

SCCS061B - July 1994 - Revised September 2001

Features

- Ioff supports partial-power-down mode operation
- Edge-rate control circuitry for significantly improved noise characteristics
- Typical output skew < 250 ps
- ESD > 2000V
- TSSOP (19.6-mil pitch) and SSOP (25-mil pitch) packages
- Industrial temperature range of -40°C to +85°C
- $V_{CC} = 5V \pm 10\%$

CY74FCT16652T Features:

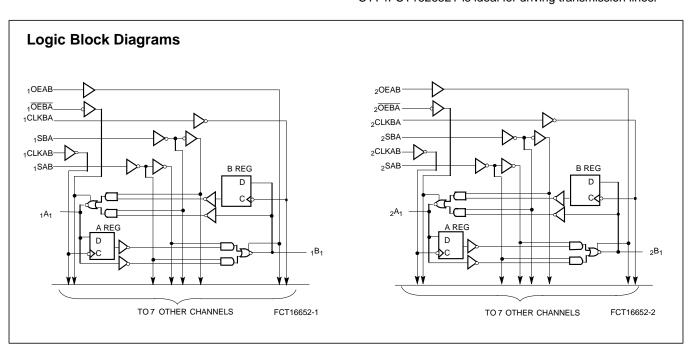
- 64 mA sink current, 32 mA source current
- Typical V_{OLP} (ground bounce) <1.0V at V_{CC} = 5V, T_A = 25°C

CY74FCT162652T Features:

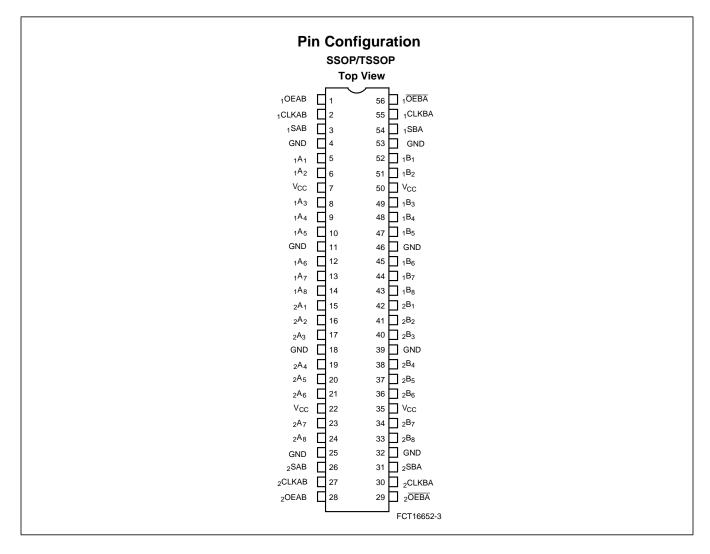
- · Balanced 24 mA output drivers
- · Reduced system switching noise
- Typical V_{OLP} (ground bounce) <0.6V at V_{CC} = 5V, T_A= 25°C

16-Bit Registered Transceivers

Functional Description


These 16-bit, high-speed, low-power, registered transceivers that are organized as two independent 8-bit bus transceivers with three-state D-type registers and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal storage registers. OEAB and OEBA control pins are provided to control the transceiver functions. SAB and SBA control pins are provided to select either real-time or stored data transfer.

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by LOW-to-HIGH transitions at the appropriate clock pins (CLKAB or CLKBA), regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.


This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The CY74FCT16652T is ideally suited for driving high-capacitance loads and low-impedance backplanes.

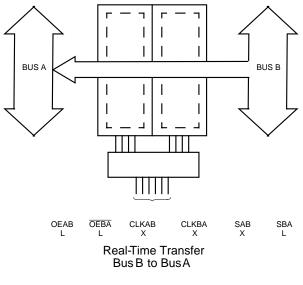
The CY74FCT162652T has 24-mA balanced output drivers with current-limiting resistors in the outputs. This reduces the need for external terminating resistors and provides for minimal undershoot and reduced ground bounce. The CY74FCT162652T is ideal for driving transmission lines.

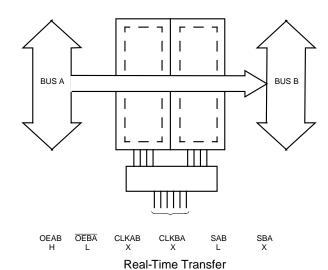
Pin Description

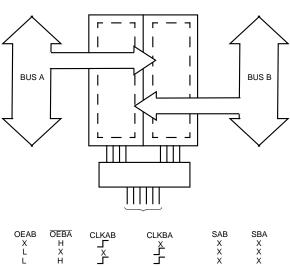
Name	Description
А	Data Register A Inputs Data Register B Outputs
В	Data Register B Inputs Data Register A Outputs
CLKAB, CLKBA	Clock Pulse Inputs
SAB, SBA	Output Data Source Select Inputs
OEAB, OEBA	Output Enable Inputs

Function Table^[1]

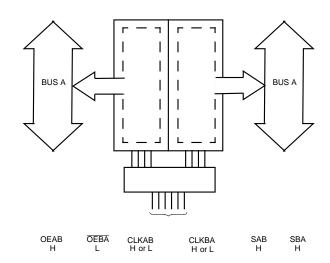
	Inputs				Data I/O ^[2]			
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	Α	В	Operation or Function
L L	H H	H or L	H or L	X X	X	Input	Input	Isolation Store A and B Data
X H	H H	7	H or L	X X ^[3]	X X	Input Input	Unspecified ^[2] Output	Store A, Hold B Store A in Both Registers
L L	X L	H or L	7	X	X X ^[3]	Unspecified ^[2]	Input Input	Hold A, Store B Store B in both Registers
L	L	X	X	X	L	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus
L	L	Х	H or L	Х	Н			
Н	Н	X	X	L	X	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus
Н	Н	H or L	Х	Н	X			
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus


- H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Don't Care
- ☐ =LOW-to-HIGH Transition


 The data output functions may be enabled or disabled by various signals at the OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.


 Select control=L; clocks can occur simultaneously.

 Select control=H; clocks must be staggered to load both registers.



Storage from

A and/or B

Bus A to Bus B

Transfer Stored Data to A and/or B

Maximum Ratings^[4]

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage TemperatureCom'l -55°C to +125°C
Ambient Temperature with Power AppliedCom'l -55°C to +125°C
DC Input Voltage0.5V to +7.0V
DC Output Voltage0.5V to +7.0V
DC Output Current (Maximum Sink Current/Pin)60 to +120 mA

Power Dissipation	1.0W
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	5V ± 10%

Note:

^{4.} Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions ^[5]	Min.	Typ. ^[6]	Max.	Unit
V _{IH}	Input HIGH Voltage	Logic HIGH Level	2.0			V
V _{IL}	Input LOW Voltage	Logic LOW Level			0.8	V
V _H	Input Hysteresis			100		mV
V _{IK}	Input Clamp Diode Voltage	V _{CC} =Min., I _{IN} =-18 mA		-0.7	-1.2	V
I _{IH}	Input HIGH Current	V _{CC} =Max., V _I =V _{CC}			±1	μΑ
I _{IL}	Input LOW Current	V _{CC} =Max., V _I =GND			±1	μΑ
I _{OZH}	High Impedance Output Current (Three-State Output pins)	V _{CC} =Max., V _{OUT} =2.7V			±1	μА
I _{OZL}	High Impedance Output Current (Three-State Output pins)	V _{CC} =Max., V _{OUT} =0.5V			±1	μΑ
I _{OS}	Short Circuit Current ^[8]	V _{CC} =Max., V _{OUT} =GND	-80	-140	-200	mA
Io	Output Drive Current ^[8]	V _{CC} =Max., V _{OUT} =2.5V	-50		-180	mA
I _{OFF}	Power-Off Disable	V _{CC} =0V, V _{OUT} ≤4.5V ^[7]			±1	μΑ

Output Drive Characteristics for CY74FCT16652T

Parameter	Description	Test Conditions ^[5]	Min.	Typ. ^[6]	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} =Min., I _{OH} =-3 mA	2.5	3.5		V
		V _{CC} =Min., I _{OH} =-15 mA	2.4	3.5		
		V _{CC} =Min., I _{OH} =-32 mA	2.0	3.0		
V _{OL}	Output LOW Voltage	V _{CC} =Min., I _{OL} =64 mA		0.2	0.55	V

Output Drive Characteristics for CY74FCT162652T

Parameter	Description	Test Conditions ^[5]	Min.	Typ. ^[6]	Max.	Unit
I _{ODL}	Output LOW Current ^[8]	V _{CC} =5V, V _{IN} =V _{IH} or V _{IL} , V _{OUT} =1.5V	60	115	150	mA
I _{ODH}	Output HIGH Current ^[8]	V _{CC} =5V, V _{IN} =V _{IH} or V _{IL} , V _{OUT} =1.5V	-60	-115	-150	mA
V _{OH}	Output HIGH Voltage	V _{CC} =Min., I _{OH} =-24 mA	2.4	3.3		V
V _{OL}	Output LOW Voltage	V _{CC} =Min., I _{OL} =24 mA		0.3	0.55	V

Capacitance ($T_A = +25^{\circ}C$, f = 1.0 MHz)

Parameter	Description ^[10]	Test Conditions	Тур.	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	4.5	6.0	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	5.5	8.0	pF

- For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
 Typical values are at V_{CC}=5.0V, +25°C ambient.
 Tested at T_A= +25°C.

- Not more than one output should be tested at one time. Duration of the test should not exceed one second.
 Duration of the condition cannot exceed one second.
 This parameter is measured at characterization but not tested.

Power Supply Characteristics

Param.	Description	Test Condition	ons ^[11]	Min.	Typ. ^[12]	Max.	Unit
I _{CC}	Quiescent Power Supply Current	V _{CC} =Max.	V _{IN} ≤0.2V V _{IN} ≥V _{CC} −0.2V	_	5	500	μА
Δl _{CC}	Quiescent Power Supply Current TTL Inputs HIGH	$V_{CC} = Max. V_{IN} = 3.4 V^{[13]}$		_	0.5	1.5	mA
I _{CCD}	Dynamic Power Supply Current ^[14]	V _{CC} =Max. Outputs Open OEAB=OEAB=GND One Input Toggling 50% Duty Cycle	V _{IN} =V _{CC} or V _{IN} =GND	_	75	120	μΑ/ MHz
I _C	Total Power Supply Current ^[15]	V _{CC} =Max. Outputs Open f _o =10 MHz (CLKBA) 50% Duty Cycle OEAB=OEBA=GND One-Bit Toggling f ₁ =5 MHz 50% Duty Cycle	V _{IN} =V _{CC} or V _{IN} =GND	_	0.8	1.7	mA
			V _{IN} =3.4V or V _{IN} =GND	_	1.3	3.2	mA
		V _{CC} =Max. Outputs Open	V _{IN} =V _{CC} or V _{IN} =GND	_	3.8	6.5 ^[16]	mA
		f _o =10 MHz (CLKBA) 50% Duty Cycle OEAB=OEBA=GND Sixteen Bits Toggling f ₁ =2.5 MHz 50% Duty Cycle	V _{IN} =3.4V or V _{IN} =GND	_	8.3	20.0 ^[16]	mA

Notes:

- - = Number of inputs changing at f₁
 - All currents are in milliamps and all frequencies are in megahertz.
- 16. Values for these conditions are examples of the I_{CC} formula. These limits are specified but not tested.

Switching Characteristics Over the Operating Range^[17]

		CY74FCT16652AT CY74FCT162652AT			
Parameter	Description	Min.	Max.	Unit	Fig. No. ^[18]
t _{PLH} t _{PHL}	Propagation Delay Bus to Bus	1.5	6.3	ns	1, 3
t _{PZH} t _{PHL}	Output Enable Time OEAB or OEBA to Bus	1.5	9.8	ns	1, 7, 8
t _{PHZ}	Output Disable Time OEAB or OEBA to Bus	1.5	6.3	ns	1, 7, 8
t _{PLH} t _{PHL}	Propagation Delay Clock to Bus	1.5	6.3	ns	1, 5
t _{PLH} t _{PHL}	Propagation Delay SBA or SAB to Bus	1.5	7.7	ns	1, 5
t _{SU}	Set-Up time HIGH or LOW Bus to Clock	2.0	_	ns	4
t _H	Hold Time HIGH or LOW Bus to Clock	1.5	_	ns	4
t _W	Clock Pulse Width HIGH or LOW	5.0	_	ns	5
t _{SK(O)}	Output Skew ^[19]	_	0.5	ns	

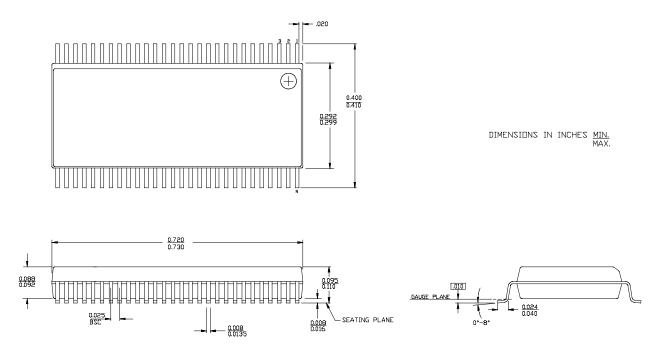
		CY74FCT16652CT CY74FCT162652CT			
Parameter	Description	Min.	Max.	Unit	Fig. No. ^[18]
t _{PLH} t _{PHL}	Propagation Delay Bus to Bus	1.5	5.4	ns	1, 3
t _{PZH} t _{PHL}	Output Enable Time OEAB or OEBA to Bus	1.5	7.8	ns	1, 7, 8
t _{PHZ}	Output Disable Time OEAB or OEBA to Bus	1.5	6.3	ns	1, 7, 8
t _{PLH} t _{PHL}	Propagation Delay Clock to Bus	1.5	5.7	ns	1, 5
t _{PLH}	Propagation Delay SBA or SAB to Bus	1.5	6.2	ns	1, 5
t _{SU}	Set-Up Time HIGH or LOW Bus to Clock	2.0	_	ns	4
t _H	Hold Time HIGH or LOW Bus to Clock	1.5	_	ns	4
t _W	Clock Pulse Width HIGH or LOW	5.0	_	ns	5
t _{SK(O)}	Output Skew ^[19]	_	0.5	ns	

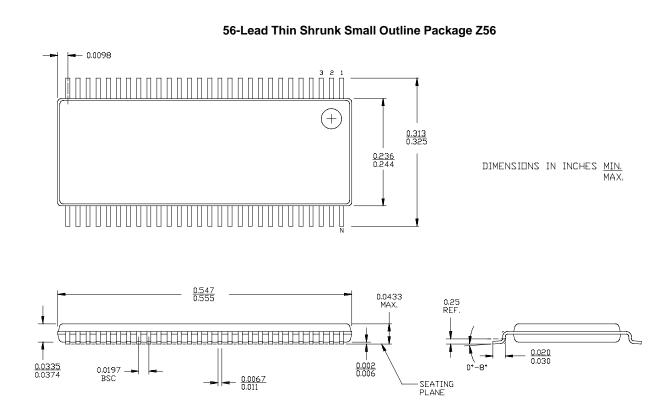
Notes:

^{17.} Minimum limits are specified, but not tested, on propagation delays.
18. See "Parameter Measurement Information" in the General Information section.
19. Skew between any two outputs of the same package switching in the same direction. This parameter ensured by design.

Ordering Information CY74FCT16652

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
5.4	CY74FCT16652CTPVC/PVCT	O56	56-Lead (300-Mil) SSOP	Industrial
6.3	CY74FCT16652ATPVC/PVCT	O56	56-Lead (300-Mil) SSOP	Industrial


Ordering Information CY74FCT162652


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
5.4	74FCT162652CTPACT	Z56	56-Lead (240-Mil) TSSOP	Industrial
	CY74FCT162652CTPVC	O56	56-Lead (300-Mil) SSOP	
	74FCT162652CTPVCT	O56	56-Lead (300-Mil) SSOP	
6.3	CY74FCT162652ATPVC	O56	56-Lead (300-Mil) SSOP	Industrial
	74FCT162652ATPVCT	O56	56-Lead (300-Mil) SSOP	

Package Diagrams

56-Lead Shrunk Small Outline Package O56

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
74FCT162652CTPACT	Obsolete	Production	TSSOP (DGG) 56	-	-	Call TI	Call TI	-40 to 85	FCT162652C
CY74FCT16652ATPVCT	Obsolete	Production	SSOP (DL) 56	-	-	Call TI	Call TI	-40 to 85	FCT16652A

⁽¹⁾ Status: For more details on status, see our product life cycle.

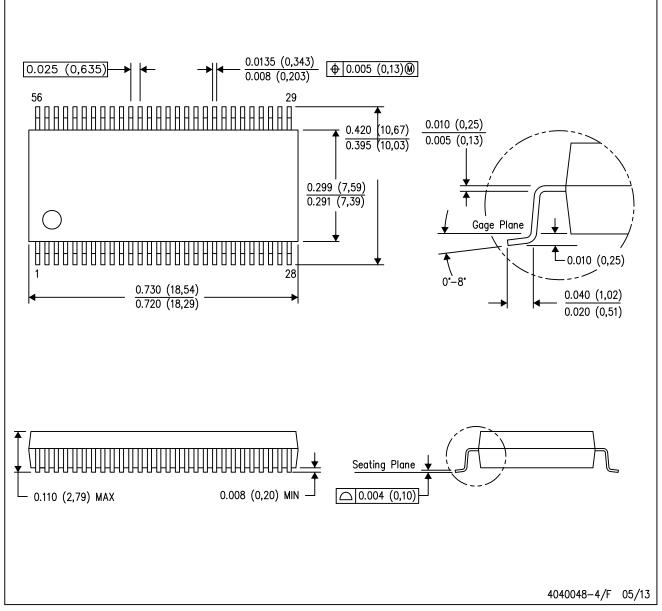
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.


⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

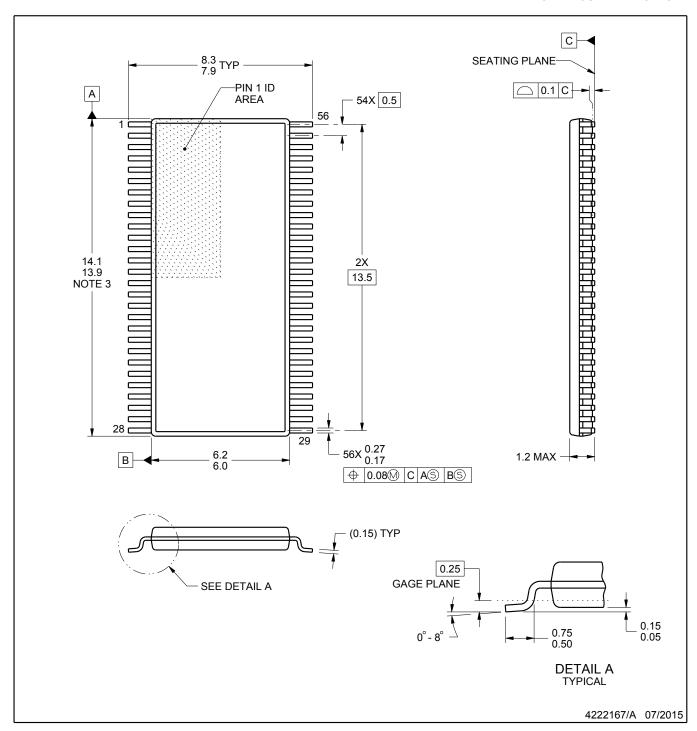
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

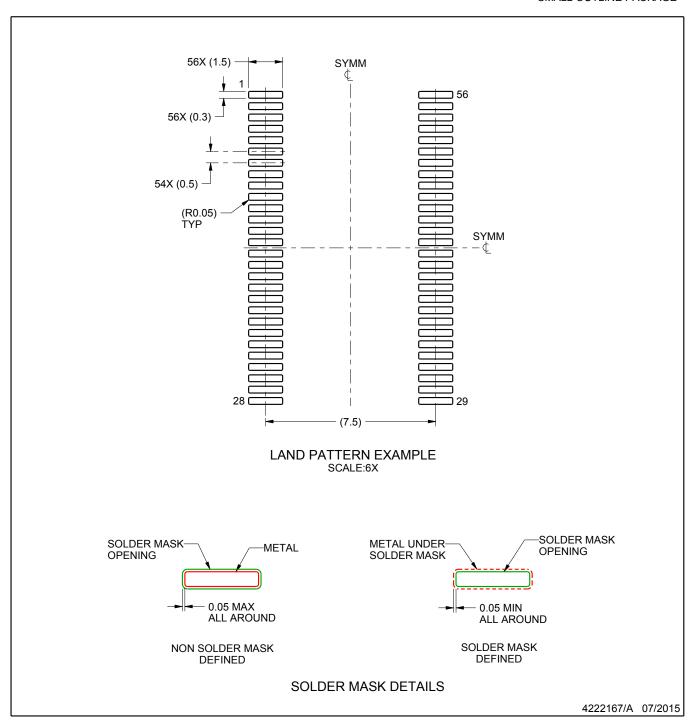
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

SMALL OUTLINE PACKAGE

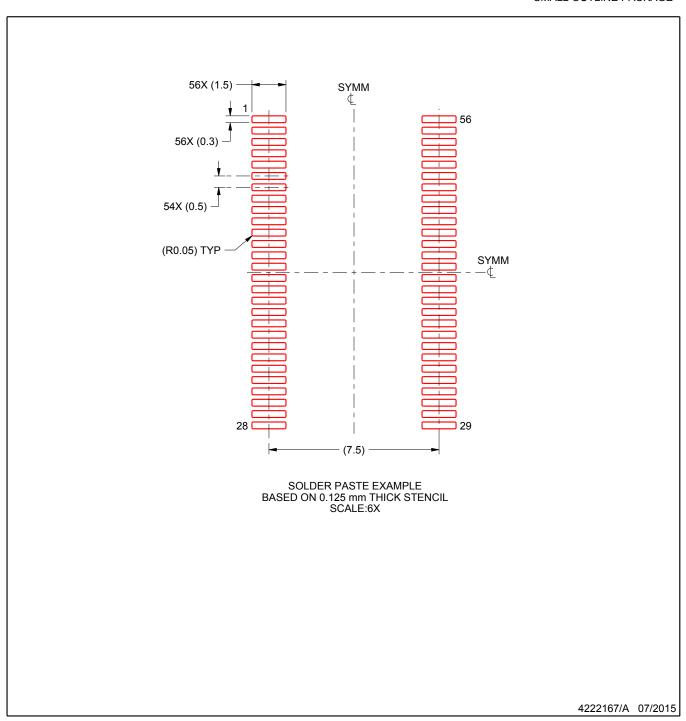
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025