

TPS22920, TPS22920L

SLVSAY8D -JUNE 2011-REVISED JANUARY 2016

TPS22920x 3.6-V, 4-A, 5.3-mΩ On-Resistance, Integrated Load Switch with Controlled Turn-on

Features

- Input Voltage Range: 0.75 V to 3.6 V
- Integrated Load Switch
- Integrated Pass-FET $r_{DSON} = 2 \text{ m}\Omega$ (Typ) at 3.6 V
- Typical ON-Resistance
 - $r_{ON} = 5.3 \text{ m}\Omega \text{ at } V_{IN} = 3.6 \text{ V}$
 - r_{ON} = 5.4 $m\Omega$ at V_{IN} = 2.5 V
 - r_{ON} = 5.5 mΩ at V_{IN} = 1.8 V
 - $r_{ON} = 5.8 \text{ m}\Omega$ at $V_{IN} = 1.2 \text{ V}$
 - $r_{ON} = 6.1 \text{ m}\Omega \text{ at } V_{IN} = 1.05 \text{ V}$
 - $r_{ON} = 7.3 \text{ m}\Omega \text{ at } V_{IN} = 0.75 \text{ V}$
- CSP-8 Package 0.9 mm x 1.9 mm, 0.5 mm Pitch
- 4-A Maximum Continuous Switch Current
- Shutdown Current 5.5-µA Max
- ON-Logic Available in Both Active High/Low:
 - TPS22920 is Active High
 - TPS22920L is Active Low
- Low Threshold Control Input
- Controlled Slew-Rate to Avoid Inrush Current
- **Quick Output Discharge Resistor**
- ESD Performance Tested Per JESD 22
 - 4000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

Applications

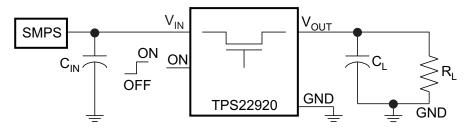
- Notebook / Netbook Computer
- **Tablet PC**
- PDAs / Smartphones
- **GPS Navigation Devices**
- MP3 Players

3 Description

The TPS22920x is a small, space-saving load switch with controlled turn on to reduce inrush current. The device contains a N-channel MOSFET that can operate over an input voltage range of 0.75 V to 3.6 V and switch currents up to 4 A. An integrated charge pump biases the NMOS switch in order to achieve a minimum switch ON resistance (r_{ON}). The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals.

The TPS22920x has a 1250-Ω on-chip resistor for quick output discharge when the switch is turned off which insures that the output is not left floating.

The TPS22920x has an internally controlled rise time in order to reduce inrush current.


The TPS22920x is available in an ultra-small, spacesaving 8-pin CSP package and is characterized for operation over the free-air temperature range of -40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS22920x	DSBGA (8)	1.90 mm x 0.90 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Typical Application

Page

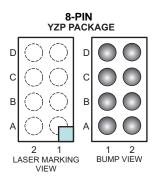
Table of Contents

1	Features 1	9	Detailed Description	15
2	Applications 1		9.1 Overview	15
3	Description 1		9.2 Functional Block Diagram	15
4	Revision History2		9.3 Feature Description	15
5	Device Comparison Table 3		9.4 Device Functional Modes	15
6	Pin Configuration and Functions	10	Application and Implementation	16
7	Specifications		10.1 Application Information	16
•	7.1 Absolute Maximum Ratings		10.2 Typical Application	16
	7.2 ESD Ratings	11	Power Supply Recommendations	19
	7.3 Recommended Operating Conditions	12	Layout	19
	7.4 Thermal Information		12.1 Layout Guidelines	
	7.5 Electrical Characteristics		12.2 Layout Example	19
	7.6 Switching Characteristics: V _{IN} = 3.6 V	13		
	7.7 Switching Characteristics: $V_{IN} = 0.9 \text{ V}$		13.1 Related Links	
	7.8 Typical DC Characteristics		13.2 Trademarks	
	7.9 TPS22920 Typical AC Characteristics		13.3 Electrostatic Discharge Caution	
	• •		13.4 Glossary	
8	7.10 TPS22920L Typical AC Characteristics	14	Mechanical, Packaging, and Orderable Information	20
F	Parametric Measurement Information	14	Mechanical, Packaging, and Orderable	
F	Parametric Measurement Information 13	14	Mechanical, Packaging, and Orderable	Page
F	Parametric Measurement Information		Mechanical, Packaging, and Orderable Information	Page
han Ad	Parametric Measurement Information		Mechanical, Packaging, and Orderable Information	Page
han Ad	Parametric Measurement Information	oarison tal	Mechanical, Packaging, and Orderable Information	Page Page
han Ao	Parametric Measurement Information	oarison tal	Mechanical, Packaging, and Orderable Information	Page Page
Han Ad	Parametric Measurement Information	oarison tal	Mechanical, Packaging, and Orderable Information	Page 3 Page

Submit Documentation Feedback

Changes from Original (June 2011) to Revision A

Copyright © 2011–2016, Texas Instruments Incorporated



5 Device Comparison Table

ORDERABLE PART NUMBER	R _{ON} (TYP) AT 3.6 V	RISE TIME (TYP) at 3.6V	QUICK OUTPUT DISCHARGE ⁽¹⁾	BACKSIDE COATING ⁽²⁾	ENABLE
TPS22920YZPR	5.3 mΩ	880 µS	Yes	No	Active High
TPS22920YZPRB	5.3 mΩ	880 µS	Yes	Yes	Active High
TPS22920LYZPR	5.3 mΩ	627 µS	Yes	Yes	Active Low

⁽¹⁾ This feature discharges the output of the switch to ground through a 1250-Ω resistor, preventing the output from floating. See Output Pull-Down.

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
GND	D1	-	Ground
ON	D2	I	Switch control input. Do not leave floating
V _{OUT}	A1, B1, C1	0	Switch output
V _{IN}	A2, B2, C2	I	Switch input, bypass this input with a ceramic capacitor to ground

Table 1. Bump Assignments (YZP Package)

D	GND	ON
С	V _{OUT}	V _{IN}
В	V _{OUT}	V _{IN}
A	V _{OUT}	V _{IN}
	1	2

Copyright © 2011–2016, Texas Instruments Incorporated

Submit Documentation Feedback

⁽²⁾ CSP (DSBGA) devices manufactured with backside coating have an increased resistance to cracking due to the increased physical strength of the package. Devices with backside coating are highly encouraged for new designs.

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

		MIN	MAX	UNIT
V_{IN}	Input voltage range	-0.3	4	V
V _{OUT}	Output voltage range		VIN + 0.3	V
V_{ON}	Input voltage range	-0.3	4	V
I _{MAX}	Maximum Continuous Switch Current		4	Α
I _{PLS}	Maximum Pulsed Switch Current, pulse <300 μS, 2% duty cycle		6	Α
T_{J}	Maximum junction temperature		125	°C
T _{stg}	Storage temperature range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V	Electrostatio discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	.,
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

7.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V_{IN}	Input voltage range		0.75	3.6	V
V_{OUT}	Output voltage range			V_{IN}	V
V	High lovel input voltage ON	V _{IN} = 2.5 V to 3.6 V	1.2	3.6	V
VIH	V _{IH} High-level input voltage, ON	V _{IN} = 0.75 V to 2.49 V	0.9	3.6	٧
.,	Lave laved inner collage. ON	V _{IN} = 2.5 V to 3.6 V		0.6	٧
V _{IL}	Low-level input voltage, ON	V _{IN} = 0.75 V to 2.49 V		0.4	٧
T_A	Operating free-air temperature	range	-40	85	ů
C _{IN}	Input Capacitor		1 ⁽¹⁾		μF

⁽¹⁾ See Input Capacitor section in Application Information.

7.4 Thermal Information

		TPS22920x	
	THERMAL METRIC ⁽¹⁾	YZP	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	130	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	54	
$R_{\theta JB}$	Junction-to-board thermal resistance	51	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	1	
ΨЈВ	Junction-to-board characterization parameter	50	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

7.5 Electrical Characteristics

Unless otherwise noted, $V_{IN} = 0.75 \text{ V}$ to 3.6 V

	PARAMETER	TEST	CONDITIONS	T _A	MIN TYP(1)	MAX	UNIT
			V _{IN} = 3.6 V		68	160	
			$V_{IN} = 2.5 \text{ V}$		40	70	μA
	Ovice and Comment	I _{OUT} = 0, Switch	V _{IN} = 1.8 V		25	350	
I _{IN}	Quiescent Current	enabled	V _{IN} = 1.2 V	Full	103	200	μA
			$V_{IN} = 1.05 V$		78	110	
			$V_{IN} = 0.75 V$		37	70	μA
I _{IN(leak)}	Off Supply Current (After Pull Down)	Switch disabled, V	OUT = 0	Full		5.5	μΑ
		V _{IN} = 3.6 V, I _{OUT} = -200 mA		25°C	5.3	8.8	0
				Full		9.8	mΩ
		V _{IN} = 2.5 V, I _{OUT} = -200 mA		25°C	5.4	8.9	mΩ
				Full		9.9	11122
		V _{IN} = 1.8 V, I _{OUT} = -200 mA		25°C	5.5	9.1	mΩ
	On-Resistance			Full		10.1	11122
r _{ON}	On-Resistance	V _{IN} = 1.2 V, I _{OUT} = -200 mA		25°C	5.8	9.4	mΩ
				Full		10.4	
		V _{IN} = 1.05 V, I _{OUT}	- 200 m A	25°C	6.1	9.7	mO.
		$v_{IN} = 1.05 \text{ v}, I_{OUT}$	= -200 IIIA	Full		10.8	mΩ
		V _{IN} = 0.75 V, I _{OUT}	- 200 m A	25°C	7.3	11.0	mΩ
		VIN = 0.75 V, IOUT	= -200 IIIA	Full		12.4	11122
RPD	Output pull down resistance ⁽²⁾	V _{IN} = 3.3 V, Switch	n disabled, I _{OUT} = 3 mA	Full	1250	1500	Ω
I _{ON}	ON input leakage current	$V_{ON} = 0.9 \text{ V to } 3.6$	V or GND	Full		0.1	μΑ

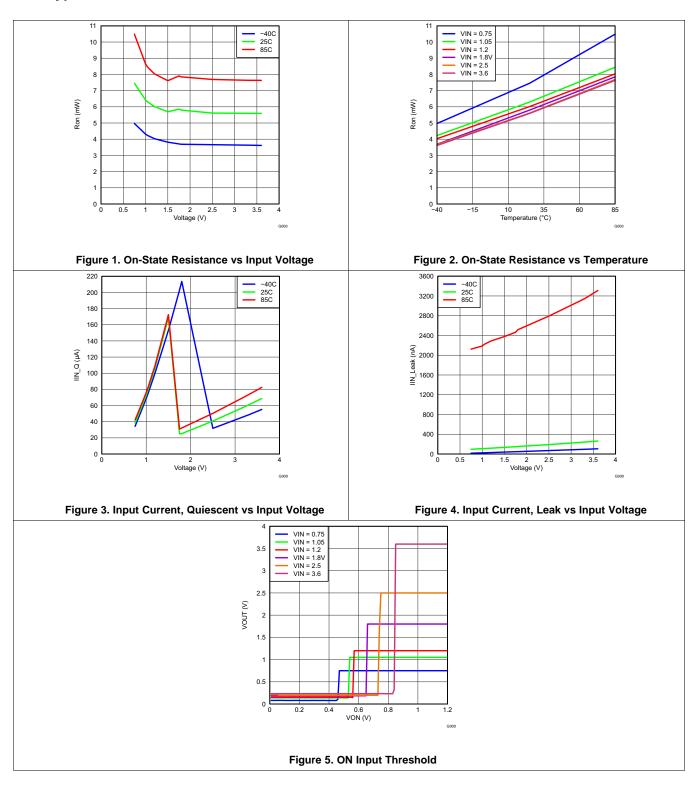
⁽¹⁾ Typical values are at V_{IN} = 3.3 V and T_A = 25°C. (2) See *Output Pull-Down* .

7.6 Switching Characteristics: $V_{IN} = 3.6 \text{ V}$

 $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITION TPS2292		TPS22920L	UNIT
	PARAMETER	TEST CONDITION	TYP	TYP TYP	
t _{ON}	Turn-ON time	R_L = 10 Ω , C_L = 0.1 μ F, V_{IN} = 3.6 V	970	663	
t _{OFF}	Turn-OFF time	$R_L = 10~\Omega,~C_L = 0.1~\mu F,~V_{IN} = 3.6~V$	3	2	
t _r	VOUT Rise time	$R_L = 10~\Omega,~C_L = 0.1~\mu F,~V_{IN} = 3.6~V$	880	627	μs
t _f	VOUT Fall time	$R_L = 10~\Omega,~C_L = 0.1~\mu F,~V_{IN} = 3.6~V$	2	2	

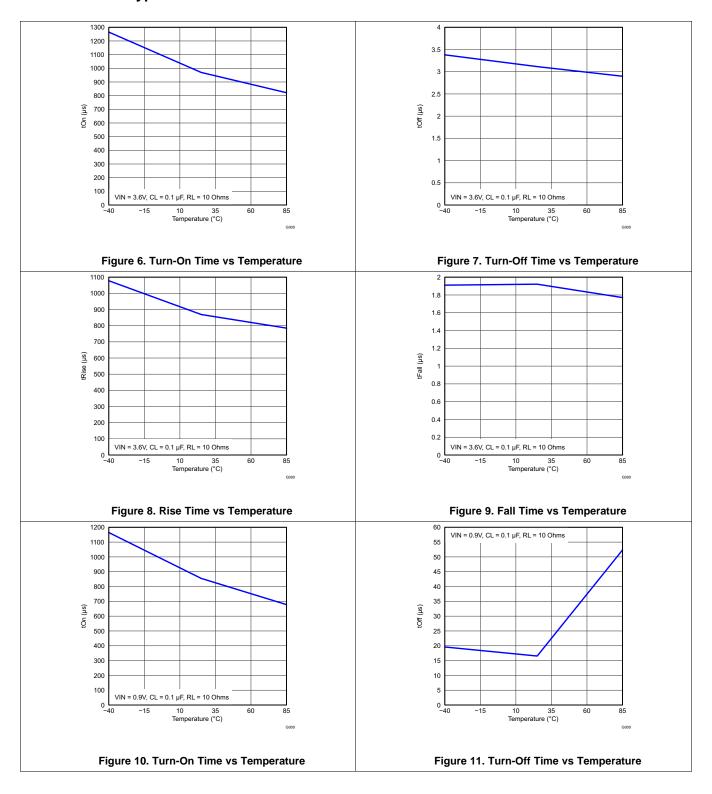
7.7 Switching Characteristics: $V_{IN} = 0.9 \text{ V}$


 $T_A = 25^{\circ}C$ (unless otherwise noted)

	DADAMETED	ED TEST CONDITION		TPS22920L	LIMIT
	PARAMETER	TEST CONDITION	TYP	TYP	UNIT
t _{ON}	Turn-ON time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ V_{IN} = 0.9 \ V$	840	840	
t _{OFF}	Turn-OFF time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $V_{IN} = 0.9 V$	16	16	
t _r	VOUT Rise time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $V_{IN} = 0.9 V$	470	470	μs
t _f	VOUT Fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ V_{IN} = 0.9 \ V$	5	5	

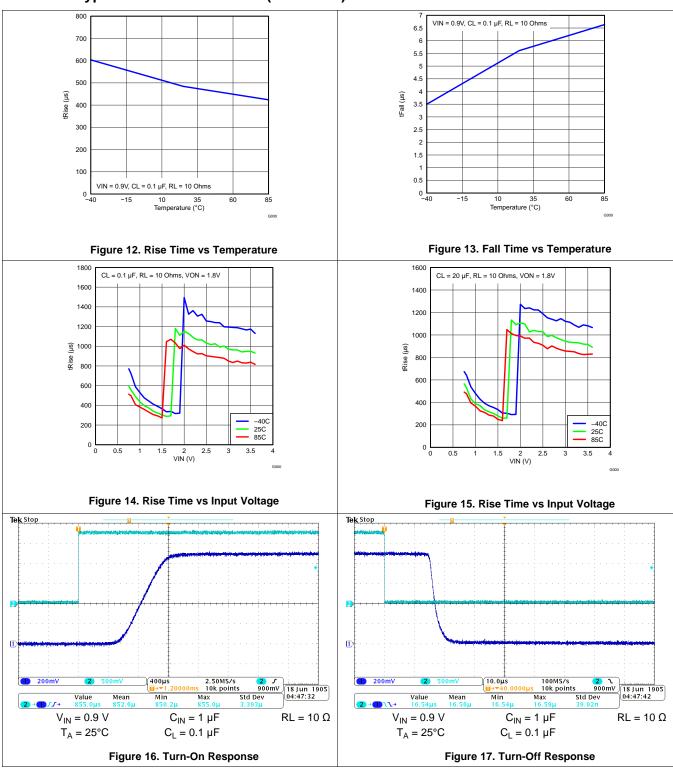
Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS22920 TPS22920L

7.8 Typical DC Characteristics

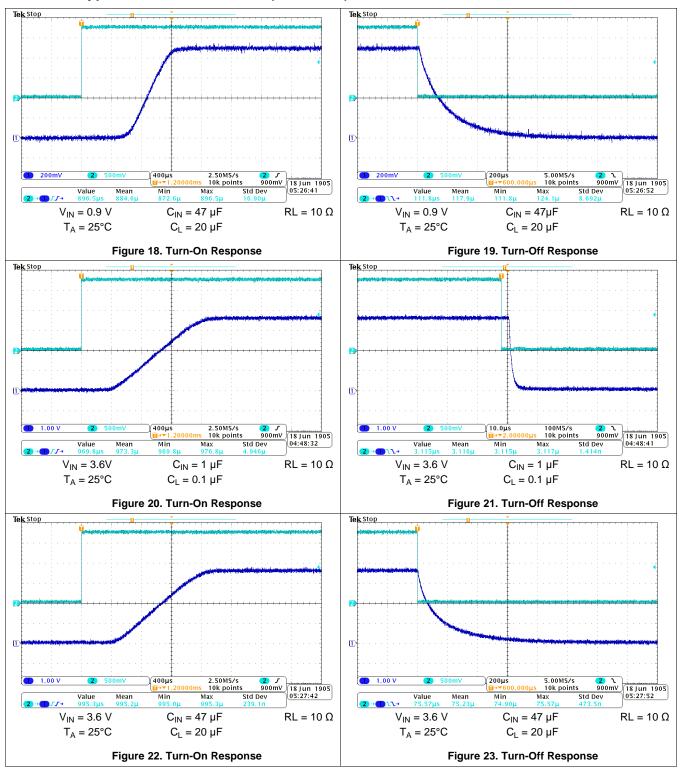


Submit Documentation Feedback

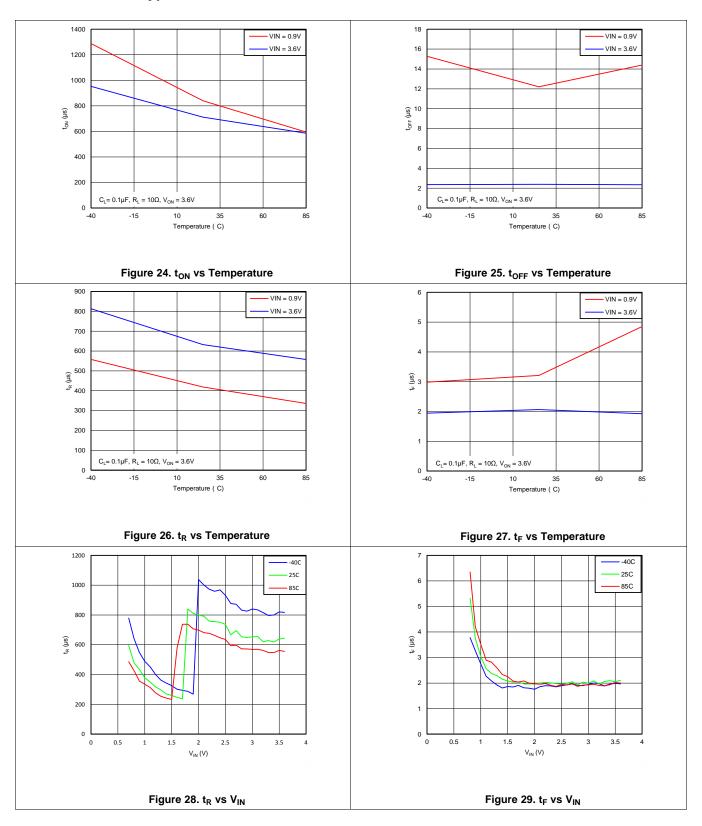
Copyright © 2011–2016, Texas Instruments Incorporated



7.9 TPS22920 Typical AC Characteristics

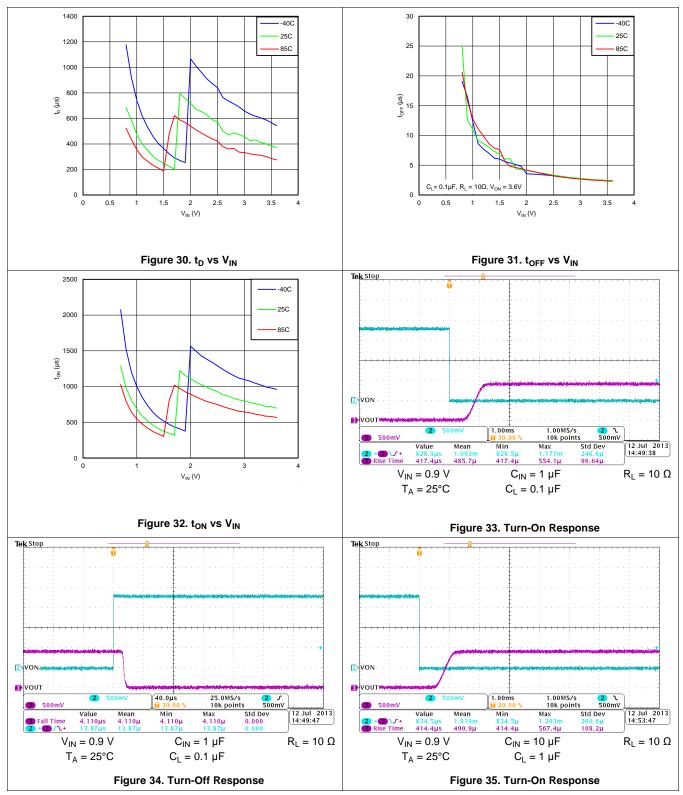

TEXAS INSTRUMENTS

TPS22920 Typical AC Characteristics (continued)



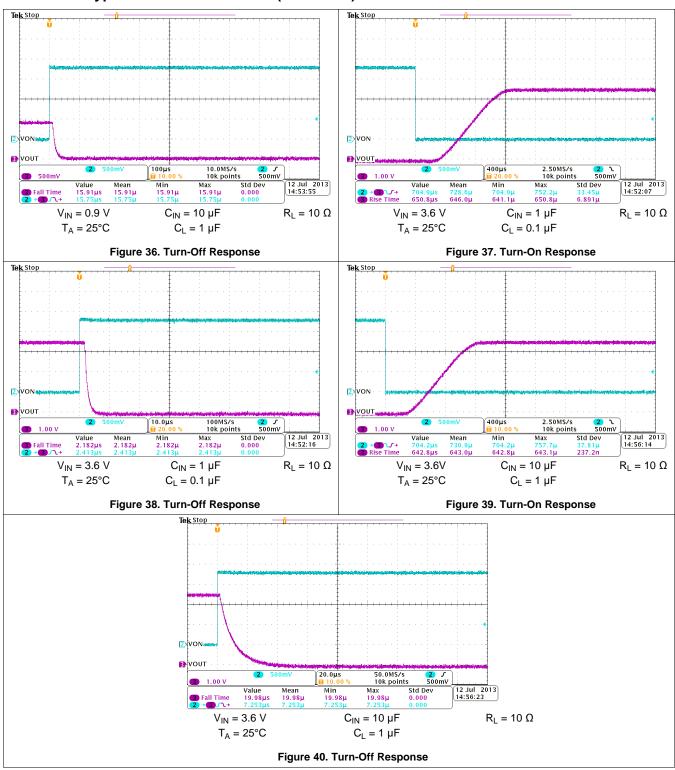
TPS22920 Typical AC Characteristics (continued)

7.10 TPS22920L Typical AC Characteristics



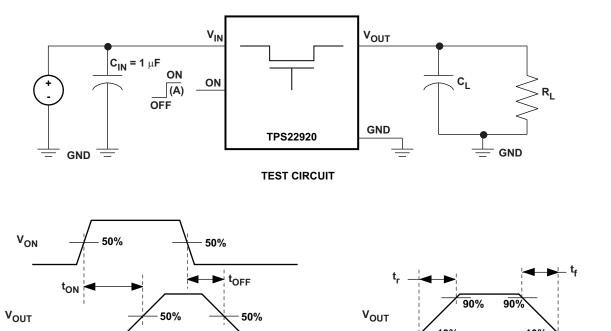
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated



TPS22920L Typical AC Characteristics (continued)

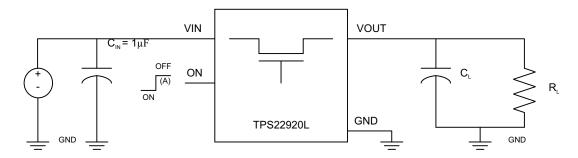
TPS22920L Typical AC Characteristics (continued)



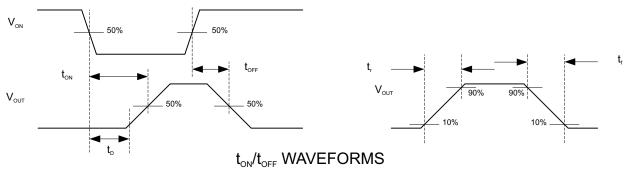
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

8 Parametric Measurement Information


 t_{ON}/t_{OFF} WAVEFORMS

(A) Rise and fall times of the control signal is 100 ns.


Figure 41. TPS22920 Test Circuit and $\rm T_{ON}/\rm T_{OFF}$ Waveforms

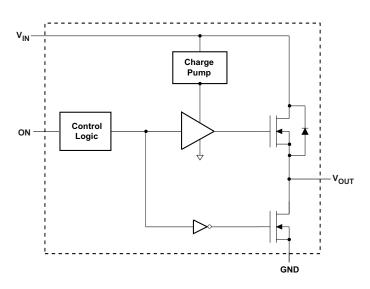
Parametric Measurement Information (continued)

TEST CIRCUIT

A. Rise and fall times of the control signal is 100ns.

Figure 42. TPS22920L Test Circuit and $t_{\text{ON}}/t_{\text{OFF}}$ Waveforms

Submit Documentation Feedback


9 Detailed Description

9.1 Overview

The TPS22920x is a single channel, 4-A load switch in a small, space-saving CSP-8 package. This device implements a low resistance N-channel MOSFET with a controlled rise time for applications that need to limit the inrush current.

This device is also designed to have very low leakage current during off state, which prevents downstream circuits from pulling high standby current from the supply. Integrated control logic, driver, power supply, and output discharge FET eliminates the need for additional external components, which reduces solution size and bill of materials (BOM) count.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 ON/OFF Control

The ON pin controls the state of the switch. For TPS22920, asserting ON high enables the switch. For TPS22920L, asserting ON low enables the switch. ON has a low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2-V, 1.8-V, 2.5-V or 3.3-V GPIOs.

9.3.2 Output Pull-Down

The output pull-down is active when the user is turning off the main pass FET. The pull-down discharges the output rail to approximately 10% of the rail, and then the output pull-down is automatically disconnected to optimize the shutdown current.

9.4 Device Functional Modes

ON	TPS2	22920	TPS22920L				
ON	V _{IN} to V _{OUT}	V _{OUT} to GND ⁽¹⁾	V _{IN} to V _{OUT}	V _{OUT} to GND ⁽¹⁾			
Logic Low	OFF	ON	ON	OFF			
Logic High	ON	OFF	OFF	ON			

(1) See Output Pull-Down.

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

10.1.1 Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between V_{IN} and GND. A 1- μ F ceramic capacitor, C_{IN} , placed close to the pins is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop.

10.1.2 Output Capacitor

A C_{IN} greater than C_L is highly recommended due to the integral body diode in the NMOS switch. A C_L greater than C_{IN} can cause V_{OUT} to exceed VIN when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} . A C_{IN} to C_L ratio of 10 to 1 is recommended for minimizing V_{IN} dip caused by inrush currents during startup.

10.2 Typical Application

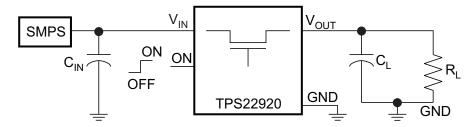


Figure 43. Typical Application Circuit

10.2.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
V _{IN}	3.3 V
C_L	4.7 μF
Maximum Acceptable Inrush Current	40 mA

Submit Documentation Feedback

10.2.2 Detailed Design Procedure

10.2.2.1 VIN to VOUT Voltage Drop

The VIN to VOUT voltage drop in the device is determined by the R_{ON} of the device and the load current. The R_{ON} of the device depends upon the VIN condition of the device. Refer to the R_{ON} specification of the device in the *Electrical Characteristics* table of this datasheet. Once the R_{ON} of the device is determined based upon the VIN conditions, use Equation 1 to calculate the VIN to VOUT voltage drop:

$$\Delta V = I_{LOAD} \times R_{ON}$$

where

- ΔV = Voltage drop from VIN to VOUT
- I_{LOAD} = Load current
- R_{ON} = On-resistance of the device for a specific V_{IN}
- An appropriate I_{LOAD} must be chosen such that the I_{MAX} specification of the device is not violated.

10.2.2.2 Managing Inrush Current

The output capacitors must be charged up from 0-V to V_{IN} when the switch is enabled. This charge arrives in the form of inrush current. Inrush current may be calculated using the following equation:

Inrush Current =
$$C \times \frac{dv}{dt}$$

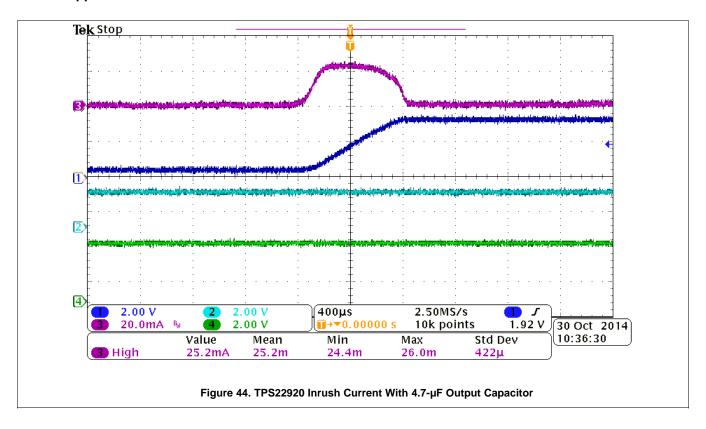
where

• C = Output capacitance

$$\frac{dv}{dt} = \text{Output slew rate}$$
 (2)

The TPS22920x offers a very slow controlled rise time for minimizing inrush current. This device can be selected based upon the maximum acceptable slew rate which can be calculated using the design requirements and the inrush current equation. An output capacitance of 4.7 µF will be used since the amount of inrush increases with output capacitance:

$$40mA = 4.7\mu F \times \frac{dv}{dt} \tag{3}$$


$$\frac{dv}{dt} = 8.5V/ms \tag{4}$$

A device with a slew rate less than 8.5 V/ms must be used to ensure an inrush current of less than 40 mA.

The TPS22920 has a typical rise time of 880 µs at 3.3 V. This results in a slew rate of 3.75 V/ms which meets the *Design Requirements*.

10.2.3 Application Curves

Submit Documentation Feedback

11 Power Supply Recommendations

The device is designed to operate from a VIN range of 0.75 V to 3.6 V. The VIN power supply must be well regulated and placed as close to the VIN terminal as possible. The power supply must be able to withstand all transient load current steps. In most situations, using the minimum recommended input capacitance of 1 μ F is sufficient to prevent the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to respond to a large transient current or large load current step, additional bulk capacitance may be required on the input.

12 Layout

12.1 Layout Guidelines

All traces should be as short as possible for best performance. The input and output capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for V_{IN} , V_{OUT} , and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

12.2 Layout Example

VIA to Power Ground Plane

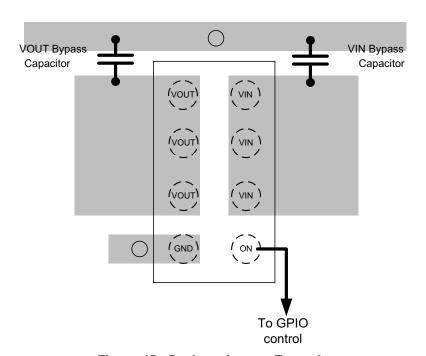


Figure 45. Package Layout Example

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY		
TPS22920	Click here	Click here	Click here	Click here	Click here		
TPS22920L	Click here	Click here	Click here	Click here	Click here		

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

20 Submit Documentation Feedback www.ti.com

10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS22920LYZPR	Active	Production	DSBGA (YZP) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DV
TPS22920LYZPR.B	Active	Production	DSBGA (YZP) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DV
TPS22920LYZPT	Active	Production	DSBGA (YZP) 8	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DV
TPS22920LYZPT.B	Active	Production	DSBGA (YZP) 8	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DV
TPS22920YZPR	Active	Production	DSBGA (YZP) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z
TPS22920YZPR.A	Active	Production	DSBGA (YZP) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z
TPS22920YZPR.B	Active	Production	DSBGA (YZP) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z
TPS22920YZPRB	Active	Production	DSBGA (YZP) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z
TPS22920YZPRB.A	Active	Production	DSBGA (YZP) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z
TPS22920YZPRB.B	Active	Production	DSBGA (YZP) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z
TPS22920YZPT	Active	Production	DSBGA (YZP) 8	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z
TPS22920YZPT.A	Active	Production	DSBGA (YZP) 8	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z
TPS22920YZPT.B	Active	Production	DSBGA (YZP) 8	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	6Z

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

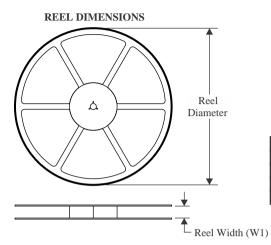
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

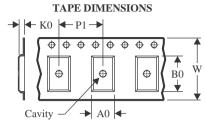
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

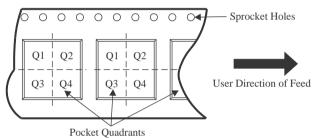
www.ti.com 10-Nov-2025

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

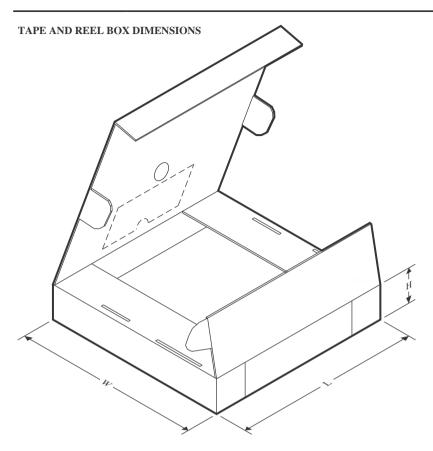

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 7-Feb-2025


TAPE AND REEL INFORMATION

Γ	A0	Dimension designed to accommodate the component width
	В0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
	P1	Pitch between successive cavity centers

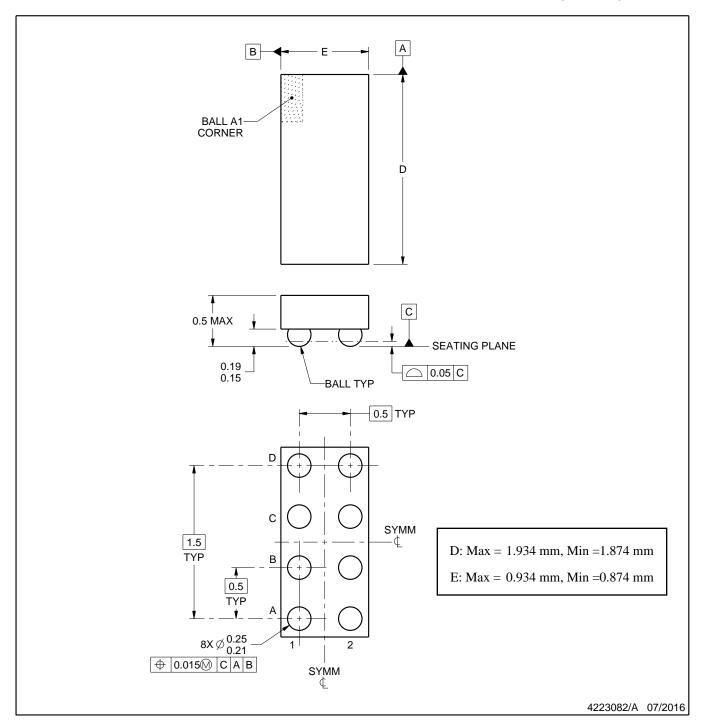
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22920LYZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
TPS22920LYZPT	DSBGA	YZP	8	250	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
TPS22920YZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
TPS22920YZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
TPS22920YZPRB	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
TPS22920YZPRB	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
TPS22920YZPT	DSBGA	YZP	8	250	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
TPS22920YZPT	DSBGA	YZP	8	250	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1

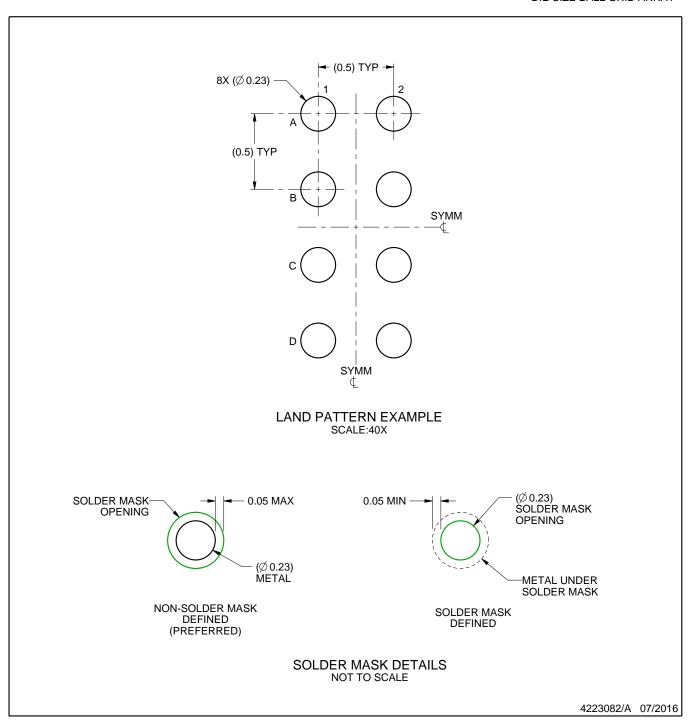
www.ti.com 7-Feb-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22920LYZPR	DSBGA	YZP	8	3000	182.0	182.0	20.0
TPS22920LYZPT	DSBGA	YZP	8	250	182.0	182.0	20.0
TPS22920YZPR	DSBGA	YZP	8	3000	182.0	182.0	20.0
TPS22920YZPR	DSBGA	YZP	8	3000	182.0	182.0	20.0
TPS22920YZPRB	DSBGA	YZP	8	3000	182.0	182.0	20.0
TPS22920YZPRB	DSBGA	YZP	8	3000	182.0	182.0	20.0
TPS22920YZPT	DSBGA	YZP	8	250	182.0	182.0	20.0
TPS22920YZPT	DSBGA	YZP	8	250	182.0	182.0	20.0

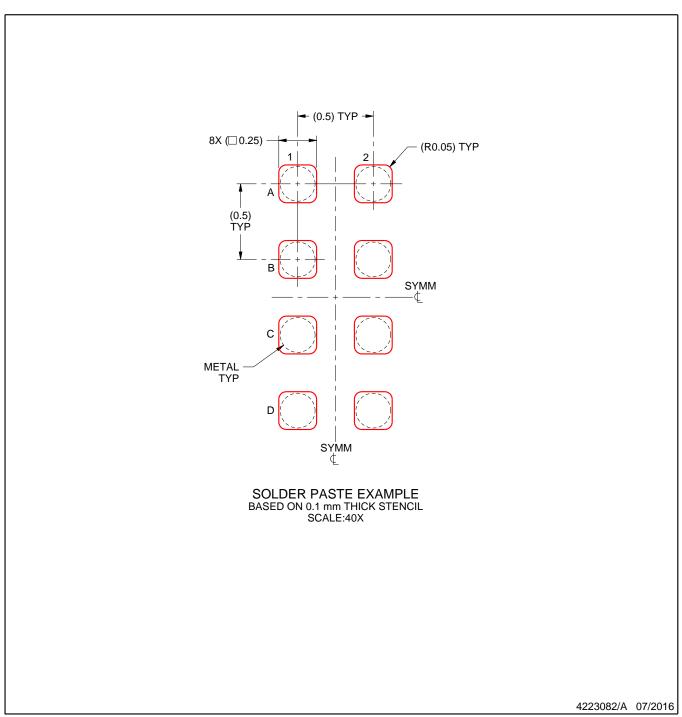
DIE SIZE BALL GRID ARRAY



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025