CY29FCT818T **DIAGNOSTIC SCAN REGISTER** WITH 3-STATE OUTPUTS

SCCS012B - MAY 1994 - REVISED NOVEMBER 2001

24 VCC

22 Y₀

21 Y₁

20 Y₂

19 Y₃

18 Y₄

17 Y₅

16 Y₆

15 Y₇

14 SDO

13 PCLK

23 MODE

D, P, Q, OR SO PACKAGE

(TOP VIEW)

OE [

DCLK [] 2

D₀ [] 3

D₁ ∏ 4

 $D_2 \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ $D_3 [] 6$

D₄ ∏ 7

D₅ [] 8

 $D_6 \square 9$

D₇ [] 10

SDI 11

GND [] 12

- **Function, Pinout, and Drive Compatible** With FCT, F Logic, and AM29818
- Reduced V_{OH} (Typically = 3.3 V) Version of **Equivalent FCT Functions**
- **Edge-Rate Control Circuitry for Significantly Improved Noise Characteristics**
- I_{off} Supports Partial-Power-Down Mode Operation
- **Matched Rise and Fall Times**
- Fully Compatible With TTL Input and **Output Logic Levels**
- 8-Bit Pipeline and Shadow Register
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- CY29FCT818CT
 - 64-mA Output Sink Current
 - 32-mA Output Source Current
- CY29FCT818ATDMB
 - 20-mA Output Sink Current
 - 3-mA Output Source Current
- 3-State Outputs

description

The CY29FCT818T contains a high-speed 8-bit general-purpose data pipeline register and a high-speed 8-bit shadow register. The general-purpose register can be used in an 8-bit-wide data path for a normal system application. The shadow register is designed for applications such as diagnostics in sequential circuits, where it is desirable to load known data at a specific location in the circuit and to read the data at that location.

The shadow register can load data from the output of the device, and can be used as a right-shift register with bit-serial input (SDI) and output (SDO), using DCLK. The data register input is multiplexed to enable loading from the shadow register or from the data input pins, using PCLK. Data can be loaded simultaneously from the shadow register to the pipeline register, and from the pipeline register to the shadow register, provided setup-time and hold-time requirements are satisfied, with respect to the two independent clock inputs.

In a typical application, the general-purpose register in this device replaces an 8-bit data register in the normal data path of a system. The shadow register is placed in an auxiliary bit-serial loop that is used for diagnostics. During diagnostic operation, data is shifted serially into the shadow register, then transferred to the general-purpose register to load a known value into the data path. To read the contents at that point in the data path, the data is transferred from the data register into the shadow register, then shifted serially in the auxiliary diagnostic loop to make it accessible to the diagnostics controller. This data then is compared with the expected value to diagnose faulty operation of the sequential circuit.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

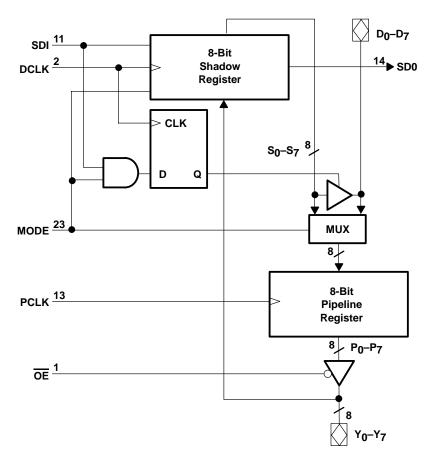
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCCS012B - MAY 1994 - REVISED NOVEMBER 2001

ORDERING INFORMATION

TA	PACKAGE [†]		SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	DIP – P	Tube	6	CY29FCT818CTPC	CY29FCT818CTPC
-40°C to 85°C	QSOP – Q		6	CY29FCT818CTQCT	29FCT818C
-40 C to 65 C	SOIC - SO	Tube	6	CY29FCT818CTSOC	29FCT818C
	3010 - 30	Tape and reel	6	CY29FCT818CTSOCT	295010100
–55°C to 125°C	CDIP – D	Tube	12	CY29FCT818ATDMB	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


FUNCTION TABLE

	INF	PUTS		OUTPUT	SHADOW	PIPELINE	OPERATION			
MODE	SDI	DCLK	PCLK	SDO	REGISTER	REGISTER	OPERATION			
L	Х	1	Х	S ₇	S ₀ ←SDI S _i ←S _{i–1}	NA	Serial shift; D ₇ –D ₀ output disabled			
L	Χ	Х	1	S ₇	NA	P _i ←D _i	Load pipeline register from data input			
Н	L	\uparrow	Χ	L	S _i ←Y _i	NA	Load shadow register from Y output			
Н	Н	\uparrow	Χ	Н	Hold	NA	Hold shadow register; D ₇ –D ₀ output enabled			
Н	Χ	Χ	\uparrow	SDI	NA	P _i ←S _i	Load pipeline register from shadow register			

H = High logic level, L = Low logic level, X = Don't care, ↑ Low-to-high transition, ← = Transfer direction, NA = Not applicable

logic diagram

absolute maximum rating over operating free-air temperature range (unless otherwise noted)†

Supply voltage range to ground potential	
DC output voltage range	
DC output current (maximum sink current/pin)	120 mA
Package thermal impedance, θ _{JA} (see Note 1): P package	67°C/W
(see Note 2): Q package	61°C/W
(see Note 2): SO package	46°C/W
Ambient temperature range with power applied, T _A	35°C to 135°C
Storage temperature range, T _{stg} –6	5°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The package thermal impedance is calculated in accordance with JESD 51-3.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

CY29FCT818T **DIAGNOSTIC SCAN REGISTER** WITH 3-STATE OUTPUTS

SCCS012B - MAY 1994 - REVISED NOVEMBER 2001

recommended operating conditions (see Note 3)

		CY29F	CT818A	ТОМВ	CY29FCT818T			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			8.0			0.8	V
Іон	High-level output current			-3			-32	mA
loL	Low-level output current			20			64	mA
T _A	Operating free-air temperature	-55		125	-40		85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER		TEGT CONDITION	•	CY29F	CT818A	TDMB	CY	29FCT81	8T	
PARAMETER		TEST CONDITION	5	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
Vers	V _{CC} = 4.5 V,	I _{IN} = -18 mA			-0.7	-1.2				V
VIK	V _{CC} = 4.75 V,	I _{IN} = -18 mA						-0.7	-1.2	V
	V _{CC} = 4.5 V,	$I_{OH} = -3 \text{ mA}$		2.4	3.3					
VOH	V _{CC} = 4.75 V	I _{OH} = -32 mA					2			V
	VCC = 4.75 V	$I_{OH} = -15 \text{ mA}$	I _{OH} = -15 mA				2.4	3.3		
\/a	V _{CC} = 4.5 V,	I _{OL} = 20 mA			0.3	0.55				V
VOL	V _{CC} = 4.75 V,	I _{OL} = 64 mA						0.3	0.55	V
V _{hys}	All inputs				0.2			0.2		V
1.	V _{CC} = 5.5 V,	VIN = VCC				5				^
li li	V _{CC} = 5.25 V,	VIN = VCC							5	μΑ
les e	V _{CC} = 5.5 V,	V _{IN} = 2.7 V				±1				μΑ
ήн	V _{CC} = 5.25 V,	V _{IN} = 2.7 V							±1	μА
1	$V_{CC} = 5.5 V,$	V _{IN} = 0.5 V				±1				
ΙΙL	V _{CC} = 5.25 V,	V _{IN} = 0.5 V							±1	μΑ
1	V _{CC} = 5.5 V,	V _{OUT} = 2.7 V				10				μΑ
lozh	V _{CC} = 5.25 V,	V _{OUT} = 2.7 V							10	μА
lo-	V _{CC} = 5.5 V,	V _{OUT} = 0.5 V				-10				
lozl	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 0.5 V							-10	μΑ
1+	$V_{CC} = 5.5 \text{ V},$	V _{OUT} = 0 V		-60	-120	-225				mA
los [‡]	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 0 V					-60	-120	-225	ША
l _{off}	VCC = 0 V	V _{OUT} = 4.5 V				±1			±1	μΑ
lcc	$V_{CC} = 5.5 \text{ V},$	$V_{IN} \le 0.2 V$	$V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.2	1.5				mA
100	V _{CC} = 5.25 V,	$V_{IN} \le 0.2 V$	$V_{IN} \ge V_{CC} - 0.2 \text{ V}$					0.2	1.5	111/5
ΔlCC	V _{CC} = 5.5 V, V _{IN} =	3.4 V§, f ₁ = 0, Out		0.5	2				mA	
<u> </u>	V _{CC} = 5.25 V, V _{IN} =	= 3.4 V§, f ₁ = 0, Ou	tputs open					0.5	2	1117 \

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Per TTL-driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

[‡] Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, $\ensuremath{\text{IOS}}$ tests should be performed last.

SCCS012B - MAY 1994 - REVISED NOVEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

DADAMETER		TEST COMPLETION	ie.	CY29F	CT818A	TDMB	CY2	29FCT81	8T	LINIT	
PARAMETER		TEST CONDITION	NO .	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
J ¶		utputs open, One input D, $V_{IN} \le 0.2 \text{ V or } V_{IN} \ge 0.2 \text{ V}$			0.25				mA/		
ICCD¶		Outputs open, One input GND, $V_{IN} \le 0.2 \text{ V}$ or							0.25	MHz	
		One bit switching at f ₁ = 5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$			5.3					
	$V_{CC} = 5.5 \text{ V},$ Outputs open, $f_0 = 10 \text{ MHz},$ $OE = GND$		at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$			7.3				
		Eight bits and four controls switching at f ₁ = 5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$			17.8					
IC#		at 50% duty cycle	V _{IN} = 3.4 V or GND			30.8				mA	
IC.,		One bit switching at f ₁ = 5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$						5.3	IIIA	
	V _{CC} = 5.25 V, Outputs open,	at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$						7.3		
	$\begin{array}{c} \text{Guipts sport,} \\ f_0 = 10 \text{ MHz,} \\ \text{OE} = \text{GND} \end{array}$ Eight bits and to controls switch at $f_1 = 5 \text{ MHz}$ at 50% duty cy		$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$						17.8		
			V _{IN} = 3.4 V or GND						30.8		
C _i					5	10		5	10	pF	
Co					9	12		9	12	pF	

[†] Typical values are at V_{CC} = 5 V, T_A = 25°C.

Where:

I_C = Total supply current

ICC = Power-supply current with CMOS input levels

 ΔI_{CC} = Power-supply current for a TTL high input (V_{IN} = 3.4 V)

D_H = Duty cycle for TTL inputs high N_T = Number of TTL inputs at D_H

I_{CCD} = Dynamic current caused by an input transition pair (HLH or LHL)

f₀ = Clock frequency for registered devices, otherwise zero

f₁ = Input signal frequency

N₁ = Number of inputs changing at f₁

All currents are in milliamperes and all frequencies are in megahertz.

|| Values for these conditions are examples of the I_{CC} formula.

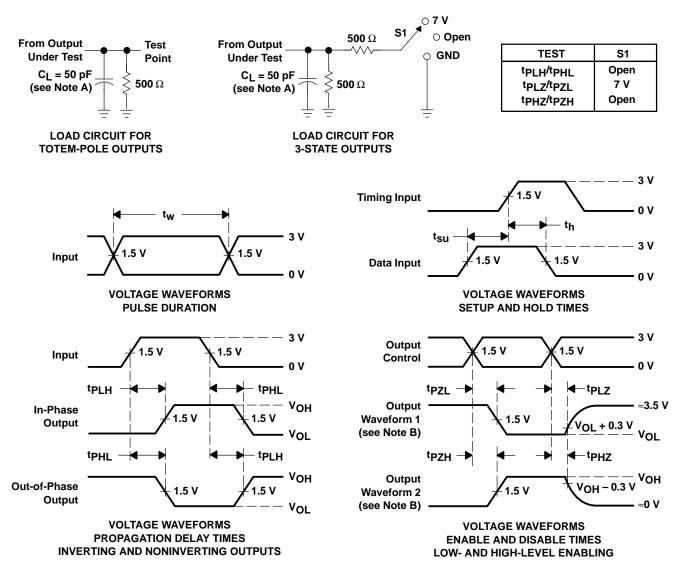
This parameter is derived for use in total power-supply calculations.

 $^{^{\#}}$ IC = ICC + \triangle ICC \times D_H \times N_T + ICCD ($f_0/2 + f_1 \times N_1$)

CY29FCT818T DIAGNOSTIC SCAN REGISTER WITH 3-STATE OUTPUTS

SCCS012B - MAY 1994 - REVISED NOVEMBER 2001

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)


	DADAMETE		CY29FC1	818AT	CY29FCT	818CT		
	PARAMETE	:K	MIN	MAX	MIN	MAX	UNIT	
	Dudge windsh	PCLK high and low	15		5			
t _W	Pulse width	DCLK high and low	25		5		ns	
		D before PCLK↑	6		2			
		MODE before PCLK↑	15		3.5			
		Y before DCLK↑	5		2			
t _{su}	Setup time	MODE before DCLK↑	12		3.5		ns	
		SDI before DCLK↑	10		3.5			
		DCLK before PCLK↑	15		3.5			
		PCLK before DCLK↑	45		8.5			
		D after PCLK↑	2		1.5			
		MODE after PCLK↑	0		0			
th	Hold time	Y after DCLK↑	5		1.5		ns	
		MODE after DCLK↑	5		1.5		ĺ	
		SDI after DCLK↑	0		0			

switching characteristics over operating free-air temperature range (see Figure 1)

DADAMETER	FROM	то	CY29FCT818AT	CY29FCT818CT	LINIT
PARAMETER	(INPUT)	(OUTPUT)	MIN MAX	MIN MAX	UNIT
	PCLK	Y	12	6	
. .	MODE	SDO	18	7.2	
^t pd	SDI	SDO	18	7.1	ns
	DCLK	SDO	30	7.2	
 -	ŌĒ	Υ	20	8	no
^t PZL	DCLK	D	35	9	ns
 .	ŌĒ	Υ	20	8.5	no
^t PZH	DCLK	D	30	9	ns
4	ŌĒ	Y	20	5.5	
[†] PLZ	DCLK	D	45	5.5	ns
45	ŌĒ	Υ	30	8	
^t PHZ	DCLK	D	90	8	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
5962-9682701QLA	Active	Production	CDIP (JT) 24	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9682701QL A CY29FCT818ATDM B
CY29FCT818ATDMB	Active	Production	CDIP (JT) 24	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9682701QL A CY29FCT818ATDM B
CY29FCT818CTSOCT	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	29FCT818C
CY29FCT818CTSOCT.B	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	29FCT818C
CY29FCT818CTSOCTG4	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	29FCT818C
CY29FCT818CTSOCTG4.B	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	29FCT818C

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

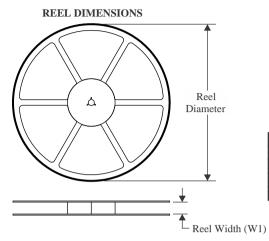
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

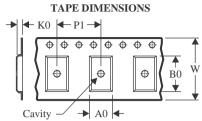
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

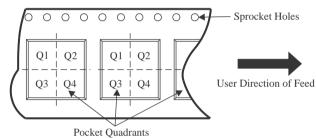
www.ti.com 11-Nov-2025


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

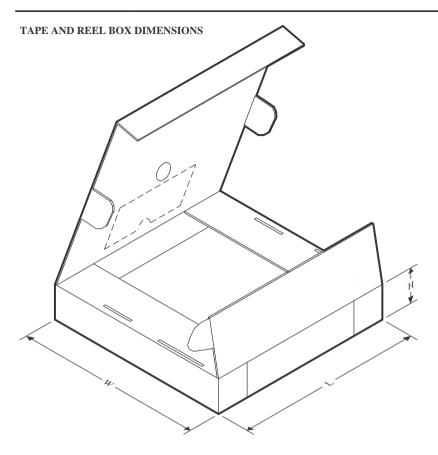
PACKAGE MATERIALS INFORMATION

www.ti.com 15-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

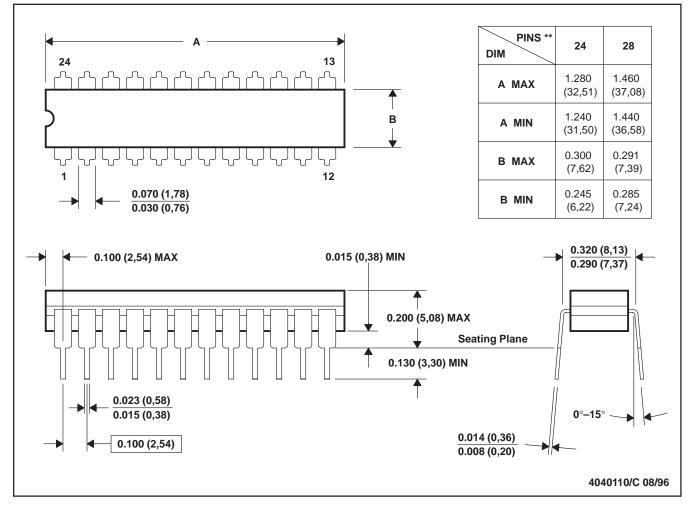


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CY29FCT818CTSOCT	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
CY29FCT818CTSOCTG4	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Jul-2025

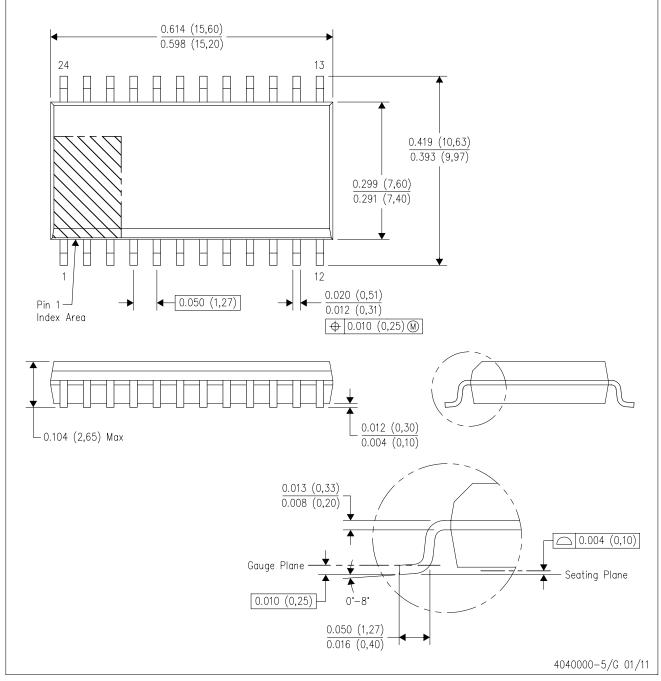

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CY29FCT818CTSOCT	SOIC	DW	24	2000	350.0	350.0	43.0
CY29FCT818CTSOCTG4	SOIC	DW	24	2000	350.0	350.0	43.0

JT (R-GDIP-T**)

24 LEADS SHOWN

CERAMIC DUAL-IN-LINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025