UNIT

٧

nC

TYPICAL VALUE

30

9.0

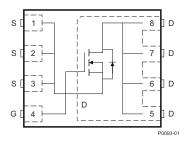
CSD17552Q3A 30 V N-Channel NexFET™ Power MOSFETs

T_A = 25°C

 V_{DS}

 Q_g

1 Features


- Ultra-Low Q_g and Q_{gd}
- Low Thermal Resistance
- Avalanche Rated
- Pb Free
- **RoHS Compliant**
- Halogen Free
- SON 3.3 mm × 3.3 mm Plastic Package

2 Applications

- Point-of-Load Synchronous Buck in Networking, Telecom, and Computing Systems
- Optimized for Control FET Applications

3 Description

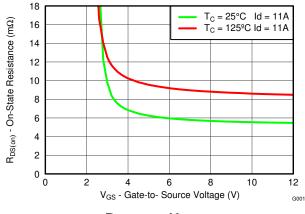
This 30 V, 5.5 m Ω , 3.3 mm × 3.3 mm SON NexFETTM power MOSFET is designed to minimize losses in power conversion applications.

Top View

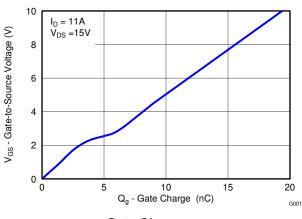
Gate Charge Gate-to-Drain nC Q_{gd} V_{GS} = 4.5 V $\boldsymbol{m}\Omega$ R_{DS(on)} Drain-to-Source On Resistance V_{GS} = 10 V mΩ $V_{GS(th)}$ Threshold Voltage 1.5 ٧ Ordering Information⁽¹⁾ DEVICE QTY MEDIA **PACKAGE** SHIP CSD17552Q3A 2500 13-Inch Reel SON Tape and 3.3 mm × 3.3 mm Reel CSD17552Q3AT 250 7-Inch Reel Plastic Package

Product Summary

Drain-to-Source Voltage


Gate Charge Total (4.5 V)

For all available packages, see the orderable addendum at the end of the data sheet.


Absolute Maximum Ratings

25°C unless otherwise stated	VALUE	UNIT
Drain-to-Source Voltage	30	V
Gate-to-Source Voltage	±20	V
Continuous Drain Current, T _C = 25°C	60	Α
Continuous Drain Current, Silicon Limited	74	Α
Continuous Drain Current, T _A = 25°C ⁽¹⁾	15	Α
Pulsed Drain Current, T _A = 25°C ⁽²⁾	84	Α
Power Dissipation ⁽¹⁾	2.6	W
Operating Junction Temperature, Storage Temperature	-55 to 150	°C
Avalanche Energy, single pulse I _D = 30 A, L = 0.1 mH, R _G = 25 Ω	45	mJ
	Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, $T_C = 25^{\circ}C$ Continuous Drain Current, Silicon Limited Continuous Drain Current, $T_A = 25^{\circ}C^{(1)}$ Pulsed Drain Current, $T_A = 25^{\circ}C^{(2)}$ Power Dissipation ⁽¹⁾ Operating Junction Temperature, Storage Temperature Avalanche Energy, single pulse	Drain-to-Source Voltage 30 Gate-to-Source Voltage ± 20 Continuous Drain Current, $T_C = 25^{\circ}C$ 60 Continuous Drain Current, Silicon Limited 74 Continuous Drain Current, $T_A = 25^{\circ}C^{(1)}$ 15 Pulsed Drain Current, $T_A = 25^{\circ}C^{(2)}$ 84 Power Dissipation ⁽¹⁾ 2.6 Operating Junction Temperature, Storage Temperature -55 to 150 Avalanche Energy, single pulse 45

- Typical $R_{\theta JA} = 48^{\circ} \text{C/W}$ on a 1 inch² (6.45 cm²), (1) 2 oz. (0.071 mm thick) Cu pad on a 0.06 inch (1.52 mm) thick FR4 PCB.
- Pulse duration ≤300 µs, duty cycle ≤2% (2)

R_{DS(on)} vs V_{GS}

Gate Charge

Table of Contents

1 Features1	5 Device and Documentation Support7
2 Applications 1	
3 Description	
4 Specifications3	5.3 Electrostatic Discharge Caution7
4.1 Electrical Characteristics3	5.4 Glossary7
4.2 Thermal Information3	6 Revision History7
4.3 Typical MOSFET Characteristics4	7 Mechanical, Packaging, and Orderable Information7

4 Specifications

4.1 Electrical Characteristics

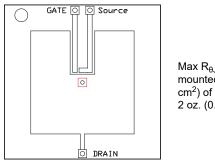
(T_A = 25°C unless otherwise stated)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
STATIC	CHARACTERISTICS		<u>'</u>	'	
BV _{DSS}	Drain-to-source voltage	V _{GS} = 0 V, I _D = 250 μA	30		V
I _{DSS}	Drain-to-source leakage current	V _{GS} = 0 V, V _{DS} = 24 V		1	μΑ
I _{GSS}	Gate-to-source leakage current	V _{DS} = 0 V, V _{GS} = 20 V		100	nA
V _{GS(th)}	Gate-to-source threshold voltage	V _{DS} = V _{GS} , I _D = 250 μA	1.1 1.5	1.9	V
Б	Duein to account on marietanes	V _{GS} = 4.5 V, I _D = 11 A	6.5	8.1	mΩ
$R_{DS(on)}$	Drain-to-source on resistance	V _{GS} = 10 V, I _D = 11 A	5.5	6.0	mΩ
g _{fs} Transconductance		V _{DS} = 15 V, I _D = 11 A	106		S
DYNAM	IC CHARACTERISTICS		· · · · · · · · · · · · · · · · · · ·		
C _{iss}	Input capacitance		1580	2050	pF
C _{oss}	Output capacitance	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz	385	500	pF
C _{rss}	Reverse transfer capacitance		28	36	pF
R _G	Series gate resistance		.9	1.8	Ω
Q _g	Gate charge total (4.5 V)		9	12	nC
Q _{gd}	Gate charge gate to drain	, , , , , , , , , , , , , , , , , , ,	2.3		nC
Q _{gs}	Gate charge gate to source	V _{DS} = 15 V, I _D = 11 A	3.6		nC
Q _{g(th)} Gate charge at V _{th}			1.8		nC
Q _{oss}	Output charge	V _{DS} = 15 V, V _{GS} = 0 V	11		nC
t _{d(on)}	Turn on delay time		7.2		ns
t _r	Rise time	V _{DS} = 15 V, V _{GS} = 4.5 V,	7.4		ns
t _{d(off)}	Turn off delay time	I_{DS} = 11 A, R_G = 2 Ω	11.0		ns
t _f	Fall time		3.4		ns
DIODE (CHARACTERISTICS				
V _{SD}	Diode forward voltage	I _{SD} = 11 A, V _{GS} = 0 V	0.8	1	V
Q _{rr}	Reverse recovery charge	V _{DS} = 13.5 V, I _F = 11 A,	17		nC
t _{rr}	Reverse recovery time	di/dt = 300 A/μs	15		ns

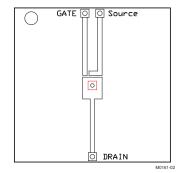
4.2 Thermal Information

(T_A = 25°C unless otherwise stated)

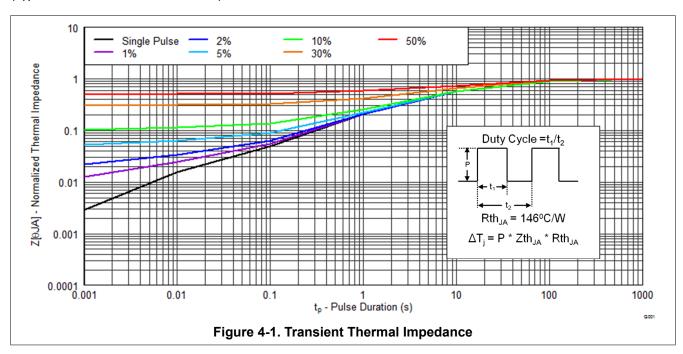
	THERMAL METRIC	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance ⁽¹⁾			2.3	°C/W
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽¹⁾ (2)			60	°C/W

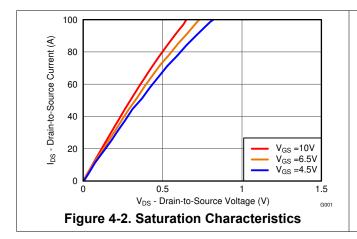

⁽¹⁾ $R_{\theta JC}$ is determined with the device mounted on a 1 inch² (6.45 cm²), 2 oz. (0.071 mm thick) Cu pad on a 1.5 inches × 1.5 inches (3.81 cm × 3.81 cm), 0.06 inch (1.52 mm) thick FR4 PCB. $R_{\theta JC}$ is specified by design, whereas $R_{\theta JA}$ is determined by the user's board design.

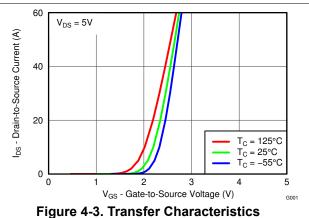
(2) Device mounted on FR4 material with 1 inch² (6.45 cm²), 2 oz. (0.071 mm thick) Cu.


Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

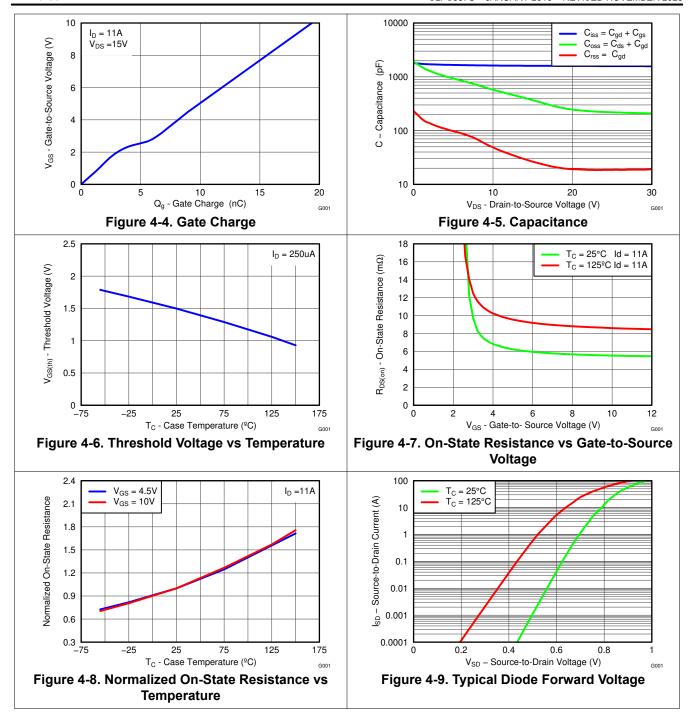

Max $R_{\theta JA} = 60^{\circ}C/W$ when mounted on 1 inch2 (6.45 2 oz. (0.071 mm thick) Cu.

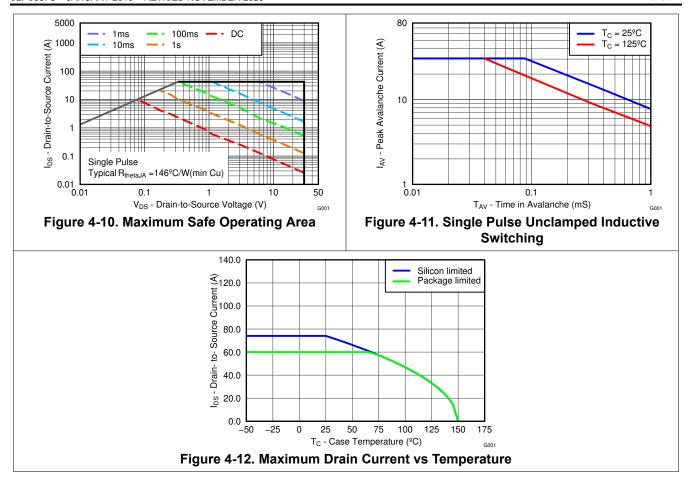



Max $R_{\theta JA}$ = 146°C/W when mounted on a minimum pad area of 2 oz. (0.071 mm thick) Cu.

4.3 Typical MOSFET Characteristics

(T_A = 25°C unless otherwise stated)





www.ti.com

5 Device and Documentation Support

5.1 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the guick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

5.2 Trademarks

NexFET[™] and TI E2E[™] are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

5.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

5.4 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (January 2016) to Revision C (November 2023)	Page
Updated formatting for tables, figures, and cross-references throughout the document	1
Changes from Revision A (June 2014) to Revision B (January 2016)	Page
Enhanced Section 3 text	1
Changes from Revision * (September 2012) to Revision A (June 2014)	Page
Changed "Pb-Free terminal plating" feature to state "Pb Free"	1

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: CSD17552Q3A

www.ti.com 18-Oct-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
CSD17552Q3A	ACTIVE	VSONP	DNH	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-55 to 150	17552	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

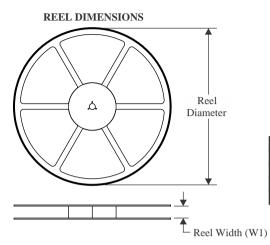
OBSOLETE: TI has discontinued the production of the device.

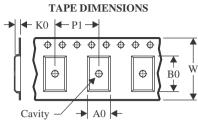
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

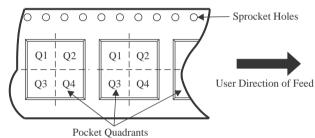
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

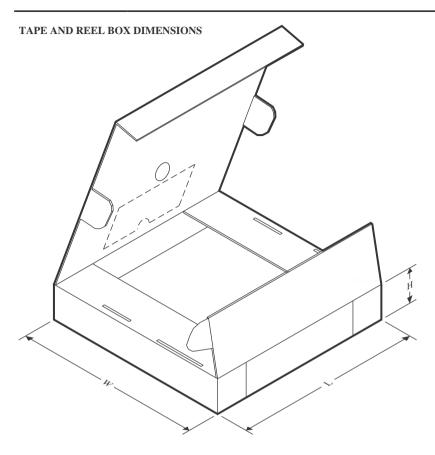
PACKAGE MATERIALS INFORMATION

www.ti.com 1-Dec-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

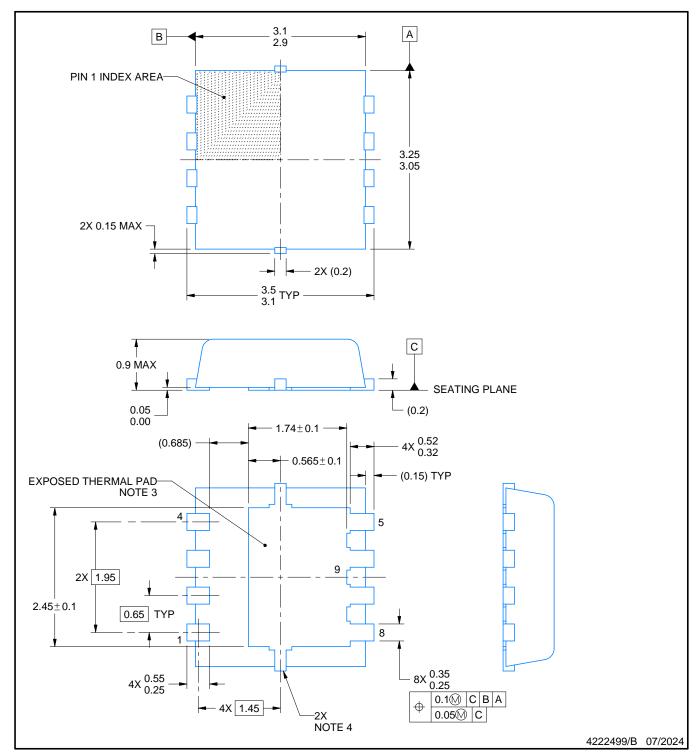


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	` '	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD17552Q3A	VSONP	DNH	8	2500	330.0	12.4	3.6	3.6	1.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

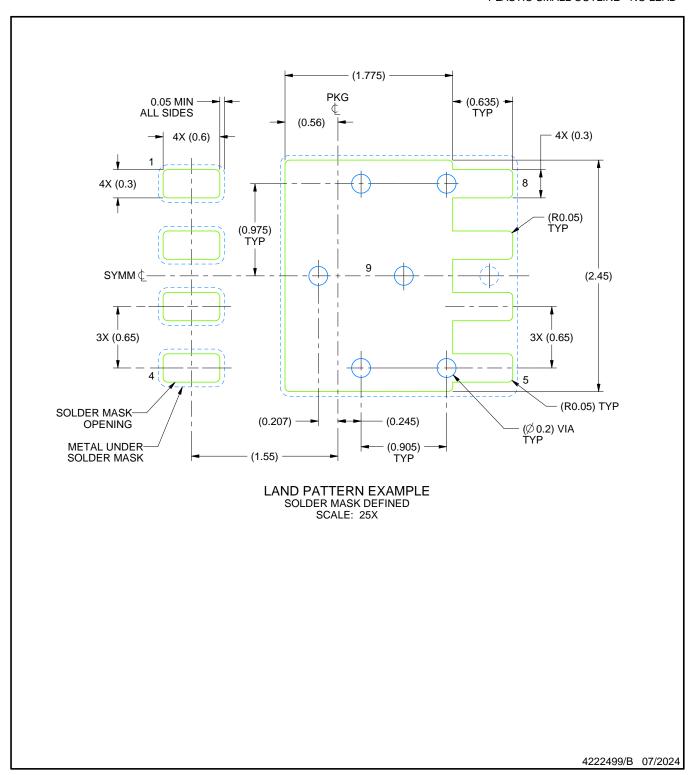
www.ti.com 1-Dec-2023



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CSD17552Q3A	VSONP	DNH	8	2500	340.0	340.0	38.0	

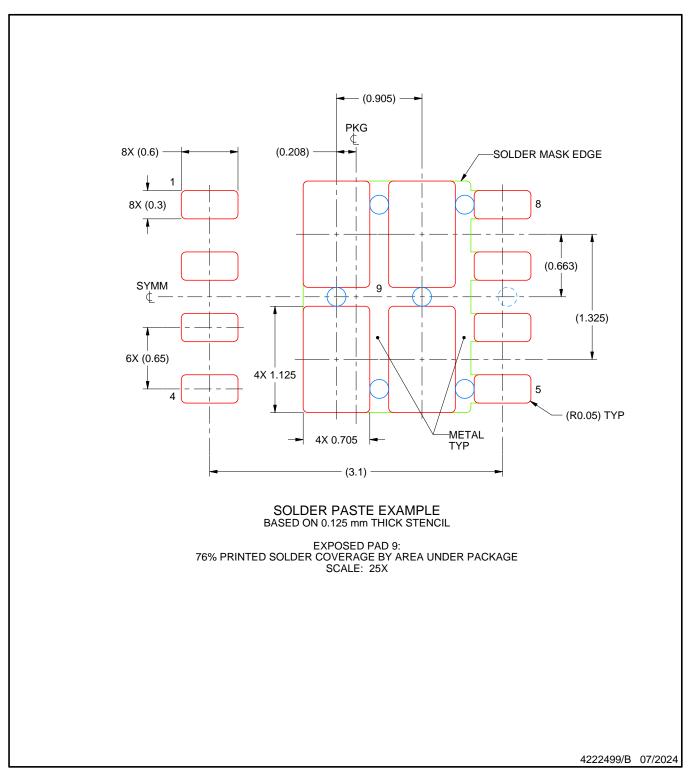
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
- 4. Metalized features are supplier options and may not be on the package.
- 5. All dimensions do not include mold flash or protrusions.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

- 6. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 7. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated