

AWRL6843/AWRL6844 Single-Chip 57 to 64GHz Automotive Radar Sensor

1 Features

- FMCW Transceiver
 - Integrated PLL, transmitter, receiver, baseband and ADC
 - 57 - 64GHz coverage with 7GHz continuous bandwidth
 - 4 receive channels and 3 to 4 transmit channels (AWRL6843 with 3 channels and AWRL6844 with 4 channels)
 - 12.5dBm typical output power per TX
 - 12.5dB typical noise figure
 - -90.5dBc/Hz typical phase noise at 1MHz
 - FMCW operation
 - 10MHz IF bandwidth, real-only Rx channels
 - Ultra-accurate chirp engine based on fractional-N PLL
 - Per transmitter binary phase shifter
- Processing elements
 - Arm® R5F® core with double precision FPU (200MHz)
 - Hardware Accelerator (HWA 1.2) for FFT, log magnitude, and CFAR operations (200MHz)
 - C66x DSP (450MHz) for processing Radar data
- Supports multiple low-power modes
 - Idle mode and deep sleep mode
- Power management
 - 1.8V and 3.3V IO support
 - Built-in LDO network for enhanced PSRR
 - Two power rails for 1.8V IO mode, Three power rails for 3.3V IO mode
- FCCSP package having 17 x 17 BGA grid, 207 BGA balls; Package size: 9.1mm x 9.1mm
- Built-in calibration and self-test
 - Built-in Firmware (ROM)
 - Self-Contained on chip calibration system
- Host Interfaces
 - 3 x UART
 - 2 x CAN-FD
 - 2 x SPI
 - LIN
- LVDS for data transfer of raw ADC sample capture
- Other interfaces available to user application
 - QSPI
 - I2C
 - JTAG
 - 8 x GPIOs
 - PWM Interface
 - 4 x GPADCs

- Device security (on Secure device variants)
 - Programmable embedded hardware security module (HSM)
 - Secure authenticated and encrypted boot support
 - Customer programmable root keys, symmetric keys (256 bit), asymmetric keys (up to RSA-4K or ECC-512) with key revocation capability
 - Cryptographic hardware accelerators: PKA with ECC/RSA, AES (up to 256 bit), SHA (up to 512 bit), TRNG/DRBG and SM2, SM3, SM4(Chinese Crypto Algorithms)
 - Product Cybersecurity Compliance
 - ISO21434 compliant up to CAL2 targeted
 - Developed for cybersecurity-relevant applications
 - Documentation will be available to aid cybersecurity system design
- Internal memory
 - On-Chip RAM - 2.5MBytes (2MBytes for AWRL6843) including
 - R5F TCMA RAM - 512KB
 - R5F TCMB RAM - 256KB
 - DSS L2 RAM - 384KB
 - DSS L3 RAM - 512KB (available only in AWRL6844)
 - DSS L3 Shared RAM - 896KB (can be shared with TCMs)
- Functional Safety-Compliant Targeted
 - Developed for Functional Safety Applications
 - Documentation will be available to aid functional safety system design
 - Hardware integrity up to ASIL B targeted as per ISO26262 standard
- AEC Q-100 qualified
- Clock source
 - 40.0MHz crystal for primary clock
 - Supports externally driven clock (Square/Sine) at 40.0MHz
 - 32kHz internal oscillator for low power operations
- Operating temperature range
 - Junction Temperature Range: -40°C to 140°C

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

2 Applications

- Interior cabin sensing
- Child presence detection
- Vehicle occupancy detection, localization and classification
- Vehicle occupant vital sign monitoring
- Intruder detection
- Seat belt reminder

3 Description

The AWRL684x mmWave Sensor device is TI's low power and Hardware Security Module (HSM) enabled integrated single chip mmWave sensor based on FMCW radar technology. The device is capable of operation in the 57GHz to 63.9GHz band with 7GHz continuous chirp bandwidth and is designed for various automotive in-cabin use cases. The device also takes advantage of a low power architecture to enable power-constrained applications. The device is split into the following four switchable power domains:

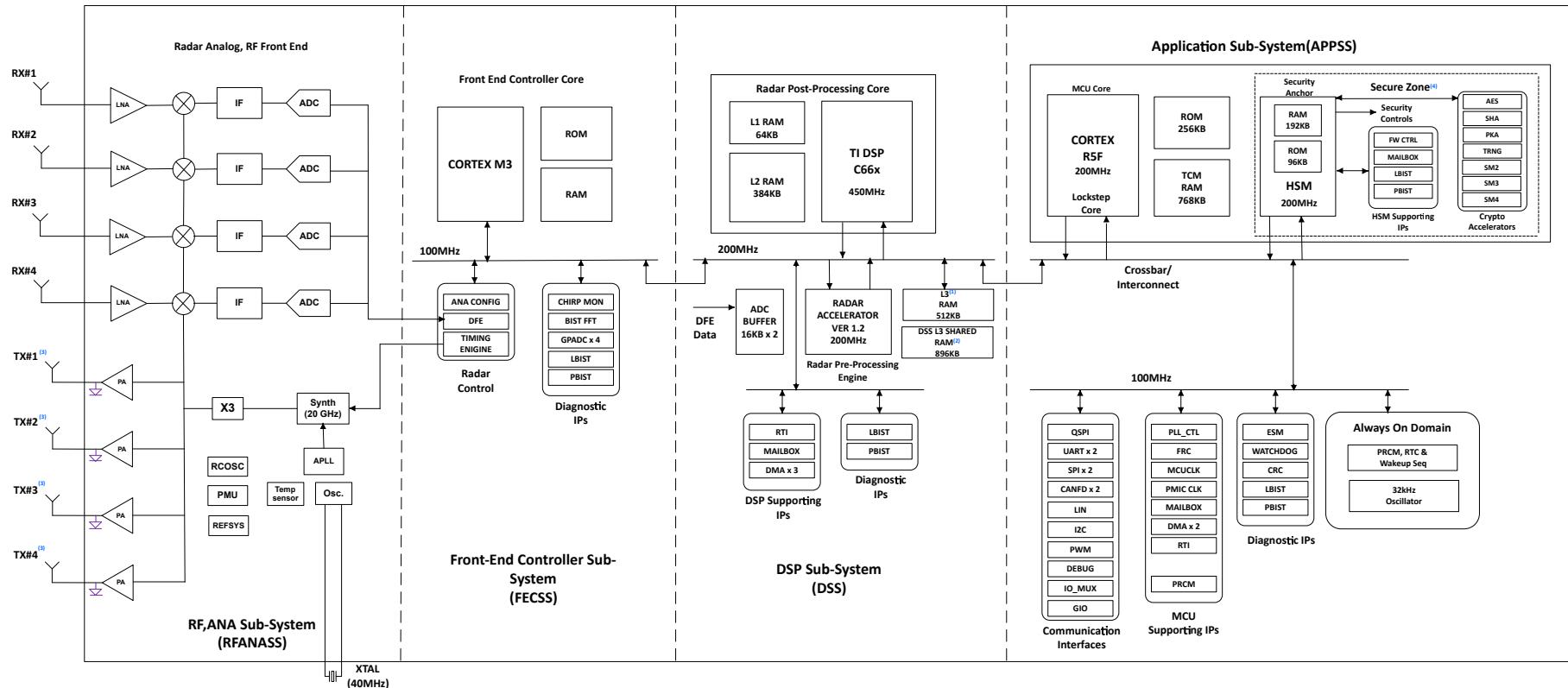
1. **RF/Analog Sub-System:** This block includes all the RF and Analog components required to transmit and receive the RF signals.
2. **Front-End Controller Sub-System (FECSS):** This block contains a processor that is responsible for the radar front-end configuration, control and calibration.
3. **Application Sub-System (APPSS):** APPSS provisions the user with programmable ARM Cortex-R5F MCU for custom application development and automotive interfaces. APPSS includes TOPSS, HSM, clocking and power management sub-blocks.
4. **DSP Sub-Systems (DSS):** DSS incorporates TI's high-performance C66x DSP is integrated in it for radar signal processing. The DSS also includes hardware accelerator block (HWA 1.2) supplements the DSP and ARM Cortex-R5F by offloading common radar processing such as FFT, constant false alarm rate (CFAR), scaling, and compression.

The AWRL684x is specifically designed to be able to dynamically control the power states of the above-mentioned power domains based on application requirements. The device also features various low-power states and that are achieved by turning off internal IP blocks of the device. AWRL684x device also provides the option of retaining memory during these low power states to retain critical information such as application image and RF profiles across different power modes.

A Hardware Security Module (HSM) is also provisioned in the device (available with secure part variants). The HSM consists of a programmable Arm Cortex-M4 core and the necessary infrastructure to provide a secure zone of operation within the device.

Additionally, the device is built with TI's low power 45nm RF CMOS process and enables unprecedented levels of integration in an extremely small form factor. AWRL684x is designed for low power, self-monitored, ultra-accurate radar systems in the automotive space for applications like child presence detection, occupancy localization & classification and low power intrusion monitoring.

Packaging Information


PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE ⁽¹⁾	TRAY / TAPE AND REEL	DESCRIPTION
AWRL6843DBGANCRQ1	ANC (FCCSP, 207)	9.1mm x 9.1mm	Tape and Reel	Automotive production variant. ASIL-B targeted. Deep Sleep enabled. General purpose variant.
AWRL6843DBSANCRQ1	ANC (FCCSP, 207)	9.1mm x 9.1mm	Tape and Reel	Automotive production variant. ASIL-B targeted. Deep Sleep enabled. Secure Variant - ISO21434 compliant up to CAL2 targeted.

Packaging Information (continued)

PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE ⁽¹⁾	TRAY / TAPE AND REEL	DESCRIPTION
AWRL6844DBGANCRQ1	ANC (FCCSP, 207)	9.1mm x 9.1mm	Tape and Reel	Automotive production variant. ASIL-B targeted. Deep Sleep enabled. General purpose variant.
AWRL6844DBSANCRQ1	ANC (FCCSP, 207)	9.1mm x 9.1mm	Tape and Reel	Automotive production variant. ASIL-B targeted. Deep Sleep enabled. Secure Variant - ISO21434 compliant up to CAL2 targeted.

(1) For more information, see , [Device Nomenclature](#) and [Mechanical, Packaging, and Orderable Information](#)

4 Functional Block Diagram

Figure 4-1. Functional Block Diagram

1. 512KB of DSS L3 Native RAM available only in AWRL6844
2. 896KB of DSS L3 Shared RAM Memory location is listed in [Table 4-1](#)
3. The AWRL6843 device has four transmitter antennas out of which any group of 3 transmitter antennas can be used (TX1, TX2, TX3), (TX1, TX2, TX4), (TX1, TX3, TX4) & (TX2, TX3, TX4).
4. Applicable to secure device variants only.

Table 4-1. Shared Memory Allocation

Memory	Allocation
512KB	DSS L3, APPSS TCMA
256KB	DSS L3, APPSS TCMB
128KB	DSS L3, FECSS

Table of Contents

1 Features	1	7.13 Timing and Switching Characteristics.....	39
2 Applications	2	8 Detailed Description	59
3 Description	2	8.1 Overview.....	59
4 Functional Block Diagram	4	8.2 Functional Block Diagram.....	60
5 Device Comparison	7	8.3 Subsystems.....	62
5.1 Related Products.....	9	8.4 Other Subsystems.....	67
6 Terminal Configurations and Functions	10	8.5 Memory Partitioning Options.....	68
6.1 Pin Diagrams.....	10	8.6 Boot Modes.....	69
6.2 Signal Descriptions.....	11	9 Monitoring and Diagnostics	71
7 Specifications	22	10 Applications, Implementation, and Layout	72
7.1 Absolute Maximum Ratings.....	22	10.1 Application Information.....	72
7.2 ESD Ratings.....	22	10.2 Reference Schematic.....	72
7.3 Power-On Hours (POH).....	23	11 Device and Documentation Support	73
7.4 Recommended Operating Conditions.....	24	11.1 Device Nomenclature.....	73
7.5 VPP Specifications for One-Time Programmable (OTP) eFuses.....	24	11.2 Tools and Software.....	74
7.6 Power Supply Specifications.....	26	11.3 Documentation Support.....	74
7.7 Power Save Modes.....	32	11.4 Support Resources.....	74
7.8 Peak Current Requirement per Voltage Rail.....	35	11.5 Trademarks.....	74
7.9 RF Specification.....	36	11.6 Electrostatic Discharge Caution.....	75
7.10 Supported DFE Features.....	38	11.7 Glossary.....	75
7.11 CPU Specifications.....	39	12 Revision History	75
7.12 Thermal Resistance Characteristics.....	39	13 Mechanical, Packaging, and Orderable Information	77

5 Device Comparison

The following table compares the features of radar devices.

Table 5-1. Device Features Comparison

FUNCTION	AWRL6844	AWRL6843	AWR6843	AWR6843AOP	AWRL6432
Antenna on Package (AOP)	-	-	-	Yes	-
Number of receivers	4	4	4	4	3
Number of transmitters	4	3	3	3	2
RF frequency range	57 to 64GHz	57 to 64GHz	60 to 64GHz	60 to 64GHz	57 to 64GHz
On-chip memory	2.5MB	2MB	1.75MB	1.75MB	1MB
Max I/F (Intermediate Frequency) (MHz)	10	10	10	10	5
Max real sampling rate (Msps)	25	25	25	25	12.5
Max Complex Sampling rate (Msps)	-	-	12.5	12.5	-
Low Power Deep Sleep Mode	Yes	Yes	-	-	Yes
Safety and Security					
Functional Safety -Compliance	ASIL-B Targeted ⁽¹⁾	ASIL-B Targeted ⁽¹⁾	ASIL-B	ASIL-B	ASIL-B
Cybersecurity - Compliance	CAL2 targeted	CAL2 targeted	-	-	-
Device Security ⁽²⁾	Yes (Secure Boot supported)	Yes (Secure Boot supported)	Yes (Secure Boot supported)	Yes (Secure Boot supported)	Yes (Authenticated Boot supported)
Hardware Security Module (HSM)	Yes	Yes	-	-	-
Processors					
MCU	R5F®	R5F®	R4F®	R4F®	M4F®
DSP	C66x	C66x	C674x	C674x	-
HWA	HWA 1.2	HWA 1.2	HWA1.1	HWA1.1	HWA 1.2
Peripherals					
Serial Peripheral Interface (SPI) ports	2	2	2	2	2
Quad Serial Peripheral Interface (QSPI)	Yes	Yes	Yes	Yes	Yes
Inter-Integrated Circuit (I2C) interface	1	1	1	1	1
Controller Area Network (CAN-FD) interface	2	2	2	2	1
DSP Trace	-	-	Yes	Yes	-
PWM	Yes	Yes	Yes	Yes	Yes
Hardware In Loop (HIL/DMM)	-	-	Yes	Yes	-
GPADC	4	4	6	6	2
ADC Raw Data Capture	LVDS	LVDS	LVDS	LVDS	RDIF
LIN	Yes	Yes	-	-	Yes
UART	3 ⁽³⁾	3 ⁽³⁾	2	2	2
JTAG	Yes	Yes	Yes	Yes	Yes
Per Chirp configurable TX phase shifter	BPM Only	BPM Only	Yes ⁽⁴⁾	Yes ⁽⁴⁾	BPM Only
Product status	Product Preview (PP), Advance Information (AI), or Production Data (PD)	PD ⁽⁵⁾	PD ⁽⁵⁾	PD ⁽⁵⁾	PD ⁽⁵⁾

(1) As the certification can get secured at different times and post certificate the target will be updated to "compliant" from "compliance targeted" only in related data sheets, please refer to the respective data sheets for most recent compliance status.

(2) Device security features including Secure Boot and Customer Programmable Keys are available in select devices for only select part variants as indicated by the Device Type identifier in Section 3, Device Information table.

(3) 3 UART instances are available, including 2 UART instance from APPSS and 1 UART instance from DSS

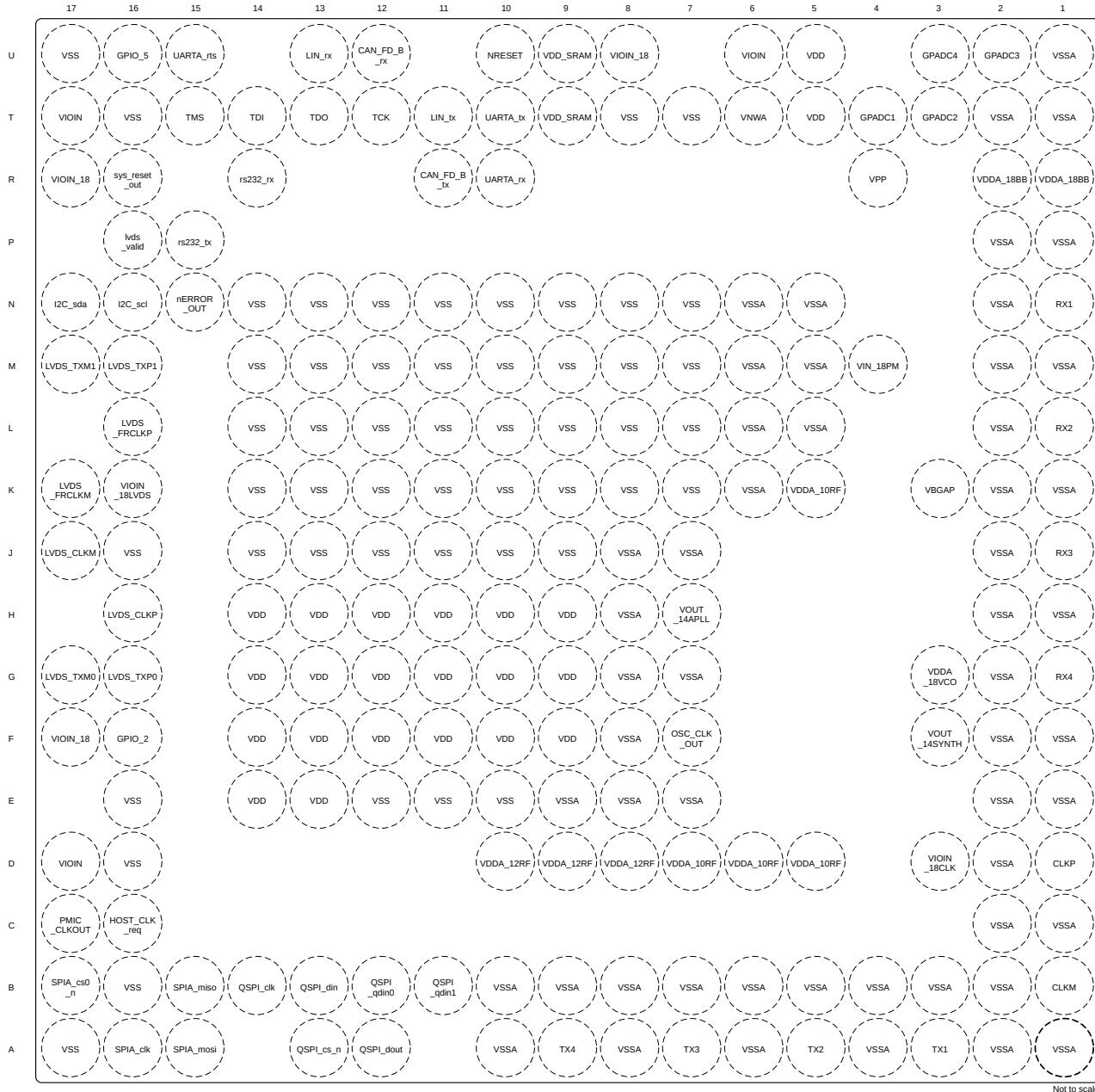
(4) 6 bits linear Phase Shifter.

(5) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty.

5.1 Related Products

For information about other devices in this family of products or related products see the links that follow.

mmWave Sensors TI's mmWave sensors rapidly and accurately sense range, angle and velocity with less power using the smallest footprint mmWave sensor portfolio for automotive applications.


Automotive mmWave Sensors TI's automotive mmWave sensor portfolio offers high-performance radar front end to ultra-high resolution, small and low-power single-chip radar solutions. TI's scalable sensor portfolio enables design and development of ADAS, in-cabin and near field system solution for every performance, application and sensor configuration ranging from comfort functions to safety functions in all vehicles.

Companion Products for AWRL684x Review products that are similar to this product.

6 Terminal Configurations and Functions

6.1 Pin Diagrams

FCCSP Pin Diagram (Top View)

6.2 Signal Descriptions

Note

All digital IO pins of the device (except NRESET) are non-failsafe; hence, care needs to be taken that they are not driven externally without the VIO supply being present to the device.

LVDS interface is intended for debugging and development purposes, not for production use

T13 and C17 pins also serves as a Sense On Power lines and impacts boot mode SOP0 and SOP1 respectively. For more details refer to the [Pin Attributes](#).

Table 6-1. Analog Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
CLKM	A	XTAL CLKM pin	B1
CLKP	A	XTAL CLKP pin	D1
GPADC1	A	GPADC input 1	T4
GPADC2	A	GPADC input 2	T3
GPADC3	A	GPADC input 3	U2
GPADC4	A	GPADC input 4	U3
NRESET	A	NRESET input	U10
OSC_CLK_OUT	A	Oscillator Clock output	F7
RX1	A	RX channel 1	N1
RX2	A	RX channel 2	L1
RX3	A	RX channel 3	J1
RX4	A	RX channel 4	G1
TX1 ⁽¹⁾	A	TX channel 1	A3
TX2 ⁽¹⁾	A	TX channel 2	A5
TX3 ⁽¹⁾	A	TX channel 3	A7
TX4 ⁽¹⁾	A	TX channel 4	A9
VBGAP	A	BandGap reference pin	K3

(1) The AWRL6843 device has four transmitter antennas out of which any group of 3 transmitter antennas can be used (TX1, TX2, TX3), (TX1, TX2, TX4), (TX1, TX3, TX4) & (TX2, TX3, TX4).

Table 6-2. CAN Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
CAN_FD_B_rx	I	CAN Receive Data	U12
CAN_FD_B_tx	O	CAN Transmit Data	R11
CAN_FD_rx	I	CAN Receive Data	R10
CAN_FD_tx	O	CAN Transmit Data	T10

Table 6-3. Clock Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
MCU_CLKOUT	O	MCU clock output	C16, N15, N17
PMIC_CLKOUT	O	PMIC clock output	C17, N16
RTC_CLK_in	I	RTC clock input . This is used as wakeup source for exiting from deep sleep. For more details, refer to the Technical Reference Manual .	B13, F16, N15, T15, U15

Table 6-4. EPWM Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
ePWMa	O	EPWM Output A	B15, B17, N16, T14, U12, U15
ePWMB	O	EPWM Output B	A15, A16, N17, R11, T12, U16
ePWMSYNCI	I	EPWM Sync Input	N16, P15, T15, U16
ePWMSYNCO	O	EPWM Sync Output	N17, T15

Table 6-5. GPIO Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
GPIO_0	IO	General Purpose Input/Output	A15, U12
GPIO_1	IO	General Purpose Input/Output	B15, R11
GPIO_2	IO	General Purpose Input/Output	F16, P16
GPIO_3	IO	General Purpose Input/Output	R10, R16
GPIO_4	IO	General Purpose Input/Output	N15, N16
GPIO_5	IO	General Purpose Input/Output	N17, U16
GPIO_6	IO	General Purpose Input/Output	U13, U15
GPIO_7	IO	General Purpose Input/Output	C16, T11

Table 6-6. I2C Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
I2C_scl	IO	I2C Clock	A16, B12, C16, N16, P15, T10
I2C_sda	IO	I2C Data	B11, B17, F16, N17, R10, R14

Table 6-7. JTAG Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
TCK	I	JTAG Test Clock	T12
TDI	I	Test Data Input	T14
TDO	O	Test Data Out	T13
TMS	I	Test Mode Select	T15

Table 6-8. LIN Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
LIN_rx	I	LIN Receive Data	F16, P16, R10, R14, U13, U16
LIN_tx	O	LIN Transmit Data	C16, C17, P15, R16, T10, T11, U15

Table 6-9. LVDS Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
LVDS_CLKM	O	Differential Clock	J17
LVDS_CLKP	O	Differential Clock	H16
LVDS_FRCLKM	O	Differential Frame Clock	K17
LVDS_FRCLKP	O	Differential Frame Clock	L16
LVDS_TXM0	O	Differential Data Out - Lane0	G17
LVDS_TXP0	O	Differential Data Out - Lane0	G16

Table 6-9. LVDS Signal Descriptions (continued)

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
LVDS_TXM1	O	Differential Data Out - Lane1	M17
LVDS_TXP1	O	Differential Data Out - Lane1	M16
LVDS_Valid	O	When high, indicating valid LVDS data	P16

Table 6-10. Power Supply Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
VDD	PWR	1.2V Core supply	E13, E14, F10, F11, F12, F13, F14, F9, G10, G11, G12, G13, G14, G9, H10, H11, H12, H13, H14, H9, T5, U5
VDDA_10RF	PWR	1.0V internal LDO output.	D5, D6, D7, K5
VDDA_12RF	PWR	1.2V RF Supply	D10, D8, D9
VDDA_18BB	PWR	1.8V analog supply	R1, R2
VDDA_18VCO	PWR	1.8V analog supply	G3
VDD_SRAM	PWR	1.2V SRAM supply	T9, U9
VIN_18PM	PWR	1.8V core supply	M4
VIOIN	PWR	1.8V / 3.3V IO supply	D17, T17, U6
VIOIN_18	PWR	1.8V IO supply	F17, R17, U8
VIOIN_18CLK	PWR	1.8V analog supply	D3
VIOIN_18LVDS	PWR	1.8V supply for LVDS port	K16
VNWA	PWR	1.2V VNWA supply. Always connected to SRAM supply	T6
VOUT_14APLL	PWR	1.4V internal LDO output	H7
VOUT_14SYNTH	PWR	1.4V internal LDO output	F3
VPP	PWR	Voltage supply for fuse chain	R4
VSS	GND	Ground	A17, B16, D16, E10, E11, E12, E16, J10, J11, J12, J13, J14, J16, J9, K10, K11, K12, K13, K14, K7, K8, K9, L10, L11, L12, L13, L14, L7, L8, L9, M10, M11, M12, M13, M14, M7, M8, M9, N10, N11, N12, N13, N14, N7, N8, N9, T16, T7, T8, U17
VSSA	GND	Ground	A1, A10, A2, A4, A6, A8, B10, B2, B3, B4, B5, B6, B7, B8, B9, C1, C2, D2, E1, E2, E7, E8, E9, F1, F2, F8, G2, G7, G8, H1, H2, H8, J2, J7, J8, K1, K2, K6, L2, L5, L6, M1, M2, M5, M6, N2, N5, N6, P1, P2, T1, T2, U1

Table 6-11. QSPI Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
QSPI_clk	IO	QSPI Clock	B14

Table 6-11. QSPI Signal Descriptions (continued)

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
QSPI_cs_n	O	QSPI Chip Select	A13
QSPI_din	I	QSPI Data bit 1	B13
QSPI_dout	IO	QSPI Data bit 0	A12
QSPI_qdin0	I	QSPI Data bit 2	B12
QSPI_qdin1	I	QSPI Data bit 3	B11

Table 6-12. RS232 Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
rs232_rx	I	RS232 Receive Data	R14
rs232_tx	O	RS232 Transmit Data	P15

Table 6-13. SPIA Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
SPIA_clk	IO	SPIA Clock	A16
SPIA_cs0_n	IO	SPIA Chip Select 0	B17
SPIA_cs1_n	IO	SPIA Chip Select 1	C17, F16, P16
SPIA_miso	IO	SPIA MISO	B15
SPIA_mosi	IO	SPIA MOSI	A15

Table 6-14. SPIB Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
SPIB_clk	IO	SPIB Clock	A16, B14, N16, P16
SPIB_cs0_n	IO	SPIB Chip Select 0	A13, B17, N15, R16
SPIB_cs1_n	IO	SPIB Chip Select 1	N17, P15
SPIB_miso	IO	SPIB MISO	B13, B15, C16, P16, R14
SPIB_mosi	IO	SPIB MOSI	A12, A15, N17

On SPIB only certain IOSET combinations are supported due to timing constraints. [Table 6-15](#) lists the valid IOSET combinations for SPIB

Table 6-15. Valid IOSET Combinations for SPIB Signal

Signal Name	IOSET1	IOSET2	IOSET3	IOSET4
SPIB_clk	PAD_AA	PAD_AG	PAD_BC	PAD_BC
SPIB_cs0_n	PAD_AB	PAD_AH	PAD_BB	PAD_BB
SPIB_mosi	PAD_AC	PAD_AI	PAD_BD	PAD_BD
SPIB_miso	PAD_AD	PAD_AJ	PAD_BA	PAD_AX

Table 6-16. System Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
HOST_CLK_req	O	Host clock request output. This signal provides an indication to external MCU/host to provide a clock through the CLKP pin. This signal is used in external clock mode. Please refer to Input Clocks and Oscillators for more details.	C16
nERROR_OUT	O	nERROR output signal. Open drain fail safe output signal. This is used to indicate some severe criticality fault has happened. Recovery would be through reset.	N15, P16

Table 6-16. System Signal Descriptions (continued)

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
PRCM_PMIC_DeepSleep	O	Deep sleep indication output. This signal provides an indication of device's deepsleep state.	P16, T11
SYNC_in	I	Sync input. This is used for synchronized frame triggering. For more details, refer to the Synchronized Frame Triggering	B11, N15, P16, R10, U16
sys_reset_out	O	System reset indication output. This is used for indicating when SOC undergoes a reset.	F16, R11, R16, T15
WU_reqin	I	Wakeup Request input. This is used as wakeup source for exiting from deep sleep.	B12, N15, R16, T10, U15

Table 6-17. UARTA Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
UARTA_rts	O	UARTA RTS output	U15
UARTA_rx	I	UARTA Receive Data	N16, R10
UARTA_tx	O	UARTA Transmit Data	N17, T10

Table 6-18. UARTB Signal Descriptions

SIGNAL NAME	PIN TYPE	DESCRIPTION	BGA PIN
UARTB_rx	I	UARTB Receive Data	R10, R14, T11
UARTB_tx	O	UARTB Transmit Data	P15, T10, U13

Table 6-19. DSS UARTA Signal Descriptions

SIGNAL NAME	DESCRIPTION	PIN TYPE	BGA PIN
HWASS_UARTA_RX	Debug UART instance in DSS. DSS UARTA Receive Data	I	U12, R14, R10
HWASS_UARTA_TX	Debug UART instance in DSS. DSS UARTA Transmit Data	O	R11, P15, T10

Table 6-20. Pin Attributes

BGA BALL NUMBER ⁽¹⁾	BALL NAME ⁽²⁾	SIGNAL NAME ⁽³⁾	PINCNTL REGISTER ⁽⁴⁾	PINCNTL REGISTER ADDRESS ⁽⁵⁾ (11)	MODE ⁽⁶⁾	TYPE ⁽⁷⁾	PULL UP/DOWN TYPE ⁽⁸⁾	BALL STATE DURING RST ⁽⁹⁾	BALL RESET AFTER RST ⁽¹⁰⁾
U12	CAN_FD_B_rx	CAN_FD_B_rx	PADAY_CFG_REG	0x5A00 0060	0	I	PU/PD	Off / Off / Off	Off / Off / Off
		HWASS_UARTA_rx			1	I			
		ePWMa			2	O			
		GPIO_0			3	IO			
R11	CAN_FD_B_tx	CAN_FD_B_tx	PADAZ_CFG_REG	0x5A00 0064	0	O	PU/PD	Off / Off / Off	Off / Off / Off
		HWASS_UARTA_tx			1	O			
		ePWMb			2	O			
		GPIO_1			3	IO			
		sys_reset_out			4	O			
B1	CLKM	CLKM				A			
D1	CLKP	CLKP				A			
T4	GPADC1	GPADC1				A			
T3	GPADC2	GPADC2				A			
U2	GPADC3	GPADC3				A			
U3	GPADC4	GPADC4				A			
F16	GPIO_2	GPIO_2	PADAL_CFG_REG	0x5A00 002C	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		LIN_rx			1	I			
		sys_reset_out			2	O			
		I2C_sda			3	IO			
		SPIB_cs1_n			4	IO			
		RSVD			5	I			
		RTC_CLK_in			6	I			
U16	GPIO_5	GPIO_5	PADAV_CFG_REG	0x5A00 0054	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		SYNC_in			1	I			
		LIN_rx			2	I			
		ePWMb			3	O			
		ePWMSYNC1			4	I			
C16	HOST_CLK_req	HOST_CLK_req ⁽¹²⁾	PADAX_CFG_REG	0x5A00 005C	0	O	PU/PD	Off / Off / Off	Off / SS / Off
		GPIO_7			1	IO			
		MCU_CLKOUT ⁽¹²⁾			2	O			
		LIN_tx			3	O			
		RSVD			4	I			
		SPIB_miso			5	IO			
		I2C_scl			6	IO			
N16	I2C_scl	I2C_scl	PADC_CFG_REG	0x5A00 0070	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		PMIC_CLKOUT			1	O			
		UARTA_rx			2	I			
		GPIO_4			3	IO			
		RSVD			4	O			
		ePWMa			5	O			
		ePWMSYNC1			6	I			
		SPIB_clk			7	IO			
N17	I2C_sda	I2C_sda	PADD_CFG_REG	0x5A00 0074	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		MCU_CLKOUT			1	O			
		UARTA_tx			2	O			
		GPIO_5			3	IO			
		RSVD			4	O			
		ePWMb			5	O			
		ePWMSYNC0			6	O			
		SPIB_cs1_n			7	IO			
		SPIB_mosi			8	IO			

Table 6-20. Pin Attributes (continued)

BGA BALL NUMBER ⁽¹⁾	BALL NAME ⁽²⁾	SIGNAL NAME ⁽³⁾	PINCNTL REGISTER ⁽⁴⁾	PINCNTL REGISTER ADDRESS ⁽⁵⁾ (11)	MODE ⁽⁶⁾	TYPE ⁽⁷⁾	PULL UP/ DOWN TYPE ⁽⁸⁾	BALL STATE DURING RST ⁽⁹⁾	BALL RESET AFTER RST ⁽¹⁰⁾
U13	LIN_rx	LIN_rx	PADBE_CFG_REG	0x5A00 0078	0	I	PU/PD	Off / Off / Off	Off / Off / Off
		UARTB_tx			1	O			
		GPIO_6			2	IO			
T11	LIN_tx	LIN_tx	PADBF_CFG_REG	0x5A00 007C	0	O	PU/PD	Off / Off / Off	Off / Off / Off
		UARTB_tx			1	I			
		GPIO_7			2	IO			
		PRCM_PMIC_DeepSleep			3	O			
P16	lvds_valid	LVDS_VALID	PADBA_CFG_REG	0x5A00 0068	0	O	PU/PD	Off / Off / Off	Off / Off / Off
		nERROR_OUT			1	O			
		LIN_rx			2	I			
		GPIO_2			3	IO			
		RSVD			4	O			
		SPIA_cs1_n			5	IO			
		SPIB_miso			6	IO			
		SPIB_clk			7	IO			
		SYNC_in			8	I			
		PRCM_PMIC_DeepSleep			9	O			
N15	nERROR_OUT	nERROR_OUT	PADAU_CFG_REG	0x5A00 0050	0	O	PU/PD	Off / Off / Off	Off / Off / Off
		GPIO_4			1	IO			
		SYNC_in			2	I			
		SPIB_cs0_n			3	IO			
		WU_reqin			4	I			
		RTC_CLK_in			5	I			
		MCU_CLKOUT			6	O			
U10	NRESET	NRESET				A			
F7	OSC_CLK_OUT	OSC_CLK_OUT				A			
C17	PMIC_CLKOUT	SOP[1]	PADAK_CFG_REG	0x5A00 0028	During Power-Up	I	PU/PD	Off / Off / Off	Off / Off / Off
		PMIC_CLKOUT ⁽¹²⁾			0	O			
		LIN_tx			1	O			
		SPIA_cs1_n			2	IO			
B14	QSPI_clk	QSPI_clk	PADAA_CFG_REG	0x5A00 0000	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		SPIB_clk			1	IO			
A13	QSPI_cs_n	QSPI_cs_n	PADAB_CFG_REG	0x5A00 0004	0	O	PU/PD	Off / Off / Off	Off / Off / Off
		SPIB_cs0_n			1	IO			
B13	QSPI_din	QSPI_din	PADAD_CFG_REG	0x5A00 000C	0	I	PU/PD	Off / Off / Off	Off / Off / Off
		SPIB_miso			1	IO			
		RTC_CLK_in			2	I			
A12	QSPI_dout	QSPI_dout	PADAC_CFG_REG	0x5A00 0008	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		SPIB_mosi			1	IO			
B12	QSPI_qdin0	QSPI_qdin0	PADAECFG_REG	0x5A00 0010	0	I	PU/PD	Off / Off / Off	Off / Off / Off
		I2C_scl			1	IO			
		WU_reqin			2	I			
B11	QSPI_qdin1	QSPI_qdin1	PADAECFG_REG	0x5A00 0014	0	I	PU/PD	Off / Off / Off	Off / Off / Off
		I2C_sda			1	IO			
		SYNC_in			2	I			
R14	rs232_rx	rs232_rx	PADAP_CFG_REG	0x5A00 003C	0	I	PU/PD	Off / Off / Up	On / Off / Up
		I2C_sda			1	IO			
		UARTB_rx			2	I			
		LIN_rx			3	I			
		RSVD			4	O			
		SPIB_miso			5	IO			
		HWASS_UARTA_rx			6	I			

Table 6-20. Pin Attributes (continued)

BGA BALL NUMBER ⁽¹⁾	BALL NAME ⁽²⁾	SIGNAL NAME ⁽³⁾	PINCNTL REGISTER ⁽⁴⁾	PINCNTL REGISTER ADDRESS ⁽⁵⁾ (11)	MODE ⁽⁶⁾	TYPE ⁽⁷⁾	PULL UP/DOWN TYPE ⁽⁸⁾	BALL STATE DURING RST ⁽⁹⁾	BALL RESET AFTER RST ⁽¹⁰⁾
P15	rs232_tx	rs232_tx	PADA0_CFG_REG	0x5A00 0038	0	O	PU/PD	Off / Off / Off	Off / SS / Off
		I2C_scl			1	IO			
		UARTB_tx			2	O			
		LIN_tx			3	O			
		ePWMSYNC1			4	I			
		RSVD			5	O			
		SPIB_cs1_n			6	IO			
		HWASS_UARTA_tx			7	O			
N1	RX1	RX1				A			
L1	RX2	RX2				A			
J1	RX3	RX3				A			
G1	RX4	RX4				A			
A16	SPIA_clk	SPIA_clk	PADAG_CFG_REG	0x5A00 0018	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		ePWMB			1	O			
		I2C_scl			2	IO			
		SPIB_clk			3	IO			
B17	SPIA_cs0_n	SPIA_cs0_n	PADAH_CFG_REG	0x5A00 001C	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		ePWMA			1	O			
		I2C_sda			2	IO			
		SPIB_cs0_n			3	IO			
B15	SPIA_miso	SPIA_miso	PADAJ_CFG_REG	0x5A00 0024	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		GPIO_1			1	IO			
		ePWMA			2	O			
		SPIB_miso			3	IO			
A15	SPIA_mosi	SPIA_mosi	PADAI_CFG_REG	0x5A00 0020	0	IO	PU/PD	Off / Off / Off	Off / Off / Off
		GPIO_0			1	IO			
		ePWMB			2	O			
		SPIB_mosi			3	IO			
		RSVD			4	O			
		LVDS_VALID			5	O			
R16	sys_reset_out	sys_reset_out	PADB0_CFG_REG	0x5A00 006C	0	O	PU/PD	Off / Off / Off	Off / Off / Off
		WU_reqin			1	I			
		LIN_tx			2	O			
		GPIO_3			3	IO			
		RSVD			4	O			
		SPIB_cs0_n			5	IO			
T12	TCK	TCK	PADAT_CFG_REG	0x5A00 004C	0	I	PU/PD	Off / Off / Down	On / Off / Down
		ePWMB			1	O			
T14	TDI	TDI	PADAR_CFG_REG	0x5A00 0044	0	I	PU/PD	Off / Off / Down	On / Off / Down
		ePWMA			1	O			
T13	TDO	SOP[0]	PADAS_CFG_REG	0x5A00 0048	During Power-Up	I	PU/PD	Off / Off / Off	Off / SS / Off
		TDO			0	O			
T15	TMS	TMS	PADAQ_CFG_REG	0x5A00 0040	0	I	PU/PD	Off / Off / Up	On / Off / Up
		sys_reset_out			1	O			
		RSVD			2				
		RSVD			3				
		RSVD			4				
		RSVD			5				
		RTC_CLK_in			6	I			
		ePWMSYNC1			7	I			
		ePWMSYNCO			8	O			
A3	TX1	TX1				A			

Table 6-20. Pin Attributes (continued)

BGA BALL NUMBER ⁽¹⁾	BALL NAME ⁽²⁾	SIGNAL NAME ⁽³⁾	PINCNTL REGISTER ⁽⁴⁾	PINCNTL REGISTER ADDRESS ⁽⁵⁾ (11)	MODE ⁽⁶⁾	TYPE ⁽⁷⁾	PULL UP/DOWN TYPE ⁽⁸⁾	BALL STATE DURING RST ⁽⁹⁾	BALL RESET AFTER RST ⁽¹⁰⁾
A5	TX2	TX2				A			
A7	TX3	TX3				A			
A9	TX4	TX4				A			
U15	UARTA_rts	UARTA_rts	PADAW_CFG_REG	0x5A00 0058	0	O	PU/PD	Off / Off / Off	Off / Off / Off
		GPIO_6			1	IO			
		LIN_tx			2	O			
		RSVD			3				
		WU_reqin			4	I			
		ePWMa			5	O			
		RTC_CLK_in			6	I			
R10	UARTA_rx	UARTA_rx	PADAM_CFG_REG	0x5A00 0030	0	I	PU/PD	Off / Off / Off	Off / Off / Off
		GPIO_3			1	IO			
		LIN_rx			2	I			
		CAN_FD_rx			3	I			
		SYNC_in			4	I			
		UARTB_rx			5	I			
		I2C_sda			6	IO			
		RSVD			7	O			
		HWASS_UARTA_rx			8	I			
T10	UARTA_tx	UARTA_tx	PADAN_CFG_REG	0x5A00 0034	0	O	PU/PD	Off / Off / Off	Off / Off / Off
		LIN_tx			1	O			
		CAN_FD_tx			2	O			
		RSVD			3				
		WU_reqin			4	I			
		UARTB_tx			5	O			
		I2C_scl			6	IO			
		RSVD			7	O			
		HWASS_UARTA_tx			8	O			
K3	VBGAP	VBGAP				A			
E13, E14, F10, F11, F12, F13, F14, F9, G10, G11, G12, G13, G14, G9, H10, H11, H12, H13, H14, H9, T5, U5	VDD	VDD				PWR			
D5, D6, D7, K5	VDDA_10RF	VDDA_10RF				PWR			
D10, D8, D9	VDDA_12RF	VDDA_12RF				PWR			
R1, R2	VDDA_18BB	VDDA_18BB				PWR			
G3	VDDA_18VCO	VDDA_18VCO				PWR			
T9, U9	VDD_SRAM	VDD_SRAM				PWR			
M4	VIN_18PM	VIN_18PM				PWR			
D17, T17, U6	VIOIN	VIOIN				PWR			
F17, R17, U8	VIOIN_18	VIOIN_18				PWR			
D3	VIOIN_18CLK	VIOIN_18CLK				PWR			
K16	VIOIN_18LVDS	VIOIN_18LVDS				PWR			
T6	VNWA	VNWA				PWR			
H7	VOUT_14APLL	VOUT_14APLL				PWR			
F3	VOUT_14SYNTH	VOUT_14SYNTH				PWR			
R4	VPP	VPP				PWR			

Table 6-20. Pin Attributes (continued)

BGA BALL NUMBER ⁽¹⁾	BALL NAME ⁽²⁾	SIGNAL NAME ⁽³⁾	PINCNTL REGISTER ⁽⁴⁾	PINCNTL REGISTER ADDRESS ⁽⁵⁾ (11)	MODE ⁽⁶⁾	TYPE ⁽⁷⁾	PULL UP/DOWN TYPE ⁽⁸⁾	BALL STATE DURING RST ⁽⁹⁾	BALL RESET AFTER RST ⁽¹⁰⁾
A17, B16, D16, E10, E11, E12, E16, J10, J11, J12, J13, J14, J16, J9, K10, K11, K12, K13, K14, K7, K8, K9, L10, L11, L12, L13, L14, L7, L8, L9, M10, M11, M12, M13, M14, M7, M8, M9, N10, N11, N12, N13, N14, N7, N8, N9, T16, T7, T8, U17	VSS	VSS				GND			
A1, A10, A2, A4, A6, A8, B10, B2, B3, B4, B5, B6, B7, B8, B9, C1, C2, D2, E1, E2, E7, E8, E9, F1, F2, F8, G2, G7, G8, H1, H2, H8, J2, J7, J8, K1, K2, K6, L2, L5, L6, M1, M2, M5, M6, N2, N5, N6, P1, P2, T1, T2, U1	VSSA	VSSA				GND			

(1) **BALL NUMBER:** Ball numbers on the bottom side associated with each signal on the bottom.(2) **BALL NAME:** Mechanical name from package device (name is taken from muxmode 0).(3) **SIGNAL NAME:** Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0).(4) **PINCNTL_REGISTER:** APPSS Register name for PinMux Control(5) **PINCNTL ADDRESS:** APPSS Address for PinMux Control(6) **MODE:** Multiplexing mode number: value written to PinMux Cntl register to select specific Signal name for this Ball number. Mode column has bit range value.(7) **TYPE:** Signal type and direction:

- I = Input
- O = Output
- IO = Input or Output

(8) **PULL UP/DOWN TYPE:** indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled via software.

- Pull Up: Internal pullup
- Pull Down: Internal pulldown
- An empty box means No pull.

(9) **BALL STATE DURING RST:** State of Ball during reset in the format of RX/TX/Pull Status

- RX (Input buffer)
 - Off: The input buffer is **disabled**.
 - On: The input buffer is **enabled**.
- TX (Output buffer)
 - Off: The output buffer is **disabled**.
 - Low: The output buffer is **enabled** and drives V_{OL} .
- Pull Status (Internal pull resistors)
 - Off: Internal pull resistors are turned **off**.
 - Up: Internal **pull-up** resistor is turned on.
 - Down: Internal **pull-down** resistor is turned on.
 - NA: No internal pull resistor.
- An empty box, or "-" means Not Applicable.

(10) **BALL STATE AFTER RST:** State of Ball after reset in the format of RX/TX/Pull Status

- RX (Input buffer)
 - Off: The input buffer is **disabled**.
 - On: The input buffer is **enabled**.
- TX (Output buffer)
 - Off: The output buffer is **disabled**.
 - SS: The subsystem selected with MUXMODE determines the output buffer state.
- Pull status (Internal pull resistors)
 - Off: Internal pull resistors are turned **off**.
 - Up: Internal **pull-up resistor** is turned on.
 - Down: Internal **pull-down resistor** is turned on.
 - NA: No internal pull resistor.
- An empty box, NA, or "-" means Not Applicable.

(11) Pin Mux Control Value maps to lower 4 bits of register.
(12) Restricted use. Not available during deepsleep

7 Specifications

7.1 Absolute Maximum Ratings

PARAMETERS ^{(1) (2)}		MIN	MAX	UNIT
VDD	1.2V digital power supply	-0.5	1.4	V
VIOIN	I/O supply (3.3V or 1.8V): All CMOS I/Os operate on the same VIOIN voltage level	-0.5	3.8	V
VIOIN_18	1.8V supply for CMOS IO	-0.5	2	V
VIOIN_18CLK	1.8V supply for clock module	-0.5	2	V
VDDA_18BB	1.8V Analog baseband power supply	-0.5	2	V
VDDA_18VCO	1.8V RF VCO supply	-0.5	2	V
VIOIN_18LVDS	1.8V supply for LVDS port	-0.5	2	V
VPP	Voltage supply for fuse chain	-0.5	2	V
RX1-4	Externally applied power on RF inputs		10	dBm
TX1-4	Externally applied power on RF outputs ⁽³⁾		10	dBm
Input and output voltage range	Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State)	-0.3V	VIOIN + 0.3	V
	Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V (Transient Overshoot/Uundershoot) or external oscillator input		VIOIN + 20% up to 20% of signal period	
CLKP, CLKM	Input ports for reference crystal	-0.5	2	V
Clamp current	Input or Output Voltages 0.3 V above or below their respective power rails. Limit clamp current that flows through the internal diode protection cells of the I/O.	-20	20	mA
T _J	Operating junction temperature range	-40	140	°C
T _{STG}	Storage temperature range after soldered onto PC board	-55	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltage values are with respect to V_{SS}, unless otherwise noted.

(3) This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma = 1 can be applied on the TX output.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per AECQ100-002 ⁽¹⁾	All pins	±2000
		Charged-device model (CDM), per AEC Q100-011	All pins	±500
			Corner pins	±750

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Power-On Hours (POH)

JUNCTION TEMPERATURE (T _J) (1)	OPERATING CONDITION	NOMINAL CVDD VOLTAGE (V)	POWER-ON HOURS [POH] (HOURS)
-40°C	50% duty cycle	1.2	1200 (6%)
75°C			4000 (20%)
95°C			13000 (65%)
130°C			1600 (8%)
140°C			200 (1%)

(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products.

7.4 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
VDD	1.2V digital power supply	1.14	1.2	1.26	V
VIOIN	I/O supply (3.3V or 1.8V): All CMOS I/Os would operate on this supply.	3.135	3.3	3.465	V
		1.71	1.8	1.89	
VIOIN_18	1.8V supply for CMOS IO	1.71	1.8	1.89	V
VIOIN_18CLK	1.8V supply for clock module	1.71	1.8	1.89	V
VDDA_18BB	1.8V Analog baseband power supply	1.71	1.8	1.89	V
VDDA_18VCO	1.8V RF VCO supply	1.71	1.8	1.89	V
VIOIN_18LVDS	1.8V supply for LVDS port	1.71	1.8	1.89	V
V _{IH}	Voltage Input High (1.8V mode)	1.17			V
	Voltage Input High (3.3V mode)	2.25			
V _{IL}	Voltage Input Low (1.8V mode)		0.3*VIOIN		V
	Voltage Input Low (3.3V mode)		0.62		
V _{OH}	High-level output threshold (I _{OH} = 6 mA)	VIOIN – 450			mV
V _{OL}	Low-level output threshold (I _{OL} = 6mA)		450		mV
NRESET SOP[1:0]	V _{IL} (1.8V Mode)		0.2		V
	V _{IH} (1.8V Mode)	0.96			
	V _{IL} (3.3V Mode)		0.3		
	V _{IH} (3.3V Mode)	1.57			

7.5 VPP Specifications for One-Time Programmable (OTP) eFuses

This section specifies the operating conditions required for programming the OTP eFuses and is applicable only for secure boot devices. During the process of writing the customer specific keys or other fields like software version etc. in the efuse, the user needs to provide the VPP supply.

7.5.1 Recommended Operating Conditions for OTP eFuse Programming

PARAMETER	DESCRIPTION	MIN	NOM	MAX	UNIT
VPP	Supply voltage range for the eFuse ROM domain during normal operation		NC ⁽²⁾		
	Supply voltage range for the eFuse ROM domain during OTP programming ⁽¹⁾	1.65	1.7	1.75	V
Duration of VPP Supply	If VPP voltage is supplied for more than recommended Hours, it can cause reliability issue		24		Hours
I(VPP)			50		mA
Decoupling Capacitor		0.1 ⁽³⁾			uF

(1) During normal operation, no voltage should be applied to VPP. This can be typically achieved by disabling the external regulator attached to the VPP terminal.

(2) NC: No Connect

(3) Applicable to secure device variants. VPP pin can be floated for general purpose device variants.

Note

Power up sequence: VPP must be ramped up at the end i.e after all other rails ramp up is done

7.5.2 Hardware Requirements

The following hardware requirements must be met when programming keys in the OTP eFuses:

- The VPP power supply must be disabled when not programming OTP registers.

7.5.3 Impact to Your Hardware Warranty

You recognize and accept at your own risk that your use of eFuse permanently alters the TI device. You acknowledge that eFuse can fail due to incorrect operating conditions or programming sequence. Such a failure may render the TI device inoperable and TI will be unable to confirm the TI device conformed to TI device specifications prior to the attempted eFuse. CONSEQUENTLY, in these cases of faulty EFUSE programmability, TI WILL HAVE NO LIABILITY.

7.6 Power Supply Specifications

7.6.1 3.3V I/O Topology

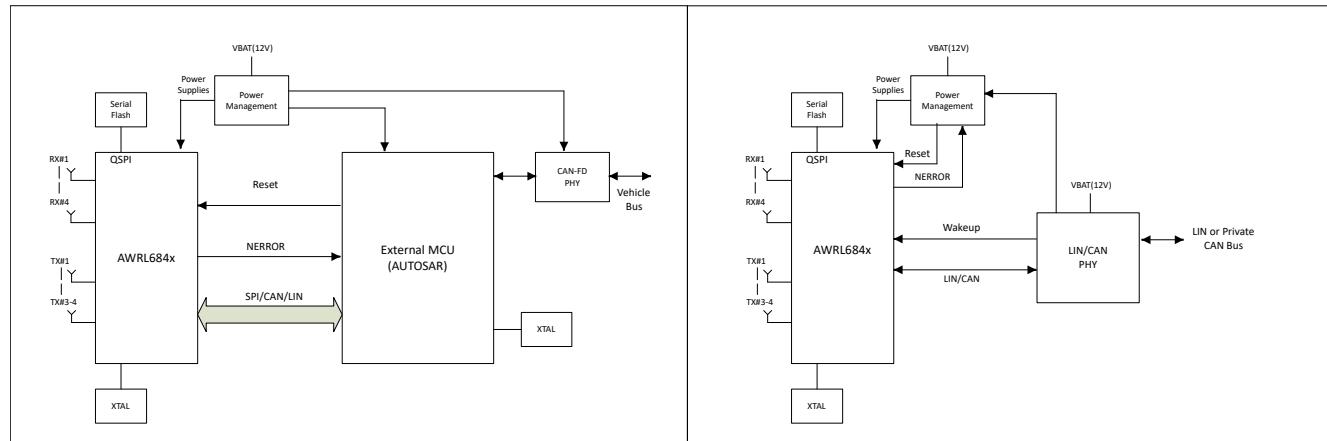
Table 7-1 describes the power rails from an external power supply block to the device via 3.3V I/O topology.

Table 7-1. Power Supply Rails Characteristics: 3.3V I/O Topology

SUPPLY	DEVICE BLOCKS POWERED FROM THE SUPPLY	RELEVANT IOs IN THE DEVICE
3.3V	Digital I/Os	Input: VIOIN
1.8V	Synthesizer and APLL VCOs, crystal oscillator, IF Amplifier stages, ADC, LVDS	Input: VDDA_18VCO, VIOIN_18CLK, VDDA_18BB, VIOIN_18, VIN_18PM, VIOIN_18LVDS LDO Output: VOUT_14SYNTH, VOUT_14APLL
1.2V	Core Digital and SRAMs, RF, VNWA	Input: VDD, VNWA, VDD_SRAM, VDDA_12RF LDO Output: VDDA_10RF

7.6.2 1.8V I/O Topology

Table 7-2 describes the power rails from an external power supply block to the device via 1.8V I/O topology.


Table 7-2. Power Supply Rails Characteristics: 1.8V I/O Topology

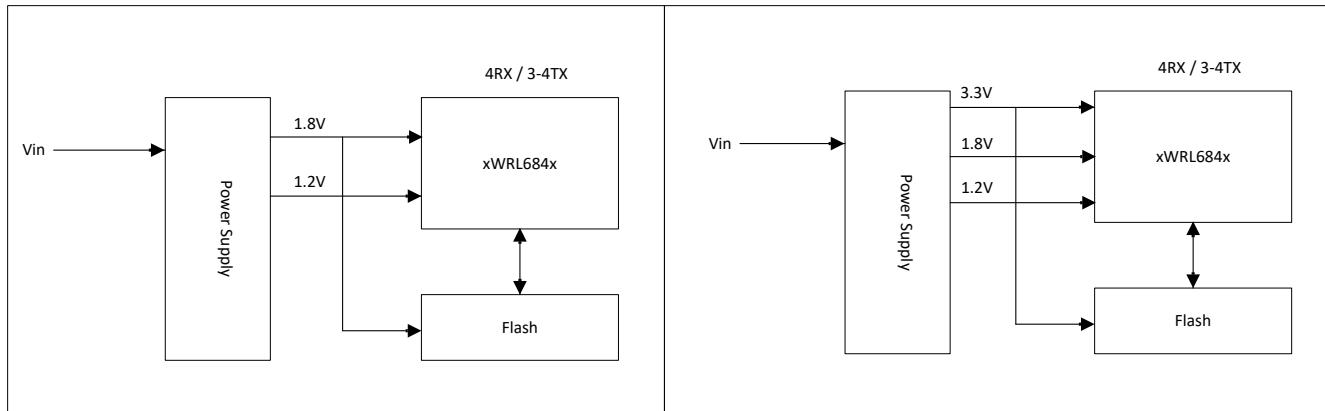
SUPPLY	DEVICE BLOCKS POWERED FROM THE SUPPLY	RELEVANT IOs IN THE DEVICE
1.8 V	Synthesizer and APLL VCOs, crystal oscillator, IF Amplifier stages, ADC, LVDS	Input: VIOIN, VIN_18PM, VDDA_18VCO, VIOIN_18CLK, VDDA_18BB, VIOIN_18, VIOIN_18LVDS LDO Output: VOUT_14SYNTH, VOUT_14APLL
1.2 V	Core Digital and SRAMs, RF, VNWA	Input: VDD, VDD_SRAM, VNWA, VDDA_12RF LDO Output: VDDA_10RF

7.6.3 System Topologies

The following the system topologies are supported.

- Topology 1: Peripheral Mode, under the control of external MCU
- Topology 2: Autonomous mode, with connection to a remote host via LIN/CAN

Figure 7-1. System Topologies (Left : Topology 1, Right : Topology 2)


In Topology 1: Peripheral mode, the AWRL684x is controlled by external MCU and most of the processing is done on external MCU. In this case, the computational and power requirements are relatively higher and the external MCU can stay active most of the time.

In Topology 2: Autonomous mode, the AWRL684x can be used as full sensor along with R5F application processor. In this case the internal application processor does all the processing and interrupts the host processor to communicate to take action based on the sensor data. Most of the processing happens on the

internal MCU of the AWRL684x chip and only high level desired results are communicated to external host via LIN/CAN.

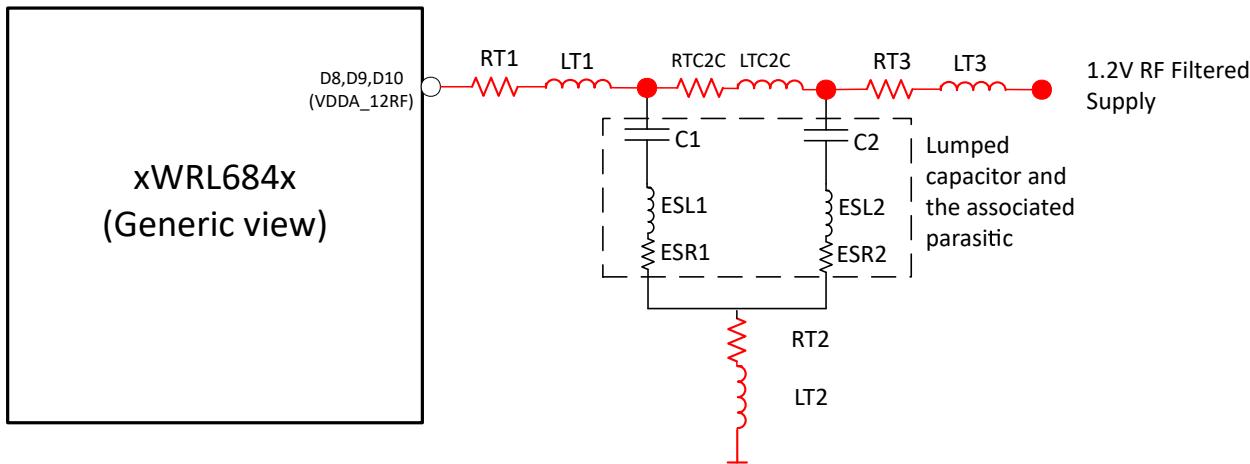
7.6.3.1 I/O Topologies

The device can either be powered using two rails (1.8 V and 1.2 V) or with three rails (3.3 V, 1.8 V and 1.2 V).

Figure 7-2. I/O Topologies (Left: 1.8V I/O Topology, Right: 3.3V I/O Topology)

7.6.4 RF Supply Decoupling Capacitor and Layout Conditions

This section depicts the recommended values of de-coupling capacitors and range of allowable parasitic inductance and resistance in particular sections of the RF Supplies(1.2V RF and 1V RF LDO). We recommended to use X7R type capacitors which has a lower variation across temperature. The minimum and maximum values of the capacitor captured in below table. The table includes variation of a given capacitor due to DC bias, tolerance and temperature variation.


Note

1. If the parasitic values are not kept within the specified range, performance of the device can degrade.
2. The working range of the chosen capacitor can not exceed the specified range.

7.6.4.1 1.2V RF Supply Rail

1.2V RF BGA pins require two decoupling capacitors with typical values of 22uF.

Figure 7-3. Parasitic offered by different portion of the input path for two capacitors

The parasitic offered by different portion of the output path is illustrated in [Figure 7-3](#). As shown in figure, the output path can be divided into four portions:

Filtered Supply to second capacitor: “RT3” and “LT3” are the parasitic resistance and inductance offered by the 1.2V RF filtered supply to the second capacitor lead.

Along the second capacitor: “ESL2” and “ESR2” are the effective series inductance and resistance of the second decoupling capacitor. “RT2” and “LT2” are the ground trace resistance and inductance respectively of the second capacitor ground trace.

Second capacitor lead to first capacitor lead: “RTC2C” and “LTC2C” are the resistance and inductance of the trace between two capacitors.

Along the first capacitor: “ESL1” and “ESR1” are the effective series inductance and resistance of the first decoupling capacitor. “RT2” and “LT2” are the ground trace resistance and inductance respectively of the first capacitor ground trace.

First capacitor to Balls: “RT1” and “LT1” are the parasitic resistance and inductance offered by the the first capacitor lead to ball.

Note

Both 22uF capacitors are recommended to be placed close to the respective VDDA_12RF BGA ball.

7.6.4.1.1 1.2V RF Rail

Ball name: VDDA_12RF

Table 7-3. 1.2V RF Rail

		Min	Typ	Max	Unit
Recommended value(s) of C	C1		22.0 ⁽¹⁾		uF
	C2		22.0 ⁽¹⁾		uF
Allowed parasitic inductance	1 st Capacitor lead (LT1) to Ball			0.8	nH
	Along 1 st Capacitor (ESL1 + LT2)			0.7	
	Along the 2 nd Capacitor (ESL2 + LT2)			0.7	
	Between 2 nd Capacitor and filtered supply (LT3)			1.0	

Table 7-3. 1.2V RF Rail (continued)

		Min	Typ	Max	Unit
Allowed parasitic resistance	1 st Capacitor lead (RT1) to Ball			1.5	mOhm
	Along 1 st Capacitor (ESR1 + RT2)			6.5	
	Along the 2 nd Capacitor (ESR2 + RT2)			6.5	
	Between 2 nd Capacitor and filtered supply (RT3)	2.0		17.0	

(1) Capacitor is required to maintain capacitance between 10.5uF and 22.2uF at 1.2V DC bias across operating temperature range

Place two decoupling capacitors as close as possible to the VDDA_12RF BGA balls and position them adjacent to each other to minimize parasitics between two capacitor leads (RTC2C & LTC2C). The recommended decoupling capacitor placement relative to the BGA balls and to each other is illustrated in the [Figure 7-4](#). Refer to [Altium AWRL6844 EVM Design Files](#) for more details.

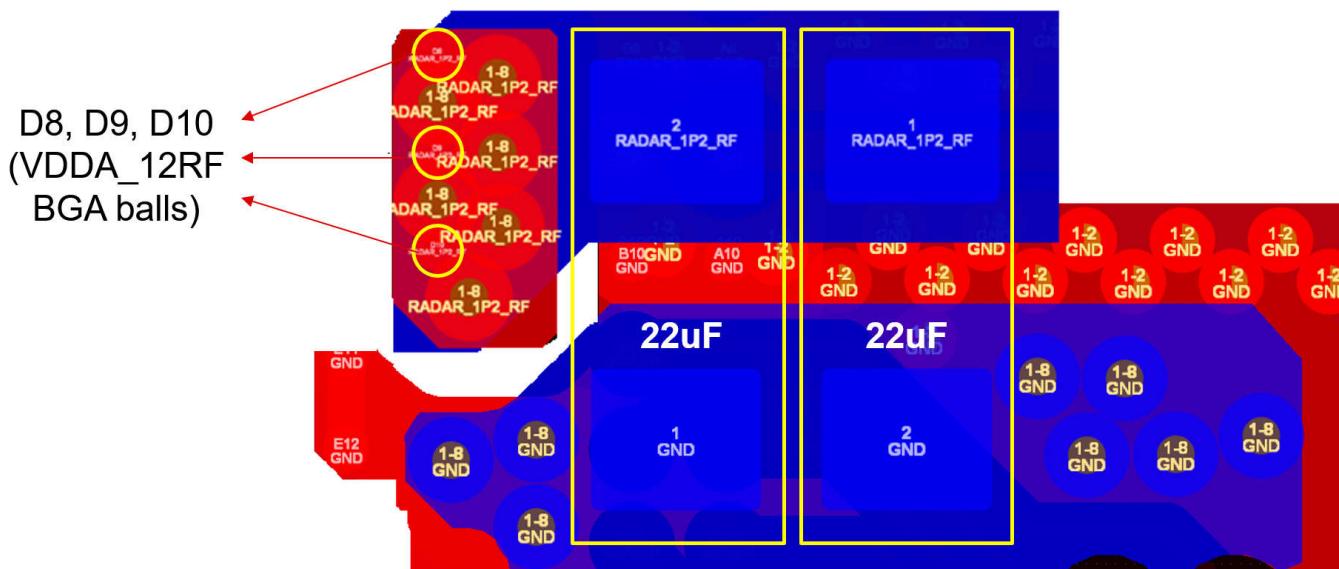
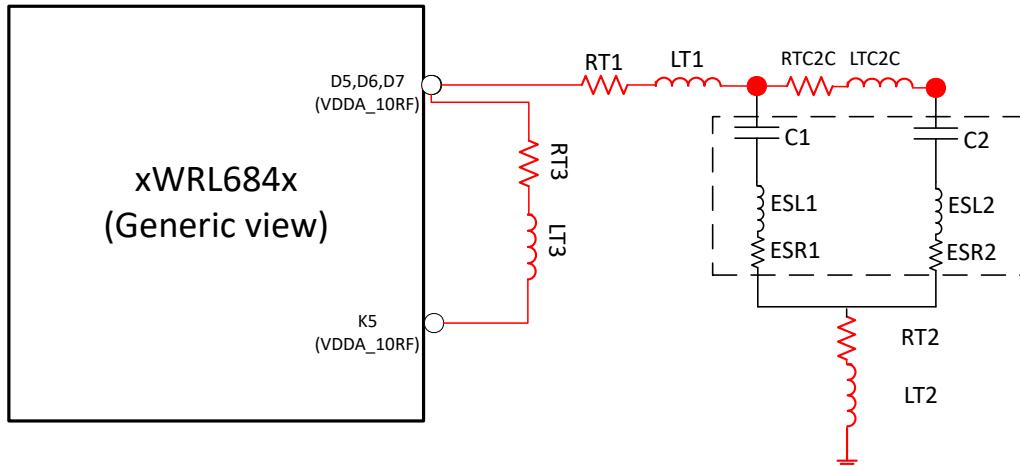



Figure 7-4. EVM Layout example

7.6.4.2 1.0V RF LDO

1.0V RF LDO require two decoupling capacitors with typical values of 10uF and 22uF.

Figure 7-5. Parasitic offered by different portion of the output path for two capacitors

The parasitic offered by different portion of the output path is illustrated in [Figure 7-5](#). As shown in figure, the output path can be divided into four portions:

Ball to first capacitor: “RT1” and “LT1” are the parasitic resistance and inductance offered by the ball to the first capacitor lead.

Along the first capacitor: “ESL1” and “ESR1” are the effective series inductance and resistance of the first decoupling capacitor. “RT2” and “LT2” are the ground trace resistance and inductance respectively of the first capacitor ground trace.

First capacitor lead to second capacitor lead: “RTC2C” and “LTC2C” are the resistance and inductance of the trace between two capacitors.

Along the second capacitor: “ESL2” and “ESR2” are the effective series inductance and resistance of the second decoupling capacitor. “RT2” and “LT2” are the ground trace resistance and inductance respectively of the second capacitor ground trace.

D5,D6 and D7 BGA balls to K5 BGA ball “RT3” and “LT3” are the parasitic resistance and inductance offered from D5,D6 and D7 BGA balls to K5 BGA ball.

Note

Recommended to avoid placing any capacitors on K5 ball.

Both the capacitors (10uF and 22uF) are recommended to be placed close to the respective VDDA_10RF BGA ball.

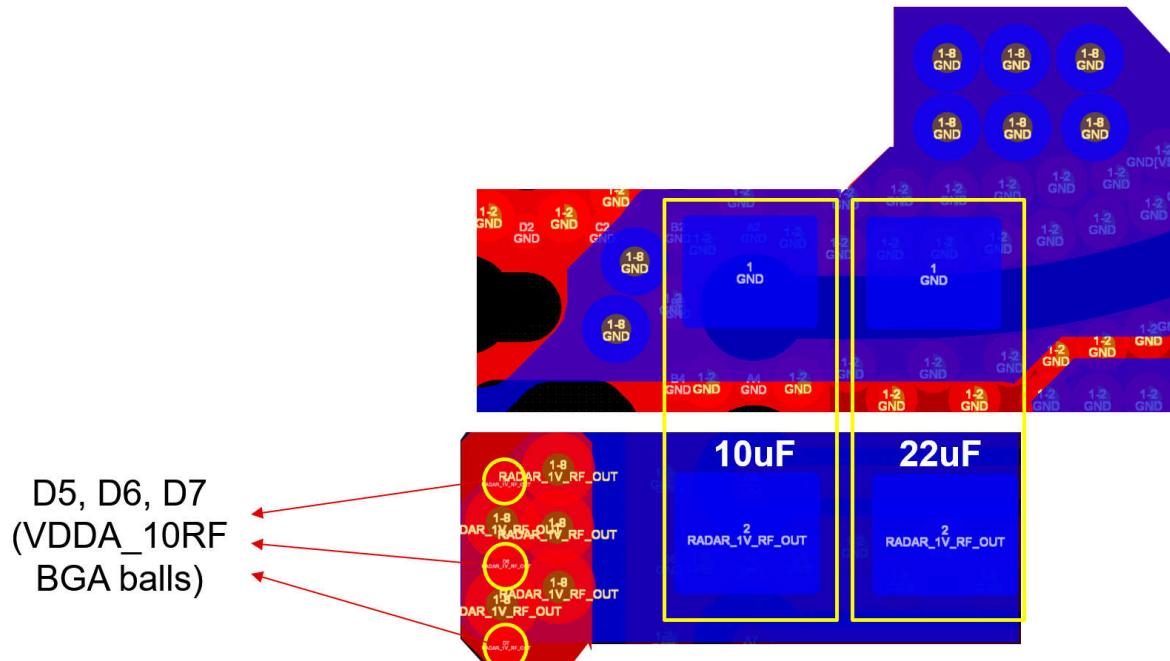
Place the output decoupling capacitors of 1.0V RF LDO on the same layer of PCB (either on top or on the bottom layer of PCB).

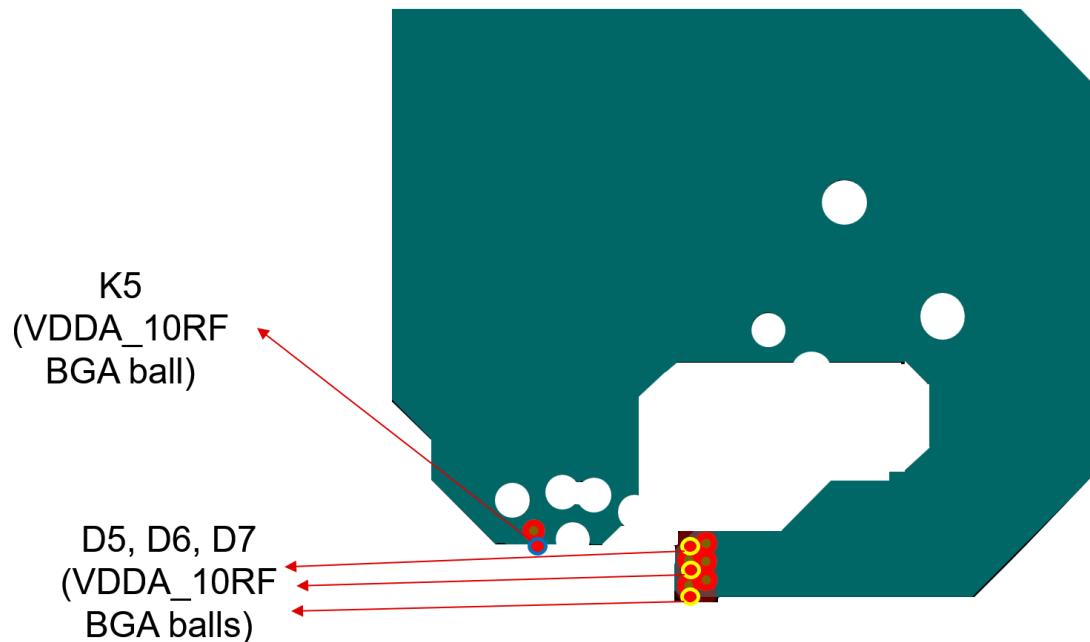
7.6.4.2.1 1.0V RF LDO

Ball name: VDDA_10RF

Table 7-4. 1.0V RF LDO Output

Recommended value(s) of C	Min	Typ	Max	Unit
C1		22.0 ⁽¹⁾		uF
C2		10.0 ⁽²⁾		uF


Table 7-4. 1.0V RF LDO Output (continued)


		Min	Typ	Max	Unit
Allowed parasitic inductance	Ball to 1 st Capacitor lead (LT1) + Along 1 st Capacitor (ESL1 + LT2)	1.1		2.3	nH
	Ball to 1 st Capacitor lead (LT1) + Along the 2 nd Capacitor (ESL2 + LT2)	1.1		2.3	
	From D5, D6, D7 BGA balls to K5 BGA ball			0.1	
Allowed parasitic resistance	Ball to 1 st Capacitor lead (RT1) + Along 1 st Capacitor (ESR1 + RT2)	4.5		8.5	mOhm
	Ball to 1 st Capacitor lead (RT1) + Along the 2 nd Capacitor (ESR2 + RT2)	4.5		8.5	
	From D5, D6, D7 BGA balls to K5 BGA ball			50	

(1) Capacitor is required to maintain capacitance between 10.8uF and 22.9uF at 1.0V DC bias across operating temperature range

(2) Capacitor is required to maintain capacitance between 4.5uF and 9.9uF at 1.0V DC bias across operating temperature range

Place two decoupling capacitors as close as possible to the VDDA_10RF BGA balls and position them adjacent to each other to minimize parasitics between two capacitor leads (RTC2C & LTC2C). The recommended decoupling capacitor placement relative to the BGA balls and to each other is illustrated in the [Figure 7-6](#). Refer to [Altium AWRL6844 EVM Design Files](#) for more details.

Figure 7-7. EVM Layout Example

7.6.5 Noise and Ripple Specifications

The 1.8V power supply ripple specifications mentioned in [Table 7-5](#) are defined to meet a target spur level of -105dBc (RF Pin = -15dBm) at the RX. The spur and ripple levels have a dB-to-dB relationship, for example, a 1dB increase in supply ripple leads to a $\approx 1\text{dB}$ increase in spur level. Values quoted are peak-peak levels for a sinusoidal input applied at the specified frequency. These values are being optimized and are subject to change.

Table 7-5. Noise and Ripple Specifications

FREQ (kHz)	NOISE SPECIFICATION		RIPPLE SPECIFICATION	
	1.8V ($\mu\text{V}/\sqrt{\text{Hz}}$)	1.2V ($\mu\text{V}/\sqrt{\text{Hz}}$)	1.8V (mVpp)	1.2V (mVpp)
10	6.057	44.987	0.035	1.996
100	2.677	26.801	0.760	2.233
200	2.388	28.393	0.955	3.116
500	0.757	9.559	0.504	1.152
1000	0.419	1.182	0.379	0.532
2000	0.179	1.256	0.153	0.561
5000	0.0798	0.667	0.079	0.297
10000	0.0178	0.104	0.017	0.046

7.7 Power Save Modes

[Table 7-6](#) lists the supported power states.

Table 7-6. Device Power States

Power State	Details
Active	Active Power State is when RF/chirping activity is ongoing
Processing	Processing Power State is when data is being processed and RF turned off ⁽¹⁾
Idle	Idle Power State is during inter-frame/inter-burst/inter-chirp idle time

Table 7-6. Device Power States (continued)

Power State	Details
Deep Sleep	Lowest possible power state of the device where the critical contents of the device can be retained (Application Image, Chirp Profile etc) without needing device reboot. Device can enter this state after the frame processing is complete in order to save power significantly. Deep sleep exit can be through a number of external wakeup sources and internal timing maintenance.

(1) The power consumed here also includes the Hardware Accelerator Power Consumption.

7.7.1 Typical Power Consumption Numbers

Table 7-7 and **Table 7-8** lists the typical power consumption in different power topologies for each power save modes for a nominal device at 25C ambient temperature and nominal voltage conditions with all the I/Os parked properly.

Table 7-9 and **Table 7-10** lists the typical use case power consumption in different power topologies for a nominal device at 25C ambient temperature and nominal voltage conditions with all the I/Os parked properly.

Table 7-7. Estimated Power Consumed in 3.3V I/O Topology

Power Mode	Power Consumption (mW)
Active (1Tx , 4Rx)	1145
Processing	335
Idle	28
Deep sleep	4.04

Table 7-8. Estimated Power Consumed in 1.8V I/O Topology

Power Mode	Power Consumption (mW)
Active (1Tx , 4Rx)	1145
Processing	335
Idle	28

Table 7-8. Estimated Power Consumed in 1.8V I/O Topology (continued)

Power Mode	Power Consumption (mW)
Deep sleep All power domains are OFF except 32kHz time maintenance, Memory retained = 896KB	3.91

Table 7-9. Use-Case Power Consumed in 3.3V I/O Topology

Parameter	Condition	Typical (mW)
Average Power Consumption (1% Duty Cycle) RF Front End Configuration : Simultaneous 4TX and 4RX Start frequency = 58GHz Ramp End time = 22.7us Chirp Idle Time = 7us Number of chirps per burst = 48 Chirp accumulation = 2 Burst Periodicity = 3122us Number of bursts per frame = 1 Frame period = 200ms HWA and R5F are configured according to SDK Out-of-Box demo. DSP is powered OFF. Device configured to go to deep sleep state during available idle time.	5Hz Update Rate	36
Average Power Consumption (0.1% Duty Cycle) RF Front End Configuration : 1TX, 1RX Start frequency = 58GHz Ramp End time = 22.7us Chirp Idle Time = 7us Number of chirps per burst = 4 Chirp accumulation = 0 Burst Periodicity = 254us Number of bursts per frame = 3 Frame period = 250ms HWA and R5F are configured according to SDK Out-of-Box demo. DSP is powered OFF. Device configured to go to deep sleep state during available idle time.	4Hz Update Rate	13

Table 7-10. Use-Case Power Consumed in 1.8V I/O Topology

Parameter	Condition	Typical (mW)
Average Power Consumption (1% Duty Cycle) RF Front End Configuration : Simultaneous 4TX and 4RX Start frequency = 58GHz Ramp End time = 22.7us Chirp Idle Time = 7us Number of chirps per burst = 48 Chirp accumulation = 2 Burst Periodicity = 3122us Number of bursts per frame = 1 Frame period = 200ms HWA and R5F are configured according to SDK Out-of-Box demo. DSP is powered OFF. Device configured to go to deep sleep state during available idle time.	5Hz Update Rate	36

Table 7-10. Use-Case Power Consumed in 1.8V I/O Topology (continued)

Parameter	Condition	Typical (mW)
Average Power Consumption (0.1% Duty Cycle)	RF Front End Configuration : 1TX, 1RX Start frequency = 58GHz Ramp End time = 22.7us Chirp Idle Time = 7us Number of chirps per burst = 4 Chirp accumulation = 0 Burst Periodicity = 254us Number of bursts per frame = 3 Frame period = 250ms HWA and R5F are configured according to SDK Out-of-Box demo. DSP is powered OFF. Device configured to go to deep sleep state during available idle time.	4Hz Update Rate 13

7.8 Peak Current Requirement per Voltage Rail

Table 7-11 provides the max split rail current numbers.

Table 7-11. Maximum Peak Current per Voltage Rail

I/O Voltage ⁽³⁾	Maximum Current (mA)		
	(1)	(2)	(3)
	1.2V: total current drawn by all nodes driven by 1.2V rail	1.8V: total current drawn by all nodes driven by 1.8V rail	3.3V: total current drawn by all nodes driven by 3.3V rail
3.3V	2560	200	100
1.8V	2560	300	NA

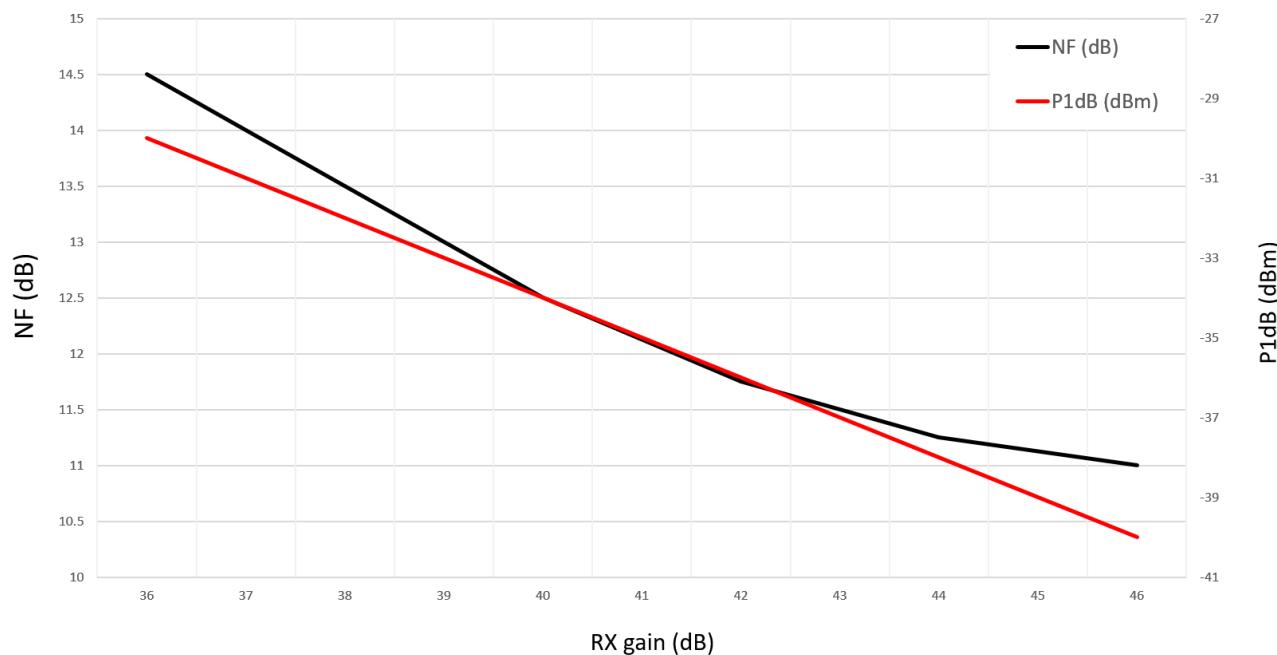
- (1) Exercise full functionality of device, including 4TX, 4RX simultaneous operation, HWA, DSP, R5F and various host comm/interface peripherals active (CAN, LIN, I2C, GPADC), test across full temperature range
- (2) The specified current values are at typical supply voltage level.
- (3) The exact VIOIN current depends on the peripherals used and their frequency of operation.

7.9 RF Specification

Over recommended operating conditions (unless otherwise noted)

PARAMETER		MIN	TYP	MAX	UNIT
Receiver	Noise figure	57 to 63.9GHz		12.5	dB
	1-dB compression point (Out Of Band) ⁽¹⁾			-15	dBm
	Maximum gain			46	dB
	Gain range			10	dB
	Gain step size			2	dB
	IF bandwidth ⁽²⁾			10	MHz
	ADC sampling rate (real)			25	Msps
	ADC resolution			12	Bits
	S11			-7	dB
Transmitter	Output Power			12.5	dBm
	Power backoff range			20	dB
	Backoff step size			1	dB
	S11			-7.5	dB
Clock subsystem	Frequency range		57	63.9	GHz
	Ramp rate			400	MHz/μs
	Phase noise at 1MHz offset	57 to 63.9GHz		-90.5	dBc/Hz

(1) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone well below the lowest HPF cut-off frequency.


(2) The analog IF stages include high-pass filtering, with configurable first-order high-pass corner frequency. The set of available HPF corners is summarized as follows:

Available HPF Corner Frequencies (kHz)

175, 350, 700, 1400

The filtering performed by the digital baseband chain is targeted to provide less than ± 0.5 dB pass-band ripple/droop.

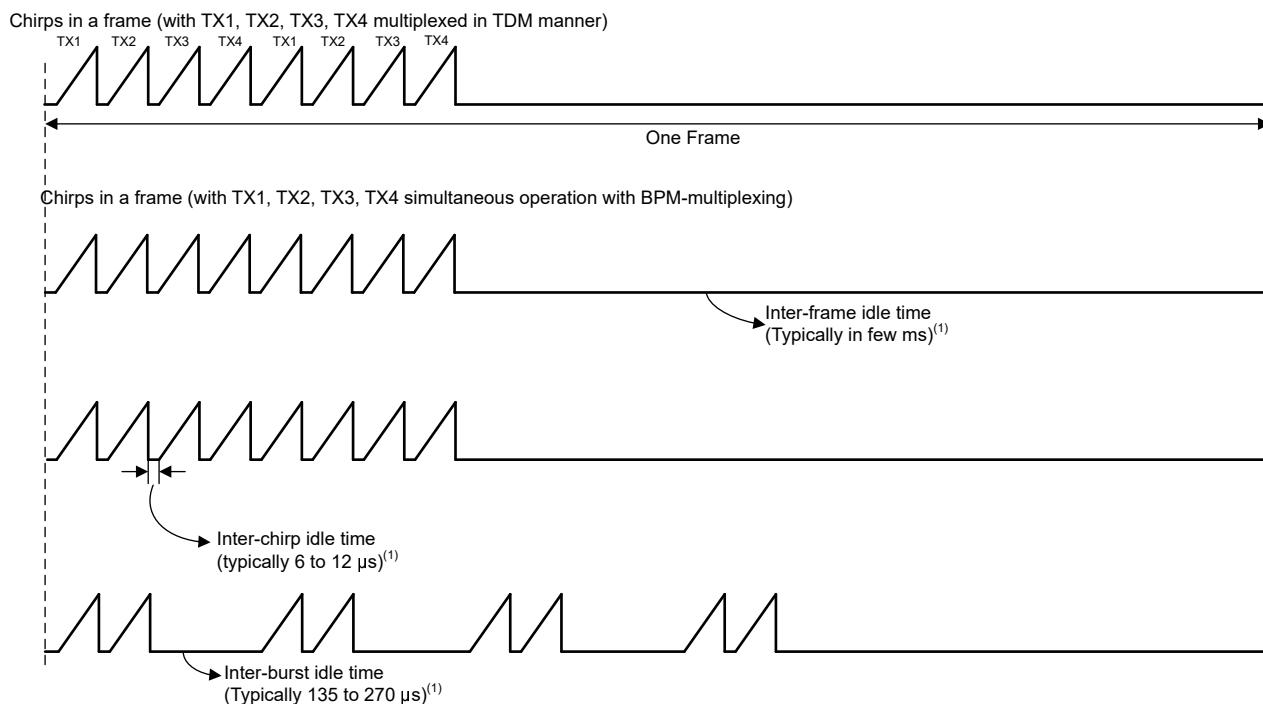

Figure 7-8 shows typical variations of noise figure and in-band P1dB parameters with respect to receiver gain programmed. This is small signal noise figure and applicable when the in-band RX ADC input is less than -2dBm (+/-8192 ADC codes in 16-bit mode). Users are recommended to operate within this level to avoid ADC saturation effects.

Figure 7-8. Noise Figure, In-band P1dB vs Receiver Gain

7.10 Supported DFE Features

- TX output back-off
 - From 0dB to 20dB TX back-off in steps of 1dB is supported
 - Binary Phase Modulation supported on each TX
- RX gain
 - Real only RX channels
 - Total RX gain range of 36dB to 46dB, in 2dB steps
- VCO
 - Single VCO covering entire RF sweep bandwidth up to 7GHz.
- High-pass filter
 - First-order high pass filter only. Supports corner frequency options 175kHz, 350kHz, 700 KHz, 1400kHz
- Low-pass filter
 - Max IF bandwidth supported is 10MHz
 - Two filtering options supported
 - 90% visibility – IF bandwidth is 90% of Nyquist (has longer setting time due to larger filter length)
 - 80% visibility – IF bandwidth is 80% of Nyquist and is 30% faster due to quicker settling time, compared with 90% visibility
- Supported ADC sampling rates
 - 2.0, 2.5, 3.334, 4.0, 5.0, 8.0, 10.0, 13.334, 15.384, 20.0, 25Msps
- Timing Engine
 - Support for chirps, bursts and frames
 - Longer frame idle time gives more power saving than a longer burst idle time. Further, a longer chirp idle time gives lesser power saving than a longer burst idle time. For more details please refer power calculator in the [mmWave sensing estimator](#).
 - Chirp accumulation (averaging) can be enabled when chirping in succession to reduce memory requirement and boost SNR.
 - Provision for per-chirp dithering of parameters
 - The AWRL684x device supports both TDM and BPM mode of operation.
 - Refer to [Figure 7-9](#) for chirp profile supported by timing engine.

Figure 7-9. Chip Profile Supported by Timing Engine

- Refer to ICD(Interface Control Document) available in [MMWAVE-L-SDK](#) for more details.

7.11 CPU Specifications

Over recommended operating conditions (unless otherwise noted)

PARAMETER		TYP	UNIT
DSP Subsystem (C66x Family)	Clock Speed	450	MHz
	L1 Memory	64	KB
	L2 Memory	384	KB
	L3 Memory dedicated for DSS	512 ⁽¹⁾	KB
Application Subsystem (R5F Family)	Clock Speed	200	MHz
	Tightly Coupled Memory - A (Program + Data)	512	KB
	Tightly Coupled Memory - B (Program + Data)	256	KB
Shared Memory	DSS L3 Shared Memory	896KB	KB

(1) 512 KB of dedicated DSS L3 memory only available in AWRL6844

7.12 Thermal Resistance Characteristics

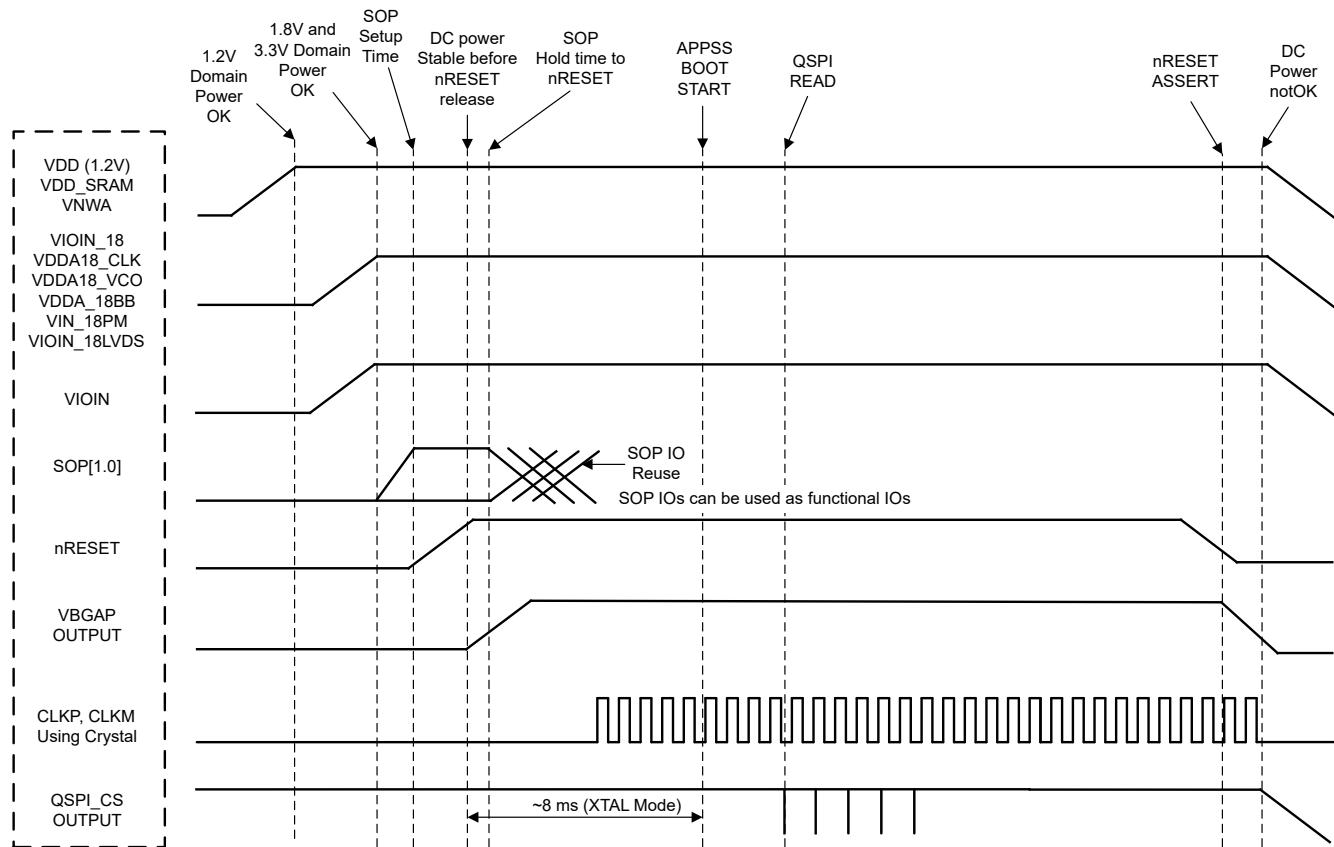
Table 7-12. Thermal Resistance Characteristics for FCCSP Package [ANC0207A]

THERMAL METRICS ^{(1) (4)}		°C/W ^{(2) (3)}
R Θ_{JC}	Junction-to-case	3.9
R Θ_{JB}	Junction-to-board	3.8
R Θ_{JA}	Junction-to-free air	19.2
P \dot{S}_{JT}	Junction-to-package top	0.1
P \dot{S}_{JB}	Junction-to-board	3.8

(1) For more information about traditional and new thermal metrics, see [Semiconductor and IC Package Thermal Metrics](#).

(2) °C/W = degrees Celsius per watt.

(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [R Θ_{JC}] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:

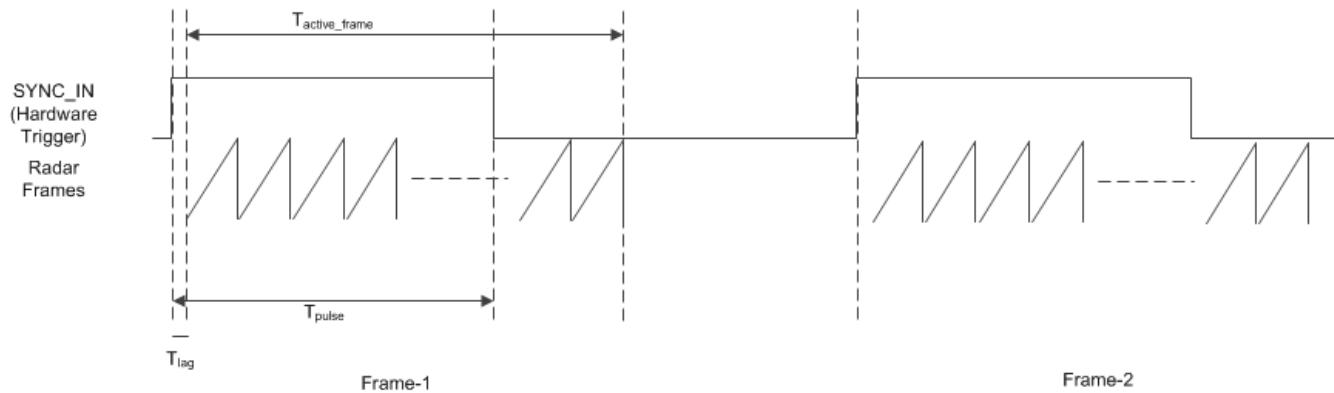

- JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)*
- JESD51-3, *Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages*
- JESD51-7, *High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages*
- JESD51-9, *Test Boards for Area Array Surface Mount Package Thermal Measurements*

(4) Test Condition: Power=1.305W at 25°C

7.13 Timing and Switching Characteristics

7.13.1 Power Supply Sequencing and Reset Timing

The AWRL684x device expects all external voltage rails to be stable before reset is deasserted. [Figure 7-10](#) describes the device wake-up sequence.



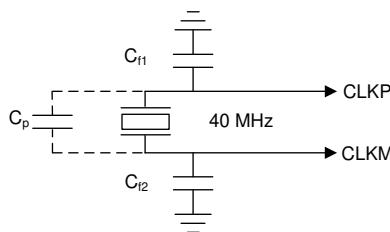
A. Ensure that the 1.2V rail is ramped up and stable before 1.8V rail.

Figure 7-10. Device Wake-up Sequence

7.13.2 Synchronized Frame Triggering

The AWRL684x device supports a hardware based mechanism to trigger radar frames. An external host can pulse the SYNC_IN signal to start radar frames. The typical time difference between the rising edge of the external pulse and the frame transmission on air (Tlag) is about 160 ns. There is also an additional programmable delay that the user can set to control the frame start time. The periodicity of the external SYNC_IN pulse should be always greater than the programmed frame periodic in the frame configurations in all instances.

Figure 7-11. Sync In Hardware Trigger


Table 7-13. Frame Trigger Timing

PARAMETER	DESCRIPTION	MIN	MAX	UNIT
$T_{\text{active_frame}}$	Active frame duration	User defined		
T_{pulse}		25	$< T_{\text{active_frame}}$ or 4000	ns

7.13.3 Input Clocks and Oscillators

7.13.3.1 Clock Specifications

The AWRL684x requires external clock source (that is, a 40MHz crystal or external oscillator to CLKP) for initial boot and as a reference for an internal APLL hosted in the device. An external crystal connected to the device pins [Figure 7-12](#) shows the crystal implementation.

Figure 7-12. Crystal Implementation

Note

The load capacitors, C_{f1} and C_{f2} in [Figure 7-12](#), should be chosen such that [Equation 1](#) is satisfied. C_L in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and CLKM pins.

$$C_L = C_{f1} \times \frac{C_{f2}}{C_{f1} + C_{f2}} + C_P \quad (1)$$

[Table 7-14](#) lists the electrical characteristics of the clock crystal.

Table 7-14. Crystal Electrical Characteristics (Oscillator Mode)

NAME	DESCRIPTION	MIN	TYP	MAX	UNIT
f_P	Parallel resonance crystal frequency		40		MHz
C_L	Crystal load capacitance	5	8	12	pF
ESR	Crystal ESR		50		Ω
Temperature range	Expected temperature range of operation	$-40^{(4)}$		$140^{(4)}$	$^{\circ}\text{C}$
Frequency tolerance	Crystal frequency tolerance (1) (2) (3)	-200		200	ppm
Drive level			50	200	μW

(1) The crystal manufacturer's specification must satisfy this requirement.

(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.

(3) Crystal tolerance affects radar sensor accuracy.

(4) This is subjected to system level requirements. AWRL684x can support operating junction temperature range of -40°C to 140°C

In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM is grounded. The phase noise requirement is very important when a 40MHz clock is fed externally. [Table 7-15](#) lists the electrical characteristics of the external clock signal.

Table 7-15. External Clock Mode Specifications

PARAMETER	SPECIFICATION			UNIT
	MIN	TYP	MAX	
Input Clock: External AC-coupled sine wave or DC-coupled square wave Phase Noise referred to 40 MHz	Frequency	40		MHz
	AC-Amplitude	700	1200	mV (pp)
	DCV _{il}	0.00	0.20	V
	DCV _{ih}	1.6	1.95	V
	Phase Noise at 1kHz		-132	dBc/Hz
	Phase Noise at 10kHz		-143	dBc/Hz
	Phase Noise at 100kHz		-152	dBc/Hz
	Phase Noise at 1MHz		-153	dBc/Hz
	Duty Cycle	35	65	%
	Frequency Tolerance	-200	200	ppm

7.13.4 MultiChannel buffered / Standard Serial Peripheral Interface (McSPI)

The McSPI module is a multichannel transmit/receive, controller/peripheral synchronous serial bus

7.13.4.1 McSPI Features

The McSPI modules include the following main features:

- Serial clock with programmable frequency, polarity, and phase for each channel
- Wide selection of SPI word lengths, ranging from 4 to 32 bits
- Up to four channels in controller mode, or single channel in receive mode
- Controller multichannel mode:
 - Full duplex/half duplex
 - Transmit-only/receive-only/transmit-and-receive modes
 - Flexible input/output (I/O) port controls per channel
 - Programmable clock granularity
 - Per channel configuration for clock definition, polarity enabling, and word width
- Single interrupt line for multiple interrupt source events
- Enable the addition of a programmable start-bit for McSPI transfer per channel (start-bit mode)
- Supports start-bit write command
- Supports start-bit pause and break sequence
- Programmable shift operations (1-32 bits)
- Programmable timing control between chip select and external clock generation
- Built-in FIFO available for a single channel

7.13.4.2 SPI Timing Conditions

Table 7-16 presents timing conditions for McSPI

Table 7-16. McSPI Timing Conditions

		MIN	TYP	MAX	UNIT
Input Conditions					
t_R	Input rise time	1		3	ns
t_F	Input fall time	1		3	ns
Output Conditions					
C_{LOAD}	Output load capacitance	2		15	pF

7.13.4.3 SPI—Controller Mode

7.13.4.3.1 Timing and Switching Requirements for SPI - Controller Mode

Table 7-17 and Table 7-17 present timing requirements for SPI - Controller Mode.

Table 7-17. SPI Timing Requirements - Controller Mode

NO. ⁽¹⁾			MODE	MIN	MAX	UNIT
SM4	$t_{su}(\text{MISO-SPICLK})$		Setup time, SPI_D[x] valid before SPI_CLK active edge ⁽¹⁾		5	ns
SM5	$t_h(\text{SPICLK-MISO})$		Hold time, SPI_D[x] valid after SPI_CLK active edge ⁽¹⁾		3	ns

Table 7-18. SPI Switching Characteristics - Controller Mode

NO. ⁽¹⁾			MODE	MIN	MAX	UNIT
SM1	$t_c(\text{SPICLK})$		Cycle time, SPI_CLK ⁽¹⁾ ⁽²⁾		24.6 ⁽³⁾	ns
SM2	$t_w(\text{SPICLKL})$		Typical Pulse duration, SPI_CLK low ⁽¹⁾		$-1 + 0.5P^{(3)}$ ⁽⁴⁾	ns
SM3	$t_w(\text{SPICLKH})$		Typical Pulse duration, SPI_CLK high ⁽¹⁾		$-1 + 0.5P^{(4)}$	ns
SM6	$t_d(\text{SPICLK-SIMO})$		Delay time, SPI_CLK active edge to SPI_D[x] transition ⁽¹⁾		-2 5	ns

Table 7-18. SPI Switching Characteristics - Controller Mode (continued)

NO. ⁽¹⁾			MODE	MIN	MAX	UNIT
SM7	$t_{sk(CS-SIMO)}$	Delay time, SPI_CS[x] active to SPI_D[x] transition		5		ns
SM8	$t_d(SPICLK-CS)$	Delay time, SPI_CS[x] active to SPI_CLK first edge	Controller_PHA0_POL 0; Controller_PHA0_POL 1; ⁽⁵⁾	-4 + B ⁽⁶⁾		ns
			Controller_PHA1_POL 0; Controller_PHA1_POL 1; ⁽⁵⁾	-4 + A ⁽⁷⁾		ns
SM9	$t_d(SPICLK-CS)$	Delay time, SPI_CLK last edge to SPI_CS[x] inactive	Controller_PHA0_POL 0; Controller_PHA0_POL 1; ⁽⁵⁾	-4 + A ⁽⁷⁾		ns
			Controller_PHA1_POL 0; Controller_PHA1_POL 1; ⁽⁵⁾	-4 + B ⁽⁶⁾		ns
SM11	C _b	Capacitive load for each bus line		3	15	pF

(1) P = This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are being used to drive output data and capture input data

(2) Related to the SPI_CLK maximum frequency

(3) 20 ns cycle time = 50 MHZ

(4) P = SPICLK period

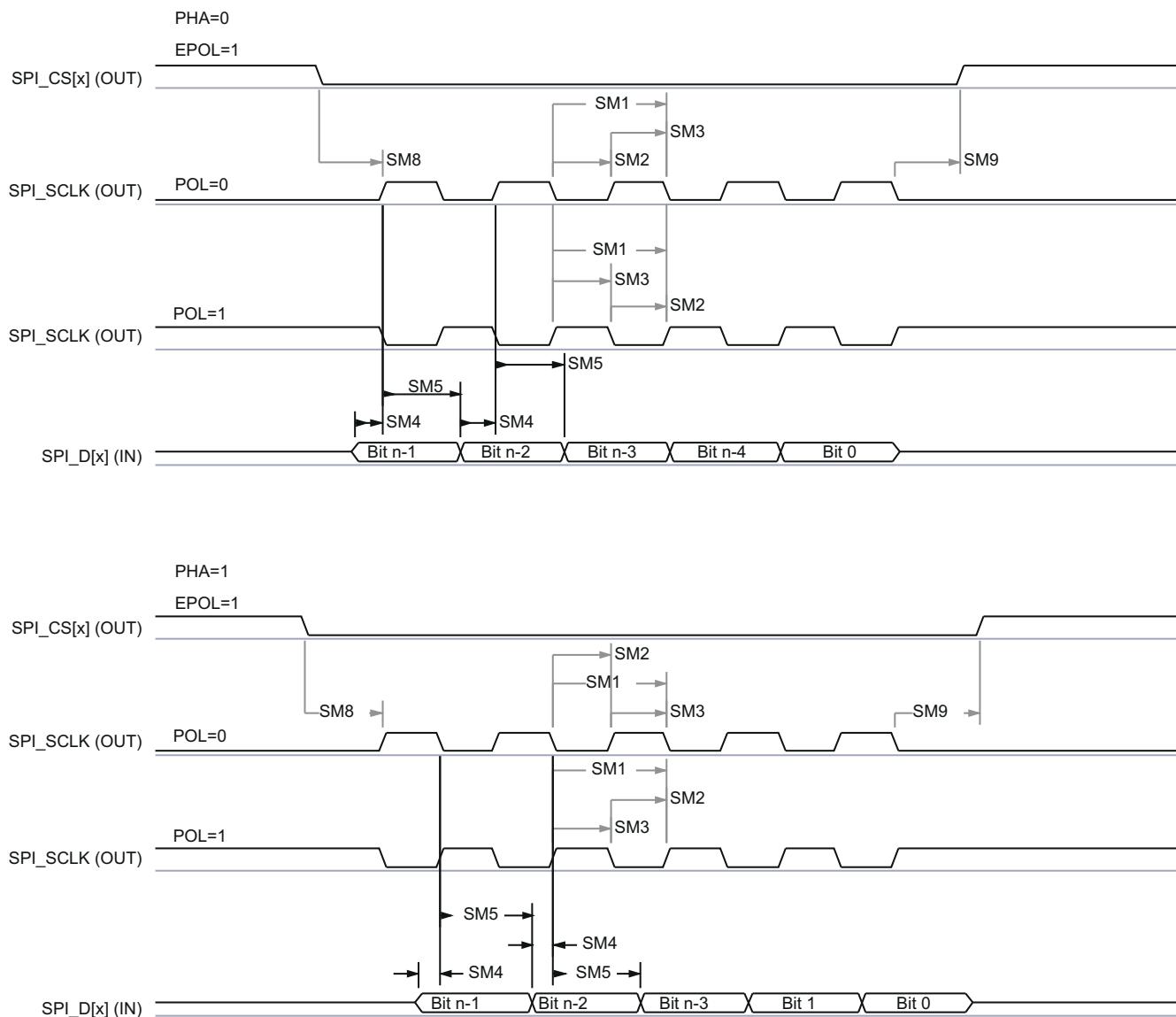
(5) SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register

(6) B = (TCS + .5) × TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even >= 2.

(7) When P = 20.8 ns, A = (TCS + 1) × TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.

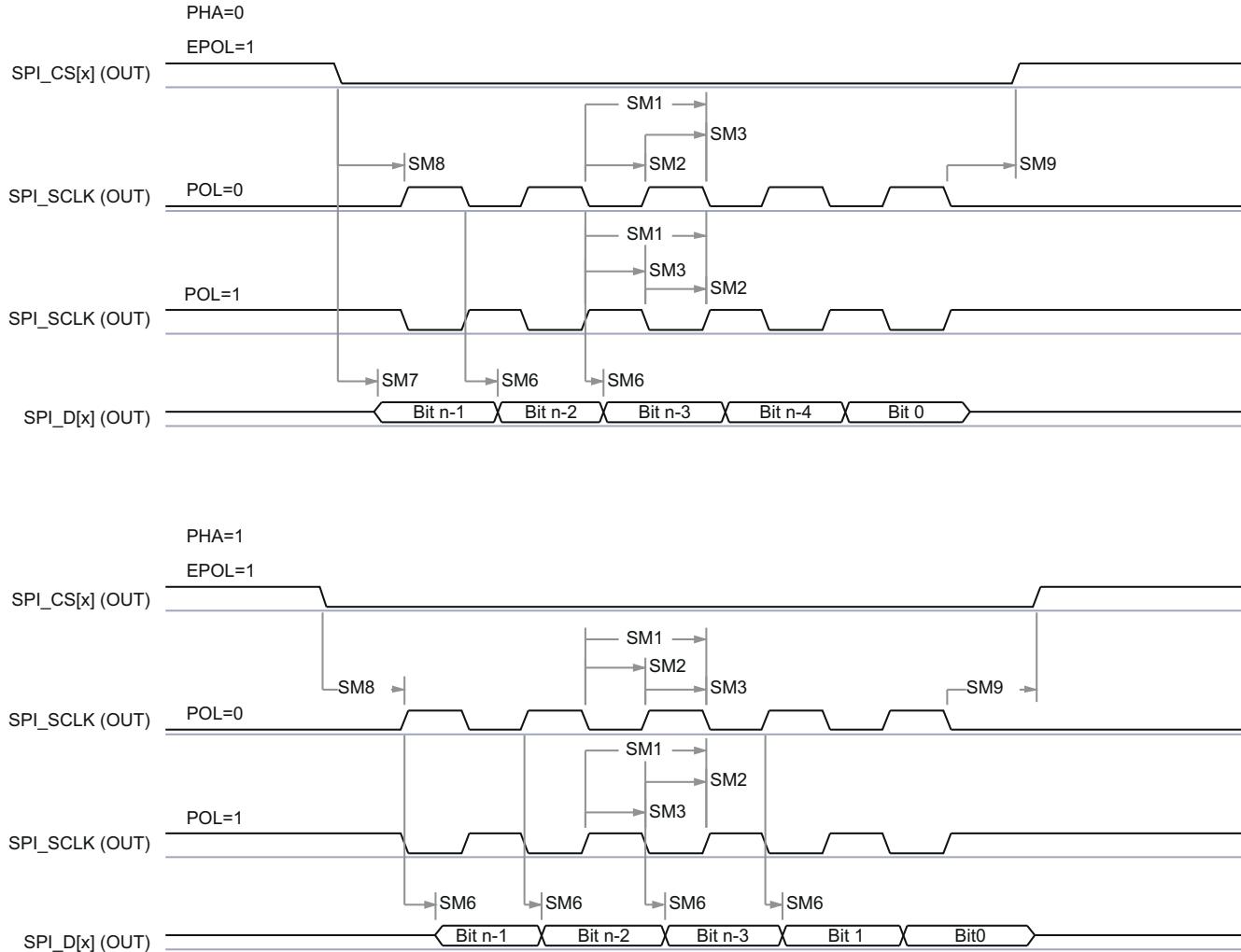
When P > 20.8 ns, A = (TCS + 0.5) × Fratio × TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.

This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are being used to drive output data and capture input data


Note

Supported frequency of Radar SPIA Peripheral mode is 40MHz in full cycle and 20MHz in Half cycle mode.

Supported frequency of Radar SPIB Peripheral mode is 20MHz in full cycle and 10MHz in Half cycle mode. Refer to [Section 6.2.1](#) for valid IOSET combinations of SPIB.



7.13.4.3.2 Timing and Switching Characteristics for SPI Output Timings—Controller Mode

Figure 7-13. SPI Timing -Controller Mode Receive

SPRSP08_TIMING_McSPI_02

SPRSP08_TIMING_McSPI_01

Figure 7-14. SPI Timing- Controller Mode Transmit

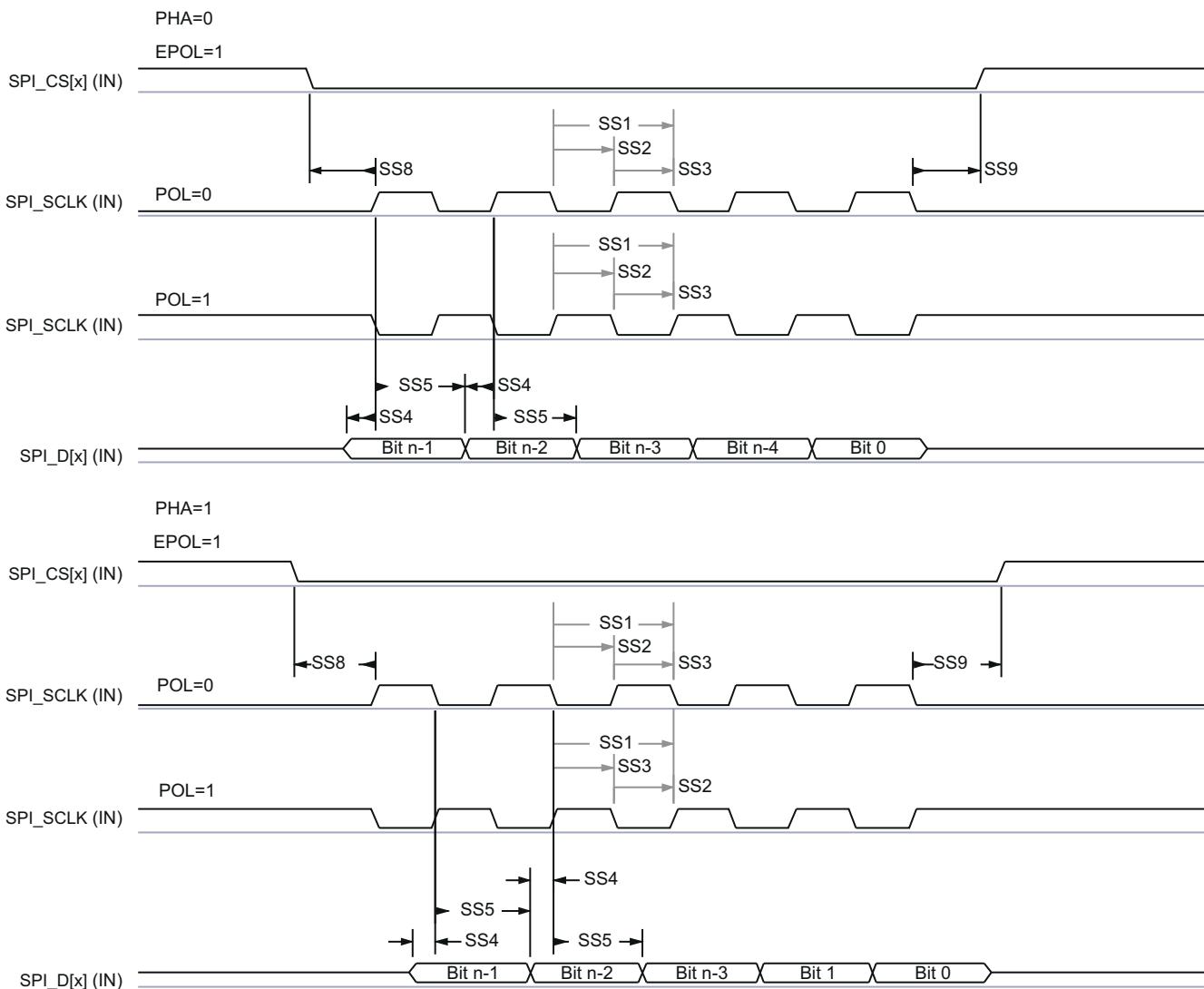
7.13.4.4 SPI—Peripheral Mode

7.13.4.4.1 Timing and Switching Requirements for SPI - Peripheral Mode

Table 7-19 and Table 7-20 present timing requirements for SPI -Peripheral Mode.

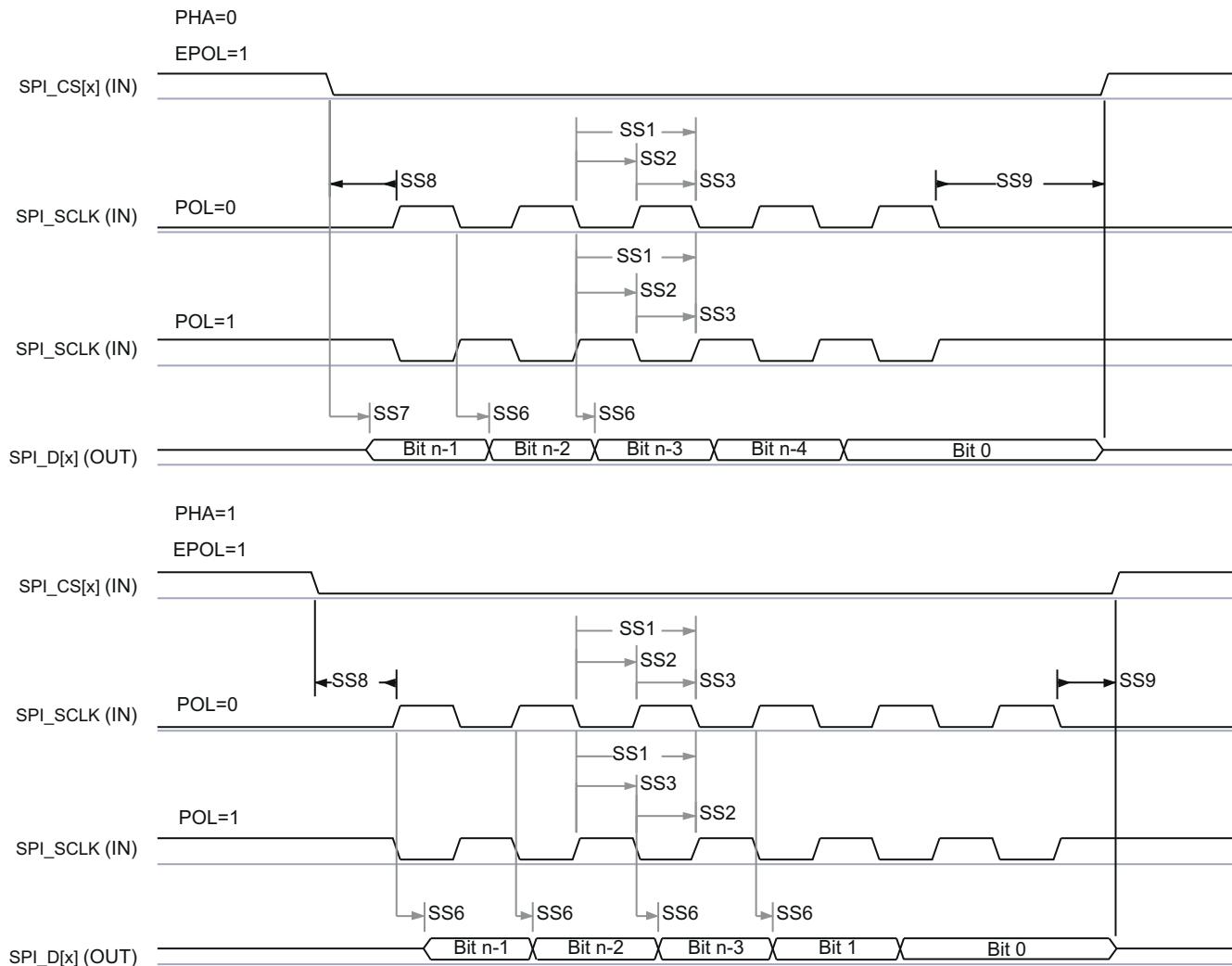
Table 7-19. SPI Timing Requirements - Peripheral Mode

NO. ⁽¹⁾	PARAMETER	DESCRIPTION	MIN	MAX	UNIT
SS1	$t_c(\text{SPICLK})$	Cycle time, SPI_CLK	24.6		ns
SS2	$t_w(\text{SPICLKL})$	Typical Pulse duration, SPI_CLK low	0.45*P ⁽²⁾		ns
SS3	$t_w(\text{SPICLKH})$	Typical Pulse duration, SPI_CLK high	0.45*P ⁽²⁾		ns
SS4	$t_{su}(\text{SIMO-SPICLK})$	Setup time, SPI_D[x] valid before SPI_CLK active edge	3		ns
SS5	$t_h(\text{SPICLK-SIMO})$	Hold time, SPI_D[x] valid after SPI_CLK active edge	1		ns
SS8	$t_{su}(\text{CS-SPICLK})$	Setup time, SPI_CS[x] valid before SPI_CLK first edge	5		ns
SS9	$t_h(\text{SPICLK-CS})$	Hold time, SPI_CS[x] valid after SPI_CLK last edge	5		ns
SS10	sr	Input Slew Rate for all pins	1	3	ns
SS11	C _b	Capacitive load on D0 and D1	2	15	pF


Table 7-20. SPI Switching Characteristics Peripheral Mode

NO.	PARAMETER	DESCRIPTION	MIN	MAX	UNIT
SS6	$t_{d(SPICLK-SOMI)}$	Delay time, SPI_CLK active edge to McSPI_somi transition	0	5.77	ns
SS7	$t_{sk(CS-SOMI)}$	Delay time, SPI_CS[x] active edge to McSPI_somi transition	5.77		ns

(1) P = This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are used to drive output data and capture input data.


(2) P = SPICLK period.

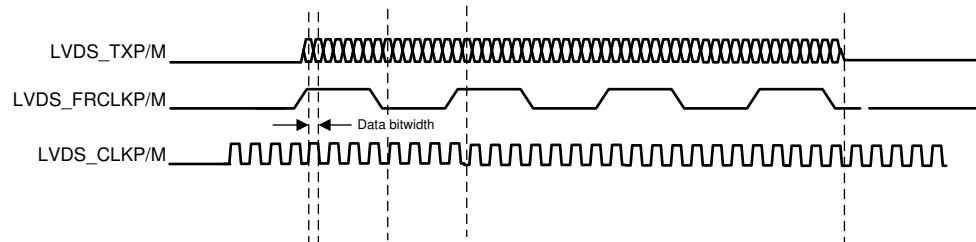
7.13.4.4.2 Timing and Switching Characteristics for SPI Output Timings—Secondary Mode

SPRSP08_TIMING_McSPI_04

Figure 7-15. SPI Timing - Peripheral mode Receive

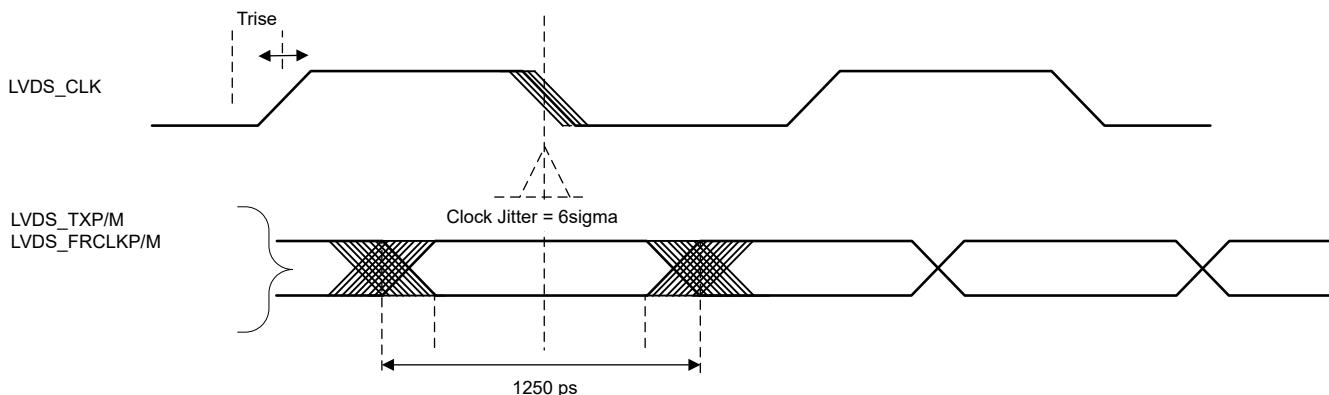
SPRSP08_TIMING_McSPI_03

Figure 7-16. SPI Timing - Peripheral mode Transmit


7.13.5 LVDS Instrumentation and Measurement Peripheral

The device supports LVDS interfaces for raw data capture. Please see the device TRM for information regarding configuring and programming options for LVDS interfaces.

7.13.5.1 LVDS Interface Configuration


The supported LVDS lane configuration is (LVDS_TXP/M), one Bit Clock lane (LVDS__TXxx_CLKP/M) and one Frame clock lane (LVDS_TXxx_FRCLKP/M). The LVDS interface supports programmable data rates with the maximum being 800 Mbps (400 MHz DDR Clock).

Note that the bit clock is in DDR format and hence the number of toggles in the clock is equivalent to data.

Figure 7-17. LVDS Interface Lane Configuration And Relative Timings

7.13.5.2 LVDS Interface Timings

Figure 7-18. Timing Parameters

Table 7-21. LVDS Electrical Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Duty Cycle Requirements	max 1pF lumped capacitive load on LVDS lanes	48%		52%	
Output Differential Voltage	peak-to-peak single-ended with 100Ω resistive load between differential pairs	250		450	mV
Output Offset Voltage		1125		1275	mV
Trise and Tfall	20%-80%, 800Mbps		371.25		ps
Jitter (pk-pk)	800Mbps		90		ps

7.13.6 LIN

The LIN module can be programmed to work either as an SCI or as a LIN. The SCI hardware features are augmented to achieve LIN compatibility. The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-/ multiple- with a message identification for multicast transmission between any network nodes.

The LIN has following features:

- Compatibility with LIN 1.3, 2.0, and 2.1 protocols
- Configurable Baud Rate up to 20 kpbs
- Two external pins: LIN_RX and LIN_TX.
- Multi-buffered receive and transmit units
- Identification masks for message filtering
- Automatic Controller header generation
 - Programmable synchronization break field
 - Synchronization field
 - Identifier field
- Peripheral automatic synchronization
 - Synchronization break detection
 - Optional baud rate update
 - Synchronization validation
- 231 programmable transmission rates with 7 fractional bits
- Wake up on LIN_RX dominant level from transceiver
- Automatic wake up support
 - Wakeup signal generation
 - Expiration times on wakeup signals
- Automatic bus idle detection
- Error detection
 - Bit error
 - Bus error
 - No-response error
 - Checksum error
 - Synchronization field error
 - Parity error
- Capability to use Direct Memory Access (DMA) for transmit and receive data.
- 2 Interrupt lines with priority encoding for:
 - Receive
 - Transmit
 - ID, error, and status
- Support for LIN 2.0 checksum
- Enhanced synchronizer finite state machine (FSM) support for frame processing
- Enhanced handling of extended frames
- Enhanced baud rate generator
- Update wakeup/go to sleep

Table 7-22. LIN Timing Requirements

		MIN	TYP	MAX	UNIT
f(baud)	Supported baud rate	1		20	kBaud

7.13.7 General-Purpose Input/Output

7.13.7.1 Switching Characteristics for Output Timing versus Load Capacitance (C_L)

Table 7-23 lists the switching characteristics of output timing relative to load capacitance.

Table 7-23. Switching Characteristics for Output Timing versus Load Capacitance (C_L)

PARAMETER ^{(1) (2)}		TEST CONDITIONS Slew control = 0	V _{IOIN} = 1.8V		V _{IOIN} = 3.3V		UNIT ns
t_r	Max rise time		C_L = 20pF	2.8	3.0		
			C_L = 50pF	6.4	6.9		
			C_L = 75pF	9.4	10.2		
t_f	Max fall time		C_L = 20pF	2.8	2.8	ns	
			C_L = 50pF	6.4	6.6		
			C_L = 75pF	9.4	9.8		

Table 7-23. Switching Characteristics for Output Timing versus Load Capacitance (C_L) (continued)

PARAMETER ^{(1) (2)}		TEST CONDITIONS	VIOIN = 1.8V	VIOIN = 3.3V	UNIT
t_r	Max rise time	Slew control = 1	$C_L = 20\text{pF}$	3.3	3.3
			$C_L = 50\text{pF}$	6.7	7.2
			$C_L = 75\text{pF}$	9.6	10.5
t_f	Max fall time	Slew control = 1	$C_L = 20\text{pF}$	3.1	3.1
			$C_L = 50\text{pF}$	6.6	6.6
			$C_L = 75\text{pF}$	9.6	9.6

(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).
 (2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.

7.13.8 Controller Area Network - Flexible Data-rate (CAN-FD)

The CAN-FD module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications. CAN FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD devices can coexist on the same network without any conflict. The device integrates two CAN-FD (CAN with Flexible Data-rate) which enables support of a typical use case where one CAN-FD interface is used as an ECU network interface while the other as a local network interface, providing communication with the neighboring sensors.

The CAN-FD has the following features:

- Conforms with CAN Protocol 2.0 A, B and ISO 11898-1
- Full CAN FD support (up to 64 data bytes per frame)
- AUTOSAR and SAE J1939 support
- Up to 32 dedicated Transmit Buffers
- Configurable Transmit FIFO, up to 32 elements
- Configurable Transmit Queue, up to 32 elements
- Configurable Transmit Event FIFO, up to 32 elements
- Up to 64 dedicated Receive Buffers
- Two configurable Receive FIFOs, up to 64 elements each
- Up to 128 11-bit filter elements
- Internal Loopback mode for self-test
- Mask-able interrupts, two interrupt lines
- Two clock domains (CAN clock / Host clock)
- Parity / ECC support - Message RAM single error correction and double error detection (SECDED) mechanism
- Full Message Memory capacity (4352 words).

7.13.8.1 Dynamic Characteristics for the CANx TX and RX Pins

PARAMETER		MIN	TYP	MAX	UNIT
$t_{d(CAN_FD_tx)}$	Delay time, transmit shift register to CAN_FD_tx pin ⁽¹⁾			15	ns
$t_{d(CAN_FD_rx)}$	Delay time, CAN_FD_rx pin to receive shift register ⁽¹⁾			15	ns

(1) These values do not include rise/fall times of the output buffer.

7.13.9 Serial Communication Interface (SCI)

The SCI has the following features:

- Standard universal asynchronous receiver-transmitter (UART) communication
- Supports full- or half-duplex operation
- Standard non-return to zero (NRZ) format
- Double-buffered receive and transmit functions in compatibility mode
- Supports two individually enabled interrupt lines: level 0 and level 1
- Configurable frame format of 3 to 13 bits per character based on the following:
 - Data word length programmable from one to eight bits
 - Additional address bit in address-bit mode
 - Parity programmable for zero or one parity bit, odd or even parity
 - Stop programmable for one or two stop bits
- Asynchronous or iso-synchronous communication modes with no CLK pin
- Two multiprocessor communication formats allow communication between more than two devices
- Sleep mode is available to free CPU resources during multiprocessor communication and then wake up to receive an incoming message
- Capability to use Direct Memory Access (DMA) for transmit and receive data
- Five error flags and Seven status flags provide detailed information regarding SCI events
- Two external pins: RS232_RX and RS232_TX

- Multi-buffered receive and transmit units

7.13.9.1 SCI Timing Requirements

		MIN	TYP	MAX	UNIT
f(baud)	Supported baud rate at 20pF		115.2 ⁽¹⁾	1250 ⁽²⁾	kBaud

(1) Maximum supported standard baud rate.

(2) Maximum supported custom baud rate.

7.13.10 Inter-Integrated Circuit Interface (I2C)

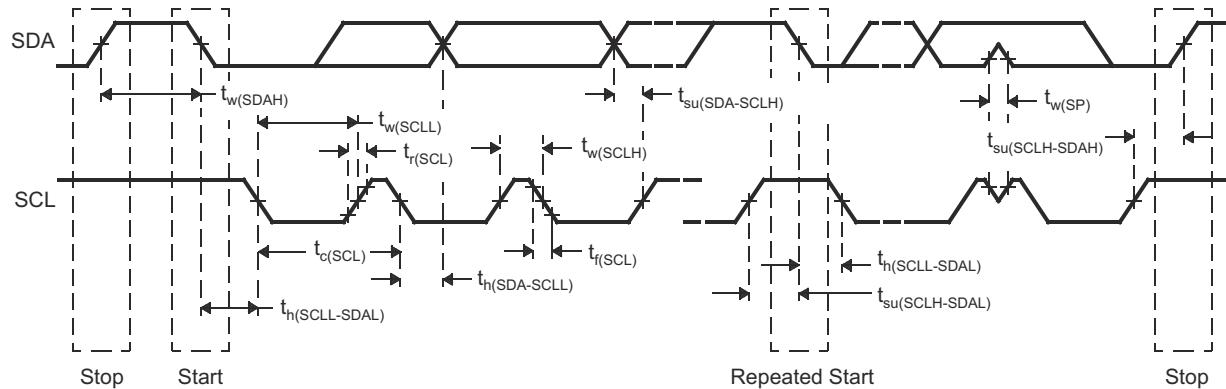
The inter-integrated circuit (I2C) module is a multi-controller communication module providing an interface between devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an I²C-bus™. This module will support any target or controller I2C compatible device.

The I2C has the following features:

- Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398 393 40011)
 - Bit/Byte format transfer
 - 7-bit and 10-bit device addressing modes
 - START byte
 - Multi-controller transmitter/ target receiver mode
 - Multi-controller receiver/ target transmitter mode
 - Combined controller transmit/receive and receive/transmit mode
 - Transfer rates of 100kbps up to 400kbps (Phillips fast-mode rate)
- Free data format
- Two DMA events (transmit and receive)
- DMA event enable/disable capability
- Module enable/disable capability
- The SDA and SCL are optionally configurable as general purpose I/O
- Slew rate control of the outputs
- Open drain control of the outputs
- Programmable pullup/pulldown capability on the inputs
- Supports Ignore NACK mode

Note

This I2C module does not support:


- High-speed (HS) mode
- C-bus compatibility mode
- The combined format in 10-bit address mode (the I2C sends the target address second byte every time it sends the target address first byte)

7.13.10.1 I2C Timing Requirements

		STANDARD MODE ⁽¹⁾		FAST MODE		UNIT
		MIN	MAX	MIN	MAX	
$t_c(SCL)$	Cycle time, SCL	10		2.5		μs
$t_{su}(SCLH-SDAL)$	Setup time, SCL high before SDA low (for a repeated START condition)	4.7		0.6		μs
$t_h(SCLL-SDAL)$	Hold time, SCL low after SDA low (for a START and a repeated START condition)	4		0.6		μs
$t_w(SCLL)$	Pulse duration, SCL low	4.7		1.3		μs
$t_w(SCLH)$	Pulse duration, SCL high	4		0.6		μs
$t_{su}(SDA-SCLH)$	Setup time, SDA valid before SCL high	250		100		ns
$t_h(SCLL-SDA)$	Hold time, SDA valid after SCL low	0	3.45 ⁽¹⁾	0	0.9	μs
$t_w(SDAH)$	Pulse duration, SDA high between STOP and START conditions	4.7		1.3		μs
$t_{su}(SCLH-SDAH)$	Setup time, SCL high before SDA high (for STOP condition)	4		0.6		μs
$t_w(SP)$	Pulse duration, spike (must be suppressed)			0	50	ns
C_b ⁽²⁾ ⁽³⁾	Capacitive load for each bus line	400		400		pF

- (1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down.
- (2) The maximum $t_h(SDA-SCLL)$ for I2C bus devices has only to be met if the device does not stretch the low period ($t_w(SCLL)$) of the SCL signal.
- (3) C_b = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.

Figure 7-19. I2C Timing Diagram

Note

- A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- The maximum $t_h(SDA-SCLL)$ has only to be met if the device does not stretch the LOW period ($t_w(SCLL)$) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement $t_{su}(SDA-SCLH) \geq 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_r max + $t_{su}(SDA-SCLH)$.

7.13.11 Quad Serial Peripheral Interface (QSPI)

The quad serial peripheral interface (QSPI) module is a kind of SPI module that allows single, dual, or quad read access to external SPI devices. This module has a memory mapped register interface, which provides a direct interface for accessing data from external SPI devices and thus simplifying software requirements. The QSPI works as a controller only. The QSPI in the device is primarily intended for fast booting from quad-SPI flash memories.

The QSPI supports the following features:

- Programmable clock divider
- Six-pin interface
- Programmable length (from 1 to 128 bits) of the words transferred
- Programmable number (from 1 to 4096) of the words transferred
- Optional interrupt generation on word or frame (number of words) completion
- Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles

Section 7.13.11.2 and Section 7.13.11.3 assume the operating conditions stated in Section 7.13.11.1.

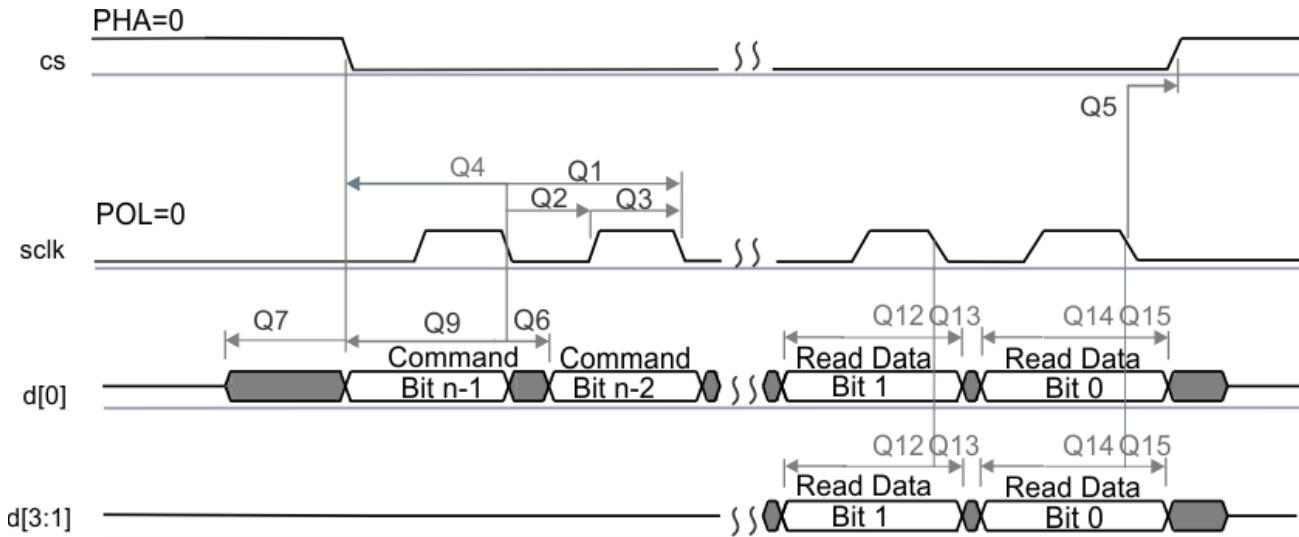
7.13.11.1 QSPI Timing Conditions

		MIN	TYP	MAX	UNIT
Input Conditions					
t_R	Input rise time	1		3	ns
t_F	Input fall time	1		3	ns
Output Conditions					
C_{LOAD}	Output load capacitance	2		15	pF

7.13.11.2 Timing Requirements for QSPI Input (Read) Timings

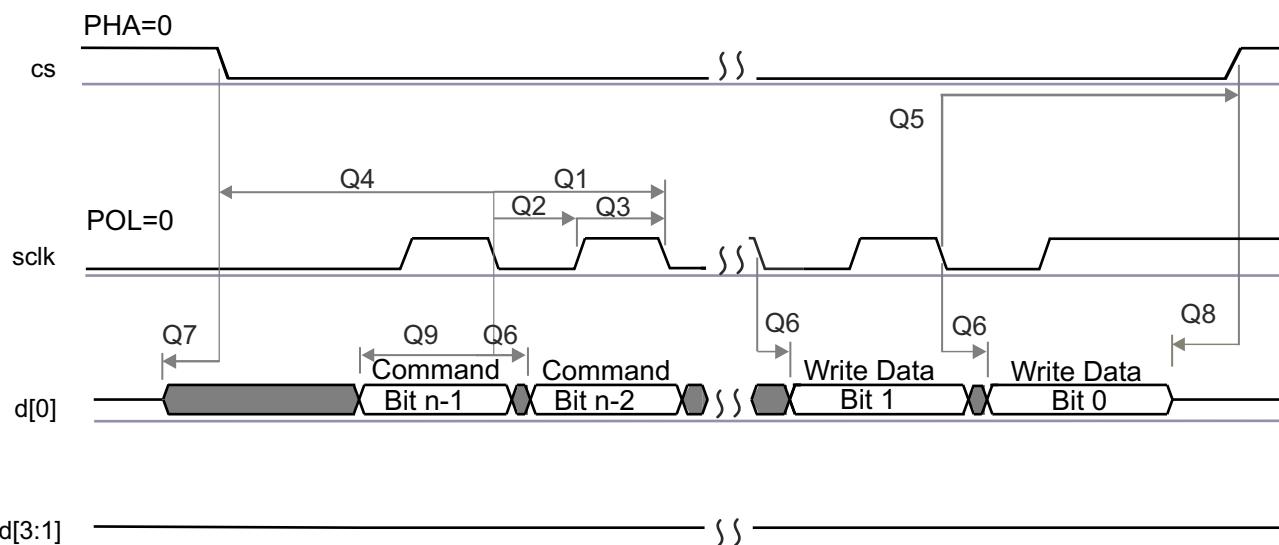
	MIN ^{(1) (2)}	TYP	MAX	UNIT
$t_{su(D-SCLK)}$	Setup time, d[3:0] valid before falling sclk edge	5		ns
$t_{h(SCLK-D)}$	Hold time, d[3:0] valid after falling sclk edge	1		ns
$t_{su(D-SCLK)}$	Setup time, final d[3:0] bit valid before final falling sclk edge	5 – P ⁽³⁾		ns
$t_{h(SCLK-D)}$	Hold time, final d[3:0] bit valid after final falling sclk edge	1 + P ⁽³⁾		ns

- (1) Clock Mode 0 (clk polarity = 0 ; clk phase = 0) is the mode of operation.
- (2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although non-standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that launch data on the falling edge in Clock Mode 0.
- (3) P = SCLK period in ns.


7.13.11.3 QSPI Switching Characteristics

NO.	PARAMETER	MIN	TYP	MAX	UNIT
Q1	$t_c(\text{sclk})$	Cycle time, sclk	12.5		ns
Q2	$t_w(\text{SCLKL})$	Pulse duration, sclk low	$Y^*P - 3^{(1)(2)}$		ns
Q3	$t_w(\text{SCLKH})$	Pulse duration, sclk high	$Y^*P - 3^{(1)(2)}$		ns
Q4	$t_d(\text{CS-SCLK})$	Delay time, sclk falling edge to cs active edge	$-M^*P - 1^{(2)(3)}$	$-M^*P + 2.5^{(2)(3)}$	ns
Q5	$t_d(\text{SCLK-CS})$	Delay time, sclk falling edge to cs inactive edge	$N^*P - 1^{(2)(3)}$	$N^*P + 2.5^{(2)(3)}$	ns
Q6	$t_d(\text{SCLK-D1})$	Delay time, sclk falling edge to d[1] transition	-2	4	ns
Q7	$t_{\text{ena}}(\text{CS-D1LZ})$	Enable time, cs active edge to d[1] driven (lo-z)	$-P - 4^{(2)}$	$-P + 1^{(2)}$	ns
Q8	$t_{\text{dis}}(\text{CS-D1Z})$	Disable time, cs active edge to d[1] tri-stated (hi-z)	$-P - 4^{(2)}$	$-P + 1^{(2)}$	ns
Q9	$t_d(\text{SCLK-D1})$	Delay time, sclk first falling edge to first d[1] transition (for PHA = 0 only)	$-2 - P^{(2)}$	$4 - P^{(2)}$	ns
Q12	$t_{\text{su}}(\text{D-SCLK})$	Setup time, d[3:0] valid before falling sclk edge	5		ns
Q13	$t_h(\text{SCLK-D})$	Hold time, d[3:0] valid after falling sclk edge	1		ns
Q14	$t_{\text{su}}(\text{D-SCLK})$	Setup time, final d[3:0] bit valid before final falling sclk edge	$5 - P^{(2)}$		ns
Q15	$t_h(\text{SCLK-D})$	Hold time, final d[3:0] bit valid after final falling sclk edge	$1 + P^{(2)}$		ns

(1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals $(\text{DCLK_DIV}/2) / (\text{DCLK_DIV}+1)$. For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty cycle distortion. All required details about clock division factor DCLK_DIV can be found in the device-specific Technical Reference Manual.


(2) P = SCLK period in ns.

(3) M = QSPI_SPI_DC_REG.DDx + 1, N = 2

SPRS85v TIMING_QSPI1_02

Figure 7-20. QSPI Read (Clock Mode 0)

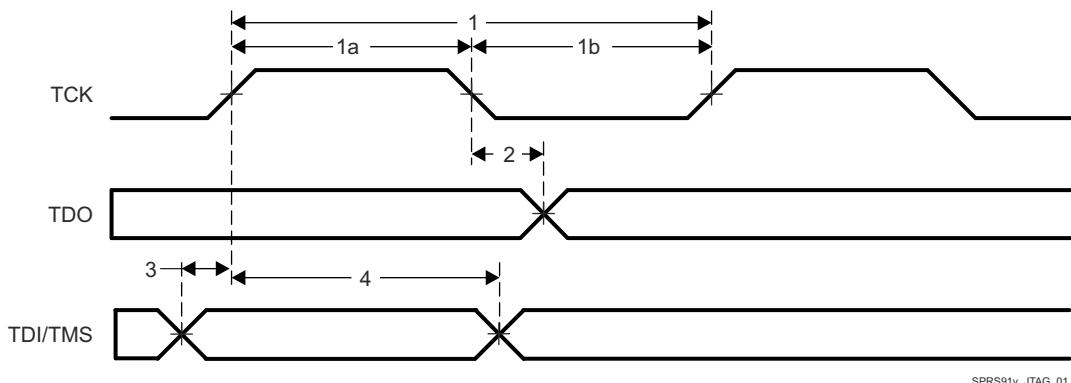
Figure 7-21. QSPI Write (Clock Mode 0)

SPRS85v_TIMING_QSPI1_04

7.13.12 JTAG Interface

Section 7.13.12.2 and Section 7.13.12.3 assume the operating conditions stated in Section 7.13.12.1.

7.13.12.1 JTAG Timing Conditions


		MIN	TYP	MAX	UNIT
Input Conditions					
t_R	Input rise time	1		3	ns
t_F	Input fall time	1		3	ns
Output Conditions					
C_{LOAD}	Output load capacitance	2		15	pF

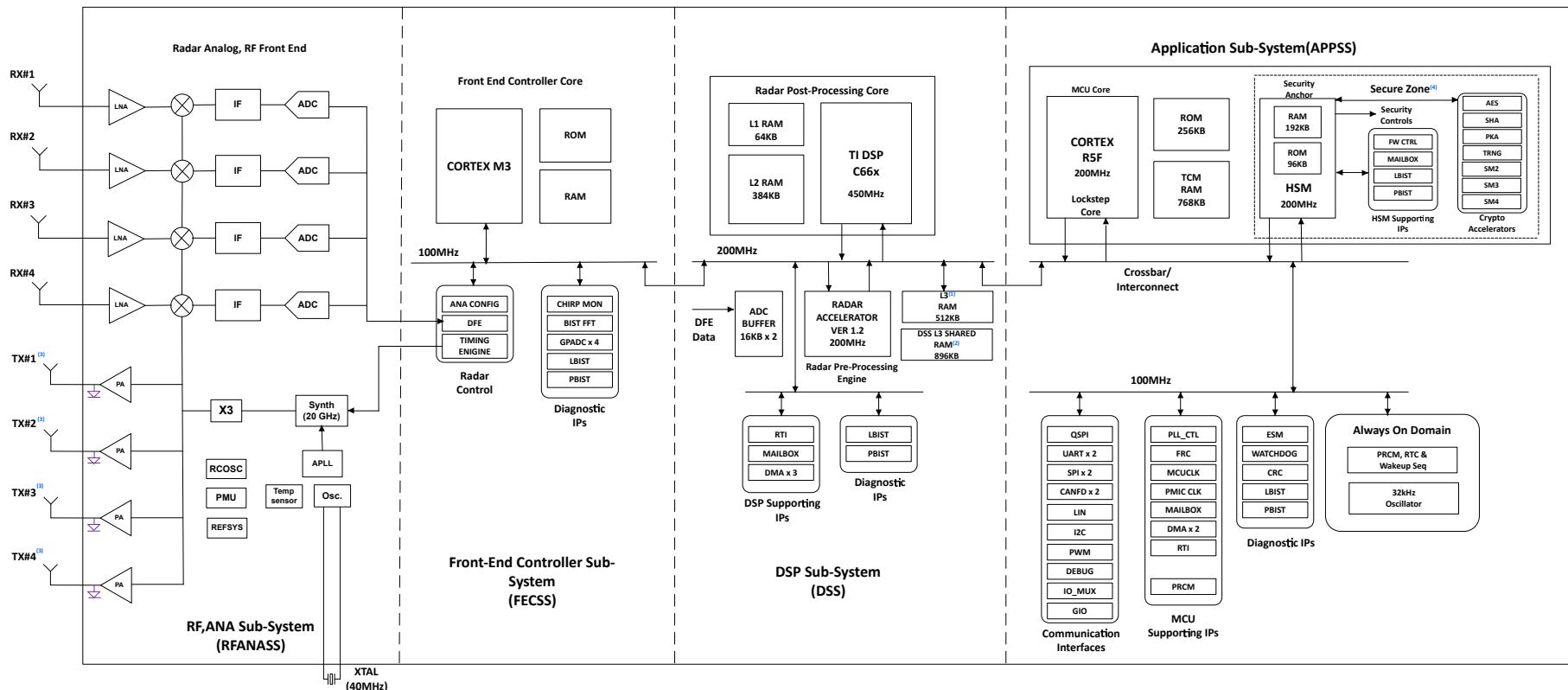
7.13.12.2 Timing Requirements for IEEE 1149.1 JTAG

NO.		PARAMETER	MIN	TYP	MAX	UNIT
1	$t_c(TCK)$	Cycle time TCK	66.66			ns
1a	$t_w(TCKH)$	Pulse duration TCK high (40% of t_c)	20			ns
1b	$t_w(TCKL)$	Pulse duration TCK low(40% of t_c)	20			ns
3	$t_{su}(TDI-TCK)$	Input setup time TDI valid to TCK high	2.5			ns
	$t_{su}(TMS-TCK)$	Input setup time TMS valid to TCK high	2.5			ns
4	$t_h(TCK-TDI)$	Input hold time TDI valid from TCK high	18			ns
	$t_h(TCK-TMS)$	Input hold time TMS valid from TCK high	18			ns

7.13.12.3 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG

NO.		PARAMETER	MIN	TYP	MAX	UNIT
2	$t_d(TCKL-TDOV)$	Delay time, TCK low to TDO valid	0		15	ns

SPRS91v_JTAG_01


Figure 7-22. JTAG Timing

8 Detailed Description

8.1 Overview

The AWRL684x device is a complete SOC which includes mmWave front end, customer programmable MCU, C66x DSP for advanced signal processing and analog baseband signal chain with four transmitters(3 transmitters for AWRL6843) and four receivers. This device is applicable as a radar-on-a-chip in use-cases with provision for memory, processing capacity, and application code size.

8.2 Functional Block Diagram

Figure 8-1. Functional Block Diagram

1. 512KB of DSS L3 Native RAM available only in AWRL6844
2. 896KB of DSS L3 Shared RAM Memory location is listed in [Table 8-1](#)
3. The AWRL6843 device has four transmitter antennas out of which any group of 3 transmitter antennas can be used (TX1, TX2, TX3), (TX1, TX2, TX4), (TX1, TX3, TX4) & (TX2, TX3, TX4).
4. Applicable to secure device variants only.

Table 8-1. Shared Memory Allocation

Memory	Allocation
512KB	DSS L3, APPSS TCMA
256KB	DSS L3, APPSS TCMB
128KB	DSS L3, FECSS

8.3 Subsystems

8.3.1 RF and Analog Subsystem

The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer, IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. TXs can be operated simultaneously for beam forming in BPM mode or individually in TDM mode. Similarly, the device allows configuring the number of transmit and receive channels based on application and power requirements. For system power saving, AWRL684x device provides duty cycling options to put RF and analog subsystems into low power mode configuration.

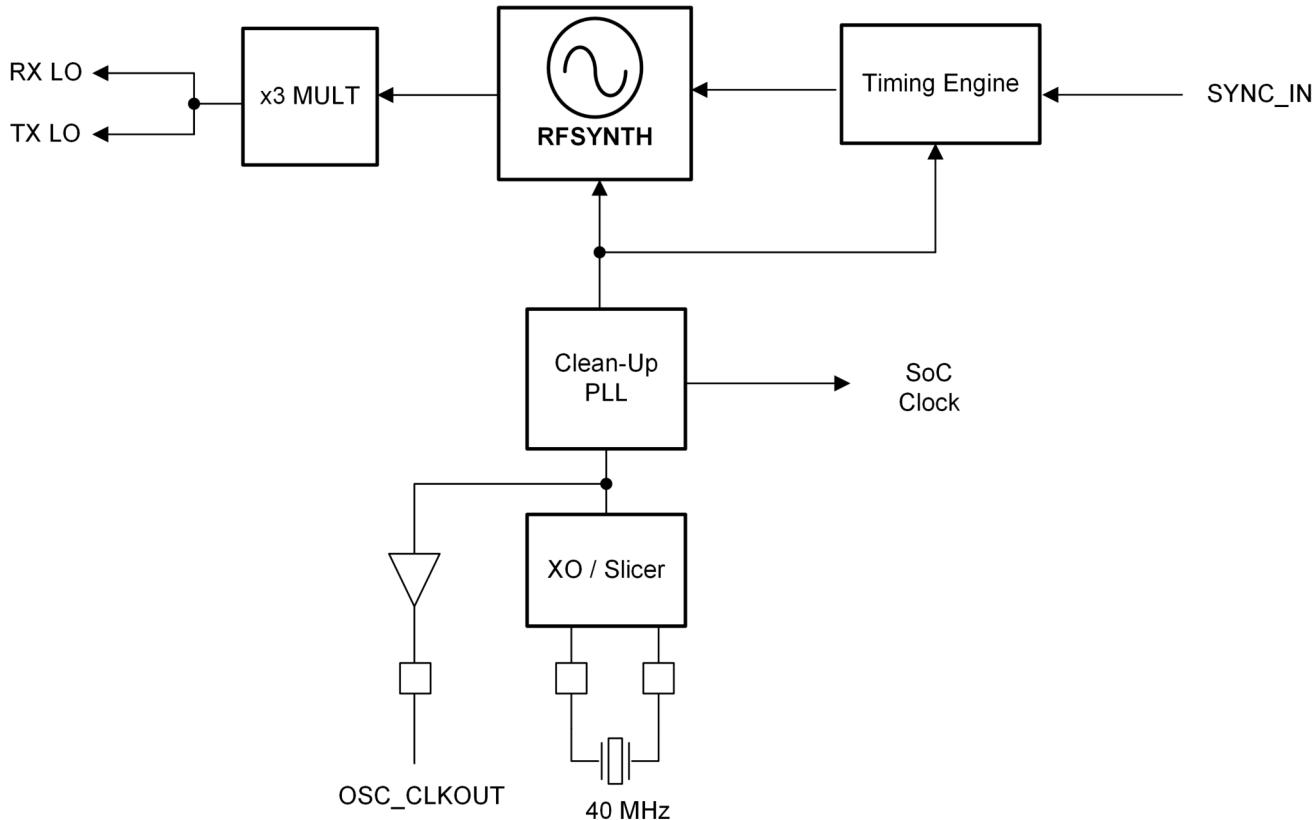
8.3.2 Clock Subsystem

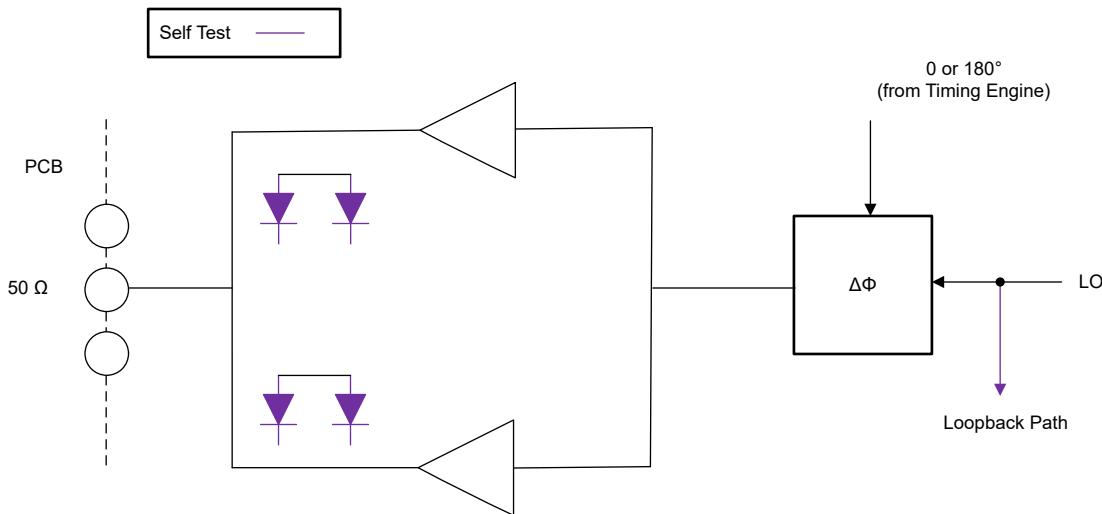
The AWRL684x clock subsystem generates 57 to 63.9GHz from an input reference from a crystal. It has a built in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF synthesizer is then processed by an X3 multiplier to create the required frequency in the 57 to 63.9GHz spectrum. The RF synthesizer output is modulated by the timing engine block to create the required waveforms for sensor operation. The clean-up PLL also provides a reference clock for the host processor after system wakeup. The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the quality of the generated clock.

The clean-up PLL also provides a reference clock for the host processor after system wakeup.

The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the quality of the generated clock.

Figure 8-2 describes the clock subsystem.




Figure 8-2. Clock Subsystem

8.3.3 Transmit Subsystem

The AWRL6844 transmit subsystem consists of four parallel transmit chains and AWRL6843 transmit subsystem consists of three parallel transmit chains, each with independent phase and amplitude control. The device supports binary phase modulation for MIMO radar.

The transmit chains also support programmable backoff for system optimization.

Figure 8-3 describes the transmit subsystem.

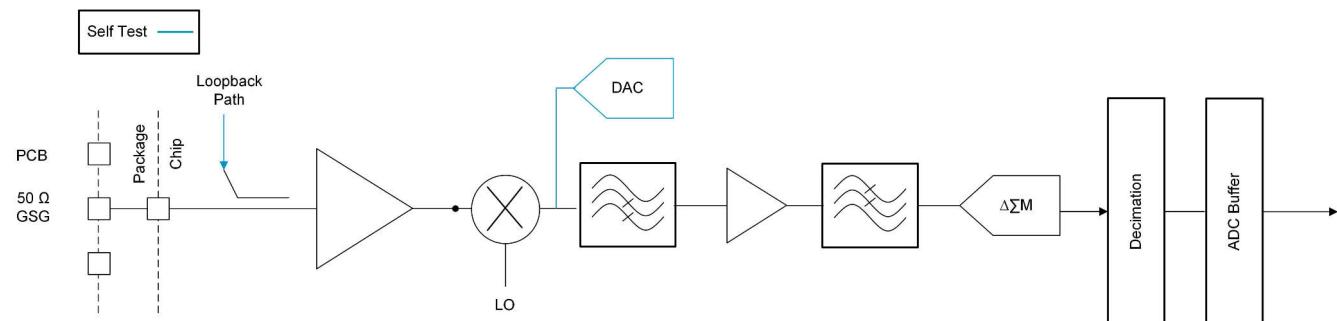


Figure 8-3. Transmit Subsystem (Per Channel)

8.3.4 Receive Subsystem

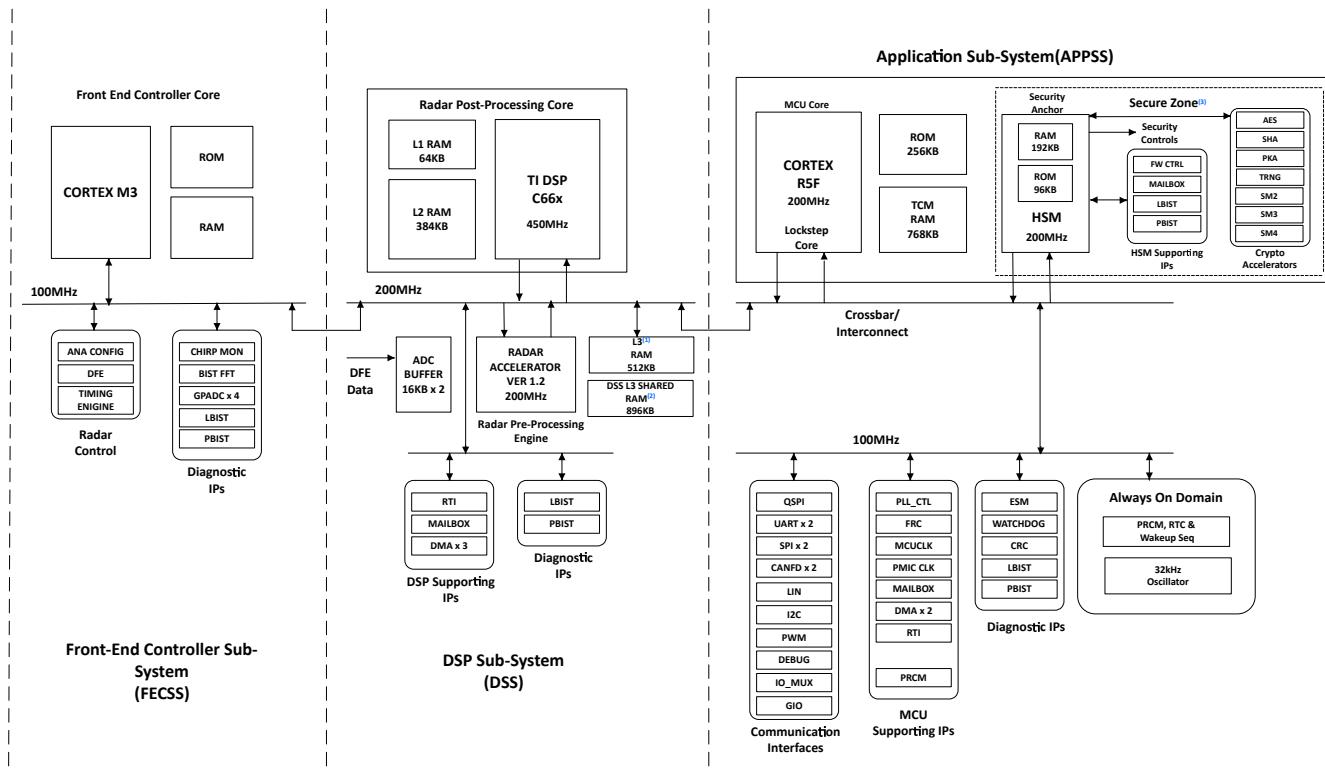

The AWRL684x receive subsystem consists of four parallel channels. A single receive channel consists of an LNA, mixer, IF filtering, ADC conversion, and decimation. All four receive channels can either operate simultaneously or can be powered down individually based on system power needs and application design. The AWRL684x device supports a real baseband architecture, which uses real mixer, single IF and ADC chains to provide output for each receiver channel. The device is targeted for fast chirp systems. The band-pass IF chain has configurable lower cutoff frequencies above 175kHz and can support bandwidths up to 10MHz.

Figure 8-4 describes the receive subsystem.

Figure 8-4. Receive Subsystem (Per Channel)

8.3.5 Processor Subsystem

Figure 8-5. Processor Subsystem

1. 512KB of DSS L3 Native RAM available only in AWRL6844
2. 896KB of DSS L3 Shared RAM Memory location is listed in [Table 4-1](#)
3. Applicable to secure device variants only.

Figure 8-5 shows the block diagram for customer programmable processor subsystems in the AWRL684x device. At a high level there are two customer programmable subsystems, as shown separated by a dotted line in the diagram. The DSP Subsystem which contains TI's high-performance C66x DSP, HWA, a high-bandwidth interconnect for high performance (128-bit, 200MHz), and associated peripherals data transfer. LVDS interface for Measurement data output, L3 Radar data cube memory, the ADC buffers, the CRC engine, and data handshake memory (additional memory provided on interconnect).

The right side of the diagram shows the Application Subsystem. The Application Subsystem controls all the device peripherals and house-keeping activities of the device. The Application Subsystem contains Cortex-R5F processor and associated peripherals and house-keeping components such as DMAs, CRC and Peripherals (I²C, UART, SPI, CAN, PMIC clocking module, PWM, LIN, and others) connected to Main Interconnect through Peripheral Central Resource (PCR interconnect).

8.3.6 Automotive Interface

The AWRL684x communicates with the automotive network over the following main interfaces:

- CAN-FD
- LIN

8.3.7 Host Interface

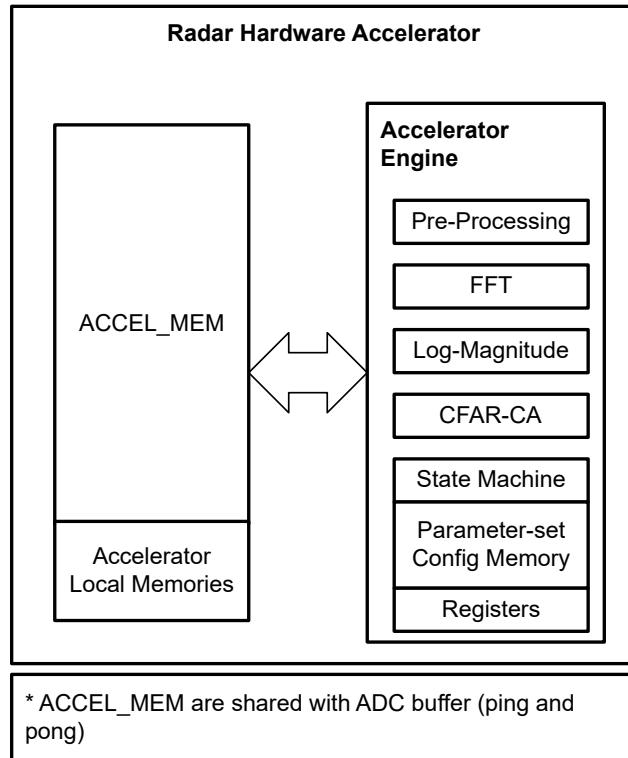
The host interface can be provided through a SPI, LIN, UART, or CAN-FD interface.

The AWRL684x device communicates with the host radar processor over the following main interfaces:

- Reference Clock – Reference clock available for host processor after device wakeup
- Control – 4-port standard SPI (peripheral) for host control . All radio control commands (and response) flow through this interface.
- Reset – Active-low reset for device wakeup from host.
- Host Interrupt - an indication that the mmWave sensor needs host interface
- Error – Used for notifying the host in case the radio controller detects a fault

8.3.8 Application Subsystem Cortex-R5F

The Application Sub-System includes an ARM Cortex -R5F processor clocked with a maximum operating frequency of 200 MHz. User applications executing on this processor control the overall operation of the device, including radar control through well-defined API messages, radar signal processing (assisted by C66x DSP and radar hardware accelerator), and peripherals for external interfaces.


See the [Technical Reference Manual](#) for a complete description and memory map.

8.3.9 DSP Subsystem

The DSP subsystem includes TI's standard TMS320C66x megamodule and several blocks of internal memory (L1, and L2). For complete information including memory map, please refer to [Technical Reference Manual](#).

8.3.10 Hardware Accelerator (HWA1.2) Features

- Fast FFT computation, with programmable 2^N sizes, up to 1024-point complex FFT
- Internal FFT bit-width of 24 bits (each for I and Q) for good Signal-to-Quantization-Noise Ratio (SQNR) performance
- Fully programmable butterfly scaling at every radix-2 stage for user flexibility
- Built-in capabilities for pre-FFT processing – Ex: DC estimation and subtraction
- DC estimation & subtraction, Interference estimation & zero-out, Real window, Complex pre-multiplication
- Magnitude (absolute value) and Log-magnitude computation
- Flexible data flow and data sample arrangement to support efficient multi-dimensional FFT operations and transpose accesses
- Chaining and looping mechanism to sequence a set of operations one after another with minimal intervention from the main processor
- Peak detection – CFAR (CFAR-CA, CFAR-OS) detector
- Basic statistics, including Sum and 1D Max
- Compression engine for radar cube memory optimization

Figure 8-6. HWA 1.2 Functional Block Diagram

8.3.10.1 Hardware Accelerator Feature Differences Between HWA1.1 in xWRx843, HWA1.2 in xWRLx432 and HWA1.2 in xWRL684x

Feature	HWA1.0, HWA1.1 (xWR1843, xWR6843)	HWA1.2 (xWRL6432, xWRL1432)	HWA1.2 (xWRL684x)
FFT features	FFT sizes	1024, 512, 256, ...	1024, 512, 256, ...
	Internal bit-width	24-bit I, 24-bit Q	24-bit I, 24-bit Q
		Configurable butterfly scaling at each stage	Configurable butterfly scaling at each stage
	FFT stitching	up to 4096 point	up to 4096 point
FFT benchmark for four 256-pt FFTs	1312 clock cycles (6.56µs at 200MHz)	1320 clock cycles (16.5 µs at 80MHz)	1320 clock cycles (6.6µs at 200MHz)
No. of parameter-sets	16	32	32
Local memory	64KB	64KB	64KB
Input and Output formatter	<ul style="list-style-type: none"> • A and B-dim addressing of local memory • Programmable scaling 	<ul style="list-style-type: none"> • A and B-dim addressing of local memory • Programmable scaling 	<ul style="list-style-type: none"> • A and B-dim addressing of local memory • Programmable scaling

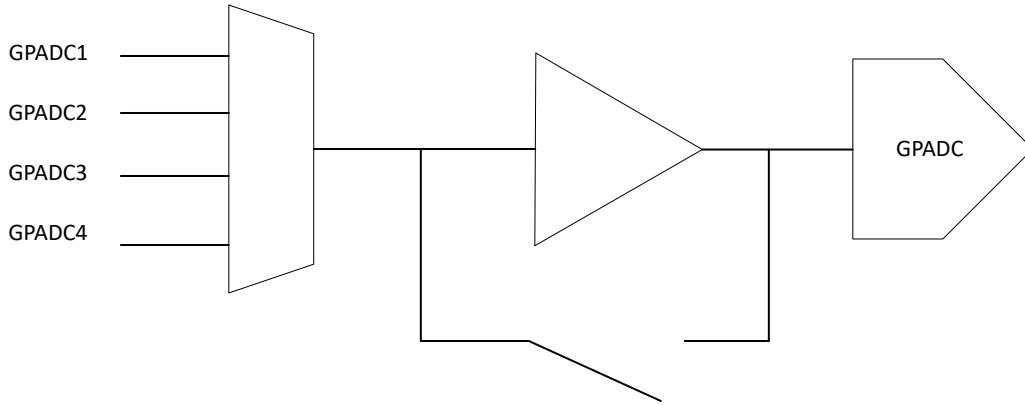
Feature	HWA1.0, HWA1.1 (xWR1843, xWR6843)	HWA1.2 (xWRL6432, xWRL1432)	HWA1.2 (xWRL684x)
Pre-FFT processing	<ul style="list-style-type: none"> Interference zero out with fixed threshold, based on magnitude Complex multiplication (7 modes) Real window coefficients 	<ul style="list-style-type: none"> DC estimation and subtraction Interference zero out with adaptive statistics, based on mag, mag-diff. Interference count indication. Complex multiplication (7 modes) Real window coefficients 	<ul style="list-style-type: none"> DC estimation and subtraction Interference zero out with adaptive statistics, based on mag, mag-diff. Interference count indication. Complex multiplication (7 modes) Real window coefficients
Post-FFT processing	Log-magnitude (0.3dB accuracy)	Log-magnitude (0.06dB accuracy)	Log-magnitude (0.06dB accuracy)
Compression and De-compression support	Not available in HWA1.0 (xWR1843), Available in HWA1.1 (xWR6843)	Available	Available
Detection	CFAR-CA (linear and log modes)	<ul style="list-style-type: none"> CFAR-CA (linear and log modes) CFAR-OS (window size up to 32 on each side) 	<ul style="list-style-type: none"> CFAR-CA (linear and log modes) CFAR-OS (window size up to 32 on each side)
Statistics	1D Sum, 1D Max	1D Sum, 1D Max	1D Sum, 1D Max

8.4 Other Subsystems

8.4.1 Security – Hardware Security Module

A Hardware Security Module (HSM), which performs a secure zone operation, is provisioned in the device (*operational only in select part variants*). A programmable Arm Cortex-M4 core is available to implement the crypto-agility requirements.

The cryptographic algorithms can be accelerated using the hardware modules in the HSM. Functions include acceleration of AES, SHA, Chinese crypto algorithms (SM2, SM3 and SM4) and public key accelerator (PKA) to perform math operations for asymmetric key cryptographic requirements and true random number generation.


The APP subsystem (APPSS) Cortex-R5F processor interfaces with the HSM subsystem to perform the cryptographic operations required for the secure boot and secure runtime communications.

Further details on Security can be found in the concerned collaterals. Please reach out to your local TI sales representative for more information.

8.4.2 GPADC Channels (Service) for User Application

The AWRL684x device includes provision for an ADC service for user application, where the GPADC engine present inside the device can be used to measure up to four external voltages. The GPADC1, GPADC2, GPADC3 and GPADC4 pins are used for this purpose.

- GPADC itself is controlled by TI firmware running inside the FEC subsystem and access to it for customer's external voltage monitoring purpose is via 'APPSS' calls routed to the FEC subsystem. This API could be linked with the user application running on APPSS Cortex R5F.
- Device Firmware package (DFP) provides APIs to configure and measure these signals. The API allows configuring the settling time (number of ADC samples to skip) and number of consecutive samples to take. Average of the readings will be reported for each of the monitored voltages.

Figure 8-7. GPADC Path

GPADC structures are used for measuring the output of internal temperature sensors. The accuracy of these measurements is $\pm 7^{\circ}\text{C}$.

8.4.3 GPADC Parameters

PARAMETER	TYP	UNIT
ADC supply	1.8	V
ADC unbuffered input voltage range	0 – 1.8	V
ADC buffered input voltage range ⁽¹⁾	0.4 – 1.3	V
ADC resolution	8	bits
ADC offset error	± 5	LSB
ADC gain error	± 5	LSB
ADC DNL	$-1/+2.5$	LSB
ADC INL	± 2.5	LSB
ADC sample rate ⁽²⁾	831	Ksps
ADC sampling time ⁽²⁾	300	ns
ADC internal cap	10	pF
ADC buffer input capacitance	2	pF
ADC input leakage current	3	uA

(1) Outside of given range, the buffer output will become nonlinear.

(2) GPADC itself is controlled by TI firmware running inside the BIST subsystem. For more details please refer to the API calls.

8.5 Memory Partitioning Options

AWRL6844 devices will have a total memory of 2.5MB. AWRL6843 devices will have a total memory of 2MB. Table 8-2 lists some of the available memory partition options. Memory partition options are not limited to Table 8-2

Table 8-2. Memory Partition Options

Memory	AWRL6844		AWRL6843	
	Default	Alternative	Default	Alternative
DSS L2	384KB	384KB	384KB	384KB
DSPSS L3 Native	512KB	512KB	0KB	0KB
L3 Memory (Shared with TCMA)	512KB	0KB	512KB	0KB
L3 Memory (Shared with TCMB)	256KB	0KB	256KB	0KB
L3 Memory (Shared with FECSS)	128KB	0KB	128KB	0KB
DSPSS L3 Total	1408KB	512KB	896KB	0KB
APPSS Native - TCMA	512KB	512KB	512KB	512KB

Table 8-2. Memory Partition Options (continued)

Memory	AWRL6844		AWRL6843	
	Default	Alternative	Default	Alternative
APPSS Native - TCMB	256KB	256KB	256KB	256KB
APPSS Shared - TCMA	0KB	512KB	0KB	512KB
APPSS Shared - TCMB	0KB	256KB	0KB	256KB
APPSS Total	768KB	1536KB	768KB	1536KB
FECSS	0KB	128KB	0KB	128KB
Total Device Memory	2560KB	2560KB	2048KB	2048KB

The entire RAM is retainable. Additionally, each memory cluster can be independently turned off (if needed). The clusters are defined as below

Memory Retention Options

Table 8-3. APPSS

Un-Switchable memory		Switchable memory			Switchable memory - Shared with DSS L3 (DSS Bank 1)		
		Group1			Group2		Group3
256KB		512KB			512KB		256KB
Cluster #1	Cluster #2	Cluster #5	Cluster #6	Cluster #7	Cluster #8	Cluster #9	Cluster #10
TCMA	TCMA	TCMA	TCMA	TCMB0 + TCMB1	TCMA Bank0	TCMA Bank1	TCMB0 + TCMB1
128KB	128KB	128KB	128KB	128KB + 128KB	256KB	256KB	128KB + 128KB

Table 8-4. DSS

Switchable Memory							Switchable Memory - Shared with FECSS
Group 4		Group 5		Group 6		Group 4	
144KB		304KB		512KB		128KB	
Cluster#2	Cluster#3	Cluster#4	Cluster#5	Cluster#6	Cluster#7	Cluster#1	Cluster#1
DSP L2	HWA	DSP L2	DSP L1	DSS L3 (DSS Bank0)			
144KB		240KB	64KB	256KB	256KB	128KB	

8.6 Boot Modes

As soon as device reset is de-asserted, the processor of the APPSS starts executing its bootloader from an on-chip ROM memory.

The bootloader operates in three basic modes and these are specified on the user hardware (Printed Circuit Board) by configuring what are termed as "Sense on power" (SOP) pins. These pins on the device boundary are scanned by the bootloader firmware and choice of mode for bootloader operation is made.

Table 8-5 enumerates the relevant SOP combinations and how these map to bootloader operation.

Table 8-5. SOP Combinations

SOP1	SOP0	BOOTLOADER MODE AND OPERATION
0	0	Flashing Mode / Device Management Mode Device Bootloader spins in loop to allow flashing of user application (or device firmware patch - Supplied by TI) to the serial flash.

Table 8-5. SOP Combinations (continued)

SOP1	SOP0	BOOTLOADER MODE AND OPERATION
0	1	Functional Mode / Application Mode Device Bootloader loads user application from QSPI Serial Flash to internal RAM and switches the control to it.
1	1	Debug Mode / Development Mode Bootloader is bypassed and R5F processor is halted. This allows user to connect emulator at a known point.

9 Monitoring and Diagnostics

For details on monitoring and functional safety implementation, refer to the [Technical Reference Manual](#).

Refer to the *Device Safety Manual* or other relevant collaterals for more details on applicability of all diagnostics mechanisms.

10 Applications, Implementation, and Layout

Note

Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

Application information can be found on [AWR Application web page](#).

10.2 Reference Schematic

Please check the device product page for latest Hardware design information under Design Kits - typically, at Design and Development

Listed for convenience are: Design Files, Schematics, Layouts, and Stack up for PCB

- [Altium AWRL6844 EVM Design Files](#)
- [AWRL6844 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials](#)

11 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions follow.

11.1 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, AWRL6844). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).

Device development evolutionary flow:

- X** Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
- P** Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.

null Production version of the silicon die that is fully qualified.

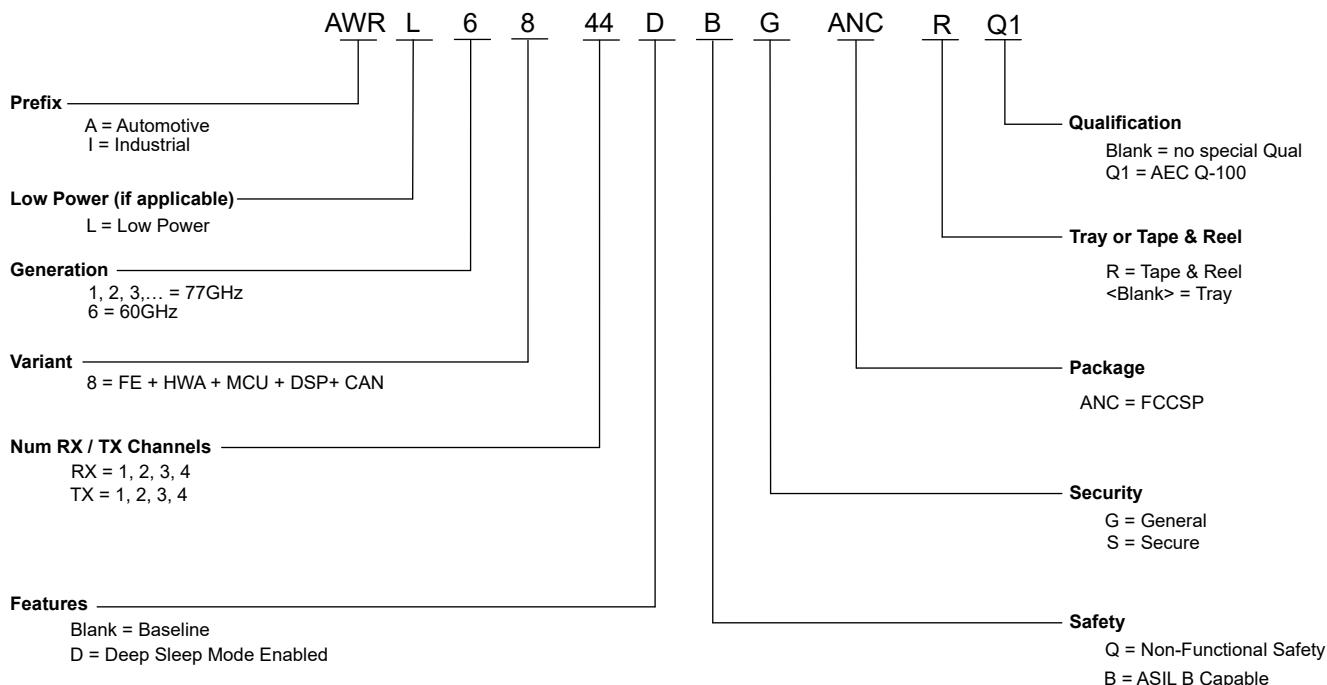
Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.

TMDS Fully-qualified development-support product.

X and P devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."


Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ABL), the temperature range (for example, blank is the default commercial temperature range). [Device Nomenclature](#), provides a legend for reading the complete device name for any AWRL684x device.

For orderable part numbers of AWRL684x devices in the ANC package types, see the Package Option Addendum of this document (when available), the TI website (www.ti.com), or contact your TI sales representative.

For additional description of the device nomenclature markings on the die, see the [AWRL684x Device Errata](#).

Figure 11-1. Device Nomenclature

11.2 Tools and Software

MMWAVE-L-SDK This SDK contains examples, libraries and tools to develop RTOS and no-RTOS based applications for ARM R5F and C66 CPUs and related peripherals.

Models

AWRL684x BSDL model Boundary scan database of testable input and output pins for IEEE 1149.1 of the specific device.

AWRL684x IBIS model IO buffer information model for the IO buffers of the device. For simulation on a circuit board, see IBIS Open Forum.

11.3 Documentation Support

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

The current documentation that describes the peripherals, and other technical collateral follows.

Errata

[AWRL6843/44 Device Errata](#) . Describes known advisories, limitations, and cautions on silicon and provides workarounds.

11.4 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help—straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

11.5 Trademarks

E2E™ is a trademark of Texas Instruments.

Arm® and R5F® are registered trademarks of ARM Limited.
 R4F® and M4F® are registered trademarks of Arm Limited.
 All trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

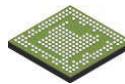
11.7 Glossary

TI Glossary	This glossary lists and explains terms, acronyms, and definitions.
-------------	--

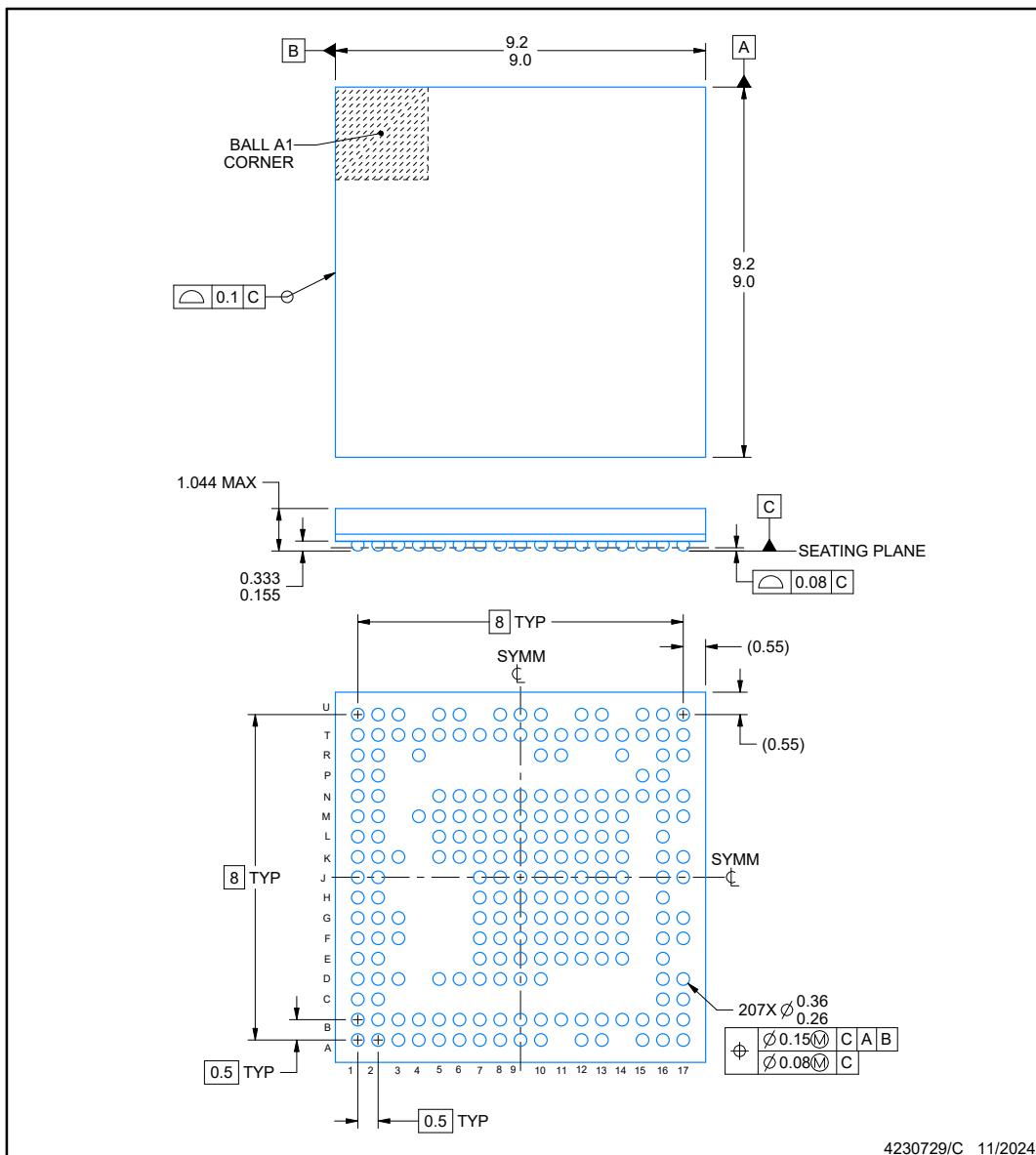
12 Revision History

Changes from January 1, 2025 to December 31, 2026 (from Revision * (January 2025) to Revision A (December 2025))

	Page
• (Features) : Updated typical output power per TX to 12.5dBm.....	1
• (Features) : Updated typical phase noise at 1MHz offset to -90.5dBc/Hz.....	1
• (Features) : Added LIN interface under host interfaces.....	1
• (Features) : Added product cybersecurity compliance information.....	1
• (Packaging Information) : Pre-production part numbers removed.....	2
• (Functional Block Diagram) : Added crypto accelerators and Secure zone.....	4
• (Functional Block Diagram) : Added Always on Domain.....	4
• (Functional Block Diagram figure notes) : Added available transmitter antenna info for AWRL6843	4
• (Device Comparison) : Production status changed from AI to PD.....	7
• (Device Comparison) : Added HWA versions.....	7
• (Device Comparison) : Added cybersecurity compliance.....	7
• (Signal Descriptions) : Added DSS UARTA signal description	11
• (Analog Signal Descriptions) : Added available transmitter antenna info for AWRL6843	11
• (Valid IOSET Combinations for SPIB Signal) : Updated additional SPIB IOSET combinations.....	14
• (System Signal Descriptions) : Updated System Signal Descriptions.....	14
• (System Signal Descriptions) : Updated BGA pins available for PRCM_PMIC_Deepsleep and WU_reqin....	14
• (Recommended Operating Conditions for OTP eFuse Programming) : Added decoupling capacitor recommendation.....	24
• (RF Supply Decoupling Capacitor and Layout Conditions) : Updated parasitics requirements for 1.2V RF rail and 1.0V RF LDO output.....	27
• (RF Supply Decoupling Capacitor and Layout Conditions) : Added min-max capacitor requirements for 1.2V RF rail and 1.0V RF LDO output.....	27
• (RF Supply Decoupling Capacitor and Layout Conditions) : Added layout guidelines for for 1.2V RF rail and 1.0V RF LDO output.....	27
• (Typical Power Consumption Numbers) : Introduction updated with the status of I/Os	33
• (Typical Power Consumption Numbers) : Estimated Power Consumed in 3.3V IO Mode table - updated power consumption numbers.....	33
• (Typical Power Consumption Numbers) : Estimated Power Consumed in 3.3V IO Mode table - updated configuration with more details.....	33
• (Typical Power Consumption Numbers) : Estimated Power Consumed in 1.8V IO Mode table added.....	33
• (Typical Power Consumption Numbers) : Use-Case Power Consumed in 3.3V I/O Topology - updated power consumption numbers.....	33



• (Typical Power Consumption Numbers) : Use-Case Power Consumed in 3.3V I/O Topology - updated configuration with more details.....	33
• (Typical Power Consumption Numbers) : Use-Case Power Consumed in 1.8V IO Mode table added.....	33
• (Peak Current Requirement per Voltage Rail) : Maximum Peak Current per Voltage Rail table - updated peak current numbers.....	35
• (RF Specification) : Updated typical TX output power to 12.5dBm.....	36
• (RF Specification) : Updated typical phase noise at 1MHz offset to -90.5dBc/Hz.....	36
• (RF Specification) : Updated receiver S11 to -7dB.....	36
• (RF Specification) : Updated transmitter S11 to -7.5dB.....	36
• (RF Specification) : Added a plot of Noise Figure, In-band P1dB vs Receiver Gain.....	36
• (Supported DFE Features) : Updated RX gain range to 36dB to 46dB.....	38
• (Supported DFE Features) : Chip Profile Supported by Timing Engine figure - Updated typical inter-chirp idle time to 6 to 12uS.....	38
• (Supported DFE Features) : Chip Profile Supported by Timing Engine figure - Updated typical inter-burst idle time to 135 to 270uS.....	38
• (Power Supply Sequencing and Reset Timing) : Updated Device Wake-up Sequence diagram to sequence 1.2V rail before 1.8V rail.....	39
• (Functional Block Diagram) : Added crypto accelerators and Secure zone.....	60
• (Functional Block Diagram) : Added Always on Domain.....	60
• (Functional Block Diagram figure notes) : Added available transmitter antenna info for AWRL6843	60
• (GPADC Channels (Service) for User Application) : Updated the introduction related to GPADC readings to the reflect actual GPADC measurement info.....	67
• (Memory Partitioning Options) : Updated DSS L3 total memory to 896KB in default option and 0KB to alternative option for AWRL6843.....	68



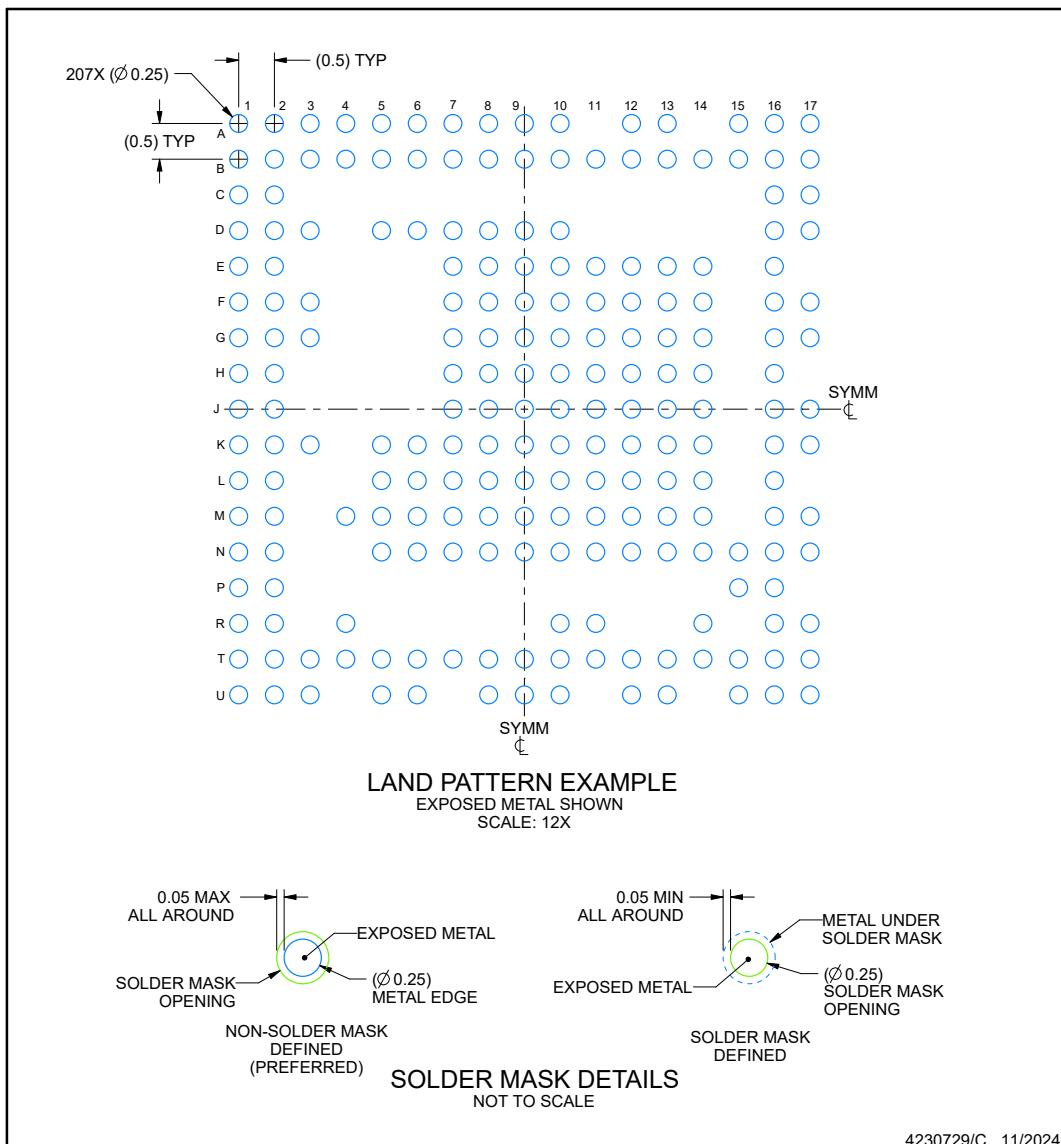
13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, see the left-hand navigation.

ANC0207A**PACKAGE OUTLINE****FCCSP - 1.044 mm max height**

PLASTIC BALL GRID ARRAY

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

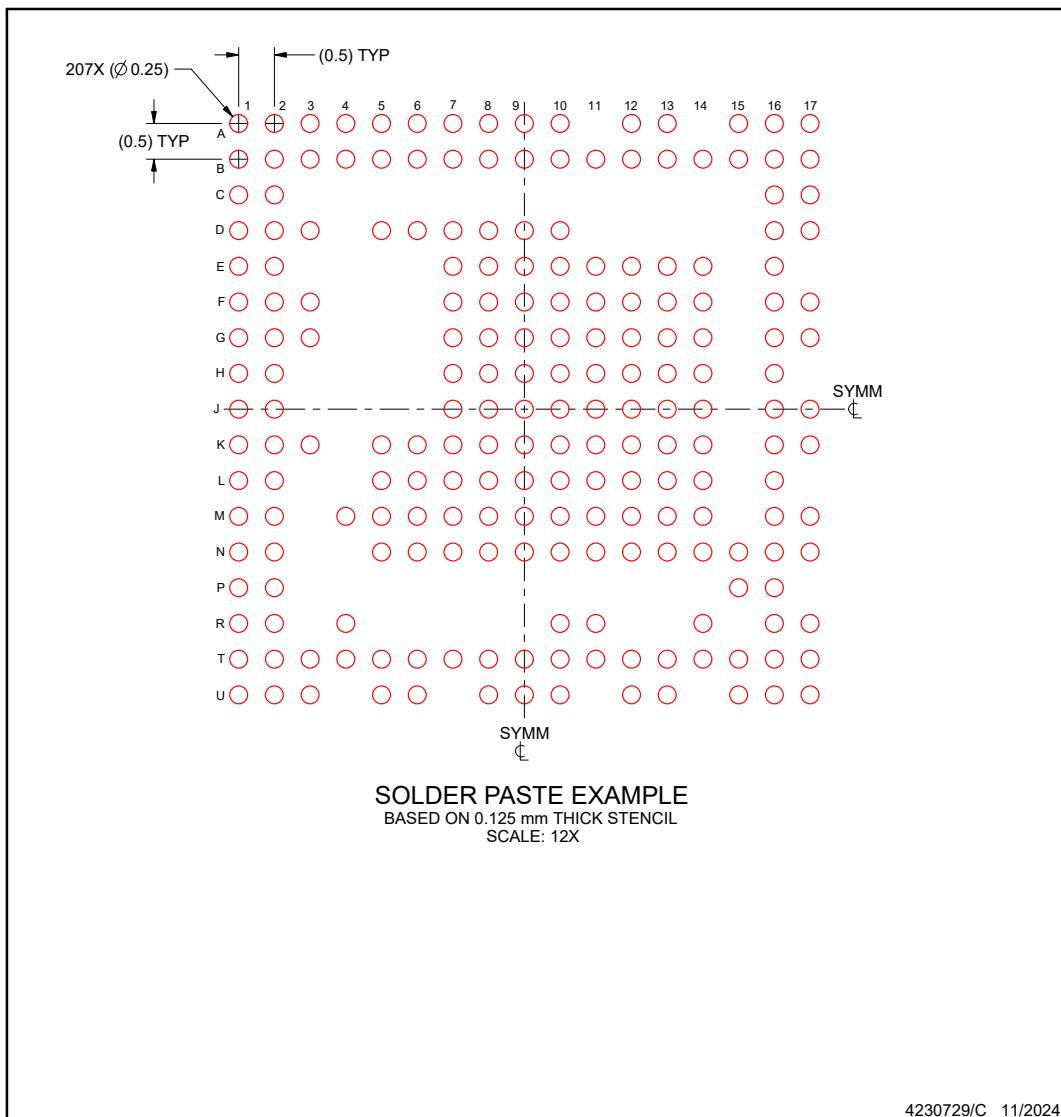
EXAMPLE BOARD LAYOUT

ANC0207A

FCCSP - 1.044 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)


3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

EXAMPLE STENCIL DESIGN

ANC0207A

FCCSP - 1.044 mm max height

PLASTIC BALL GRID ARRAY

4230729/C 11/2024

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
AWRL6843DBGANCRQ1	Active	Production	FCCSP (ANC) 207	1000 LARGE T&R	Yes	Call TI Snagcubi	Level-3-260C-168 HR	-	AWRL6843 BG 795
AWRL6844DBGANCRQ1	Active	Production	FCCSP (ANC) 207	1000 LARGE T&R	Yes	Call TI Snagcubi	Level-3-260C-168 HR	-	AWRL6844 BG 795
XA6844DBGANC	Active	Preproduction	FCCSP (ANC) 207	96 JEDEC TRAY (10+1)	-	Call TI	Call TI	-40 to 140	
XA6844DBGANC.B	Active	Preproduction	FCCSP (ANC) 207	96 JEDEC TRAY (10+1)	-	Call TI	Call TI	-40 to 140	

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025