A 1-k Ω 10% resistor is recommended to be connected from an HPD pin at the TMDS341 to the HPD pin of the HDMI connector.

DDC Channels

The DDC channels are designed with a bi-directional pass gate, providing 5-V signal tolerance. The 5-V tolerance allows direct connection to a standard I²C bus. The level shifter between 3.3 V and 5 V I²C interface can be eliminated.

Configuring the TMDS341 as a 2:1 Switch

The TMDS341 can be configured as a 2-to-1 switch by pulling the source selector pin (S1, S2, S3) of the non-active port low and leaving the corresponding TMDS inputs, SCL, SDA, and HPD pins open.

Layout Considerations

The high-speed TMDS inputs are the most critical paths for the TMDS341. There are several considerations to minimize discontinuities on these transmission lines between the connectors and the device:

- Maintain 100-Ω differential transmission line impedance into and out of the TMDS341
- Keep an uninterrupted ground plane beneath the high-speed I/Os
- Keep the ground-path vias to the device as close as possible to allow the shortest return current path
- Layout of the TMDS differential inputs should be with the shortest stubs from the connectors

Connecting Cables Longer Than 5 m

When using the TMDS341 with cables longer than 5 m, the impact to the TMDS signal path as well as the DDC signal path must be considered.

TMDS Signal Path

The TMDS341 receiver equalization circuit provides the capability of compensating inter-symbol interference (ISI) losses in a 5-m 28-AWG DVI cable. Typical cable measurements indicate that the TMDS341 can drive a 5-m 28-AWG HDMI cable and pass the eye mask at the output of a HDMI source (TP1) and a 10-m 28-AWG HDMI cable and pass the eye mask at the input of a HDMI sink (TP2). Figure 33 through Figure 36 show the eye mask measurement results.

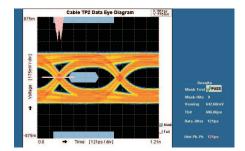


Figure 33. Eye Diagram at Output 5-m 28-AWG Cable vs TP1 Eye Mask

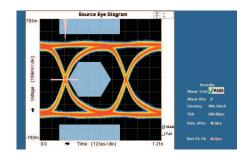
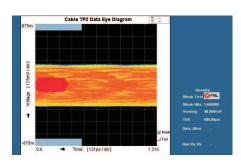



Figure 34. Eye Diagram Recovered by TMDS341 vs TP1
Eve Mask

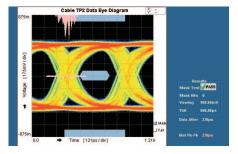


Figure 36. Eye Diagram Recovered by TMDS341 vs TP2 Eye Mask

DDC Signal Path

Observed I²C bus voltage is dependent on bus resistance, capacitance, and time. The transient bus voltage, when charging from a low state to a high state, can be calculated using equation (1).

$$V(t) = V_{DD}(1 - e^{-t/RC}) \tag{1}$$

Where:

t is the time since the charging started

V_{DD} is the pull-up termination voltage

R is the total resistance on the I²C link

C is the total capacitance on the I²C link

In the I²C bus specification, version 2.1, the high-level threshold voltage is $V_{IH} = 0.7 V_{DD}$, and the low-level threshold voltage is $V_{II} = 0.3 V_{DD}$.

From equation (1), the times to charge from a bus voltage of 0 V to the V_{IH} and V_{IL} levels are:

$$t_{IH} = 1.204 \times RC$$

$$t_{IL} = 0.357 \times RC$$

The bus rise time (from 0.3 V_{DD} to 0.7 V_{DD}) is then given by equation (2):

$$t_{r(30-70)} = t_{IH} - t_{IL} = 0.847 \times RC$$
 (2)

The TMDS341 can be easily applied in stand-alone switch boxes and digital displays. The following sections show the bus lengths that can be supported in each case.

Maximum Bus Lengths for Switch Applications

Figure 37 shows the TMDS341 being used as a stand-alone switch. Both pull-up resistors are decided by the source and sink equipment. A 1.5-k Ω resistor at the source and a 47-k Ω resistor at the sink are recommended.

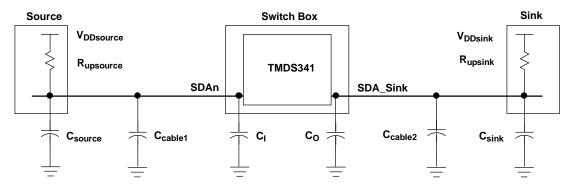


Figure 37. DDC Link from Source to Sink With External Switch Box

 $R_{upsource} = 1.5-k\Omega$ pull-up to 5 V

 $R_{upsink} = 47-k\Omega$ pull-up to 5 V

 $R_{total} = R_{upsource} // R_{upsink} = 1.45 \text{ k}\Omega$

 $C_{total} = C_{source} // C_{cable1} // C_{i} // C_{o} // C_{cable2} // C_{sink}$

For standard mode I^2C , the frequency is at 100 kHz, and the transition time must be less than 1 μ s. The total allowable capacitance, C_{total} , is then 814-pF. C_{source} and C_{sink} are limited by the HDMI specification to 50 pF. $C_{i/o}$ for the TMDS341 is 10 pF max. The total capacitance from DVI or HDMI cables, C_{cable1} and C_{cable2} , should then be less than 704 pF.

Typical capacitance is 200 pF for a 28-AWG 5-m HDMI cable and 300 pF for a 28-AWG 5-m DVI cable. The recommended total cable length is the length of cable 1, Lcable1, plus the length of cable 2, Lcable2. For a 28-AWG DVI cable, the total cable length is 11 m; and for a 28-AWG HDMI cable, the total cable length is 17 m.

This calculation is applicable to $V_{IH} \le V_{pass}$.

Maximum Bus Lengths for DTV Applications

Figure 38 shows the TMDS341 being used as a switch in a DTV and being placed on the same PCB board as the DVI/HDMI receiver. Unlike Figure 37, the output connector of the TMDS341 stand-alone switch and the input connector of the sink are removed, which results in a lower capacitance in the DDC link and eliminates the impedance discontinuity. However, the capacitance of the removed connectors is relatively small, relative to the total allowable capacitance. The results from the previous section *Maximum Bus Lengths for Switch Applications* can be reused if the pull-up resistors and capacitances have the same values. The recommended total cable length is the length from source to sink.

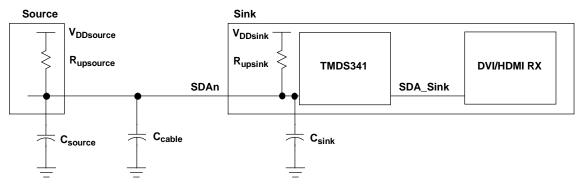


Figure 38. DDC Link From Source to Sink Without External Switch Box

Table 2 summarizes the recommended cable lengths based on threshold voltages $V_{IH} = 0.7 \ V_{DD}$ and $V_{IL} = 0.3 \ V_{DD}$.

Table 2. Recommended Cable Lengths Under General Threshold Voltages, 0.7 V_{DD} and 0.3 V_{DD} , of a DDC Interface

DDC THRESHOLD VOLTAGE, V _{IH} = 0.7 V	V_{DD} , $V_{IL} = 0.3 V_{DD}$	TOTAL CABLE LENGTH (m)		
SUGGESTED PULL-UP RESISTANCE ($k\Omega$)	CABLE TYPE	SWITCH BOX Lcable1 + Lcable2	DIGITAL DISPLAY Lcable	
$R_{upsource} = 1.5 \text{ k}\Omega$	28-AWG DVI	11	11	
$R_{upsource} = 1.5 kΩ$ $R_{upsink} = 47 kΩ$	28-AWG HDMI	17	17	

Applying the same methodology to the case of V_{IH} = 1.9 V and V_{IL} = 0.7 V, Table 3 summarizes the recommended cable lengths to meet the timing requirement of the DDC interface.

Table 3. Recommended Cable Lengths Under General Threshold Voltages, 1.9 V and 0.7 V, of a DDC Interface

DDC THRESHOLD VOLTAGE, V _{IH} = 1.	9 V, V _{IL} = 0.7 V	TOTAL CABLE LENGTH (m)		
SUGGESTED PULL-UP RESISTANCE ($k\Omega$)	ED PULL-UP RESISTANCE (kΩ) CABLE TYPE		DIGITAL DISPLAY Lcable	
$R_{upsource} = 1.5 \text{ k}\Omega$	28-AWG DVI	16	16	
$R_{upsource} = 1.5 \text{ k}\Omega$ $R_{upsink} = 47 \text{ k}\Omega$	28-AWG HDMI	24	24	

11-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TMDS341PFC	Active	Production	TQFP (PFC) 80	96 JEDEC	Yes	NIPDAU	Level-3-260C-168 HR	0 to 70	TMDS341
				TRAY (10+1)					
TMDS341PFC.B	Active	Production	TQFP (PFC) 80	96 JEDEC	Yes	NIPDAU	Level-3-260C-168 HR	0 to 70	TMDS341
			, , , ,	TRAY (10+1)					
TMDS341PFCR	Active	Production	TQFP (PFC) 80	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	0 to 70	TMDS341
TMDS341PFCR.B	Active	Production	TQFP (PFC) 80	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	0 to 70	TMDS341

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

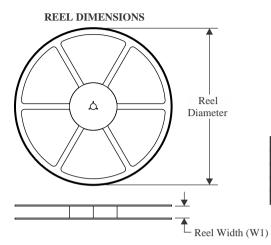
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

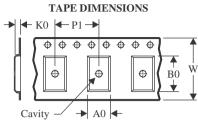
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

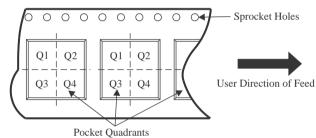
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

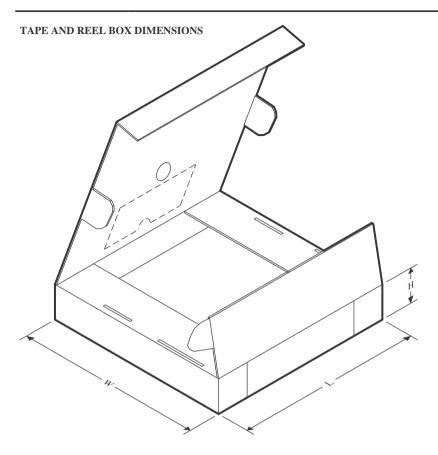
PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

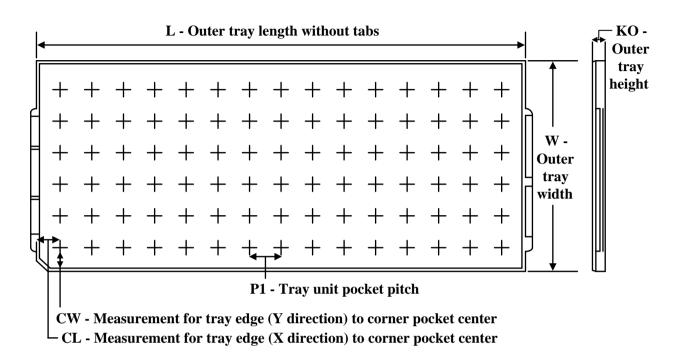


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMDS341PFCR	TQFP	PFC	80	1000	330.0	24.4	15.0	15.0	1.5	20.0	24.0	Q2

PACKAGE MATERIALS INFORMATION

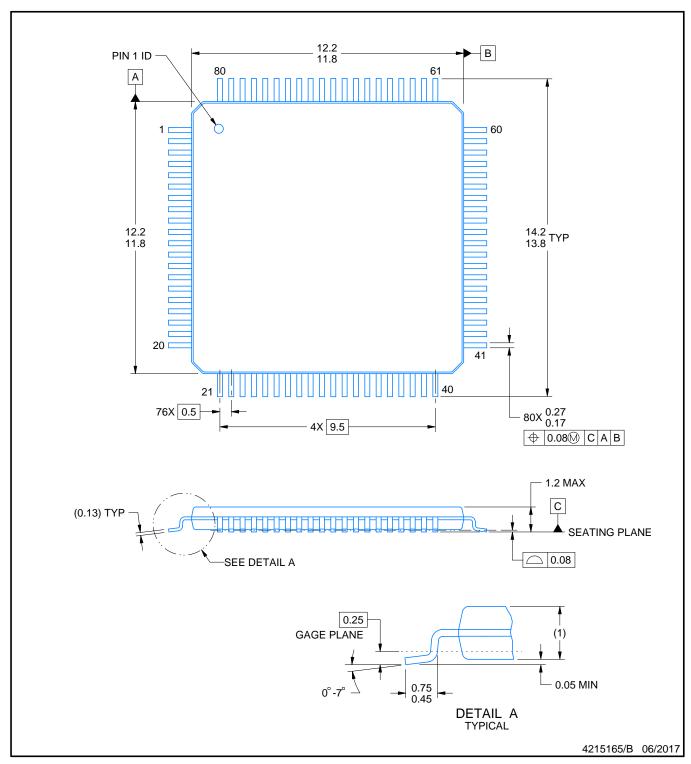
www.ti.com 23-May-2025


*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	TMDS341PFCR	TQFP	PFC	80	1000	350.0	350.0	43.0	

www.ti.com 23-May-2025

TRAY

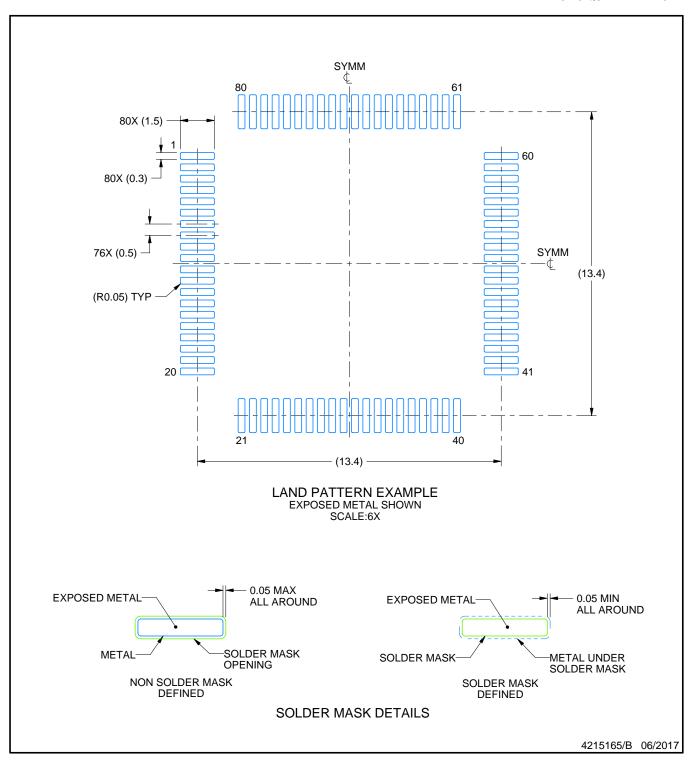

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	Κ0 (μm)	P1 (mm)	CL (mm)	CW (mm)
TMDS341PFC	PFC	TQFP	80	96	6 x 16	150	315	135.9	7620	18.7	17.25	18.3
TMDS341PFC.B	PFC	TQFP	80	96	6 x 16	150	315	135.9	7620	18.7	17.25	18.3

PLASTIC QUAD FLATPACK

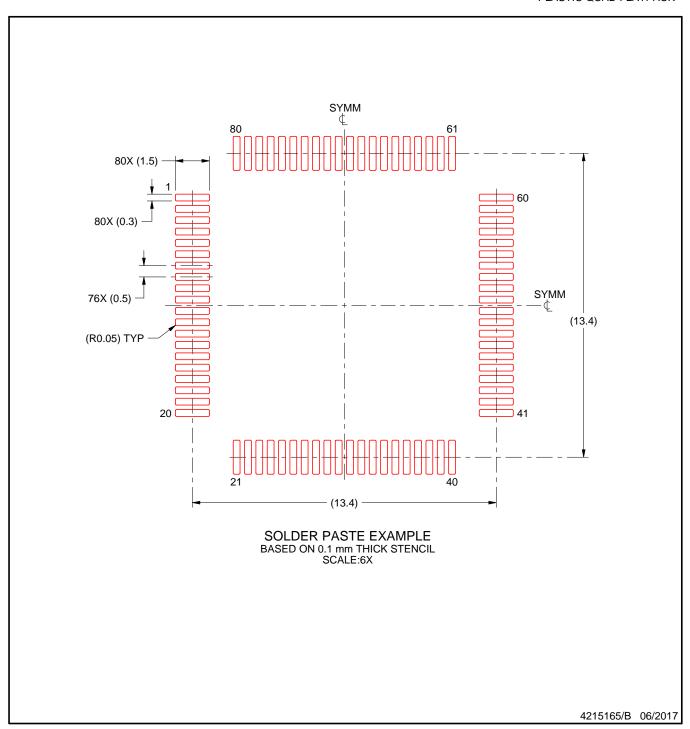
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC registration MS-026.

PLASTIC QUAD FLATPACK



NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).

PLASTIC QUAD FLATPACK

NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{8.} Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025