

ADS9218 SBASA74 - JANUARY 2023

ADS921x Dual, Simultaneous Sampling, 18-Bit, 10-MSPS SAR ADC With Fully **Differential ADC Input Driver**

1 Features

High-speed, 10-MSPS/ch sampling rate

 ADS9218: 10 MSPS/ch ADS9217: 5 MSPS/ch

2-channel, simultaneous sampling

Feature integration:

Integrated ADC driver

- Integrated precision reference

Common-mode voltage output buffer

High-performance

- 18-bit no missing codes

INL: ±1 LSB, DNL: ±0.75 LSB

SNR: 95 dB, THD: –115 dB at f_{IN} = 2 kHz

Wide input bandwidth:

ADS9218: 90 MHz (–3 dB)

ADS9217: 45 MHz (–3 dB)

Low-power 180 mW/ch at 10 MSPS/ch

Serial LVDS interface:

SDR and DDR output modes

Synchronous clock and data output

Extended operating range: -40°C to +125°C

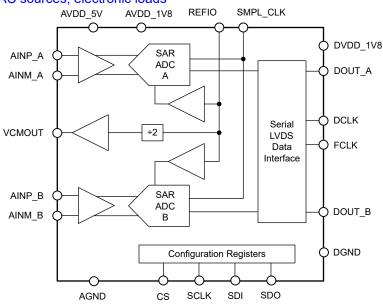
6-mm × 6-mm VQFN package

2 Applications

- Power analyzers
- Source measurement units (SMU)
- Marine equipment
- Servo drive position feedback
- DC power supplies, AC sources, electronic loads

3 Description

The ADS921x is an 18-bit, 10-MSPS/ch, dualchannel, simultaneous-sampling, analog-to-digital converter (ADC) with an integrated driver for the ADC inputs. The ADC consumes only 180 mW/ch at 10 MSPS/ch and the power consumption scales with lower sampling rates.


The ADS921x uses a serial low-voltage differential signaling (SLVDS) data interface that enables highspeed digital interface while minimizing digital switching noise. The device comes in a space-saving, 6-mm × 6-mm, VQFN package.

The ADS921x is specified for the extended temperature range of -40°C to +125°C.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
ADS9218	RHA (VQFN, 40)	6.0 mm × 6.0 mm
ADS9217 ⁽²⁾	RHA (VQFN, 40)	6.0 mm × 6.0 mm

- For all available packages, see the orderable addendum at the end of the data sheet.
- Preview information (not Production Data).

Table of Contents

1 Features1	7.3 Feature Description	16
2 Applications 1	7.4 Device Functional Modes	20
3 Description1	7.5 Programming	<mark>2</mark> 1
4 Revision History2	7.6 Register Map	
5 Pin Configuration and Functions3	8 Application and Implementation	44
6 Specifications5	8.1 Application Information	44
6.1 Absolute Maximum Ratings5	8.2 Typical Applications	
6.2 ESD Ratings5	8.3 Power Supply Recommendations	49
6.3 Thermal Information5	8.4 Layout	
6.4 Recommended Operating Conditions6	9 Device and Documentation Support	51
6.5 Electrical Characteristics7	9.1 Documentation Support	51
6.6 Timing Requirements8	9.2 Receiving Notification of Documentation Updates.	51
6.7 Switching Characteristics9	9.3 Support Resources	<mark>5</mark> 1
6.8 Timing Diagrams10	9.4 Trademarks	51
6.9 Typical Characteristics: ADS921813	9.5 Electrostatic Discharge Caution	51
6.10 Typical Characteristics: ADS921714	9.6 Glossary	51
7 Detailed Description15	10 Mechanical, Packaging, and Orderable	
7.1 Overview	Information	<mark>5</mark> 1
7.2 Functional Block Diagram15	10.1 Mechanical Data	52

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
January 2023	*	Initial Release

5 Pin Configuration and Functions

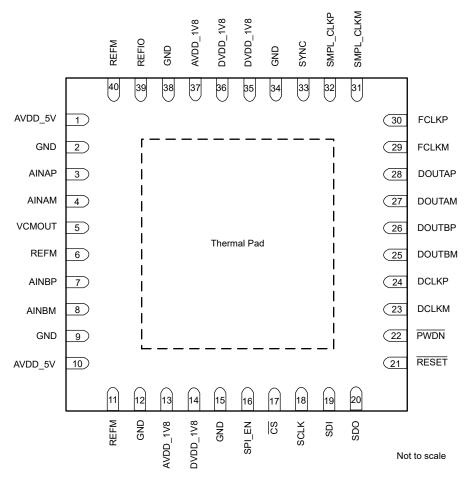


Figure 5-1. RHA Package, 6-mm × 6-mm, 40-Pin VQFN (Top View)

Pin Functions

	PIN	TYPE(1)	DESCRIPTION	
NAME	NO.		DESCRIPTION	
AINAM	4	I	Negative analog input for ADC A.	
AINAP	3	I	Positive analog input for ADC A.	
AINBM	8	I	Negative analog input for ADC B.	
AINBP	7	I	Positive analog input for ADC B.	
AVDD_1V8	13, 37	Р	1.8-V analog power-supply pin.	
AVDD_5V	1, 10	Р	5-V analog power-supply pin.	
cs	17	I	Chip-select input pin for the configuration interface; active low.	
DCLKM	23	0	Negative differential data clock output. Connect a $100-\Omega$ resistor between DCLKP and DCLKM close to the receiver.	
DCLKP	24	0	Positive differential data clock output. Connect a $100-\Omega$ resistor between DCLKP and DCLKM close to the receiver.	
DOUTAM	AME NO. 4 I 3 I 8 I 7 I V8 13, 37 P V 1, 10 P 17 I 23 O 24 O	0	Negative differential data output. Connect a $100-\Omega$ resistor between DOUTAP and DOUTAM close to the receiver. Transmits ADC A data in 2-lane mode. Transmits ADC A and ADC B data in 1-lane mode.	

Pin Functions (continued)

	PIN	TVDE(1)	DESCRIPTION
NAME	NO.	TYPE ⁽¹⁾	DESCRIPTION
DOUTAP	28	0	Positive differential data output corresponding to ADC A. Connect a $100-\Omega$ resistor between DOUTAP and DOUTAM close to the receiver. Transmits ADC A data in 2-lane mode. Transmits ADC A and ADC B data in 1-lane mode.
DOUTBM	25	0	Positive differential data output corresponding to ADC B in 2-lane mode. Connect a $100-\Omega$ resistor between DOUTBP and DOUTBM close to the receiver. Unused in 1-lane mode.
DOUTBP	26	0	Negative differential data output corresponding to ADC B in 2-lane mode. Connect a $100-\Omega$ resistor between DOUTBP and DOUTBM close to the receiver. Unused in 1-lane mode.
DVDD_1V8	14, 35, 36	Р	1.8-V digital power supply.
FCLKM	29	0	Negative differential data frame clock output. Connect a 100-Ω resistor between FCLKP and FCLKM close to the receiver.
FCLKP	30	0	Positive differential data frame clock output. Connect a 100-Ω resistor between FCLKP and FCLKM close to the receiver.
GND	2, 9, 12, 15, 34, 38	Р	Ground.
PWDN	22	I	Power-down control; active low. Connect to DVDD_1V8 if unused.
REFIO	39	I/O	Internal reference voltage output. External reference voltage input. Connect a 10- µF decoupling capacitor to REFM.
REFM	6, 11, 40	Р	Reference ground. Connect to GND.
RESET	21	I	Reset input; active low. Connect to DVDD_1V8 if unused.
SCLK	18	I	Serial clock input for the configuration interface.
SDI	19	I	Serial data input for the configuration interface.
SDO	20	0	Serial data output for the configuration interface.
SMPL_CLKM	31	I	ADC sampling clock input. Connect this pin to GND for the CMOS sampling clock.
SMPL_CLKP	32	I	ADC sampling clock input. Clock input for the CMOS sampling clock.
SPI_EN	16	I	Control to enable configuration of the SPI interface; active high. Connect a pullup resistor to DVDD_1V8 to keep the configuration interface enabled. Connect to GND if SPI configuration is unused.
SYNC	33	I	Synchronization input for internal averaging filter. Connect to GND if unused.
VCMOUT	5	0	Common-mode voltage output. Use this output to set the common-mode voltage at the ADC inputs. Connect a 1-µF decoupling capacitor to GND.

(1) I = input, O = output, I/O = input or output, G = ground, P = power.

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
DVDD_1V8 to GND	-0.3	2.1	V
AVDD_1V8 to GND	-0.3	2.1	V
AVDD_5V to GND	-0.3	5.5	V
AINAP, AINAM, AINBP, and AINBM to GND	GND - 0.3	AVDD_5V + 0.3	V
REFIO to REFM	REFM - 0.3	AVDD_5V + 0.3	V
Digital inputs to GND	GND - 0.3	DVDD_1V8 + 0.3	V
REFM to GND	-0.3	0.3	V
Input current to any pin except supply pins ⁽²⁾	-10	10	mA
Junction temperature, T _J	-40	150	°C
Storage temperature, T _{stg}	-60	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Pin current must be limited to 10 mA or less.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, analog input pins AINAP, AINAM, AINBP, and AINBM ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all other pins ⁽¹⁾	±1000	V
		Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±500	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Thermal Information

		ADS92XX	
	THERMAL METRIC ⁽¹⁾	RHA (VQFN)	UNIT
		40 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	25.8	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	13.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	7.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	7.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	1.1	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

PAF	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY					1	
AVDD_5V	Analog power supply	AVDD_5V to GND	4.75	5	5.25	V
AVDD_1V8	Analog power supply	AVDD_1V8 to GND	1.75	1.8	1.85	V
DVDD_1V8	Digital power supply	DVDD_1V8 to GND	1.75	1.8	1.85	V
REFERENCE VOLTA	GE					
V _{REF}	Reference voltage to the ADC	External reference	4.076	4.096	4.116	V
ANALOG INPUTS						
V _{IN}	Absolute input voltage	AINx ⁽¹⁾ to GND	0.7		4.1	V
FSR	Full-scale input range	(AINAP – AINAM) and (AINBP – AINBM)	-3.2		3.2	V
V _{CM}	Common-mode input range	(AINAP – AINAM) / 2 and (AINBP – AINBM) / 2	V _{CMOUT} – 0.025		V _{CMOUT} + 0.025	V
TEMPERATURE RAI	NGE					
T _A	Ambient temperature		-40	25	125	°C

⁽¹⁾ AINx refers to analog inputs AINAP, AINAM, AINBP, and AINBM.

Submit Document Feedback

6.5 Electrical Characteristics

at AVDD_5V = 4.75 V to 5.25 V, AVDD_1V8 = 1.75 V to 1.85 V, DVDD_1V8 = 1.75 V to 1.85 V, internal V_{REF} = 4.096 V, and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40° C to $+125^{\circ}$ C; typical values at T_A = 25° C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG	INPUTS					
I _B	Input bias current			0.5	TBD	μA
I _B	Input bias current thermal drift			1		nA/°C
DC PERF	ORMANCE		'			
	Resolution	No missing codes		18		Bits
DNL	Differential nonlinearity		-0.75	±0.4	0.75	LSB
INL	Integral nonlinearity		-4	±1	4	LSB
V _(OS)	Input offset error			±2		LSB
dV _{OS} /dT	Input offset error thermal drift			±1		ppm/°C
	Offset error match	V _(OS) (ADC_A – ADC_B)		0.5		LSB
G _E	Gain error ⁽¹⁾		-0.05	±0.01	0.05	%FSR
dG _{E/} dT	Gain error thermal drift ⁽¹⁾			±1		ppm/°C
	Gain error match	G _E (ADC_A – ADC_B)		±0.001		%FSR
AC PERF	ORMANCE	1				
		f _{IN} = 2 kHz		95		
SINAD	Signal-to-noise + distortion ratio	f _{IN} = 1 MHz		94		dB
2115		f _{IN} = 2 kHz		95.1		
SNR	Signal-to-noise ratio	f _{IN} = 1 MHz		94.1		dB
		f _{IN} = 2 kHz		-115		
THD	Total harmonic distortion	f _{IN} = 1 MHz		-102		dB
2555		f _{IN} = 2 kHz		120		
SFDR	Spurious-free dynamic range	f _{IN} = 1 MHz		102		dB
	Isolation crosstalk	f _{IN} = 1 MHz		TBD		dB
	Aperture Jitter			0.3		ps _{RMS}
514		ADS9218		90		
BW	Input Bandwidth (–3-dB)	ADS9217		45		MHz
соммон	N-MODE OUTPUT BUFFER					
V _{CMOUT}	Common-mode output voltage			2.4		V
	Output current drive		0		5	μA
LVDS OU	TPUT (CLKOUT, DOUTA, and DO	OUTB)				
V _{ODIFF}	Differential output voltage	R _L = 100Ω	250	350	450	mV
V _{OCM}	Output common-mode voltage	R _L = 100Ω	1.08	1.1	1.32	V
	PUTS (CS, SCLK, and SDI)					
V _{IL}	Input low logic level		-0.3		0.3 DVDD	V
V _{IH}	Input high logic level		0.7 DVDD		DVDD	V
	UTPUT (SDO)	1	1			
V _{OL}	Output low logic level	I _{OL} = 200 μA sink	0		0.2 DVDD	V
V _{OH}	Output high logic level	I _{OH} = 200 μA source	0.8 DVDD		DVDD	V
POWER		1				
_		Maximum throughput		36	TBD	
I_{AVDD_5V}	Supply current from AVDD_5V	No conversion, external reference			TBD	mA

6.5 Electrical Characteristics (continued)

at AVDD_5V = 4.75 V to 5.25 V, AVDD_1V8 = 1.75 V to 1.85 V, DVDD_1V8 = 1.75 V to 1.85 V, internal V_{REF} = 4.096 V, and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40° C to $+125^{\circ}$ C; typical values at T_A = 25° C.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Supply current from AVDD 1V8	Maximum throughput		67	TBD	mA
Supply current from AVDD_1V8	No conversion, external reference			TBD	mA	
	Supply current from DVDD 11/9	Maximum throughput		34	TBD	mΛ
IDVDD_1V8	Supply current from DVDD_1V8	No conversion, external reference		5	TBD	mA

⁽¹⁾ These specifications include full temperature range variation but not the error contribution from internal reference.

6.6 Timing Requirements

at AVDD_5V = 4.75 V to 5.25 V, AVDD_1V8 = 1.75 V to 1.85 V, DVDD_1V8 = 1.75 V to 1.85 V, and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40° C to $+125^{\circ}$ C; typical values at T_A = 25° C.

			MIN	MAX	UNIT
CONVERSIO	ON CYCLE	,		'	
£	Compling frequency	ADS9218		10	MSPS
f _{CYCLE}	Sampling frequency	ADS9217		5	MSPS
t _{CYCLE}	ADC cycle-time period		1/f _{CYCLE}		S
t _{PL_SMPLCLK}	Sample clock low time		0.48	0.52	t _{CYCLE}
t _{PH_SMPLCLK}	Sample clock high time		0.48	0.52	t _{CYCLE}
f _{CLK}	Maximum SCLK frequency			10	MHz
t _{CLK}	Minimum SCLK time period		100		ns
SPI INTERF	ACE TIMINGS				
t _{hi_CSZ}	Pulse duration: CS high		220		ns
t _{PH_CK}	SCLK high time		0.48	0.52	t _{CLK}
t _{PL_CK}	SCLK low time		0.48	0.52	t _{CLK}
t _{d_CSCK}	Setup time: CS falling to the first SCLK rising edge	Э	20		ns
t _{su_CKDI}	Setup time: SDI data valid to the corresponding So	CLK rising edge	10		ns
t _{ht_CKDI}	Hold time: SCLK rising edge to corresponding data	a valid on SDI	5		ns
t _{d_CKCS}	Delay time: last SCLK falling edge to CS rising		5		ns

Submit Document Feedback

6.7 Switching Characteristics

at AVDD_5V = 4.75 V to 5.25 V, AVDD_1V8 = 1.75 V to 1.85 V, DVDD_1V8 = 1.75 V to 1.85 V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}$ C to $+125^{\circ}$ C; typical values at $T_A = 25^{\circ}$ C.

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
RESET					
t _{PU}	Power-up time for device			25	ms
LVDS DATA II	NTERFACE			1	
t _{RT}	Rise time	with 50Ω		600	ps
t _{FT}	Fall time	transmission line of length = 20 mm, differential R_L = 100Ω , and C_L = 1 pF		600	ps
t	Sampling clock period	ADS9218	100		ns
tcycle	Sampling clock period	ADS9217	200		ns
t _{DCLK}	Clock output		4.167		ns
	Clock duty cycle		45	55	%
t _{d_DCLKDO}	Time delay: DCLKP rising to corresponding data valid	at 5Msps, SDR mode	-0.8	0.8	ns
t _{off_DCLKDO_r}	Time offset: DCLKP rising to corresponding data valid	at 5Msps, DDR mode	t _{DCLK} /4 - 0.8	t _{DCLK} /4 + 0.8	ns
t _{off_DCLKDO_f}	Time offset: DCLKP falling to corresponding data valid	at 5Msps, DDR mode	t _{DCLK} /4 - 0.8	t _{DCLK} /4 + 0.8	ns
t _{PD}	Time delay: SMPL_CLK falling to DCLKP rising			t _{DCLK}	ns
t _{PU_SMPL_CLK}	Time delay: free running clock connected to SMPL_CLK to ADC data valid			100	μs
SPI INTERFA	CE TIMINGS	,		,	
t _{den_CKDO}	Time delay: 8 th SCLK rising edge to SDO enable			30	ns
t _{dz_CKDO}	Time delay: 24 th SCLK rising edge to SDO going Hi-Z			30	ns
t _{d_CKDO}	Time delay: SCLK launch edge to corresponding data valid on SDO			20	ns
t _{ht_CKDO}	Hold time: SCLK launch edge to previous data valid on SDO		2		ns

6.8 Timing Diagrams

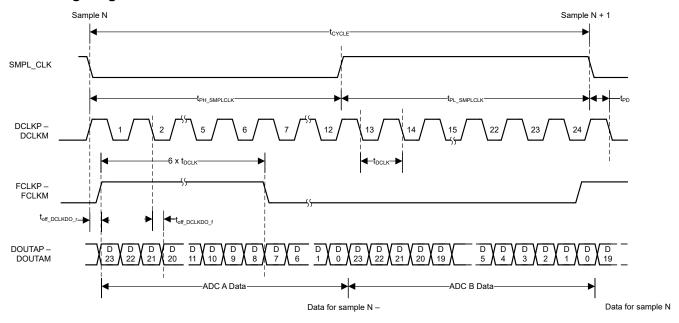


Figure 6-1. LVDS Data Interface: 1-Lane DDR

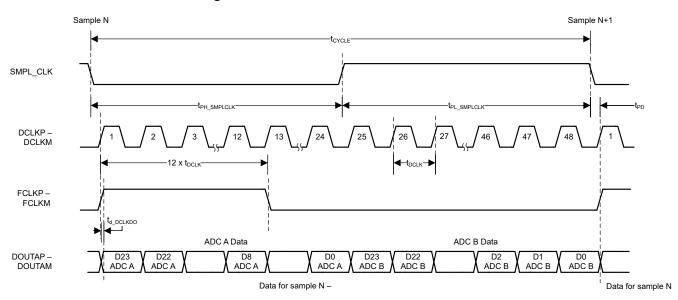


Figure 6-2. LVDS Data Interface: 1-Lane SDR

Figure 6-3. LVDS Data Interface: 2-Lane DDR

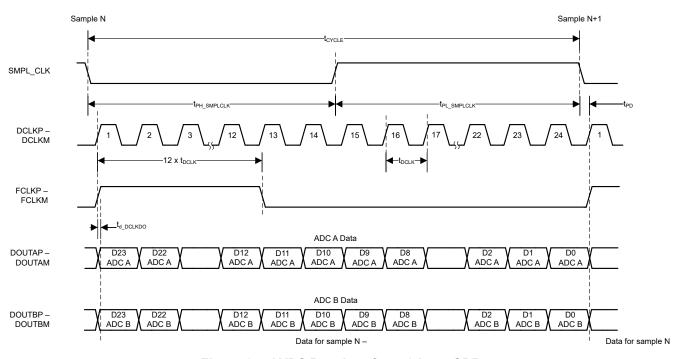


Figure 6-4. LVDS Data Interface: 2-Lane SDR

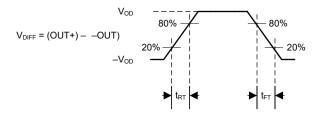


Figure 6-5. LVDS Output Transition Times

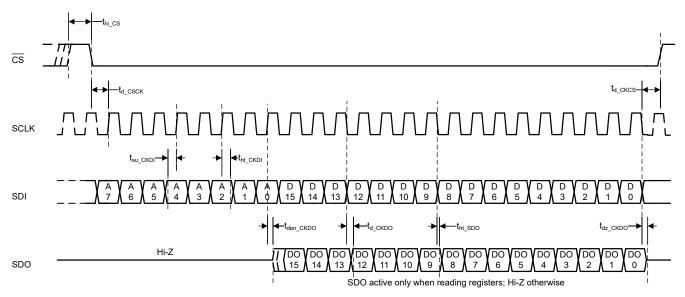
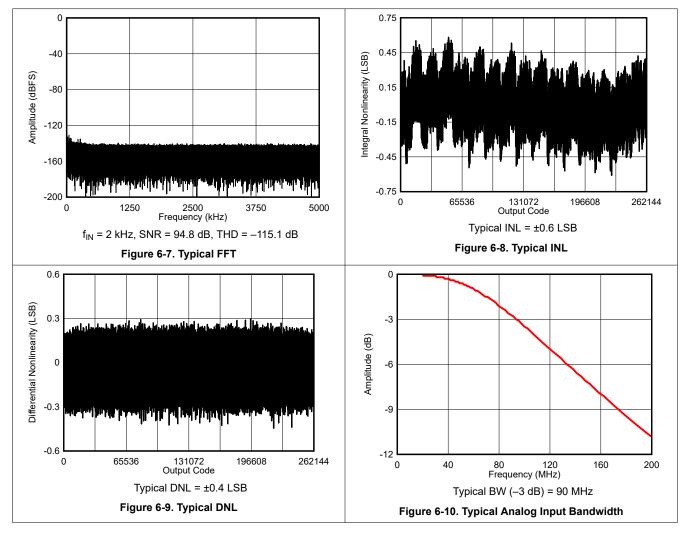
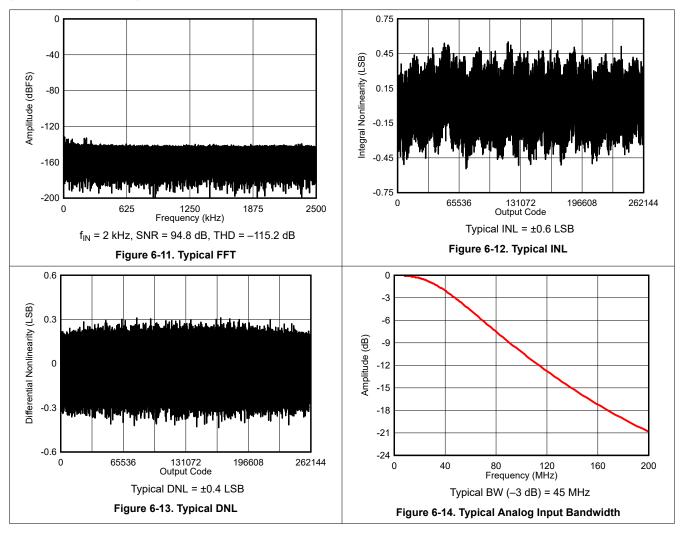



Figure 6-6. Configuration SPI Interface

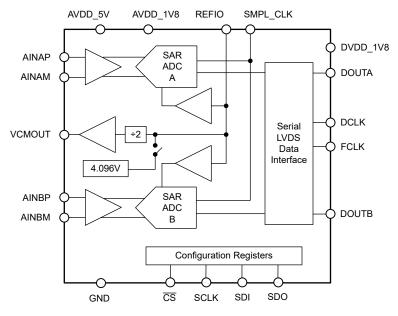
6.9 Typical Characteristics: ADS9218


at T_A = 25°C, AVDD_5V = 5 V, AVDD_1V8 = 1.8 V, DVDD_1V8 = 1.8 V, external V_{REF} = 4.096V, and maximum throughput (unless otherwise noted)

6.10 Typical Characteristics: ADS9217

at T_A = 25°C, AVDD_5V = 5 V, AVDD_1V8 = 1.8 V, DVDD_1V8 = 1.8 V, external V_{REF} = 4.096V, and maximum throughput (unless otherwise noted)

7 Detailed Description


7.1 Overview

The ADS921x is an 18-bit, 10-MSPS/ch, dual-channel, simultaneous-sampling, analog-to-digital converter (ADC). The ADS921x integrates a high-impedance buffer at the ADC inputs, voltage reference, reference buffer, and common-mode voltage output buffer. The ADS9218 supports unipolar differential analog input signals. The buffer at the ADC inputs is optimized for low-distortion and low-power operation.

For DC level shifting of the analog input signals, the device has a common-mode voltage output buffer. The common-mode voltage is derived from the output of the integrated reference buffer. When a conversion is initiated, the differential input between the (AINAP – AINAM) and (AINBP – AINBM) pins is sampled. The ADS921x uses a clock input on the SMPL CLKP pin to initiate conversions.

The ADS921x consumes only 180 mW/ch of power when operating at 10 MSPS/ch, which includes the power dissipation of the buffer at the ADC inputs. The serial LVDS (SLVDS) digital interface simplifies board layout, timing, firmware, and supports full throughput at lower clock speeds.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Analog Inputs

The analog inputs of the ADS921x are intended to be driven differentially. Both AC coupling and DC coupling of the analog inputs is supported. The analog inputs are designed for an input common-mode voltage that must be equal to the voltage on the VCMOUT pin. DC-coupled input signals must have a common-mode voltage that meets the device input common-mode voltage range. Figure 7-1 shows an equivalent input network diagram.

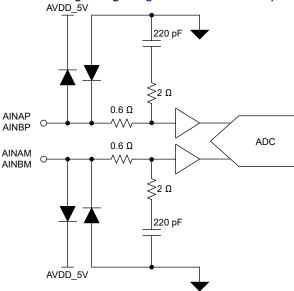


Figure 7-1. Equivalent Input Network

7.3.2 Analog Input Bandwidth

Figure 6-10 and Figure 6-14 illustrate the analog full-power input bandwidth of the ADS921x device family. The -3-dB bandwidth is 90 MHz and 45 MHz for the ADS9218 and ADS9217, respectively.

7.3.3 ADC Transfer Function

The ADS921x supports a ± 3.2 -V differential input range. The device outputs 18-bit conversion data in either straight-binary or binary two's-complement formats. As shown in Table 7-1, the format for the output codes is the same across all analog channels. The format for the output codes can be configured using the DATA_FORMAT field in register address 0x0D. The least significant bit (LSB) for the ADC is given by 1 LSB = 6.4 V / 2^{18} .

Tahla 7.	1	Transfer Characteristics	
I able 1 -	и.	TIANSIEI CHAIACIENSIICS	

INPUT VOLTAGE	DESCRIPTION	ADC OUTPUT IN TWO'S- COMPLEMENT FORMAT	ADC OUTPUT IN STRAIGHT- BINARY FORMAT	
≤ -3.2 V + 1 LSB	Negative full-scale code	0x80000	0x00000	
0 V + 1 LSB	Mid-code	0x00000	0x1FFFF	
≥ 3.2 V – 1 LSB	Positive full-scale code	0x1FFFF	0x3FFFF	

7.3.4 Reference

The ADS921x has a precision, low-drift voltage reference internal to the device. For best performance, filter the internal reference noise by connecting a 10-µF ceramic bypass capacitor to the REFIO pin. An external reference can also be connected at the REFIO pin with the internal reference voltage disabled by writing to PD_REF field in register address 0xC1.

Submit Document Feedback

7.3.4.1 Internal Reference Voltage

The ADS921x features an internal reference voltage with a nominal output voltage of 4.096 V. On power-up, the internal reference is enabled by default. Place a minimum 10-µF decoupling capacitor between the REFIO and REFM pins. Figure 7-2 shows a block diagram of the internal reference voltage.

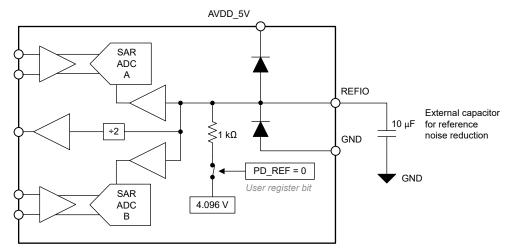


Figure 7-2. Internal Reference Voltage

7.3.4.2 External Reference Voltage

An external 4.096-V reference voltage can be connected at the REFIO pin with an appropriate decoupling capacitor placed between the REFIO and REFM pins. For improved thermal drift performance, the REF7040 is recommended. To disable the internal reference, set PD_REF = 1b in address 0xC1 in register bank 1. The REFIO pin has electrostatic discharge (ESD) protection diodes connected to the AVDD_5V and REFM pins. Figure 7-3 shows an external reference diagram.

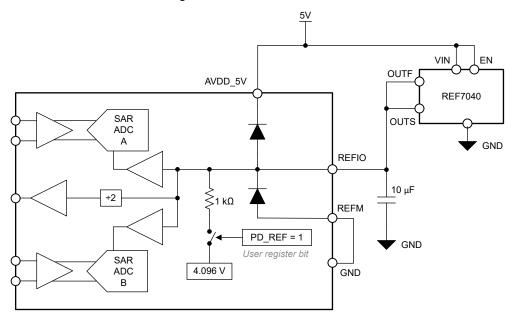


Figure 7-3. External Reference Voltage

7.3.5 Data Interface

The ADS921x features a high-speed serial LVDS data interface with 2-lane and 1-lane options for data output. The host can configure the output data frame width to 20 bits or 24 bits with the single-data rate (SDR) and double-data rate (DDR) modes.

The ADS921x generates a data clock DCLK that is a multiple of the ADC sampling clock SMPL_CLK. The data clock frequency depends on the number of data output lanes (1 or 2), data frame width (20 bit or 24 bit) and data rate (SDR or DDR). Equation 1 calculates the DCLK speed. Table 7-2 lists the possible values for the output data clock frequency.

$$DCLK speed = \frac{2 ADC channels \times Data Frame Width (24 bit or 20 bit)}{Data Lanes (1 or 2) \times Data Rate(SDR = 1, DDR = 2)} \times SMPL_CLK$$
 (1)

Table 7-2. Data Clock (DCLK) Speed⁽¹⁾

ADC CHANNELS	DATA FRAME WIDTH (Bits)	DATA RATE (1 = SDR, 2 = DDR)	OUTPUT LANES	SMPL_CLK MULTIPLIER	DCLK (SMPL_CLK = 5 MHz)	DCLK (SMPL_CLK = 10 MHz)
		1	1	48	240 MHz	480 MHz
	24		2	24	120 MHz	240 MHz
	24	2	1	24	120 MHz	240 MHz
2			2	12	60 MHz	120 MHz
2		4	1	40	200 MHz	400 MHz
	20	ı	2	20	100 MHz	200 MHz
	20	2	1	20	100 MHz	200 MHz
			2	10	50 MHz	100 MHz

⁽¹⁾ The LVDS output data and clock are specified up to 600 MHz. Faster speeds are not supported.

7.3.5.1 Data Frame Width

As shown in Figure 7-4, the ADS921x supports 24-bit and 20-bit data frame width options. Configure the DATA_WIDTH field in address 0x12 to select the data frame width. The default output data frame width is 24 bits. The ADC resolution is 18 bits, represented by 20 bits. The two extra lower bits in the 20-bit data can be ignored.

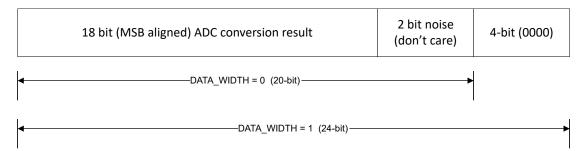


Figure 7-4. Data Frame Width Composition

7.3.5.2 Test Patterns for Data Interface

The ADS921x features test patterns that can be used by the host for debugging and verifying the data interface. The test patterns replace the ADC output data with predefined digital data. The test patterns can be enabled by configuring the corresponding register addresses 0x13 through 0x1B in bank 1.

The ADS921x supports the following test patterns:

- User-defined output: User-defined, 24-bit pattern. Separate patterns for ADC A and ADC B; see the User-Defined Test Pattern section.
- Ramp output: Digital ramp output with a user-defined increment between two steps. There are separate ramp outputs for ADC A and ADC B; see the *Ramp Test Pattern* section.
- Alternate output: User-defined, 24-bit outputs that alternate between ADC A and ADC B user-defined patterns; see the *User-Defined Alternating Test Pattern* section.

To disable the test patterns, set TEST_PAT_EN_CHA and TEST_PAT_EN_CHB to 0b.

7.3.5.2.1 User-Defined Test Pattern

The user-defined test pattern allows the host to specify a fixed 24-bit value that is output by the ADS921x. Configure the registers in bank 1 to enable the user-defined test pattern:

- Configure the test patterns in TEST_PAT0_CHA (address = 0x14, 0x15) and TEST_PAT0_CHB (address = 0x19, 0x1A)
- Set TEST_PAT_EN_CHA = 1, TEST_PATMODE_CHA = 0 (address = 0x13) and TEST PAT_EN_CHB = 1, TEST_PATMODE_CHB = 0 (address = 0x18)

The ADS921x outputs the TEST_PAT0_CHA and TEST_PAT0_CHB register values in place of the ADC A and ADC B data, respectively.

7.3.5.2.2 User-Defined Alternating Test Pattern

The user-defined alternating test pattern allows the host to specify two fixed 24-bit values that are output by the ADS921x alternately. Configure the registers in bank 1 to enable the user-defined alternating test pattern:

- Configure the test patterns in TEST_PAT0_CHA (address = 0x14, 0x15), TEST_PAT1_CHA (address = 0x15, 0x16) and TEST_PAT0_CHB (address = 0x19, 0x1A), TEST_PAT1_CHB (address = 0x1A, 0x1B)
- Set TEST_PAT_EN_CHA = 1, TEST_PATMODE_CHA = 3 (address = 0x13) and TEST PAT_EN_CHB = 1, TEST_PATMODE_CHB = 3 (address = 0x18)

The ADS921x outputs the TEST_PAT0_CHA and TEST_PAT0_CHB register values in place of the ADC A and ADC B data, respectively, in one output frame and the TEST_PAT1_CHA and TEST_PAT1_CHB register values in the next frame.

7.3.5.2.3 Ramp Test Pattern

The ramp test pattern allows the host to specify a digital ramp that is output by the ADS921x. Configure the registers in bank 1 to enable the ramp test pattern:

- Configure the increment value between two successive steps of the digital ramp in the RAMP_INC_CHA (address = 0x13) and RAMP_INC_CHB (address = 0x18) registers, respectively. The digital ramp increments by N + 1, where N is the value configured in these registers.
- Set TEST_PAT_EN_CHA = 1, TEST_PATMODE_CHA = 2 (address = 0x13) and TEST PAT_EN_CHB = 1, TEST_PATMODE_CHB = 2 (address = 0x18).

The ADS921x outputs digital ramp values in place of the ADC A and ADC B data, respectively.

7.3.6 ADC Sampling Clock Input

Use a low jitter external clock with a high slew rate to maximize the ADC SNR performance. The ADS921x can be operated using a single-ended clock input where the single-ended clock consumes less power consumption. Clock amplitude impacts the ADC aperture jitter and consequently the SNR. For maximum SNR performance, a large clock signal with fast slew rates must be provided.

The sampling clock must be a free-running continuous clock. The ADC generates valid output data, a data clock, and a frame clock tpu_SMPL_CLK, as specified in the *Switching Characteristics* section after a free-running sampling clock is applied. ADC output data, the data clock, and the frame clock are invalid when the sampling clock is stopped.

Figure 7-5 shows a diagram of the single-ended sampling clock. Connect a single-ended sampling clock to SMPL_CLKP and connect SMPL_CLKM to ground.

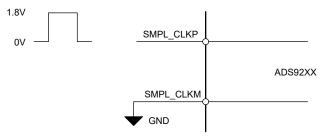


Figure 7-5. Single-Ended Sampling Clock

7.4 Device Functional Modes

7.4.1 Normal Operation

In normal operating mode, the ADS921x is powered-up and digitizes the analog inputs at the falling edge of the sampling clock. The ADC outputs the data clock, frame clock, and MSB-aligned, 18-bit conversion result.

7.4.2 Power-Down Options

Power-down mode can be enabled by a register write or with the <u>PWDN</u> pin. The <u>PWDN</u> pin has an internal pullup resistor to DVDD_1V8. The <u>PWDN</u> pin must be pulled low to enable power-down mode.

Submit Document Feedback

7.5 Programming

7.5.1 Register Write

Register write access is enabled by setting SPI_RD_EN = 0b. The 16-bit configuration registers are grouped in three register banks and are addressable with an 8-bit register address. Register bank 1 and register bank 2 can be selected for read or write operation by configuring the PAGE_SEL0 and PAGE_SEL1 bits, respectively. Registers in bank 0 are always accessible, irrespective of the PAGE_SELx bits because the register addresses are unique and are not used in register banks 1 and 2.

As shown in Figure 7-6, steps to write to a register are:

- 1. Frame 1: Write to register address 0x03 in register bank 0 to select either register bank 1 or bank 2 for a subsequent register write. This frame has no effect when writing to registers in bank 0.
- 2. Frame 2: Write to a register in the bank selected in frame 1. Repeat this step for writing to multiple registers in the same register bank.

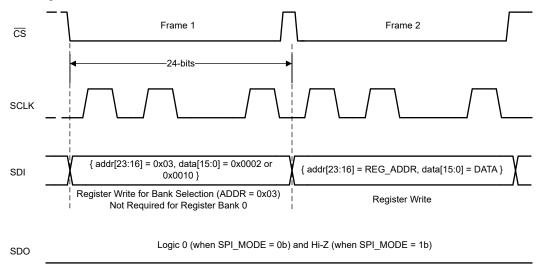


Figure 7-6. Register Write

7.5.2 Register Read

Select the desired register bank by writing to register address 0x03 in register bank 0. Register read access is enabled by setting SPI_RD_EN = 1b and SPI_MODE = 1b in register bank 0. As illustrated in Figure 7-7, registers can be read using two 24-bit SPI frames after SPI_RD_EN and SPI_MODE are set. The first SPI frame selects the register bank. The ADC returns the 16-bit register value in the second SPI frame corresponding to the 8-bit register address.

As illustrated in Figure 7-7, steps to read a register are:

- 1. Frame 1: With SPI_RD_EN = 0b, write to register address 0x03 in register bank 0 to select the desired register bank 0 for reading.
- 2. Frame 2: Set SPI RD EN = 1b and SPI MODE = 1b in register address 0x00 in register bank 0.
- 3. Frame 3: Read any register in the selected bank using a 24-bit SPI frame containing the desired register address. Repeat this step with the address of any register in the selected bank to read the corresponding register.
- 4. Frame 4: Set SPI_RD_EN = 0 to disable register reads and re-enable register writes.
- 5. Repeat steps 1 through 4 to read registers in a different bank.

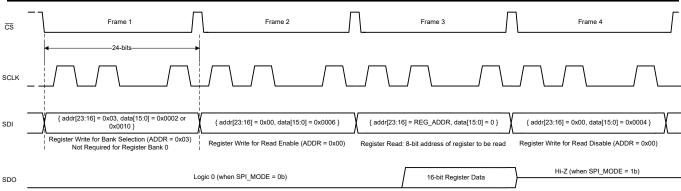


Figure 7-7. Register Read

7.5.3 Multiple Devices: Daisy-Chain Topology for SPI Configuration

Figure 7-8 shows a typical connection diagram showing multiple devices in a daisy-chain topology.

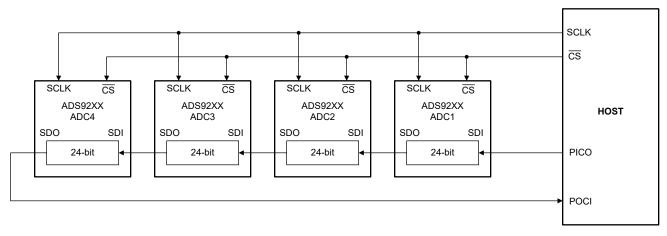


Figure 7-8. Daisy-Chain Connections for SPI Configuration

The \overline{CS} and SCLK inputs of all ADCs are connected together and are controlled by a single \overline{CS} and SCLK pin of the controller, respectively. The SDI input pin of the first ADC in the chain (ADC1) is connected to the peripheral IN controller OUT (PICO) pin of the controller, the SDO output pin of ADC1 is connected to the SDI input pin of ADC2, and so on. The SDO output pin of the last ADC in the chain (ADC4) is connected to the peripheral OUT controller IN (POCI) pin of the controller. The data on the PICO pin passes through ADC1 with a 24-SCLK delay, as long as CS is active.

The daisy-chain mode must be enabled after power-up or after the device is reset. Set the daisy-chain length in the DAISY CHAIN LENGTH register to enable daisy-chain mode. The daisy-chain length is the number of ADCs in the chain, excluding ADC1. In Figure 7-8, the DAISY_CHAIN_LENGTH is 3.

7.5.3.1 Register Write With Daisy-Chain

Writing to registers in daisy-chain configuration requires N × 24 SCLKs in one SPI frame. Register writes in a daisy-chain configuration containing four ADCs, as shown in Figure 7-8, requires 96 SCLKs.

The daisy-chain mode is enabled on power-up or after device reset. Configure the DAISY CHAIN LENGTH field to enable daisy-chain mode. The waveform in Figure 7-9 must be repeated N times, where N is the number of ADCs in the daisy-chain. Figure 7-10 provides the SPI waveform, containing N SPI frames, for enabling daisy-chain mode for N ADCs.

ADVANCE INFORMATION

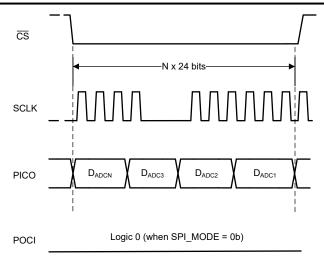


Figure 7-9. Register Write With Daisy-Chain

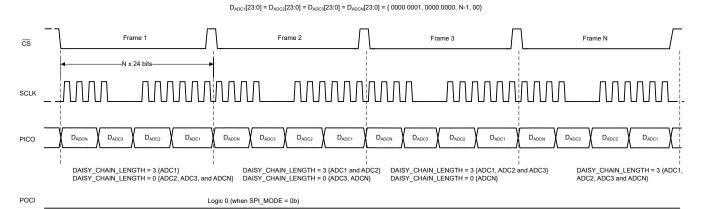


Figure 7-10. Register Write to Configure Daisy-Chain Length

7.5.3.2 Register Read With Daisy-Chain

Figure 7-11 illustrates an SPI waveform for reading registers in daisy-chain configuration. Steps for reading registers from N ADCs connected in daisy-chain are:

- 1. Register read is enabled by writing to the following registers:
 - a. Write to PAGE SEL to select the desired register bank
 - b. Enable register reads by writing SPI_RD_EN = 0b (default on power-up)
- 2. With the register bank selected and SPI_RD_EN = 0b, the controller can read register data by:
 - a. N × 24-bit SPI frame containing the 8-bit register address to be read: N times (0xFE, 0x00, 8-bit register address)
 - b. N × 24-bit SPI frame to read out register data: N times (0xFF, 0xFF, 0xFF)

The 0xFE in step 2a configures the ADC for register read from the specified 8-bit address. At the end of step 2a, the output shift register in the ADC is loaded with register data. The ADC returns the 8-bit register address and corresponding 16-bit register data in step 2b.

ADVANCE INFORMATION

Figure 7-11. Register Read With Daisy-Chain

7.6 Register Map

7.6.1 Register Bank 0

Figure 7-12. Register Bank 0 Map

ADD	D15 D14 D13 D12 D11 D10 D9 D8							D8	D7	D6	D5	D4	D3	D2	D1	D0
	RESERVED									SPI_MO	SPI_RD	SOFT_R				
00h	DE _EN ESE									ESET						
01h	RESERVED									DAIS	SY_CHAIN_	_LEN		RESE	RVED	
03h	RESERVED										REG_BA	NK_SEL				

7.6.1.1 Register 0h (offset = 0h) [reset = 0h]

Figure 7-13. Register 0h

	i igaic i io. itegistei on									
15	14	13	12	11	10	9	8			
	RESERVED									
	W-0h									
7	6	5	4	3	2	1	0			
		RESERVED		SPI_MODE	SPI_RD_EN	SOFT_RESET				
		W-0h		W-0h	W-0h	W-0h				

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-14. Register 00 Field Descriptions

rigulo i i i i i i i i i i i i i i i i i i i									
Bit	Field	Type	Reset	Description					
15-3	RESERVED	W	0h	Reserved. Do not change from default reset value.					
2-2	SPI_MODE	W	0h	Select between legacy SPI mode and daisy-chain SPI mode for the configuration interface for register access. 0: Daisy-chain SPI mode 1: Legacy SPI mode					
1-1	SPI_RD_EN	W	0h	Enable register read access 0 : Register read disabled. 1 : Register read enabled.					
0-0	SOFT_RESET	W	0h	Software reset all registers to default values 0 : Normal operation 1 : Reset device registers					

7.6.1.2 Register 1h (offset = 1h) [reset = 0h]

Figure 7-15. Register 1h

	- July - Land -								
15	14	13	12	11	10	9	8		
	RESERVED								
	R/W-0h								
7	6	6 5 4 3 2 1 0					0		
RESERVE	RESERVED DAISY_CHAIN_LEN RESERVED								
R/W-0h			R/W-0h			R/W	/-0h		

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-16. Register 01 Field Descriptions

Bit	Field	Туре	Reset	Description
15-7	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

Figure 7-16. Register 01 Field Descriptions (continued)

_	ga.og									
	Bit	Field	Type	Reset	Description					
	6-2	DAISY_CHAIN_L EN	R/W	0h	Configure the number of devices connected in daisy-chain for the configuration SPI interface. 0: 1 device in daisy-chain 1: 2 devices in daisy-chain 2: 3 devices in daisy-chain 31: 32 devices in daisy-chain					
	1-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.					

7.6.1.3 Register 3h (offset = 3h) [reset = 2h]

Figure 7-17. Register 3h

	ga o									
15	14	13	12	11	10	9	8			
	RESERVED									
R/W-0h										
7	6	5	4	3	2	1	0			
	REG_BANK_SEL									
			R/W	V-2h						

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-18. Register 03 Field Descriptions

Bit	Field	Type	Reset	Description
15-8	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
7-0	REG_BANK_SEL	R/W	2h	Register bank selection for read and write operations. 0 : Select Register Bank 0 2 : Select Register Bank 1 16 : Select Register Bank 2

7.6.2 Register Bank 1

Figure 7-19. Register Bank 1 Map

ADD	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
08h	RESERV		TM	I IP_REG_L	3_3			TM	IP_REG_L8	3_2			TM	P_REG_L	8_1	
0Bh						RESERVE)						TM	P REG L	 В 1	
0Ch			RESE	RVED				TM	MP REG LC 1 RESERVED							
0Dh	RESE	RVED	DATA_F ORMAT		TM	IP_REG_L	D_2		TMP_RE	_			RESERVED)		
11h	F	RESERVE)	TMP_RE G_L11_5	TMP_RE G_L11_4	TMP_RE G_L11_3	TMP_RE G_L11_2		RESERVED TMP_REG_L11_1				1_1			
12h						RESE	RVED						XOR_EN	DATA_	WIDTH	DATA_L ANES
13h		RESERVED							RAMP_I	NC_CH0		TEST_PAT		TEST_P AT_EN_ CH0	RESERV ED	
14h								TEST P	L ATO CHO						0110	
15h	TEST PAT1 CH0 TEST PAT0 CH0															
16h		TEST PAT1 CH0														
1011		RESERVED RAMP INC CH1 TEST PAT MODE TEST P RESERV														
18h													CH		AT_EN_ CH1	ED
19h								TEST_P/	AT0_CH1							
1Ah				TEST_PA	AT1_CH1							TEST_P	AT0_CH1			
1Bh								TEST_P	AT1_CH1							
33h	RESERV ED	TMP_RE G_L33_4	TMP_RE G_L33_3			RESE	RVED			TMP_RE G_L33_2	RESE	RVED	TMP_RE G_L33_1		RESERVE)
34h					ı	RESERVE)					TMP_RE G_L34_3	RESE	RVED		TMP_RE G_L34_1
50h	RESERV ED		TM	P_REG_L5	0_3			TM	P_REG_L5	0_2			TMP_REG_L50_1			
51h	RESERV TMP_REG_L51_3 T					TM	P_REG_L5	1_2			TMF	P_REG_L	51_1			
52h	RESERVED					TM	P_REG_L5	2_2			TMF	P_REG_L	52_1			
C0h	DCLK_	_CFG2	DCLK	_CFG4	DCLK	_CFG1			RESERVED PD_/			ADC				
C1h		RESE	RVED		PD_REF	RESE	RVED	DATA_R ATE		RESE	RVED			DCLK	_CFG3	

7.6.2.1 Register 8h (offset = 8h) [reset = 0h]

Figure 7-20. Register 8h

15	14	13	12	11	10	9	8			
RESERVED			TMP_REG_L8_3			TMP_RE	EG_L8_2			
R/W-0h	R/W-0h R/W-0h									
7	6	5	4	3	2	1	0			
	TMP_REG_L8_2			TMP_REG_L8_1						
	R/W-0h		R/W-0h							

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-21. Register 08 Field Descriptions

Bit	Field	Туре	Reset	Description
15-15	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
14-10	TMP_REG_L8_3	R/W		Temporary register. 0 : Normal device operation.

Figure 7-21. Register 08 Field Descriptions (continued)

rigaro r = rirogiotor to riora = ocomptiono (continuou)										
Bit	Field	Type	Reset	Description						
9-5	TMP_REG_L8_2	R/W	0h	Temporary register. 0: Use for 24-bit 2-lane, and 20-bit 2-lane modes. 8: Use for 40-bit 1-lane mode. 10: Use for 48-bit 1-lane mode.						
4-0	TMP_REG_L8_1	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 4 : Use for 40-bit 1-lane, and 48-bit 1-lane modes.						

7.6.2.2 Register Bh (offset = Bh) [reset = 0h]

Figure 7-22. Register Bh

ga. o : ==:og. o to : =									
15	14	13	12	11	10	9	8		
RESERVED									
R/W-0h									
7	6	5	4	3	2	1	0		
	RESERVED		TMP_REG_LB_1						
	R/W-0h		R/W-0h						

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-23. Register 0B Field Descriptions

				•
Bit	Field	Type	Reset	Description
15-5	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
4-0	TMP_REG_LB_1	R/W		Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 6 : Use for 40-bit 1-lane, and 40-bit 1-lane modes.

7.6.2.3 Register Ch (offset = Ch) [reset = 0h]

Figure 7-24. Register Ch

	i iguio i a il regiono i si										
15	14	13	12	11	10	9	8				
	RESERVED TMP_REG_LC_1										
		R/W			R/W	/-0h					
7	6	5	4	3	2	1	0				
	TMP_REG_LC_1				RESERVED						
	R/W-0h			R/W-0h							

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-25. Register 0C Field Descriptions

Bit	Field	Туре	Reset	Description
15-10	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
9-5	TMP_REG_LC_1	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 1 : Use for 40-bit 1-lane, and 48-bit 1-lane modes.
4-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

Product Folder Links: ADS9218

7.6.2.4 Register Dh (offset = Dh) [reset = 2002h]

Figure 7-26. Register Dh

15	14	13	12	11	10	9	8				
RESERVED DA		DATA_FORMAT	TMP_REG_LD_2								
R/V	V-0h	R/W-1h	R/W-0h								
7	6	5	4	3	2	1	0				
TMP_REG_LD_ 1		RESERVED									
R/W-0h		R/W-2h									

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-27. Register 0D Field Descriptions

ga. o									
Bit	Field	Туре	Reset	Description					
15-14	RESERVED	R/W	0h	Reserved. Do not change from default reset value.					
13-13	DATA_FORMAT	R/W	1h	Select output data format for ADC conversion result. 0 : Straight binary 1 : 2's compliment					
12-8	TMP_REG_LD_2	R/W	0h	Temporary register. Write 00000b for normal device operation. 0 : Normal device operation.					
7-7	TMP_REG_LD_1	R/W	0h	Temporary register. 1 : Normal device operation.					
6-0	RESERVED	R/W	2h	Reserved. Do not change from default reset value.					

7.6.2.5 Register 11h (offset = 11h) [reset = A02h]

Figure 7-28. Register 11h

			J				
15	14	13	12	11	10	9	8
	RESERVED		TMP_REG_L11 _5	TMP_REG_L11 _4	TMP_REG_L11 _3	TMP_REG_L11 _2	RESERVED
	R/W-0h		R/W-0h	R/W-1h	R/W-0h	R/W-1h	R/W-0h
7	6	5	4	3	2	1	0
		RESERVED	TMP_REG_L11_1				
		R/W-0h				R/W-2h	

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-29. Register 11 Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
12-12	TMP_REG_L11_5	R/W	0h	Temporary register. 0 : Normal device operation.
11-11	TMP_REG_L11_4	R/W	1h	Temporary register. 0 : Normal device operation.
10-10	TMP_REG_L11_3	R/W	0h	Temporary register. 0 : Normal device operation.
9-9	TMP_REG_L11_2	R/W	1h	Temporary register. 0 : Normal device operation.
8-3	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

Figure 7-29. Register 11 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
2-0	TMP_REG_L11_1	R/W	2h	Temporary register. Write 100b for normal device operation. 4 : Normal device operation.

7.6.2.6 Register 12h (offset = 12h) [reset = Ah]

Figure 7-30. Register 12h

15	14	13	12	11	10	9	8
	RESERVED						
R/W-0h							
7	6	5	4	3	2	1	0
	RESE	RVED		XOR_EN	DATA_	WIDTH	DATA_LANES
	R/W	V-0h		R/W-1h	R/V	V-1h	R/W-0h

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-31. Register 12 Field Descriptions

D:4	Field			Parameter Properties
Bit	Field	Туре	Reset	Description
15-4	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
3-3	XOR_EN	R/W	1h	Enables XOR function on ADC conversion result. 0 : XOR function is disabled 1 : Data output corresponding to ADC conversion result is launched as {D[23:5] xor D[4], D[4]}
2-1	DATA_WIDTH	R/W	1h	Select the output data frame width. 0: 20-bit output frame. Use with 2-lane output mode (DATA_LANES = 0). ADC A and ADC B data are output in 20-bit format on DOUTA and DOUTB respectively. 1: 24-bit output frame. Use with 2-lane output mode (DATA_LANES = 0). ADC A and ADC B data are output in 24-bit format on DOUTA and DOUTB respectively. 2: 40-bit output frame. Use with 1-lane output mode (DATA_LANES = 1). ADC A and ADC B data are output in 20-bit format. 3: 48-bit output frame. Use with 1-lane output mode (DATA_LANES = 1). ADC A and ADC B data are output in 24-bit format.
0-0	DATA_LANES	R/W	Oh	Select number of LVDS output lanes 0 : 2-lane mode. ADC A data is output on DOUTA LVDS pair and ADC B data is output on DOUTB LVDS pair. 1 : 1-lane mode. ADC A data followed by ADC B data are output on DOUTA LVDS pair.

7.6.2.7 Register 13h (offset = 13h) [reset = 0h]

Figure 7-32. Register 13h

			1 iguic 1-02.	itegister rom			
15	14	13	12	11	10	9	8
			RESE	RVED			
7	6	5	4	3	2	1	0
	RAMP_II	NC_CH0		TEST_PAT_	MODE_CH0	TEST_PAT_EN _CH0	RESERVED
	R/M	/-0h		R/W	V-0h	R/W-0h	R/W-0h

Submit Document Feedback

Product Folder Links: ADS9218

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-33. Register 13 Field Descriptions

1 igato 7 dei ricigiotci 10 i icia 2000/iptiono								
Bit	Field	Туре	Reset	Description				
15-8	RESERVED	R/W	0h	Reserved. Do not change from default reset value.				
7-4	RAMP_INC_CH0	R/W	0h	Increment value for the ramp pattern output. The output ramp will increment by N+1 where N is the value configured in this register.				
3-2	TEST_PAT_MOD E_CH0	R/W	0h	0 : Fixed pattern as configured in TEST_PAT0_CH0 register 1 : Fixed pattern as configured in TEST_PAT1_CH0 register 2 : Ramp output 3 : Alternate fixed pattern output as configured in TEST_PAT0_CH0 and TEST_PAT1_CH0 registers				
1-1	TEST_PAT_EN_C H0	R/W	0h	Enable digital test pattern for data for data corresponding to channel 1, 2, 3, and 4. 0: Normal operation. ADC data will be launched on the data interface. 1: Digital test pattern will be launched corresponding to channels 1, 2, 3, and 4 on the data interface.				
0-0	RESERVED	R/W	0h	Reserved bit. Do not change from default reset value.				

7.6.2.8 Register 14h (offset = 14h) [reset = 0h]

Figure 7-34. Register 14h

				_ 3					
15	14	13	12	11	10	9	8		
	TEST_PAT0_CH0[23:8]								
R/W-0h									
7	6	5	4	3	2	1	0		
TEST_PAT0_CH0[23:8]									
	R/W-0h								

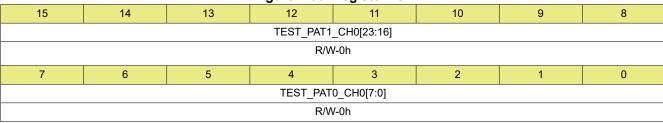

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-35. Register 14 Field Descriptions

_			<u> </u>	- 3	
	Bit	Field	Туре	Reset	Description
	15-0	TEST_PAT0_CH 0[23:8]	R/W	0h	Test pattern 0 for channel 0.

7.6.2.9 Register 15h (offset = 15h) [reset = 0h]

Figure 7-36. Register 15h

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-37. Register 15 Field Descriptions

		•	•	•
Bit	Field	Туре	Reset	Description
15-8	TEST_PAT1_CH 0[23:16]	R/W	0h	Test pattern 1 for channel 0.
7-0	TEST_PAT0_CH 0[7:0]	R/W	0h	Test pattern 0 for channel 0.

7.6.2.10 Register 16h (offset = 16h) [reset = 0h]

Figure 7-38. Register 16h

15	14	13	12	11	10	9	8	
	TEST_PAT1_CH0[15:0]							
R/W-0h								
7	6	5	4	3	2	1	0	
TEST_PAT1_CH0[15:0]								
	R/W-0h							

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-39. Register 16 Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	TEST_PAT1_CH 0[15:0]	R/W	0h	Test pattern 1 for channel 0.

7.6.2.11 Register 18h (offset = 18h) [reset = 0h]

Figure 7-40. Register 18h

				<u> </u>				
	15	14	13	12	11	10	9	8
RESERVED								
	R/W-0h							
	7	6	5	4	3	2	1	0
		RAMP_I	NC_CH1	TEST_PAT_MODE_CH1 TEST_PAT_EN RESERVECH1				RESERVED
		R/V	V-0h		R/W	V-0h	R/W-0h	R/W-0h

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-41. Register 18 Field Descriptions

				•
Bit	Field	Type	Reset	Description
15-8	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
7-4	RAMP_INC_CH1	R/W	0h	Increment value for the ramp pattern output. The output ramp will increment by N+1 where N is the value configured in this register.
3-2	TEST_PAT_MOD E_CH1	R/W	0h	0 : Fixed pattern as configured in TEST_PAT0_CH1 register 1 : Fixed pattern as configured in TEST_PAT1_CH1 register 2 : Ramp output 3 : Alternate fixed pattern output as configured in TEST_PAT0_CH1 and TEST_PAT1_CH1 registers

Product Folder Links: ADS9218

Figure 7-41. Register 18 Field Descriptions (continued)

	- igaio : : : : togista: : o : ioia = ooonpaono (oonamaoa)									
Bit	Field Type Reset		Reset	Description						
1-1	TEST_PAT_EN_C H1	R/W	0h	Enable digital test pattern for data corresponding to channels 5, 6, 7, and 8. 0: Normal operation. ADC data will be launched on the data interface. 1: Digital test pattern will be launched corresponding to channels 5, 6, 7, and 8 on the data interface.						
0-0	RESERVED	R/W	0h	Reserved bit. Do not change from default reset value.						

7.6.2.12 Register 19h (offset = 19h) [reset = 0h]

Figure 7-42. Register 19h

i iguio i illi itogioto: illi												
15	14	13	12	11	10	9	8					
TEST_PAT0_CH1[23:8]												
R/W-0h												
7	6	5	4	3	2	1	0					
	TEST_PAT0_CH1[23:8]											
			R/V	R/W-0h								

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-43. Register 19 Field Descriptions

Bit	Field	Type	Reset	Description
15-0	TEST_PAT0_CH 1[23:8]	R/W	0h	Test pattern 0 for channel 1.

7.6.2.13 Register 1Ah (offset = 1Ah) [reset = 0h]

Figure 7-44. Register 1Ah

riguie 7-44. Register IAII										
15	14	13	12	11	10	9	8			
TEST_PAT1_CH1[23:16]										
R/W-0h										
7	6	5	4	3	2	1	0			
TEST_PAT0_CH1[7:0]										
			R/W	V-0h						

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-45. Register 1A Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	TEST_PAT1_CH 1[23:16]	R/W	0h	Test pattern 1 for channel 1.
7-0	TEST_PAT0_CH 1[7:0]	R/W	0h	Test pattern 0 for channel 1.

7.6.2.14 Register 1Bh (offset = 1Bh) [reset = 0h]

Figure 7-46. Register 1Bh

i iguio i ioi regiote i i i									
15	14	13	12	11	10	9	8		
TEST_PAT1_CH1[15:0]									
R/W-0h									
7	6	5	4	3	2	1	0		
	TEST_PAT1_CH1[15:0]								
			R/W	V-0h					

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-47. Register 1B Field Descriptions

Bit	Field	Type	Reset	Description
15-0	TEST_PAT1_CH 1[15:0]	R/W	0h	Test pattern 1 for channel 1.

7.6.2.15 Register 33h (offset = 33h) [reset = 0h]

Figure 7-48. Register 33h

	1.94.01.109.000.000										
15	14	13	12	11	10	9	8				
RESERVED	TMP_REG_L33 _4	TMP_REG_L33 _3									
R/W-0h	R/W-0h	R/W-0h	R/W-0h								
7	6	5	4	3	2	1	0				
RESERVED	TMP_REG_L33 _2	RESE	RVED	TMP_REG_L33 _1	RESERVED						
R/W-0h	R/W-0h	R/W	/-0h	R/W-0h		R/W-0h					

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-49. Register 33 Field Descriptions

	rigule 7-40. Register ou riela Descriptions									
Bit	Field	Type	Reset	Description						
15-15	RESERVED	R/W	0h	Reserved. Do not change from default reset value.						
14-14	TMP_REG_L33_4	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 1 : Use for 40-bit 1-lane, and 48-bit 1-lane modes.						
13-13	TMP_REG_L33_3	R/W	0h	Temporary register in the user address space.Write 1b to this register for normal device operation. 0: Not recommended 1: Normal device operation						
12-7	RESERVED	R/W	0h	Reserved. Do not change from default reset value.						
6-6	TMP_REG_L33_2	R/W	0h	Temporary register in the user address space.Write 1b to this register for normal device operation. 0: Not recommended. 1: Normal device operation.						
5-4	RESERVED	R/W	0h	Reserved. Do not change from default reset value.						
3-3	TMP_REG_L33_1	R/W	0h	Temporary register in the user address space.Write 1b to this register for normal device operation. 0: Not recommended. 1: Normal device operation.						
2-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.						

Product Folder Links: ADS9218

Submit Document Feedback

34

7.6.2.16 Register 34h (offset = 34h) [reset = 0h]

Figure 7-50. Register 34h

15	14	13	12	11	10	9	8			
			RESE	RVED						
	R/W-0h									
7 6 5			4	3	2	1	0			
	RESERVED		TMP_REG_L34 _3	RESERVED		TMP_REG_L34 _2	TMP_REG_L34 _1			
	R/W-0h		R/W-0h	R/V	V-0h	R/W-0h	R/W-0h			

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-51. Register 34 Field Descriptions

Bit	Field	Туре	Reset	Description	
15-5	RESERVED	R/W	0h	Reserved. Do not change from default reset value.	
4-4	TMP_REG_L34_3	R/W	1 : Recommended. Normal device operation.		
3-2	RESERVED	R/W	0h	Reserved. Do not change from default reset value.	
1-1	TMP_REG_L34_2	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 1 : Use for 48-bit 1-lane, and 40-bit 1-lane modes.	
0-0	TMP_REG_L34_1	-		Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 1 : Use for 40-bit 1-lane, and 48-bit 1-lane modes.	

7.6.2.17 Register 50h (offset = 50h) [reset = 0h]

Figure 7-52. Register 50h

15	14	13	12	11	10	9	8		
RESERVED		TMP_REG_L50_3 TMP_REG_L50_2							
R/W-0h	R/W-0h R/W-0h								
7	6	5	4	3	2	1	0		
	TMP_REG_L50_2			TMP_REG_L50_1					
	R/W-0h		R/W-0h						

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-53. Register 50 Field Descriptions

rigure 1-50. Register 60 Field Descriptions					
Bit	Field	Туре	Reset	Description	
15-15	RESERVED	R/W	0h	Reserved. Do not change from default reset value.	
14-10	TMP_REG_L50_3	R/W	Oh	Temporary register. Write 00000b for normal device operation. 0: Use for 20-bit 2-lane, 24-bit 2-lane, and 40-bit 1-lane modes. 10: Use for 48-bit 1-lane mode.	
9-5	TMP_REG_L50_2	R/W	Oh	Temporary register. 0: Use for 24-bit 2-lane, and 20-bit 2-lane modes. 6: Use for 40-bit 1-lane mode, and 48-bit 1-lane modes.	
4-0	TMP_REG_L50_1	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 4 : Use for 40-bit 1-lane mode, and 48-bit 1-lane modes.	

7.6.2.18 Register 51h (offset = 51h) [reset = 0h]

Figure 7-54. Register 51h

15	14	13	12	11	10	9	8		
RESERVED	TMP_REG_L51_3				TMP_REG_L51_2				
R/W-0h	R/W-0h R/W-0h				V-0h				
7	6	5	4	3	2	1	0		
TMP_REG_L51_2			TMP_REG_L51_1						
R/W-0h			R/W-0h						

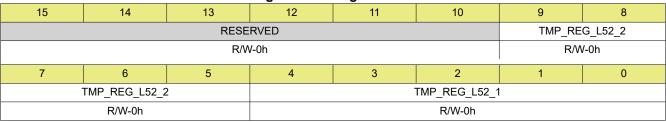

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-55. Register 51 Field Descriptions

Bit	Field	Туре	Reset	Description
15-15	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
14-10	TMP_REG_L51_3	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 4 : Use for 40-bit 1-lane mode, and 48-bit 1-lane modes.
9-5	TMP_REG_L51_2	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 4 : Use for 40-bit 1-lane mode, and 48-bit 1-lane modes.
4-0	TMP_REG_L51_1	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 20-bit 2-lane modes. 4 : Use for 40-bit 1-lane, and 48-bit 1-lane modes.

7.6.2.19 Register 52h (offset = 52h) [reset = 0h]

Figure 7-56. Register 52h

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-57. Register 52 Field Descriptions

Bit	Field	Type	Reset	Description	
15-10	RESERVED	R/W	0h	Reserved. Do not change from default reset value.	
9-5	TMP_REG_L52_2	R/W	0h	Temporary register. Write 00000b for normal device operation. 0 : Normal device operation.	
4-0	TMP_REG_L52_1	R/W	0h	Temporary register. Write 00000b for normal device operation. 0 : Normal device operation.	

Product Folder Links: ADS9218

36

7.6.2.20 Register C0h (offset = C0h) [reset = 0h]

Figure 7-58. Register C0h

	<u> </u>							
15	14	13	12	11	10	9	8	
DCLK_	DCLK_CFG2 DCLK_CFG4				_CFG1	RESERVED		
R/W	R/W-0h R/W-0h				V-0h	R/W-0h		
7	6	5	4	3	2	1	0	
		PD_ADC						
			R/W-0h					

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-59. Register C0 Field Descriptions

Bit	Field	Туре	Reset	Description
15-14	DCLK_CFG2	R/W	0h	Data clock configuration 2. 1 : Normal device operation.
13-12	DCLK_CFG4	R/W	0h	Data clock configuration 4. 0: Use for 24-bit 2-lane, and 20-bit 2-lane modes. 1: Use for 48-bit 1-lane, and 40-bit 1-lane modes.
11-10	DCLK_CFG1	R/W	Oh	Data clock configuration 1. 0: Use for 40-bit 1-lane mode. 1: Use for 24-bit 2-lane, 20-bit 2-lane, and 48-bit 1-lane modes.
9-2	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
1-0	PD_ADC	R/W	0h	Power-down control for ADC channels 0: Normal device operation. 1: ADC A power down. 2: ADC B power down. 3: ADC A and ADC B power down.

7.6.2.21 Register C1h (offset = C1h) [reset = 0h]

Figure 7-60. Register C1h

15	14	13	12	11	10	9	8		
	RESE	RVED		PD_REF	RESE	DATA_RATE			
	R/W	/-0h		R/W-0h	R/V	R/W-0h			
7	6	5	4	3	2	1	0		
RESERVED	RESERVED	RESERVED	RESERVED	DCLK_CFG3					
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h					

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-61. Register C1 Field Descriptions

Bit	Field	Type	Reset	Description
15-12	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
11-11	PD_REF	R/W	Oh	ADC reference selection 0 : Internal reference enabled 1 : Internal reference disabled. Connect external reference at REFIO pin.
10-9	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
8-8	DATA_RATE	R/W	Oh	Select data rate for the data interface. 0 : Double Data Rate (DDR) 1 : Single Data Rate (SDR)

Figure 7-61. Register C1 Field Descriptions (continued)

Bit	Field	Type	Reset	Description
7-4	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
3-0	DCLK_CFG3	R/W	0h	Data clock configuration 3. 8: Use for 24-bit 2-lane, and 48-bit 1-lane modes. 9: Use for 20-bit 2-lane, and 40-bit 1-lane modes.

7.6.3 Register Bank 2

Figure 7-62. Register Bank 2 Map

		i igule 7-02. Negister Balik 2 Map														
ADD	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			F	RESERVE)			TMP_RE G_L1C_				RESE	RVED			
1Ch								1								
22h	RESERVED TMP_RE TMP_R G_L22_2 G_L22_									ا	RESERVE)				
33h	RESERVED TMP_RE RESERVED G_L33_1															
52h	RESERVED TMP_RE TMC_RE TMC_R								TMP_RE G_L52_1							
53h								RESERVED)							TMP_RE G_L53_1
54h			TMP_RE G_L54_3		TMP_RE G_L54_1					I	RESERVEI)				
56h			TMP_RE G_L56_2			RESERVED										
57h	RESERVED TMP_RE RESERVED G_L57_1															
60h	TMP_RE G_L60_1							F	RESERVED)						

7.6.3.1 Register 1Ch (offset = 1Ch) [reset = 0h]

Figure 7-63. Register 1Ch

	rigure 7-03. Register Toll								
15	14	13	12	11	10	9	8		
	RESERVED								
R/W-0h									
7	6	5	4	3	2	1	0		
	RESERVED								
	R/W-0								

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-64. Register 1C Field Descriptions

	<u> </u>									
Bit	Field	Type	Reset	Description						
15-9	RESERVED	R/W	0h	Reserved. Do not change from default reset value.						
8-8	TMP_REG_L1C_ 1	R/W	0h	Temporary register. Write 1b for normal device operation. 0 : Not recommended 1 : Normal device operation						
7-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.						

7.6.3.2 Register 22h (offset = 22h) [reset = 0h]

Figure 7-65. Register 22h

15	14	13	12	11	10 9 8		8		
	RESERVED		TMP_REG_L22 _2	TMP_REG_L22 _1	RESERVED				
	R/W-0h			R/W-0h	R/W-0h				
7	6	5	4	3	2	1	0		
	RESERVED								
			R/W	/-0h					
•									

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-66. Register 22 Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
12-12	TMP_REG_L22_2	R/W	0h	Temporary register. Write 1b for normal device operation. 0 : Not recommended 1 : Normal device operation
11-11	TMP_REG_L22_1	R/W	0h	Temporary Register. Write 1b for normal device operation. 0 : Not recommended 1 : Normal device operation
10-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

7.6.3.3 Register 33h (offset = 33h) [reset = 0h]

Figure 7-67. Register 33h

15	14	13	11	10	9	8					
		RESERVED		TMP_REG_L33 _1	RESERVED						
		R/W-0h			R/W-0h	R/W-0h					
7	7 6 5 4 3 2 1 0						0				
	RESERVED										

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-68. Register 33 Field Descriptions

Bit	Field	Type	Reset	Description
15-11	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
10-10	TMP_REG_L33_1	R/W	0h	Temporary register. Write 1b for normal device operation. 0 : Not recommended 1 : Normal device operation
9-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

7.6.3.4 Register 52h (offset = 52h) [reset = 0h]

Figure 7-69. Register 52h

1.94101.09.000.02							
15	14	13	12	11	10	9	8
RESERVED							
R/W-0h							
7	6	5	4	3	2	1	0
RESERVED TMP_REG_L52 TMP_REG_2 1							TMP_REG_L52 _1
		R/W	/-0h			R/W-0h	R/W-0h

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-70. Register 52 Field Descriptions

		J	- 0	
Bit	Field	Туре	Reset	Description
15-2	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

Product Folder Links: ADS9218

Figure 7-70. Register 52 Field Descriptions (continued)

	riguio i roi regioto. ez riola zocomptiono (continuoa)								
Bit	Field	Type	Reset	Description					
1-1	TMP_REG_L52_2	R/W	0h	Temporary register. Write 1b for normal device operation. 0 : Not recommended 1 : Normal device operation					
0-0	TMP_REG_L52_1	R/W	0h	Temporary register. Write 1b for normal device operation. 0: Not recommended 1: Normal device operation					

7.6.3.5 Register 53h (offset = 53h) [reset = 0h]

Figure 7-71. Register 53h

	riguic 7-71. Register oon							
15	14	13	12	11	10	9	8	
	RESERVED							
	R/W-0h							
7	6	5	4	3	2	1	0	
	R/W-0h							
	R/W-0h							

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-72. Register 53 Field Descriptions

Bit	Field	Туре	Reset	Description
15-1	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
0-0	TMP_REG_L53_1	R/W	0h	Temporary register. 0 : Normal device operation 1 : Not recommended

7.6.3.6 Register 54h (offset = 54h) [reset = 0h]

Figure 7-73. Register 54h

15	14	13	12	11	10	9	8	
TMP_REG_L54	TMP_REG_L54	TMP_REG_L54	TMP_REG_L54	TMP_REG_L54	RESERVED			
_3	_4	_3	_2	_'				
R/W-0h	R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h							
7	6	5	4	3	2	1	0	
	RESERVED							
			R/W	/-0h				

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-74. Register 54 Field Descriptions

Bit	Field	Туре	Reset	Description
15-15	TMP_REG_L54_5	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 48-bit 1-lane modes. 1 : Use for 40-bit 1-lane, and 20-bit 2-lane modes.
14-14	TMP_REG_L54_4	R/W	0h	Temporary register. Write 0b for normal device operation. 0 : Normal device operation 1 : Not recommended

Figure 7-74. Register 54 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
13-13	TMP_REG_L54_3	R/W	0h	Temporary register. Write 0b for normal device operation. 0 : Normal device operation 1 : Not recommended
12-12	TMP_REG_L54_2	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 48-bit 1-lane modes. 1 : Use for 40-bit 1-lane, and 20-bit 2-lane modes.
11-11	TMP_REG_L54_1	R/W	0h	Temporary register. 0 : Use for 24-bit 2-lane, and 48-bit 1-lane modes. 1 : Use for 40-bit 1-lane, and 20-bit 2-lane modes.
10-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

7.6.3.7 Register 56h (offset = 56h) [reset = 0h]

Figure 7-75. Register 56h

15	14	13	12	11	10	9	8	
RESERVED	TMP_REG_L56 _3	TMP_REG_L56 _2	TMP_REG_L56 _1	RESERVED				
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h				
7	6	5	4	3	2	1	0	
	RESERVED							
			R/W	/-0h				

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-76. Register 56 Field Descriptions

Bit	Field	Туре	Reset	Description
15-15	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
14-14	TMP_REG_L56_3	R/W	0h	Temporary register. Write 1b for normal device operation. 0: Not recommended 1: Normal device operation
13-13	TMP_REG_L56_2	R/W	0h	Temporary register. Write 1b for normal device operation. 0 : Not recommended 1 : Normal device operation
12-12	TMP_REG_L56_1	R/W	0h	Temporary register. Write 1b for normal device operation. 0: Not recommended 1: Normal device operation
11-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

7.6.3.8 Register 57h (offset = 57h) [reset = 0h]

Submit Document Feedback

Figure 7-77. Register 57h

	Figure 7-77. Register 5711								
15	14	13	12	11	10 9 8				
	RESE	RVED		TMP_REG_L57 _1	RESERVED				
	R/W	/-0h		R/W-0h	R/W-0h				
7	6	5	4	3	2	1	0		
RESERVED									
	R/W-0h								

Product Folder Links: ADS9218

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-78. Register 57 Field Descriptions

Bit	Field	Type	Reset	Description
15-12	RESERVED	R/W	0h	Reserved. Do not change from default reset value.
11-11	TMP_REG_L57_1	R/W	0h	Temporary register. Write 1b for normal device operation. 0: Not recommended 1: Normal device operation
10-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

7.6.3.9 Register 60h (offset = 60h) [reset = 0h]

Figure 7-79. Register 60h

rigate 7 70. Register con											
15	14	13	12	11	9	8					
TMP_REG_L60 _1	RESERVED										
R/W-0h	R/W-0h										
7	7 6 5 4 3 2 1 0										
	RESERVED										
R/W-0h											

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Figure 7-80. Register 60 Field Descriptions

			•	•
Bit	Field	Туре	Reset	Description
15-15	TMP_REG_L60_1	R/W	0h	Temporary register. Write 1b for normal device operation. 0 : Not recommended 1 : Normal device operation
14-0	RESERVED	R/W	0h	Reserved. Do not change from default reset value.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The integrated ADC driver, low-latency, high-speed, low AC and DC errors, and low temperature drift make the ADS921x a high-performance solution for applications where precision measurements with low-latency are required. The following section gives an example circuit and recommendations for using the ADS921x device family in a data acquisition (DAQ) system.

8.2 Typical Applications

8.2.1 Data Acquisition (DAQ) Circuit for ≤20-kHz Input Signal Bandwidth

Figure 8-1 shows a 2-channel solution with minimum external components. This solution significantly reduces solution size by driving the ADS921x with the 2-channel, fully differential amplifier (FDA) THS4552.

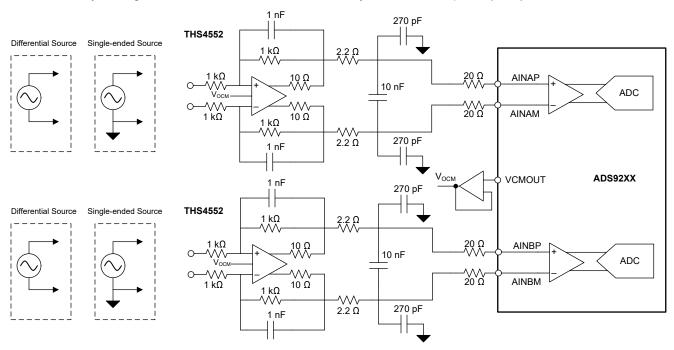


Figure 8-1. Data Acquisition (DAQ) Circuit for ≤20-kHz Input Signal Bandwidth

8.2.1.1 Design Requirements

Table 8-1 lists the parameters for this typical application.

Table 8-1. Design Parameters

PARAMETER	VALUE
SNR	≥ 92 dB
THD	≤ −110 dB
Input signal frequency	≤ 20 kHz

Submit Document Feedback

8.2.1.2 Detailed Design Procedure

The procedure discussed in this section can be used for any ADS921x application circuit.

- All ADS921x applications require the supply decoupling as given in the Power Supply Recommendations section.
- The values given in this section must meet the maximum throughput and input signal frequency design requirements given. A lower bandwidth solution can be used in cases where lower noise performance is required.

8.2.1.3 Application Curves

Figure 8-2 and Figure 8-3 show the SNR and INL performance for the circuit in Figure 8-1, respectively.

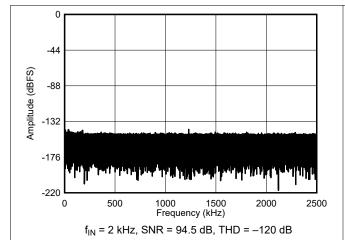


Figure 8-2. Typical FFT at 5 MSPS/Channel: ADS9217

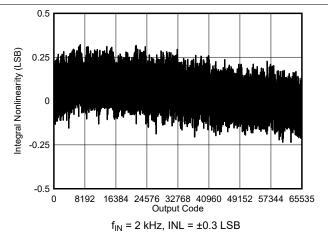


Figure 8-3. Typical INL at 5 MSPS/Channel: ADS9217

8.2.2 Data Acquisition (DAQ) Circuit for ≤100-kHz Input Signal Bandwidth

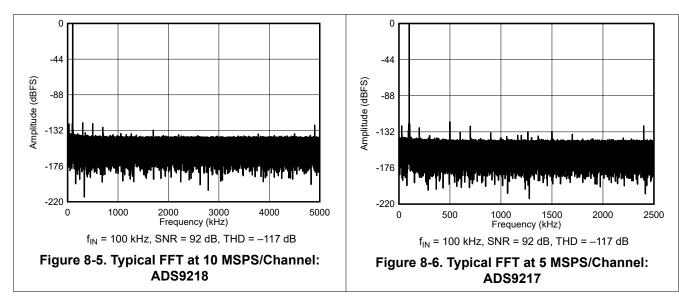
Figure 8-1 shows a 2-channel solution with minimum external components. This solution significantly reduces solution size by driving the ADS921x with the 2-channel, fully differential amplifier (FDA) THS4552.

Figure 8-4. Data Acquisition (DAQ) Circuit for ≤100-kHz Input Signal Bandwidth

8.2.2.1 Design Requirements

Table 8-2 lists the parameters for this typical application.

Table 8-2. Design Parameters


PARAMETER	VALUE			
SNR	≥ 91 dB			
THD	≤ −110 dB			
Input signal frequency	≤ 100 kHz			

Submit Document Feedback

8.2.2.2 Application Curves

Figure 8-5 and Figure 8-6 show the FFT plots for the circuit in Figure 8-4.

8.2.3 Data Acquisition (DAQ) Circuit for ≤1-MHz Input Signal Bandwidth

Figure 8-1 shows a 2-channel solution with minimum external components. This solution significantly reduces solution size by driving the ADS9218 with the THS4541, which enables low-distortion performance with low power over wide signal bandwidth.

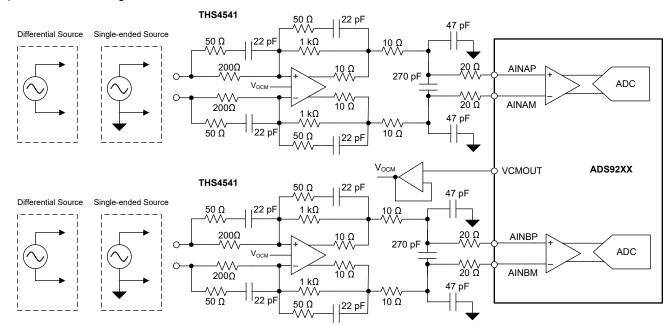


Figure 8-7. Data Acquisition (DAQ) Circuit for ≤1-MHz Input Signal Bandwidth

8.2.3.1 Design Requirements

Table 8-3 lists the parameters for this typical application.

Table 8-3. Design Parameters

PARAMETER	VALUE			
SNR	≥ 80 dB			
THD	≤ –100 dB			
Input signal frequency	≤ 1 MHz			

8.2.3.2 Application Curves

Figure 8-8 and Figure 8-9 show the FFT plots for the circuit in Figure 8-7.

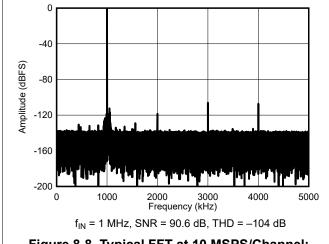


Figure 8-8. Typical FFT at 10 MSPS/Channel: ADS9218

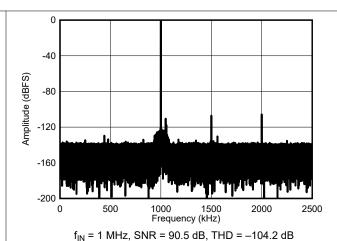


Figure 8-9. Typical FFT at 5 MSPS/Channel: ADS9217

Submit Document Feedback

8.3 Power Supply Recommendations

The ADS921x has three independent power supplies, AVDD_5V, AVDD_1V8, and DVDD_1V8. The AVDD_5V supply provides power to the ADC driver. The AVDD_1V8 provides power to the analog circuits. The DVDD_1V8 supply provides power to the digital interface. The AVDD_5, AVDD_1V8, and DVDD_1V8 supplies can be set independently to voltages within the permissible range. Figure 8-10 shows how to decouple the power supplies.

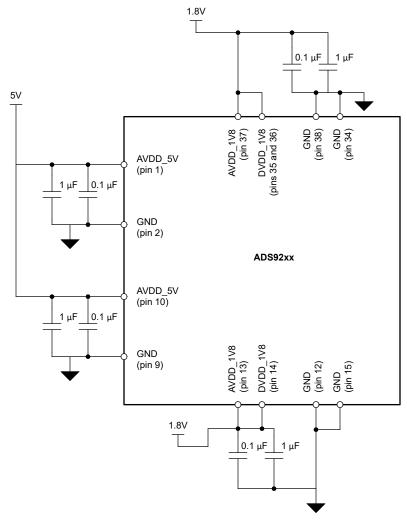


Figure 8-10. Power-Supply Decoupling

8.4 Layout

8.4.1 Layout Guidelines

Figure 8-11 shows a board layout example for the ADS921x. Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference signals away from noise sources. Use 0.1-μF ceramic bypass capacitors in close proximity to the analog (AVDD_5V and AVDD_1V8), and digital (DVDD_1V8) power-supply pins. Avoid placing vias between the power-supply pins and the bypass capacitors. Place the reference decoupling capacitor close to the device REFIO and REFM pins. Avoid placing vias between the REFIO pin and the bypass capacitors. Connect the GND and REFM pins to a ground plane using short, low-impedance paths.

8.4.2 Layout Example

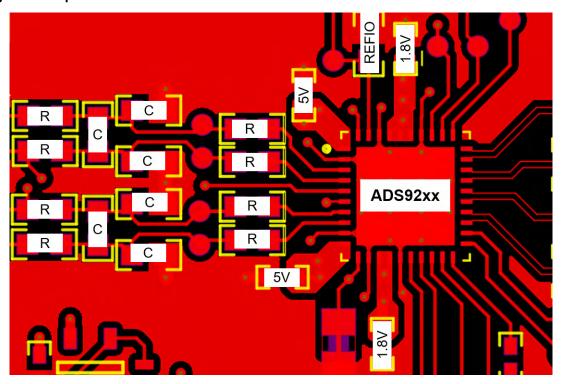


Figure 8-11. Example Layout

Submit Document Feedback

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, REF70 2 ppm/°C Maximum Drift, 0.23 ppm_{p-p} 1/f Noise, Precision Voltage Reference data sheet
- Texas Instruments, THS4552 Dual-Channel, Low-Noise, Precision, 150-MHz, Fully Differential Amplifier data sheet
- Texas Instruments, THS4541 Negative Rail Input, Rail-to-Rail Output, Precision, 850-MHz Fully Differential Amplifier data sheet

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

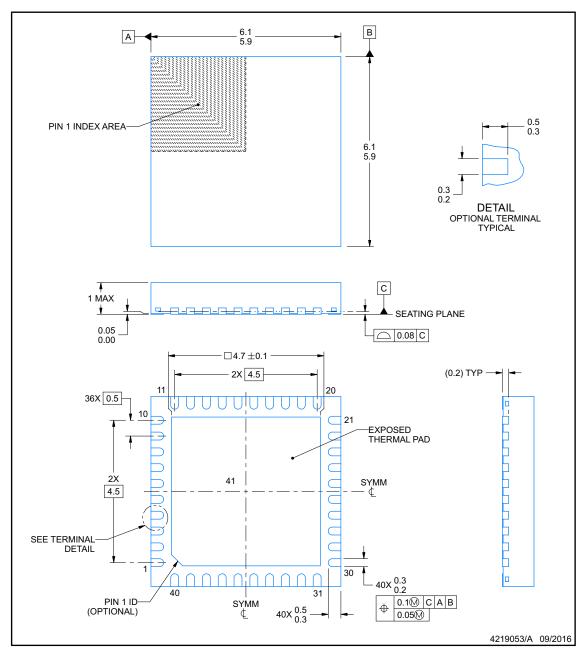
TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10.1 Mechanical Data


RHA0040C

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

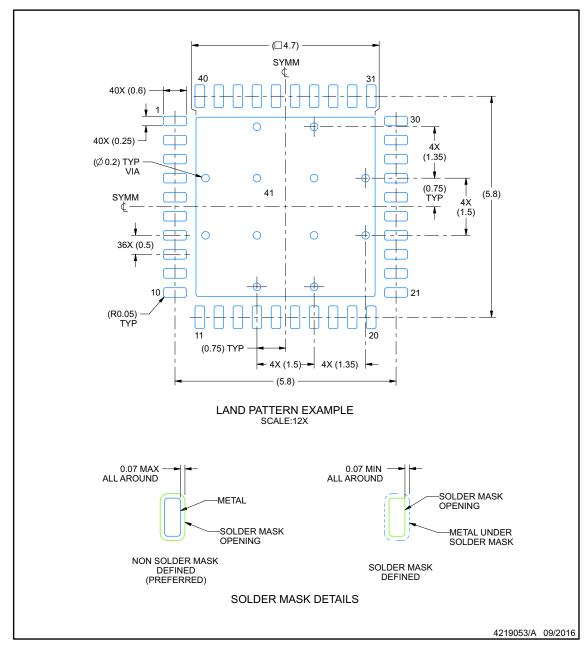
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

www.ti.com



EXAMPLE BOARD LAYOUT

RHA0040C

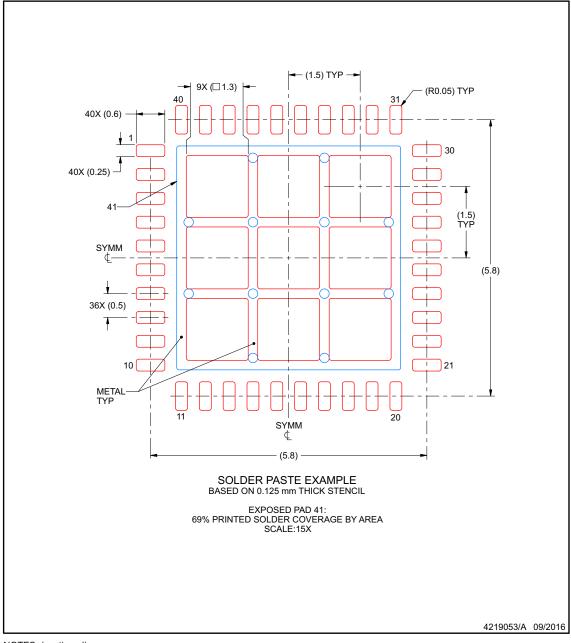
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

www.ti.com



EXAMPLE STENCIL DESIGN

RHA0040C

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com

www.ti.com 12-Jan-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
PADS9218RHAT	ACTIVE	VQFN	RHA	40	250	TBD	Call TI	Call TI	-40 to 125		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

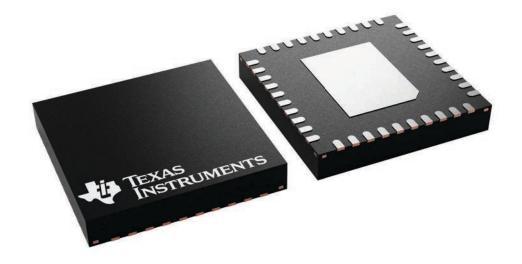
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

6 x 6, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated