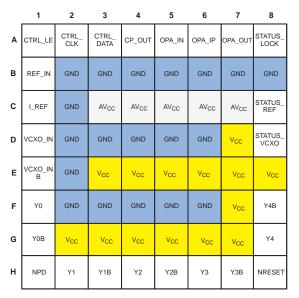
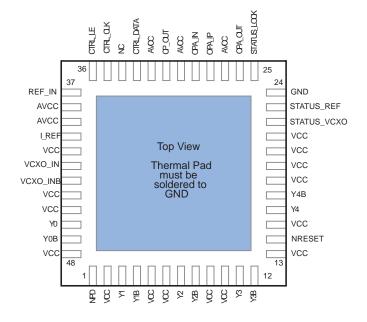

CDC7005 3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER

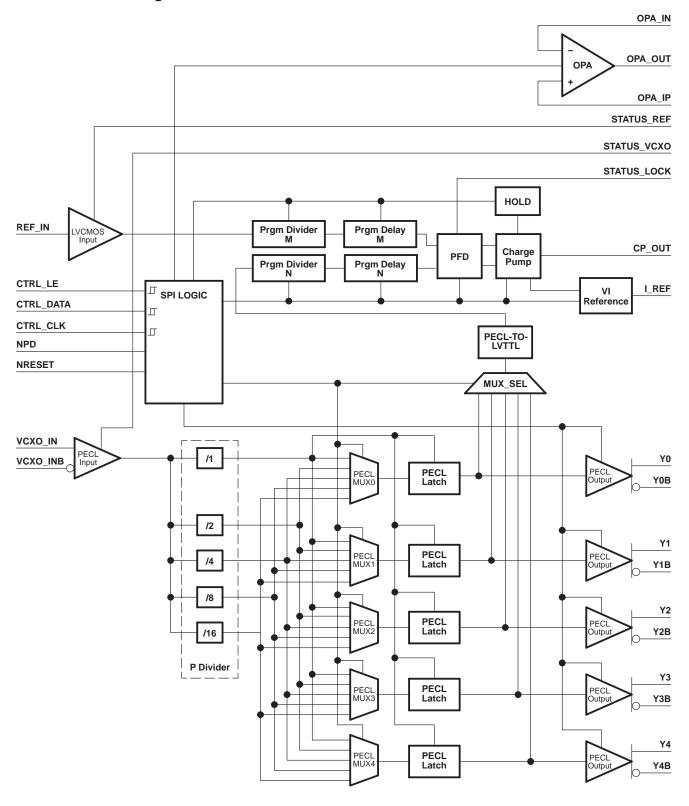

SCAS685L- DECEMBER 2002 - REVISED JUNE 2009


- High Performance 1:5 PLL Clock Synchronizer
- Two Clock Inputs: VCXO_IN Clock Is Synchronized To REF_IN Clock
- Synchronizes Frequencies Up To 800 MHz (VCXO_IN)
- Supports Five Differential LVPECL Outputs
- Each Output Frequency Is Selectable By x1, /2, /4, /8, /16
- All Outputs Are Synchronized
- Integrated Low-Noise OPA For External Low-Pass Filter
- Efficient Jitter Screening From Low PLL Loop Bandwidth
- Low-Phase Noise Characteristic
- Programmable Delay For Phase Adjustments
- Predivider Loop BW Adjustment
- SPI Controllable Division Setting
- Power-Up Control Forces LVPECL Outputs to 3-State at VCC < 1.5 V
- 3.3-V Power Supply
- Packaged In 64-Pin BGA (0,8 mm Pitch ZVA) or 48-Pin QFN (RGZ)
- Industrial Temperature Range −40°C To 85°C

description

The CDC7005 is a high-performance, low-phase noise, and low-skew clock synthesizer and jitter cleaner that synchronizes the voltage controlled crystal oscillator (VCXO) frequency to the reference clock. The programmable predividers M and N give a high flexibility to the frequency ratio of the reference clock to VCXO: VCXO_IN/REF_IN = (NxP)/M. The VCXO_IN clock operates up to 800 MHz. Through the selection of external

VCXO and loop filter components, the PLL loop bandwidth and damping factor can be adjusted to meet different system requirements. Each of the five differential LVPECL outputs are programmable by the serial peripheral interface (SPI). The SPI allows individual control of frequency and enable/disable state of each output. The device operates in 3.3-V environment. The built-in latches ensure that all outputs are synchronized.


The CDC7005 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

functional block diagram

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

Pin Functions

	PIN			
NAME	BGA	QFN	TYPE	DESCRIPTION
AVCC	C3, C4, C5, C6, C7	27, 30, 32, 38, 39	Power	3.3-V analog power supply
CP_OUT	A4	31	0	Charge pump output
CTRL_LE	A1	36	I	LVCMOS input, control load enable for serial programmable interface (SPI) with hysteresis. Unused or floating inputs must be tied to proper logic level. It is recommend to use a $20k\Omega$ or larger pull–up resistor to VCC.
CTRL_CLK	A2	35	I	LVCMOS input, serial control clock input for SPI, with hysteresis. Unused or floating inputs must be tied to proper logic level. It is recommend to use a $20 \mathrm{k}\Omega$ or larger pull—up resistor to VCC.
CTRL_DATA	А3	33	I	LVCMOS input, serial control data input for SPI, with hysteresis. Unused or floating inputs must be tied to proper logic level. It is recommend to use a $20k\Omega$ or larger pull–up resistor to VCC.
GND	B2, B3, B4, B5, B6, B7, B8, C2, D2, D3, D4, D5, D6, E2, F2, F3, F4, F5, F6	Thermal pad and pin 24	Ground	Ground
I_REF	C1	40	0	Current path for external reference resistor (12 k Ω ±1%) to support an accurate charge pump current, optional. Do not use any capacitor across this resistor to prevent noise coupling via this node. If internal 12 k Ω is selected (default setting), this pin can be left open.
NC	-	34	-	Not connected
NPD	H1	1	I	LVCMOS input, asynchronous power down (PD) signal active on low. Switches all current sources off, resets all dividers to default values, and 3-states all outputs. Has an internal 150-k Ω pullup resistor. Note 2: It is recommended to ramp up NPD at the same time with VCC and AVCC or later. The ramp up rate should not be faster than the ramp up rate of VCC and AVCC
NRESET	H8	14	I	LVCMOS input, asynchronous reset signal active on low. Resets the counter of all dividers to zero keeping its divider values the same. It has an internal 150-kΩ pullup resistor. Yx outputs are switched low during reset.
OPA_IN	A5	29	I	Inverting input of the op amp, see Note 1
OPA_OUT	A7	26	0	Output of the op amp, see Note 1
OPA_IP	A6	28	I	Noninverting input of the op amp, see Note 1
REF_IN	B1	37	I	LVCMOS reference clock input
STATUS_LOCK	A8	25	0	This pin is high if the PLL lock definition is valid. PLL lock definition means the rising edge of REF_IN clock and VCXO_IN clock for PFD are inside the lock detect window for at least five successive input clock cycles. If the rising edge of REF_IN clock and VCXO_IN clock are out of the selected lock detect window, this pin will be low, but it does not refer to the real lock condition of the PLL. This means, that i.e. due to a strong jitter at REF_IN or VCXO_IN STATUS_LOCK can be low, even if the PLL is in Lock. The PLL is in lock for sure, if STATUS_LOCK is high. See Table 8 and Figure 4.
STATUS_REF	C8	23	0	LVCMOS output provides the status of the reference input (frequencies above 3.5 MHz are interpreted as valid clock, active high)
STATUS_VCXO	D8	22	0	LVCMOS outputs provides the status of the VCXO input (frequencies above 10 MHz are interpreted as valid clock, active high)

SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

VCC	D7, E3, E4, E5, E6, E7, E8, F7, G2, G3, G4, G5, G6, G7	2, 5, 6, 9, 10, 13, 15, 18, 19, 20, 21, 41, 44, 45, 48	Power	3.3-V supply VCC and AVCC should have always same supply voltage
VCXO_IN	D1	42	I	VCXO LVPECL input
VCXO_INB	E1	43	I	Complementary VCXO LVPECL input
Y[0:4]	F1, H2, H4, H6, G8	46, 3, 7, 11, 16	0	LVPECL output
Y[0:4]B	G1, H3, H5, H7, F8	47, 4, 8, 12, 17	0	Complementary LVPECL output

NOTE 1: If the internal operational amplifier is not used, these pins can be left open.

SPI control interface

The serial interface of the CDC7005 is a simple SPI-compatible interface for writing to the registers of the device. It consists of three control lines: CTRL_CLK, CTRL_DATA, and CTRL_LE. There are four 32-bit wide registers, which can be addressed by the two LSBs of a transferred word (bit 0 and bit 1). Every transmitted word must have 32 bits, starting with MSB first. Each word can be written separately. It is recommended to program Word 0, Word 1, Word 2 and Word 3 right after power up and NPD becomes HIGH. The transfer is initiated with the falling edge of CTRL_LE; as long as CTRL_LE is high, no data can be transferred. During CTRL_LE, low data can be written. The data has to be applied at CTRL_DATA and has to be stable before the rising edge of CTRL_CLK. The transmission is finished by a rising edge of CTRL_LE. With the rising edge of CTRL_LE, the new word is asynchronously transferred to the internal register (e.g., N, M, P, ...). Each word has to be separately transmitted by this procedure. Unused or floating inputs must be tied to proper logic level. It is recommend to use a $20k\Omega$ or larger pull–up resistor to VCC.

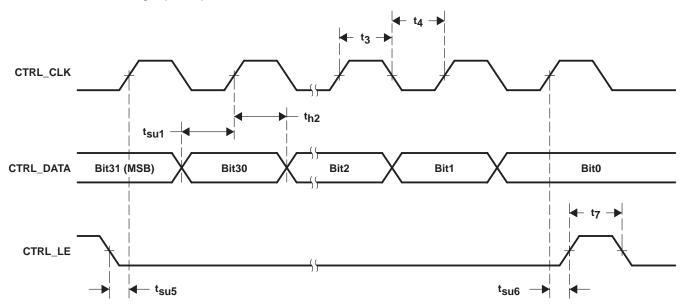


Figure 1. Timing Diagram SPI Control Interface

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

Table 1. Word 0

віт	BIT NAME		DESCRIPTION / FUNCTION	TYPE	POWER-UP CONDITION	PIN AFFECTED
0	C0		Register selection	W	0	
1	C1		Register selection	W	0	
2	M0		Reference divider M bit 0	W	1	
3	M1		Reference divider M bit 1	W	1	
4	M2		Reference divider M bit 2	W	1	
5	M3		Reference divider M bit 3	W	1	
6	M4	5	Reference divider M bit 4	W	1	
7	M5	Reference Divider M	Reference divider M bit 5	W	1	
8	M6		Reference divider M bit 6	W	1	
9	M7		Reference divider M bit 7	W	0	
10	M8		Reference divider M bit 8	W	0	
11	M9		Reference divider M bit 9	W	0	
12	MD0		Reference delay M bit 0	W	0	
13	MD1	Reference Delay M	Reference delay M bit 1	W	0	
14	MD2		Reference delay M bit 2	W	0	
15	PFD0		PFD pulse width PFD bit 0	W	0	A4
16	PFD1	PFD Pulse Width	PFD pulse width PFD bit 1	W	0	A4
17	PFD2		PFD pulse width PFD bit 2	W	0	A4
18	CP0		CP current setting bit 0	W	1	A4
19	CP1	CP Current	CP current setting bit 1	W	0	A4
20	CP2	CP Current	CP current setting bit 2	W	0	A4
21	CP3		CP current setting bit 3	W	1	A4
22	Y03St		Y0 3-state (1 = output enabled)	W	1	F1, G1
23	Y13St		Y1 3-state (1 = output enabled)	W	1	H2, H3
24	Y23St		Y2 3-state (1 = output enabled)	W	1	H4, H5
25	Y33St	Output 3-State	Y3 3-state (1 = output enabled)	W	1	H6, H7
26	Y43St		Y4 3-state (1 = output enabled)	W	1	G8, F8
27	CP3St		CP 3-state (1 = output enabled)	W	1	A4
28	OP3St		OPA 3-state and disable (1 = OPA enabled)	W	0	A7
29	MUXS0		MUXSEL select bit 0	W	1	
30	MUXS1	MUXSEL	MUXSEL select bit 1	W	1	
31	MUXS2		MUXSEL select bit 2	W	0	

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

Table 2. Word 1

BIT	BIT NAME		DESCRIPTION / FUNCTION	TYPE	POWER-UP CONDITION	PIN AFFECTED
0	C0		Register selection	W	1	
1	C1		Register selection	W	0	
2	N0		VCXO divider N bit 0	W	1	
3	N1		VCXO divider N bit 1	W	1	
4	N2		VCXO divider N bit 2	W	1	
5	N3		VCXO divider N bit 3	W	1	
6	N4	VCXO	VCXO divider N bit 4	W	1	
7	N5	Divider N [†]	VCXO divider N bit 5	W	1	
8	N6		VCXO divider N bit 6	W	1	
9	N7		VCXO divider N bit 7	W	0	
10	N8		VCXO divider N bit 8	W	0	
11	N9		VCXO divider N bit 9	W	0	
12	ND0		VCXO delay N bit 0	W	0	
13	ND1	VCXO Delay N	VCXO delay N bit 1	W	0	
14	ND2	Delay IV	VCXO delay N bit 2	W	0	
15	MUX00		MUX0 select bit 0	W	0	F1, G1
16	MUX01	MUX0	MUX0 select bit 1	W	0	F1, G1
17	MUX02		MUX0 select bit 2	W	0	F1, G1
18	MUX10		MUX1 select bit 0	W	1	H2, H3
19	MUX11	MUX1	MUX1 select bit 1	W	0	H2, H3
20	MUX12		MUX1 select bit 2	W	0	H2, H3
21	MUX20		MUX2 select bit 0	W	0	H4, H5
22	MUX21	MUX2	MUX2 select bit 1	W	1	H4, H5
23	MUX22		MUX2 select bit 2	W	0	H4, H5
24	MUX30		MUX3 select bit 0	W	1	H6, H7
25	MUX31	MUX3	MUX3 select bit 1	W	1	H6, H7
26	MUX32		MUX3 select bit 2	W	0	H6, H7
27	MUX40		MUX4 select bit 0	W	1	G8, F8
28	MUX41	MUX4	MUX4 select bit 1	W	1	G8, F8
29	MUX42		MUX4 select bit 2	W	0	G8, F8
30	CP_DIR		Determines in which direction CP should regulate, if REF_CLK is faster than VCXO_CLK, and vice versa (see Figure 2)	W	1	A4
31	REXT		Enable external reference resistor (1 = enabled)	W	0	C1

[†] The frequency applied to the Divider N must be smaller than 250 MHz. A sufficient P Divider must be selected with the MUX_SEL to maintain this criteria.

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

Table 3. Word 2

ВІТ	BIT NAME	DESCRIPTION / FUNCTION	TYPE	POWER-UP CONDITION	PIN AFFECTED
0	C0	Register selection	W	0	
1	C1	Register selection		1	
2	HOLD	Enables the hold functionality (1 = enabled)	W	0	A4
3	NPD	PD current sources, resets the dividers and 3-states all outputs (0 = active)	W	1	
4	NRESET	RESET all dividers (0 = active)	W	1	
5	ENBG	Enable bandgap (1 = enabled), see Note 2	W	1	C1
6	LOCKW 0	Lock detect window bit 0	W	0	A8
7	LOCKW 1	Lock detect window bit 1	W	0	A8
8	RES	Reserved	W	X	
9	RES	Reserved	W	X	
10	RES	Reserved	W	X	
11	RES	Reserved	W	Х	
12	RES	Reserved	W	X	
13	RES	Reserved	W	X	
14	RES	Reserved	W	X	
15	RES	Reserved	W	Х	
16	RES	Reserved	W	X	
17	RES	Reserved	W	X	
18	RES	Reserved	W	X	
19	RES	Reserved	W	X	
20	RES	Reserved	W	X	
21	RES	Reserved	W	X	
22	RES	Reserved	W	Х	
23	RES	Reserved	W	Х	
24	RES	Reserved	W	Х	
25	RES	Reserved	W	Х	
26	RES	Reserved	W	Х	
27	RES	Reserved	W	Х	
28	RES	Reserved	W	Х	
29	RES	Reserved	W	Х	
30	RES	Reserved	W	Х	
31	RES	Reserved	W	Х	

NOTE 2: The reference voltage for the charge pump and LVPECL output circuitry can be generated in two ways. One way is to enable ENBG and the other way is to use the voltage divider circuitry (internal or external). It is recommended to enable ENBG because it gives an accurate value and it is independent on temperature variation.

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

Table 4. Word 3 (See Note 3)

ВІТ	BIT NAME	DESCRIPTION / FUNCTION	TYPE	POWER-UP CONDITION	PIN AFFECTED
0	C0	Register selection	W	1	
1	C1	Register selection	W	1	
2	RES	Reserved	W	0	
3	RES	Reserved	W	0	
4	RES	Reserved	W	0	
5	RES	Reserved	W	0	
6	RES	Reserved	W	0	
7	RES	Reserved	W	0	
8	RES	Reserved	W	0	
9	RES	Reserved	W	0	
10	RES	Reserved	W	0	
11	RES	Reserved	W	0	
12	RES	Reserved	W	0	
13	RES	Reserved	W	0	
14	RES	Reserved	W	0	
15	RES	Reserved	W	0	
16	RES	Reserved	W	0	
17	RES	Reserved	W	0	
18	RES	Reserved	W	0	
19	RES	Reserved	W	0	
20	RES	Reserved	W	0	
21	RES	Reserved	W	0	
22	RES	Reserved	W	0	
23	RES	Reserved	W	0	
24	RES	Reserved	W	0	
25	RES	Reserved	W	0	
26	RES	Reserved	W	0	
27	RES	Reserved	W	0	
28	RES	Reserved	W	0	
29	RES	Reserved	W	0	
30	RES	Reserved	W	0	
31	RES	Reserved	W	0	

NOTE 3: It is recommended to program all register bits of Word 3 to 0 along with other Registers.

functional description of the logic

Table 5. Reference Divider M and VCXO Divider N (See Note 4)

M9	M8	M7	M6	M5	M4	М3	M2	M1	МО	DIV BY [†]	DEFAULT
0	0	0	0	0	0	0	0	0	0	1	
0	0	0	0	0	0	0	0	0	1	2	
0	0	0	0	0	0	0	0	1	0	3	
0	0	0	0	0	0	0	0	1	1	4	
					• • •						
0	0	0	1	1	1	1	1	1	1	128	Yes
					• • •						
1	1	1	1	1	1	1	1	0	1	1022	
1	1	1	1	1	1	1	1	1	0	1023	
1	1	1	1	1	1	1	1	1	1	1024	

NOTE 4: If the divider value is Q, then the code will be the binary value of (Q-1).

Table 6. Reference Delay M and VCXO Delay N

MD2/ND2	MD1/ND1	MD0/ND0	DELAY [†]	DEFAULT
0	0	0	0 ps	Yes
0	0	1	150 ps	
0	1	0	300 ps	
0	1	1	450 ps	
1	0	0	600 ps	
1	0	1	750 ps	
1	1	0	1.5 ns	
1	1	1	2.75 ns	

[†] Typical values at V_{CC} = 3.3 V, temperature = 25°C

Table 7. PFD Pulse Width Delay

PFD2	PFD1	PFD0	ADDITIONAL PULSE WIDTH [†]	DEFAULT
0	0	0	0 ps	Yes
0	0	1	300 ps	
0	1	0	600 ps	
0	1	1	900 ps	
1	0	0	1.5 ns	
1	0	1	2.1 ns	
1	1	0	2.7 ns	
1	1	1	3.7 ns	

 $^{^\}dagger$ Typical values at V_{CC} = 3.3 V, temperature = 25°C

[†] The frequency applied to the Divider N must be smaller than 250 MHz. A sufficient P Divider must be selected with the MUX_SEL to maintain this criteria.

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

functional description of the logic (continued)

Table 8. Lock Detect Window

LockW 1	LockW 0	REF_IN TO Yn TOLERABLE PHASE OFFSET (See Figure 4 and Note 1)	DEFAULT
0	0	±1.2 ns	Yes
0	1	±1.8 ns	
1	0	±2.4 ns	
1	1	±3 ns	

NOTE 1: Determined at PFD – REF_IN and Yn feed through M/N Divider and M/N Delay.

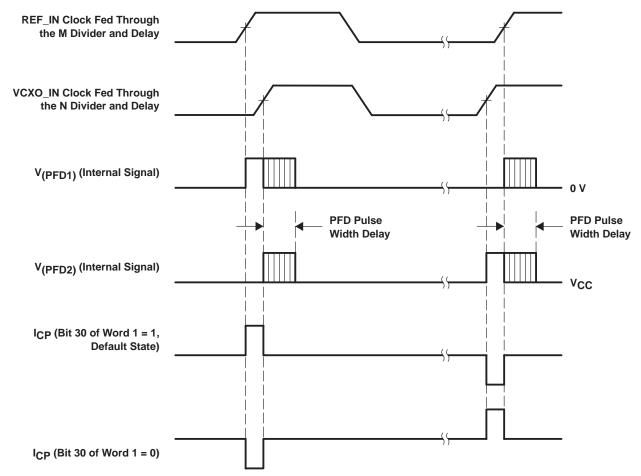
Table 9. Charge Pump Current

CP3	CP2	CP1	CP0	NOMINAL CHARGE PUMP CURRENT	DEFAULT
0	0	0	0	0.625 mA	
0	0	0	1	1.25 mA	
0	0	1	0	1.875 mA	
0	0	1	1	2.5 mA	
0	1	0	0	3.125 mA	
0	1	0	1	3.75 mA	
0	1	1	0	4.375 mA	
0	1	1	1	5 mA	
1	0	0	0	1 mA	
1	0	0	1	2 mA	Yes
1	0	1	0	3 mA	
1	0	1	1	4 mA	
1	1	0	0	5 mA	
1	1	0	1	6 mA	
1	1	1	0	7 mA	
1	1	1	1	8 mA	

 $[\]uparrow$ With an internal or external reference resistor (12 k Ω) in use.

Table 10. MUXSEL Selection

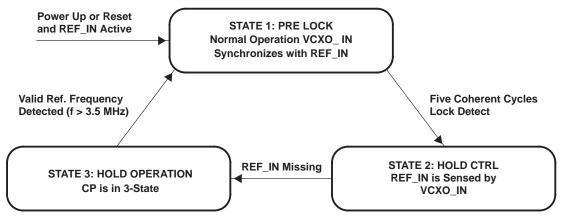
MUXS2	MUXS1	MUXS0	SELECTED VCXO SIGNAL FOR THE PHASE DISCRIMINATOR	DEFAULT
0	0	0	Y0	
0	0	1	Y1	
0	1	0	Y2	
0	1	1	Y3	Yes
1	0	0	Y4	
1	0	1	Y3	
1	1	0	Y3	
1	1	1	Y3	



SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

functional description of the logic (continued)

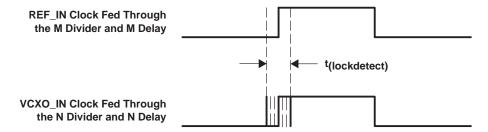
Table 11. MUX0, MUX1, MUX2, MUX3, and MUX4 Selection


MUX2	MUX1	MUX0	SELECTED DIVIDED VCXO SIGNAL	DEFAULT
0	0	0	Div by 1	For Y0
0	0	1	Div by 2	For Y1
0	1	0	Div by 4	For Y2
0	1	1	Div by 8	For Y3 and Y4
1	0	0	Div by 16	
1	0	1	Div by 8	
1	1	0	Div by 8	
1	1	1	Div by 8	

NOTE: The purpose of the PFD pulse width delay is to improve spurious suppression. (See Table 7)

Figure 2. Charge Pump Current Direction

functional description of the logic (continued)



NOTES: A. For a proper hold functionality the following conditions must be maintained:

- Counter M and counter N need to have the same divider ratio
- fref_in max = 75 MHz
- Duty cycle of 45% to 55% for 25 MHz <= $\,$ fref_in < 50 MHz
- Duty cycle of 40% to 60% for 50 MHz <= fref_in < 75 MHz
- Duty cycle of fVCXO should be in 50% range

The hold functionality is triggered by the first missing REF_IN cycle. It is disabled in default mode (bit 2 of word 2 = 0). While the device is in frequency hold mode, a possible leakage current caused by the external filter and VCXO may change the VCXO control voltage, and therefore changing the VCXO frequency. To keep the frequency drift as low as possible, a low leakage current filter design is recommended or the number of the disrupted / missing REF_IN clock cycles should be kept low (< 100).

Figure 3. State Machine Operation

NOTE: If the rising edge of REF_IN clock and VCXO_IN clock for PFD are inside the lock detect window (t(lockdetect)) for at least five successive input clock periods, then the PLL is considered to be locked. In this case, the STATUS_LOCK output is set to high level. The size of the lock detect window is programmable via the SPI control logic (bit 6 and 7 of word 2). (See Table 8)

Figure 4. Lock Detect Window

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{CC} , AV _{CC} (see Note 2)	
Input voltage range, V _I (see Note 3)	–0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 3)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input current ($V_I < 0$, $V_I > V_{CC}$)	±20 mA
Output current for LVPECL outputs (0 < V _O < V _{CC})	–50 mA
Continuous output current, I _O	±50 mA
Storage temperature range T _{stg}	–65°C to 150°C
Maximum junction temperature, T _J	125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

package thermal resistance for RGZ (QFN) package (see Note 4 and Note 5)

AIRFLOW (LFM)	θ _{JA} (°C/W)	θ _{JC} (°C/W)	θ _{JP} (°C/W)	ΨJT (°C/W)
0	29.9	22.4	1.5	0.2
15	24.7			0.2
250	23.2			0.2
500	21.5			0.3

NOTE 4: The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).

package thermal resistance for ZVA (BGA) package (see Note 6)

AIRFLOW (m/s)	RFLOW (m/s) θ _{JA} (°C/W)		θ _{JB} (°C/W)	Ψ _{JT} (°C/W)
0	0 54		44.5	0.9
1	49			0.9
2.5	47.2			0.9

NOTE 6: The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	3	3.3	3.6	V
Operating free-air temperature, T _A	-40		85	°C
Low-level input voltage LVCMOS, V _{IL}			0.3 V _C C	V
High-level input voltage LVCMOS, VIH	0.7 V _{CC}			V
Input threshold voltage LVCMOS, V _{IT}		0.5 V _C C		V
High-level output current LVCMOS, IOH			-6	mA
Low-level output current LVCMOS, I _{OL}			6	mA
Input voltage range LVCMOS, V _I	0		3.6	V
Input amplitude LVPECL, VINPP [(VVCXO_IN - VVCXO_INB), See Note 7]	0.5		1.3	V
Common-mode input voltage LVPECL, V _{IC}	V _{CC} -2		V _{CC} -0.4	V

NOTE 7: V_{INPP} minimum and maximum is required to maintain ac specifications; the actual device function tolerates at a minimum V_{INPP} of 100 mV.

NOTES: 2. All supply voltages must be the same value and must be supplied at the same time.

NOTES: 3. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

NOTE 5: Connected to GND with nine thermal vias (0,3 mm diameter).

CDC7005

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

timing requirements over recommended ranges of supply voltage, load, and operating free-air temperature

	PARAMETER	MIN	TYP MAX	UNIT
REF_IN Requ	irements			
fREF_IN	LVCMOS reference clock frequency	3.5	180	MHz
t _r / t _f	Rise and fall time of REF_IN signal from 20% to 80% of V _{CC}		4	ns
dutyREF	Duty cycle of REF_IN at V _{CC} / 2	40%	60%	
VCXO_IN, VC	XO_INB Requirements			
fVCXO_IN	LVPECL VCXO clock frequency	10	800	MHz
t _r / t _f	Rise and fall time 20% to 80% of V _{INPP} at 80 MHz to 800 MHz (see Note 8)		3	ns
duty _{VCXO}	Duty cycle of VCXO clock	40%	60%	
SPI/Control R	Requirements (See Figure 1)			
fCTRL_CLK	CTRL_CLK frequency		20	MHz
t _{su1}	CTRL_DATA to CTRL_CLK setup time	10		ns
t _{h2}	CTRL_DATA to CTRL_CLK hold time	10		ns
t ₃	CTRL_CLK high duration	25		ns
t ₄	CTRL_CLK low duration	25		ns
t _{su5}	CTRL_LE to CTRL_CLK setup time	10		ns
t _{su6}	CTRL_CLK to CTRL_LE setup time	10		ns
t ₇	CTRL_LE pulse width	20		ns
t _r / t _f	Rise and fall time of CTRL_DATA CTRL_CLK, CTRL_LE from 20% to 80% of V $_{\hbox{\footnotesize CC}}$		5	ns
NPD / NRESE	T Requirements			·
t _r / t _f	Rise and fall time of the NRESET, NPD signal from 20% to 80% of $V_{\hbox{\footnotesize CC}}$		4	ns

NOTES: 8. Use a square wave for lower frequencies (< 80 MHz).

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEAN

SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

device characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Overall		•	•			
ICC	Supply current (see Note 9)	fvcxo = 245 MHz, fREF_IN = 30 MHz, vcc = 3.6 v, Avcc = 3.6 v, fpFD = 240 kHz, Icp = 2 mA, (see Note 11 and Note 13)		230	265	mA
ICCPD	Power-down current	$f_{ N} = 0 \text{ MHz}, V_{CC} = 3.6 \text{ V},$ $AV_{CC} = 3.6 \text{ V}, V_{I} = 0 \text{ V or } V_{CC}$		100	300	μΑ
^t pho	Phase offset (REF_IN to Y output) (see Note 10)	VREF_IN = VCC/2, Crossing point of Y, See Figure 12	-150		150	ps
LVCMOS		•	•		·	
VIK	LVCMOS input voltage	$V_{CC} = 3 \text{ V, I}_{I} = -18 \text{ mA}$			-1.2	V
lį	LVCMOS input current	V _I = 0 V or V _{CC} , V _{CC} = 3.6 V			±5	μΑ
I _{IH}	LVCMOS input current for NPD, NRESET	V _I = V _{CC} , V _{CC} = 3.6 V			5	μΑ
I _{IL}	LVCMOS input current for NPD, NRESET	V _I = 0 V, V _{CC} = 3.6 V	-15		-35	μΑ
Vон	LVCMOS high-level output voltage	I _{OH} = -12 mA, V _{CC} = 3 V	2.1			V
VOL	LVCMOS low-level output voltage	I _{OL} = 12 mA, V _{CC} = 3 V			0.55	V
Cl	Input capacitance at REF_IN	VI = 0 V or VCC		2		pF
Cl	Input capacitance at CTRL_LE, CTRL_CLOCK, CTRL_DATA	VI = 0 V or VCC		2		pF
^t detectREF	Frequency detect time until STATUS_REF is valid	fREF_IN = 3.5 MHz		5		μs
^t detectVCXO	Frequency detect time until STATUS_VCXO is valid	f _{VCXO_IN} = 10 MHz		5		μs
LVPECL		-	-		·	
IĮ	LVPECL input current	V _I = 0 V or V _{CC}			±100	μΑ
loz	LVPECL output current 3-state	$V_O = 0 \text{ V or } V_{CC} - 0.8 \text{ V}$			20	μΑ
VOH	LVPECL high-level output voltage	See Note 11	V _{CC} -1.18		V _{CC} -0.81	V
VOL	LVPECL low-level output voltage	See Note 11	V _{CC} -1.98		V _{CC} -1.55	V
VOD	Differential output voltage	10 ≤ f _{OUT} ≤ 800 MHz, See Figure 6	500			mV

[†] All typical values are at V_{CC} = 3.3 V, temperature = 25°C.

NOTES: 9. For ICC over frequency see Figure 5.

^{10.} This is valid only for same REF_IN clock and Y output clock frequency. It can be adjusted by the SPI controller (reference delay M and VCXO delay N).

^{11.} Outputs are terminated through a 50- Ω resistor to V_{CC} – 2 V.

^{12.} The $t_{sk(0)}$ specification is only valid for equal loading of all outputs. 13. All output switching at default divider ratios.

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

device characteristics over recommended operating free-air temperature range (unless otherwise noted)(continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
tPLH/tPHL	Propagation delay rising/falling edge	VCXO_IN to Yn	500		950	ps
tsk(p)	LVPECL pulse skew				15	ps
+ + / >	LVPECL output skew (see Note 14)	See Figure 11, Mode 1–2–4–8–8			60	ps
tsk(o)	EVELOC output skew (see Note 14)	See Figure 11, Mode 1–1–1–1			30	ps
t _r / t _f	Rise and fall time	20% to 80% of V _{OD} , See Figure 10	180		350	ps
Cl	Input capacitance at VCXO_IN, VCXO_IB			1.5		pF
Phase Dete	ctor					
fCPmax	Maximum charge pump frequency	PFD pulse width delay is 0 ps		100		MHz
Charge Pun	ոթ					
ICP	Charge pump sink/source current range	V _{CP} = 0.5 V _{CC} , See Table 9	±0.625		±8	mA
I _{CP3St}	Charge pump 3-state current	0.5 V < V _{CP} < V _{CC} - 0.5 V		1	30	nA
I _{CPA}	I _{CP} absolute accuracy	V _{CP} = 0.5 V _{CC}			20%	
ICPM	Sink/source current matching	V _{CP} = 0.5 V _{CC}		5%		
IVCPM	ICP vs VCP matching	0.5 V < V _{CP} < V _{CC} - 0.5 V		10%		
Operational	Amplifier					
Is	Supply current	AV _{CC} = 3.6 V		2	5	mA
VIO	Input offset voltage			2		mV
I _{IB}	Input bias current	(I _{OPA} IP + I _{OPA} IN) / 2		1	30	nA
IIO	Input offset current	IOPA_IP - IOPA_IN		1	10	nA
R _I	Input resistance	0.5 V _{CC} ±500 mV	10			MΩ
VICR	Common-mode input voltage range		0.2		V _{CC} -0.2	V
AOL	Open-loop voltage gain	See Figure 17, f = 1 kHz		70		dB
GBW	Gain bandwidth	See Figure 14		3		MHz
SR	Slew rate	See Figure 14, 20% – 80% of VO		1		V/µs
		R _L = 10 kΩ	0.2		V _{CC} -0.2	
VO	Output voltage swing	$R_L = 2 k\Omega$	0.3		V _C C-0.3	V
RO	Output resistance			60		Ω
	8	Sourcing		-20		
los	Short-circuit output current	Sinking		50		mA
CMRR	Common-mode rejection ratio	V _{INPP} = 500 mV and f = 1 kHz, (see Figure 15)		80		dB
PSRR	Power supply rejection ratio	AVCC modulated with sine wave from 3 V to 3.6 V and f = 100 Hz (see Figure 16)		60		dB
V _n	Input noise voltage	f = 1 kHz, see Figure 14, V _{IN} = 0 V		500		nV/√Hz

[†] All typical values are at V_{CC} = 3.3 V, temperature = 25°C.

NOTE 14: The $t_{Sk(0)}$ specification is only valid for equal loading of all outputs.

SUPPLY CURRENT / DEVICE POWER CONSUMPTION

vs NUMBER OF ACTIVE OUTPUTS

NOTE A: $P_{DEV} = P_{Tot} - P_{Term}$ $P_{DEV} = D_{evice}$ power consumption, $P_{Tot} = T_{otal}$ power consumption, $P_{Term} = T_{erm}$ Termination power consumption

Figure 5. I_{CC} / P_{DEV} vs Frequency

DIFFERENTIAL OUTPUT VOLTAGE

VS **OUTPUT FREQUENCY** 0.90 T_A = 25°C $V_{CC} = 3.3 V$ 0.85 V_{OD} - Differential Output Voltage - V 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 50 150 250 350 450 550 650 750 850 950 four - Output Frequency - MHz

Figure 6. Differential Output Swing (V_{OD}) vs Frequency

APPLICATION INFORMATION

Phase Noise Reference Circuit (See the EVM)

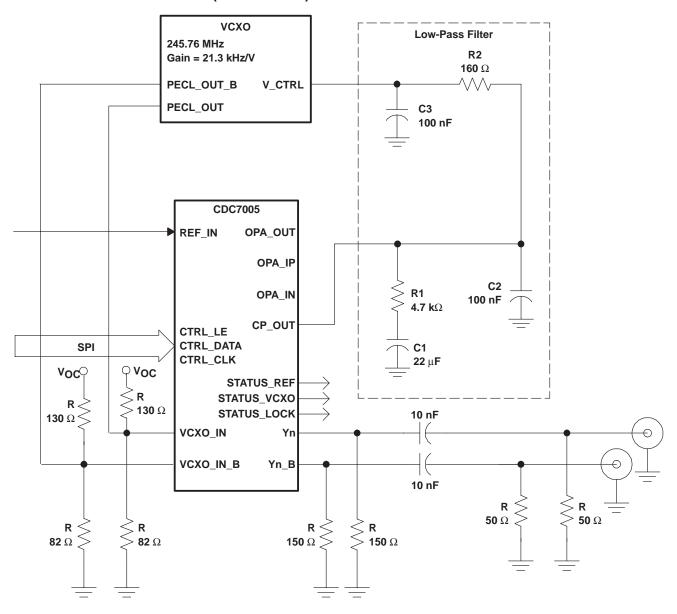


Figure 7. Typical Applications Diagram With Passive Loop Filter

3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER

SCAS685L- DECEMBER 2002 - REVISED JUNE 2009

application specific device characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		REF_IN PHASE NOISE AT	VCXO PHASE	Yn PHASE NOISE 30.72 MHz	UNIT	
		30.72 MHz	NOISE AT 245.76 MHz	MIN TYP†	MAX	
phn ₁₀	Phase noise at 10 Hz	-115	-77	-105		dBc/Hz
phn ₁₀₀	Phase noise at 100 Hz	-125	-95	-116		dBc/Hz
phn _{1k}	Phase noise at 1 kHz	-131	-118	-135		dBc/Hz
phn _{10k}	Phase noise at 10 kHz	-136	-136	-147		dBc/Hz
phn _{100k}	Phase noise at 100 kHz	-138	-138	-152		dBc/Hz
phn _{240k}	Phase noise at 240 kHz	-140	-143	-152		dBc/Hz
^t stabi	PLL stabilization time, (see Note 15)			200		ms

[†] Output phase noise is dependent on the noise of the REF_IN clock and VCXO clock noise floor.

NOTES: 15. The typical stabilization time is based on the above application example at a loop bandwidth of 20 Hz.

^{16.} For further explanations as well as phase noise/jitter test results using various VCXOs, see application note SCAA067.

APPLICATION INFORMATION

information on the clock generation for interpolating DACs with the CDC7005

The CDC7005, with its specified phase noise performance, is an ideal sampling clock generator for high speed ADCs and DACs. The CDC7005 is especially of interest for the new high speed DACs, which have integrated interpolation filter. Such DACs achieve sampling rates up to 500 MSPS. This high data rate can typically not be supported from the digital side driving the DAC (e.g., DUC, digital up-converter). Therefore, one approach to interface the DUC to the DAC is the integration of an interpolation filter within the DAC to reduce the data rate at the digital input of the DAC. In 3G systems, for example, a common sampling rate of a high speed DAC is 245.76 MSPS. With a four times interpolation of the digital data, the required input data rate results into 61.44 MSPS, which can be supported easily from the digital side. The DUC GC4116, which supports up to two WCDMA carriers, provides a maximum output data rate of 100 MSPS. An example is shown in Figure 8, where the CDC7005 supplies the clock signal for the DUC/DDC and ADC/DAC.

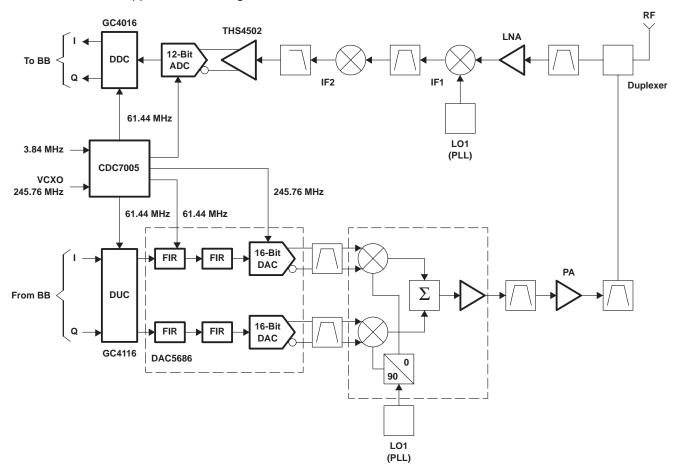


Figure 8. CDC7005 as a Clock Generator for High Speed ADCs and DACs

The generation of the two required clock signals (data input clock, clock for DAC) for such an interpolating DAC can be done in different ways. The easiest way would be to provide an internal PLL multiplier, which is capable of generating the fast sampling clock for the DAC from the data input clock signal. However, the process of the DAC is usually not optimized for best phase noise performance, while the CDC7005 is optimized exactly for this. The CDC7005 therefore provides the preferred clocking scheme for the DAC5686. The DAC5686 demands that the edges of the two input clocks must be phase aligned within ±500 ps for latching the data properly. This phase alignment is well achieved with the CDC7005, which assures a maximum skew of 200 ps of the different different outputs to each other.

APPLICATION INFORMATION

Another advantage of this clock solution is that the ADC or DAC can be driven directly in an ac-coupling interface as shown in Figure 9, with an external termination in a differential configuration. There is no need for a transformer to generate a differential signal from a single-ended clock source.

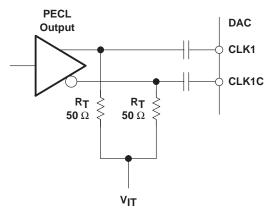


Figure 9. Driving DAC or ADC with PECL Output of the CDC7005

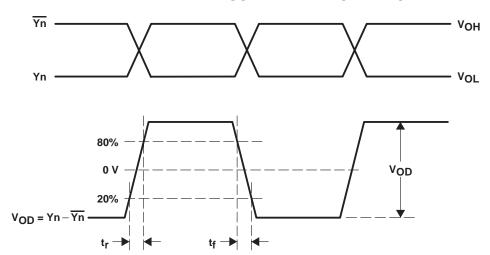


Figure 10. LVPECL Differential Output Voltage and Rise/Fall Time

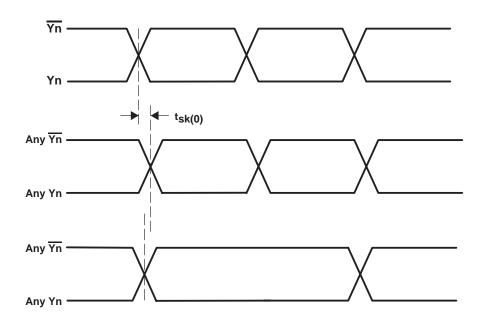


Figure 11. Output Skew

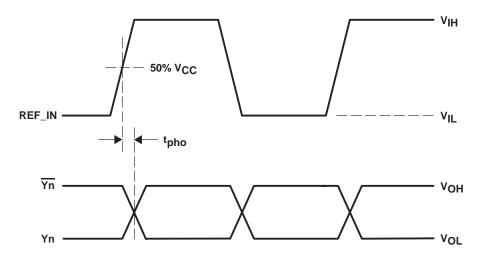
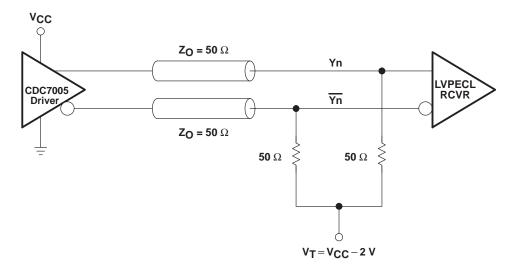



Figure 12. Phase Offset

Figure 13. Typical Termination for Output Driver

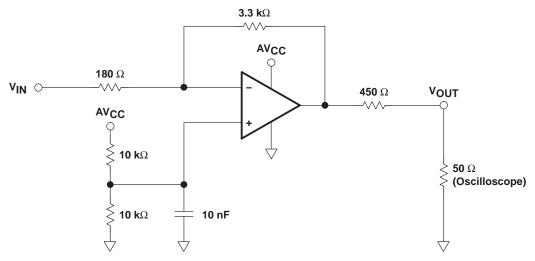
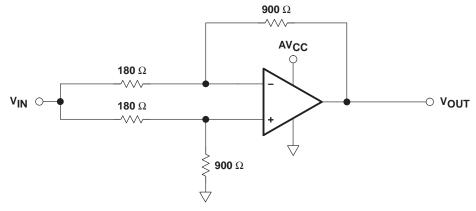
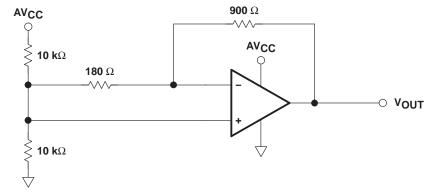
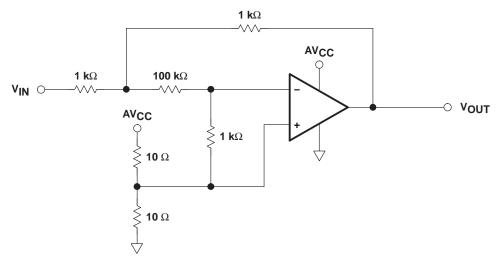




Figure 14. OPA Slew Rate/Gain Bandwidth Test Circuit

NOTE: CMRR (dB) = $20 \times Log (V_{IN}/(V_{IN} - V_{OUT})) \times (1 + 900/180)$


Figure 15. CMRR Test Circuits

NOTE: PSRR (dB) = $(\Delta AV_{CC}/V_{OUT}) \times (900/180)$

Figure 16. PSRR Test Circuit

NOTE: $A_{OL} = (V_{IN} / V_{OUT}) \times (1 + 100 \text{ k}\Omega/1 \text{ k}\Omega)$

Figure 17. Open Loop Voltage Gain Test Circuit

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CDC7005RGZT	Active	Production	VQFN (RGZ) 48	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDC7005
CDC7005RGZT.B	Active	Production	VQFN (RGZ) 48	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDC7005
CDC7005RGZTG4	Active	Production	VQFN (RGZ) 48	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDC7005
CDC7005RGZTG4.B	Active	Production	VQFN (RGZ) 48	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDC7005
CDC7005ZVAR	Active	Production	BGA (ZVA) 64	1000 LARGE T&R	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 85	CK7005Z
CDC7005ZVAR.B	Active	Production	BGA (ZVA) 64	1000 LARGE T&R	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 85	CK7005Z
CDC7005ZVAT	Active	Production	BGA (ZVA) 64	250 SMALL T&R	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 85	CK7005Z
CDC7005ZVAT.B	Active	Production	BGA (ZVA) 64	250 SMALL T&R	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 85	CK7005Z

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

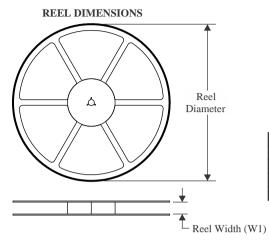
⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

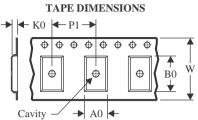
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

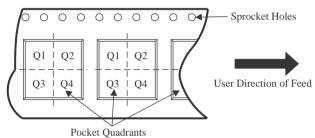
PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

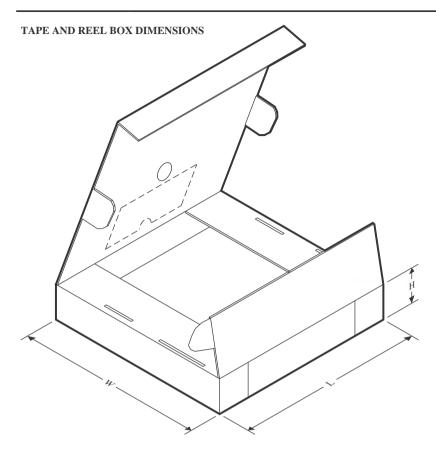
PACKAGE MATERIALS INFORMATION

www.ti.com 27-Dec-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

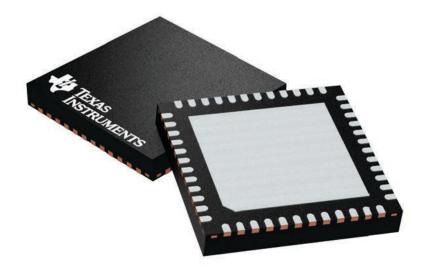


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDC7005ZVAR	BGA	ZVA	64	1000	330.0	16.4	8.3	8.3	2.25	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 27-Dec-2024

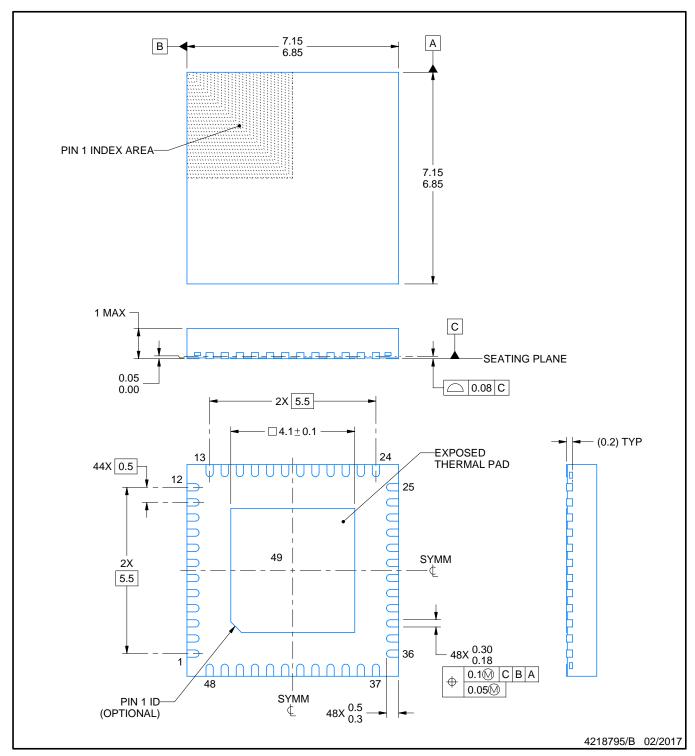


*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
I	CDC7005ZVAR	BGA	ZVA	64	1000	350.0	350.0	43.0

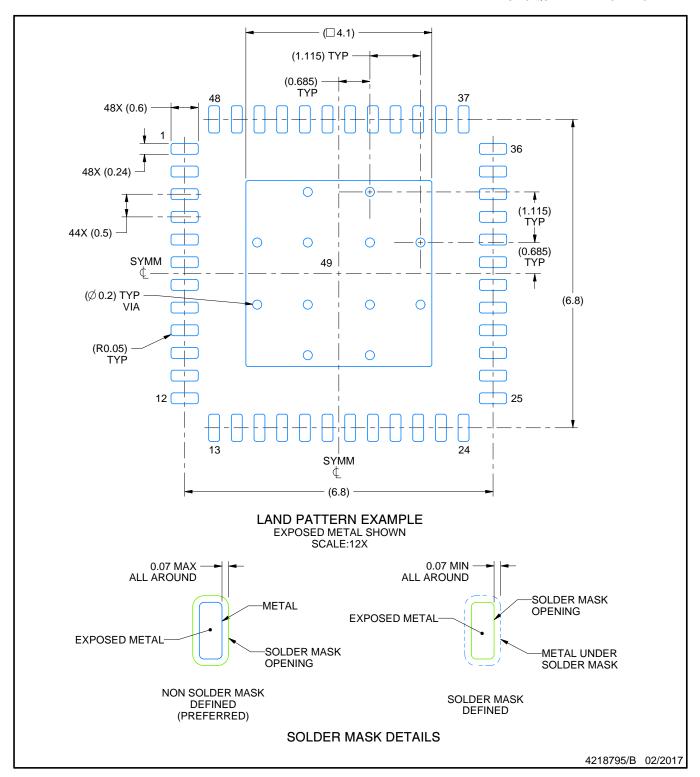
7 x 7, 0.5 mm pitch

PLASTIC QUADFLAT PACK- NO LEAD


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224671/A

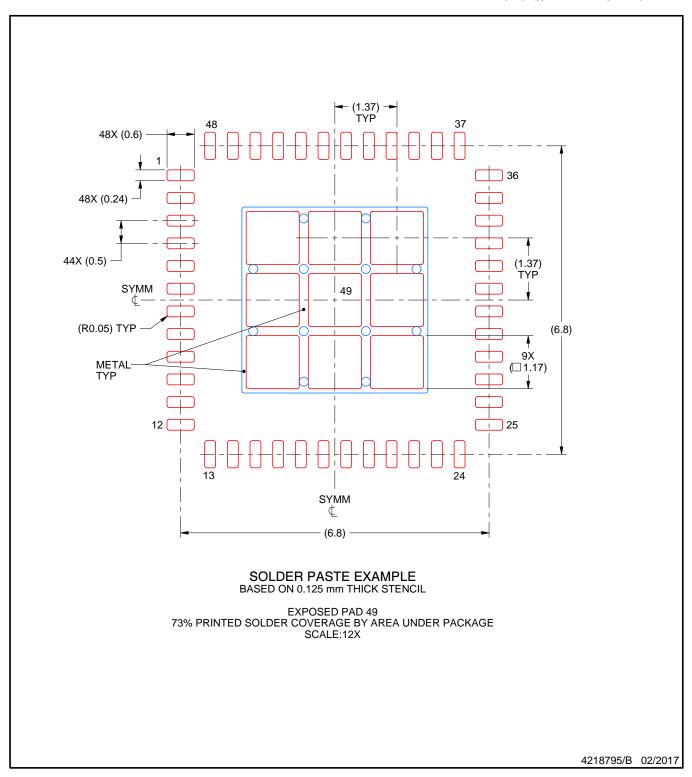
PLASTIC QUAD FLATPACK - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

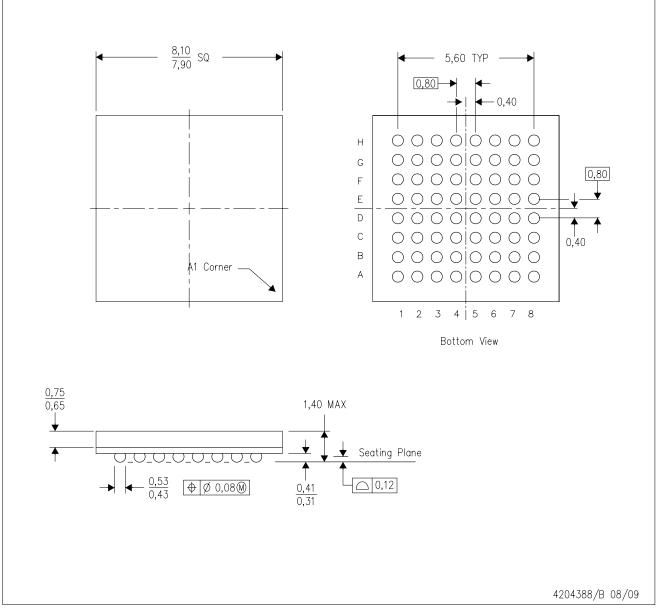
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD


NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

ZVA (S-PBGA-N64)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. This is a Pb-free package.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025