

SCCS064B - August 1994 - Revised September 2001

20-Bit Buffers/Line Drivers

Features

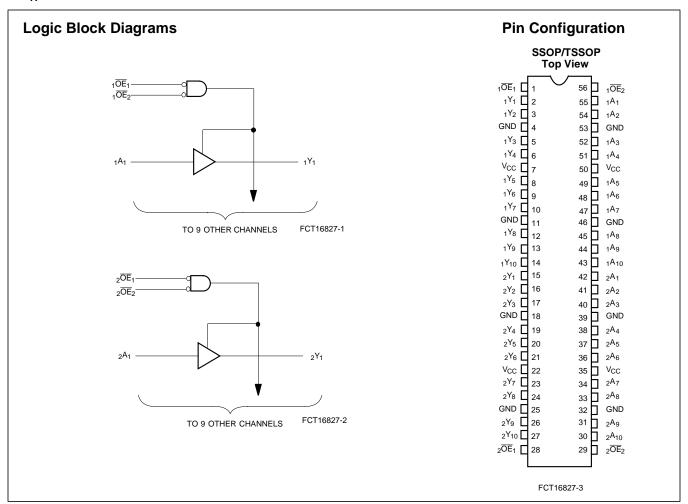
- Ioff Supports Partial-Power-Down Mode Operation
- Edge-rate control circuitry for significantly improved noise characteristics
- Typical output skew < 250 ps
- ESD > 2000V
- TSSOP (19.6-mil pitch) and SSOP (25-mil pitch) packages
- Industrial temperature range of -40°C to +85°C
- $V_{CC} = 5V \pm 10\%$

CY74FCT16827T Features:

- 64 mA sink current, 32 mA source current
- Typical V_{OLP} (ground bounce) <1.0V at V_{CC} = 5V, T_A = 25°C

CY74FCT162827T Features:

- · Balanced 24 mA output drivers
- · Reduced system switching noise
- Typical V_{OLP} (ground bounce) <0.6V at V_{CC} = 5V, T_A = 25°C


Functional Description

The CY74FCT16827T 20-bit buffer/line driver and the CY74FCT162827T 20-bit buffer/line driver provide high-performance bus interface buffering for wide data/address paths or buses carrying parity. These parts can be used as a single 20-bit buffer or two 10-bit buffers. Each 10-bit buffer has a pair of NANDed \overline{OE} for increased flexibility.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The CY74FCT16827T is ideally suited for driving high-capacitance loads and low-impedance backplanes.

The CY74FCT162827T has 24-mA balanced output drivers with current-limiting resistors in the outputs. This reduces the need for external terminating resistors and provides for minimal undershoot and reduced ground bounce. The CY74FCT162827T is ideal for driving transmission lines.

Pin Description

Name	Description					
ŌĒ	Output Enable Inputs (Active LOW)					
Α	Data Inputs					
Υ	Three-State Outputs					

Function Table^[1]

	Outputs		
OE ₁	ŌE ₂	Α	Y
L	L	L	L
L	L	Н	Н
Н	Х	Х	Z
X	Н	Х	Z

Maximum Ratings^[2, 3]

(Above which the useful life may be impaired. For use guidelines, not tested.)
Storage Temperature55°C to +125°C
Ambient Temperature with Power Applied –55°C to +125°C
DC Input Voltage0.5V to +7.0V
DC Output Voltage0.5V to +7.0V
DC Output Current (Maximum Sink Current/Pin)60 to +120 mA
Power Dissipation1.0W
Static Discharge Voltage>2001V (per MIL-STD-883, Method 3015)

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{IH}	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V
V _H	Input Hysteresis ^[5]			100		mV
V _{IK}	Input Clamp Diode Voltage	V _{CC} =Min., I _{IN} =-18 mA		-0.7	-1.2	V
I _{IH}	Input HIGH Current	V _{CC} =Max., V _I =V _{CC}			±1	μΑ
I _{IL}	Input LOW Current	V _{CC} =Max., V _I =GND			±1	μΑ
l _{OZH}	High Impedance Output Current (Three-State Output pins)	V _{CC} =Max., V _{OUT} =2.7V			±1	μА
I _{OZL}	High Impedance Output Current (Three-State Output pins)	V _{CC} =Max., V _{OUT} =0.5V			±1	μА
Ios	Short Circuit Current ^[6]	V _{CC} =Max., V _{OUT} =GND	-80	-140	-200	mA
Io	Output Drive Current ^[6]	V _{CC} =Max., V _{OUT} =2.5V	-50		-180	mA
I _{OFF}	Power-Off Disable	V _{CC} =0V, V _{OUT} ≤4.5V ^[7]			±1	μΑ

Output Drive Characteristics for CY74FCT16827T

Parameter	Description	Test Conditions	Test Conditions Min. Typ. ^[4]		Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} =Min., I _{OH} =-3 mA	2.5	3.5		V
		V _{CC} =Min., I _{OH} =-15 mA	2.4	3.5		
		V _{CC} =Min., I _{OH} =-32 mA	2.0	3.0		
V _{OL}	Output LOW Voltage	V _{CC} =Min., I _{OL} =64 mA		0.2	0.55	V

- H = HIGH Voltage Level. L = LOW Voltage Level. X = Don't Care.Z = HIGH Impedance.

 Operation beyond the limits set forth may impair the useful life of the device. Unless noted, these limits are over the operating free-air temperature range. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.

 Typical values are at V_{CC} = 5.0V, T_A = +25°C ambient.

 This parameter is specified but not tested.

- Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, Ios tests should be performed last.
- 7. Tested at +25°C.

Output Drive Characteristics for CY74FCT162827T

Parameter	Description	Test Conditions	Min.	Typ. ^[4]	Max.	Unit
I _{ODL}	Output LOW Current ^[6]	V_{CC} =5V, V_{IN} = V_{IH} or V_{IL} , V_{OUT} =1.5V	60	115	150	mA
I _{ODH}	Output HIGH Current ^[6]	V_{CC} =5V, V_{IN} = V_{IH} or V_{IL} , V_{OUT} =1.5V	-60	-115	-150	mA
V _{OH}	Output HIGH Voltage	V _{CC} =Min., I _{OH} =-24 mA	2.4	3.3		V
V _{OL}	Output LOW Voltage	V _{CC} =Min., I _{OL} =24 mA		0.3	0.55	V

Capacitance^[5] ($T_A = +25^{\circ}C$, f = 1.0 MHz)

Parameter	Description	Test Conditions	Typ. ^[4]	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	4.5	6.0	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	5.5	8.0	pF

Power Supply Characteristics

Parameter	Description	Test Condi	tions	Min.	Typ. ^[4]	Max.	Unit
I _{CC}			V _{IN} ≤0.2V, V _{IN} ≥V _{CC} -0.2V	_	5	500	μΑ
Δl _{CC}	Quiescent Power Supply Current (TTL inputs HIGH)	V _{CC} =Max.	V _{IN} =3.4V ^[8]	_	0.5	1.5	mA
I _{CCD}	Dynamic Power Supply Current ^[9]	V _{CC} =Max., One Input Toggling, 50% Duty Cycle, Outputs Open, OE ₁ =OE ₂ =GND,	V _{IN} =V _{CC} or V _{IN} =GND	_	60	100	μA/MHz
I _C	Total Power Supply Current ^[10]	V _{CC} =Max., f ₁ =10 MHz,	V _{IN} =V _{CC} or V _{IN} =GND	_	0.6	1.5	mA
		50% Duty Cycle, Outputs Open, One Bit Toggling, OE ₁ =OE ₂ =GND	V _{IN} =3.4V or V _{IN} =GND	_	0.9	2.3	
		V _{CC} =Max., f ₁ =2.5 MHz,	V _{IN} =V _{CC} or V _{IN} =GND	_	3.0	5.5 ^[11]	
	(-	50% Duty Cycle, Outputs Open, Twenty Bits Toggling, $\overline{\text{OE}}_1 = \overline{\text{OE}}_2 = \overline{\text{GND}}$	V _{IN} =3.4V or V _{IN} =GND	_	8.0	20.5 ^[11]	

Notes:

8. Per TTL driven input (V_{IN} =3.4V); all other inputs at V_{CC} or GND.

This parameter is not directly testable, but is derived for use in Total Power Supply calculations. $\begin{array}{ll}
l_{C} &= l_{QUIESCENT} + l_{INPUTS} + l_{DYNAMIC} \\
l_{C} &= l_{CC} + \Delta l_{CC} D_{H} N_{T} + l_{CCD} (f_{0}/2 + f_{1}N_{1}) \\
l_{CC} &= Quiescent Current with CMOS input levels
\end{array}$

 $\begin{array}{lll} \Delta I_{CC} &=& \text{Power Supply Current for a TTL HIGH input } (V_{IN} = 3.4V) \\ D_H &=& \text{Duty Cycle for TTL inputs HIGH} \\ N_T &=& \text{Number of TTL inputs at } D_H \end{array}$

I_{CCD} = Dynamic Current caused by an input transition pair (HLH or LHL)

= Clock frequency for registered devices, otherwise zero

= Input signal frequency

= Number of inputs changing at f₁

All currents are in milliamps and all frequencies are in megahertz.

11. Values for these conditions are examples of the I_{CC} formula. These limits are specified but not tested.

Switching Characteristics Over the Operating $\mathsf{Range}^{[12]}$

			CY74FCT		CY74FCT	162827BT		
Parameter	Description	Condition ^[13]	Min.	Max.	Min.	Max.	Unit	Fig. No. ^[13]
t _{PLH} t _{PHL}	Propagation Delay A to Y	C_L =50 pF R_L =500 Ω	1.5	8.0	1.5	5.0	ns	1, 3
		C_L =300 pF R_L =500 Ω	1.5	15.0	1.5	13.0		
t _{PZH} t _{PZL}	Output Enable Time OE to Y	C_L =50 pF R_L =500 Ω	1.5	12.0	1.5	8.0	ns	1, 7, 8
		C_L =300 pF R_L =500 Ω	1.5	23.0	1.5	15.0		
t _{PHZ} t _{PLZ}	Output Disable Time OE to Y	$C_L=5 pF$ $R_L=500\Omega$	1.5	9.0	1.5	6.0	ns	1, 7, 8
		C_L =50 pF R_L =500 Ω	1.5	10.0	1.5	7.0		
t _{SK(O)}	Output Skew ^[14]		_	0.5	_	0.5	ns	_

			CY74FCT16827CT CY74FCT162827CT			
Parameter	Description	Condition ^[12]	Min.	Max.	Unit	Fig. No. ^[13]
t _{PLH} t _{PHL}	Propagation Delay A to Y	C_L =50 pF R_L =500 Ω	1.5	4.2	ns	1, 3
		C_L =300 pF R_L =500 Ω	1.5	10.0		
t _{PZH} t _{PZL}	Output Enable Time OE to Y	C_L =50 pF R_L =500 Ω	1.5	5.6	ns	1, 7, 8
		C_L =300 pF R_L =500 Ω	1.5	14.0		
t _{PHZ}	Output Disable Time OE to Y	$C_L=5 pF$ $R_L=500\Omega$	1.5	5.7	ns	1, 7, 8
		C_L =50 pF R_L =500 Ω	1.5	6.0		
t _{SK(O)}	Output Skew ^[14]		_	0.5	ns	_

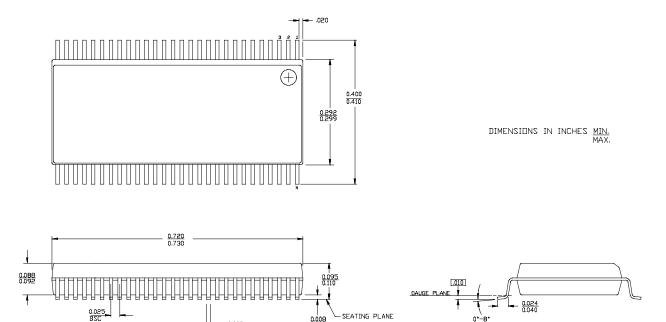
Notes:

Minimum limits are specified but not tested on Propagation Delays.
 See "Parameter Measurement Information" in the General Information section.
 Skew between any two outputs of the same package switching in the same direction. This parameter is ensured by design.

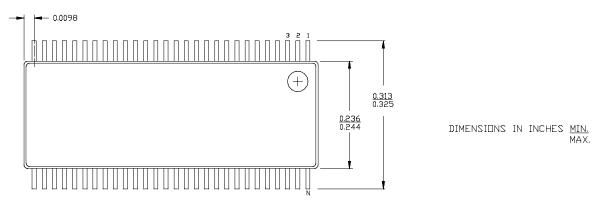
Ordering Information CY74FCT16827

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
4.2	CY74FCT16827CTPACT	Z56	56-Lead (240-Mil) TSSOP	Industrial
	CY74FCT16827CTPVC/PVCT	O56	56-Lead (300-Mil) SSOP	
8.0	CY74FCT16827ATPVC/PVCT	Z56	56-Lead (240-Mil) SSOP	Industrial

Document #: 38-00393-C


Ordering Information CY74FCT162827

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
4.2	74FCT162827CTPACT	Z56	56-Lead (240-Mil) TSSOP	Industrial
	CY74FCT162827CTPVC	Z56	56-Lead (240-Mil) SSOP	
	74FCT162827CTPVCT	Z56	56-Lead (240-Mil) SSOP	
5.0	CY74FCT162827BTPVC	O56	56-Lead (300-Mil) SSOP	Industrial
	74FCT162827BTPVCT	O56	56-Lead (300-Mil) SSOP	
8.0	CY74FCT162827ATPVC	O56	56-Lead (300-Mil) SSOP	Industrial
	74FCT162827ATPVCT	O56	56-Lead (300-Mil) SSOP	




Package Diagrams

56-Lead Shrunk Small Outline Package O56

56-Lead Thin Shrunk Small Outline Package Z56

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
74FCT162827ATPACT	Obsolete	Production	TSSOP (DGG) 56	-	-	Call TI	(5) Call TI	-40 to 85	FCT162827A
CY74FCT16827ATPVC	Obsolete	Production	SSOP (DL) 56	-	-	Call TI	Call TI	-40 to 85	FCT16827A
CY74FCT16827CTPACT	Obsolete	Production	TSSOP (DGG) 56	-	-	Call TI	Call TI	-40 to 85	FCT16827C

⁽¹⁾ Status: For more details on status, see our product life cycle.

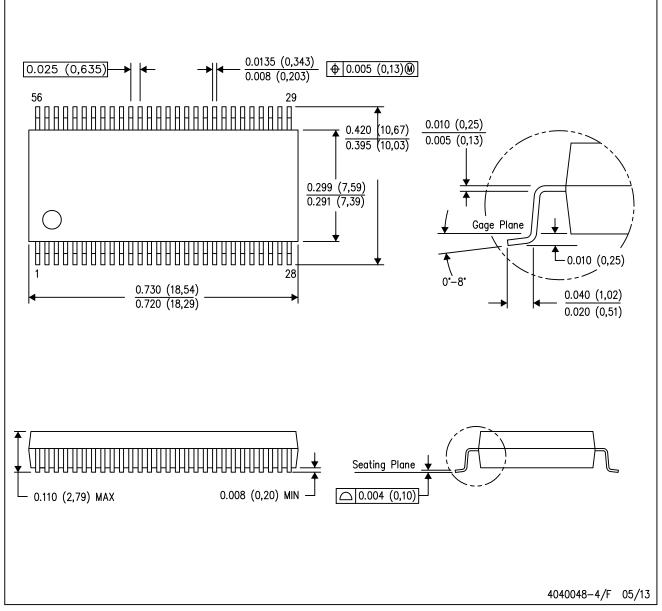
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.


⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

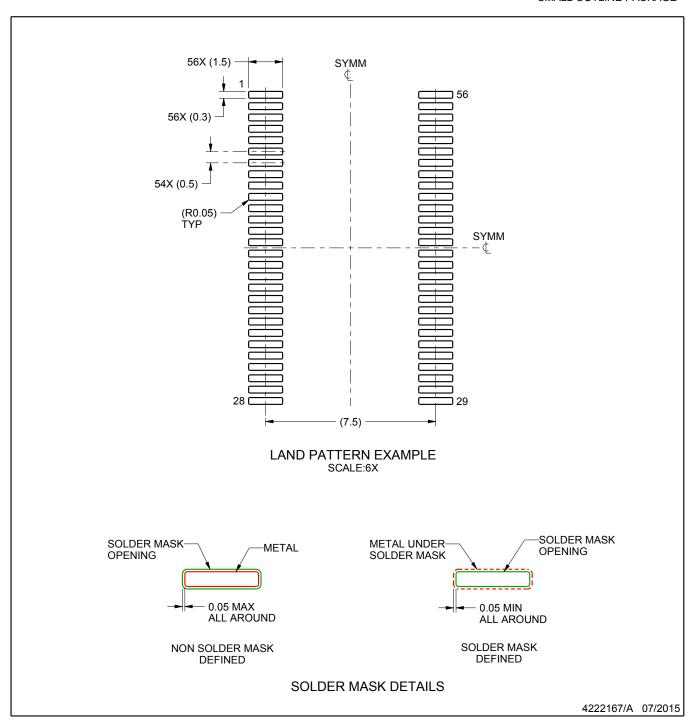
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

SMALL OUTLINE PACKAGE

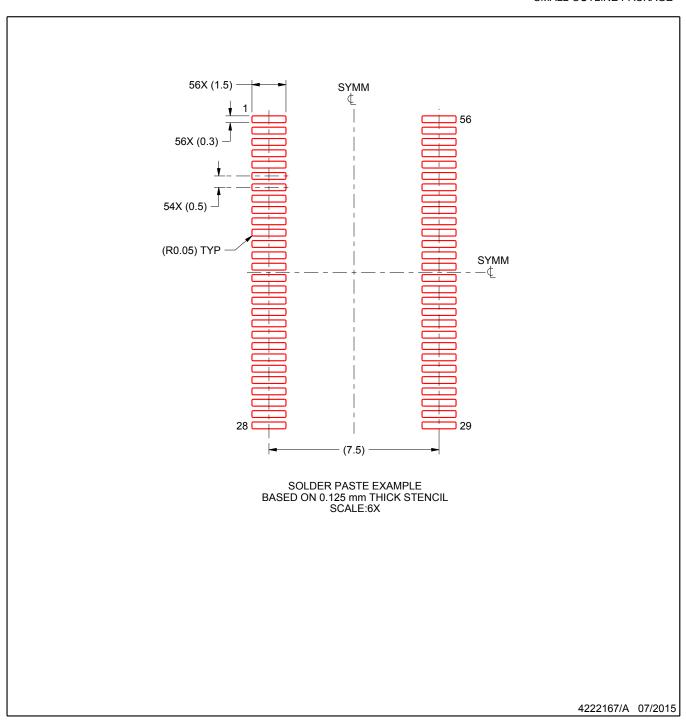
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025