

SBASAK3A - SEPTEMBER 2022 - REVISED NOVEMBER 2022

DAC82001 16-Bit, Low-Glitch, Single-Channel Voltage-Output, Unbuffered DAC

1 Features

16-bit performance: 1-LSB DNL and 2-LSB INL

Low glitch energy: 0.5 nV-s

Fast settling: 1 µs

Wide power supply: 2.7 V to 5.5 V Wide reference range: 2.0 V to V_{DD}

Low power: 250 µA at 5.0 V

3-wire serial peripheral interface (SPI) up to

50-MHz

Reset to zero scale or midscale

 $1.62-V V_{IH}$ with $V_{DD} = 5.5 V$

Temperature range: -40°C to +85°C

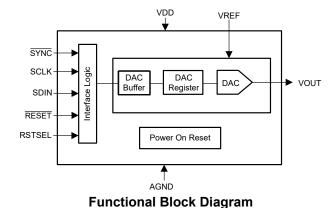
Package: Tiny 10-pin WSON

2 Applications

- Oscilloscope (DSO)
- **Battery test**
- Semiconductor test
- Ultrasound scanner
- DC power supply, ac source, electronic load

3 Description

The 16-bit DAC82001 is a highly accurate, low-power, single-channel digital-to-analog converter (DAC) with an unbuffered voltage output.


The DAC82001 works with 3.3-V and 5-V supplies and offers linearity of 1-LSB DNL and 2-LSB INL. The high accuracy combined with a tiny package make the device an excellent choice for applications such as gain and offset calibration, voltage set point generation, and power-supply control. The DAC82001 incorporates a power-on-reset (POR) circuit. The POR circuit makes sure that the DAC output powers up at zero scale or midscale based on the status of RSTSEL pin, and remains at that scale until a valid code is written to the device. All internal registers are asynchronously reset after the RESET pin is pulled low.

The DAC82001 uses a versatile, three-wire serial peripheral interface (SPI) that operates at clock rates of up to 50 MHz.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
DAC82001	DRX (WSON, 10)	2.50 mm × 2.50 mm

For all available packages, see the package option addendum at the end of the data sheet.

0 V to +V_{REF} Op Single-Ended DAC82001 Amp Output Buffer REF Op Differential Amp Output Single-Ended to Differential Conversion

DAC82001 for Generating Time Gain Compensation (TGC) Control

Table of Contents

1 Features1	7.4 Device Functional Modes	13
2 Applications1	7.5 Programming	14
3 Description1	7.6 Register Maps	15
4 Revision History2	8 Application and Implementation	17
5 Pin Configuration and Functions3	8.1 Application Information	17
6 Specifications4	8.2 Typical Applications	
6.1 Absolute Maximum Ratings4	8.3 Power Supply Recommendations	<mark>2</mark> 1
6.2 ESD Ratings4	8.4 Layout	<mark>21</mark>
6.3 Recommended Operating Conditions4	9 Device and Documentation Support	22
6.4 Thermal Information4	9.1 Documentation Support	22
6.5 Electrical Characteristics5	9.2 Receiving Notification of Documentation Updates	22
6.6 Timing Requirements6	9.3 Support Resources	22
6.7 Timing Diagram6	9.4 Trademarks	22
6.8 Typical Characteristics7	9.5 Electrostatic Discharge Caution	22
7 Detailed Description11	9.6 Glossary	22
7.1 Overview11	10 Mechanical, Packaging, and Orderable	
7.2 Functional Block Diagram11	Information	22
7.3 Feature Description12		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	Changes from Revision * (September 2022) to Revision A (November 2022)	Page
•	Changed device status from advanced information (preview) to production data (active)	1

5 Pin Configuration and Functions

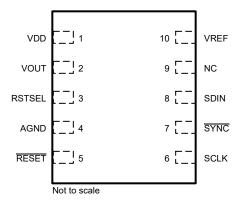


Figure 5-1. DRX (10-Pin WSON) Package, Top View

Table 5-1. Pin Functions

PIN	ı	TVDE	DESCRIPTION
NAME	NO.	TYPE	DESCRIPTION
AGND	4	Ground	Ground reference point for all circuitry on the device.
NC	9	_	Do not connect
RESET	5	Input	Asynchronous reset. Active low. If $\overline{\text{RESET}}$ is low, all DAC channels reset either to zero-scale (RSTSEL = AGND) or to midscale (RSTSEL = V _{DD}).
RSTSEL	3	Input	Reset select pin. DAC powers up to zero scale if RSTSEL = AGND. DAC powers up to midscale if RSTSEL = V _{DD} .
SCLK	6	Input	Serial interface clock of SPI.
SDIN	8	Input	Serial interface data input of SPI. Data are clocked into the input shift register on each falling edge of the SCLK pin.
SYNC	7	Input	Serial data enable of SPI. Active low. This input is the frame-synchronization signal for the serial data. When the signal goes low, the serial interface input shift register is enabled.
VDD	1	Power	Analog supply voltage (2.7 V to 5.5 V)
VOUT	2	Output	Analog output voltage from DAC
VREF	10	Input	This pin is the external reference input to the device.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

	-		MIN	MAX	UNIT
		VDD to AGND	-0.3	6	
Vs	Input voltage	VREF to AGND	-0.3	V _{DD} + 0.3	V
		Digital inputs to AGND	-0.3	V _{DD} + 0.3	
	Output voltage, \	/OUT to AGND	-0.3	V _{DD} + 0.3	V
	Input current into	any digital pin	-10	10	mA
TJ	Junction tempera	ature	-40	150	°C
T _{stg}	Storage tempera	ture	-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±1500	\/
V _(ESD)	Electrostatic discriarge	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins ⁽²⁾	±1000	v

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
POWER SUPPLY					
Vs	Positive supply voltage to ground, VDD to AGND	2.7		5.5	V
DIGITAL INPUTS					
V _{IH}	Input high voltage	1.62			V
V _{IL}	Input low voltage			0.45	V
REFERENCE INP	UT				
V _{REF}	Reference voltage to ground, VREF to AGND	2.0		V_{DD}	V
TEMPERATURE					
T _A	Operating temperature	-40		85	°C

6.4 Thermal Information

		DAC82001	
	THERMAL METRIC(1)	DRX (WSON)	UNIT
		10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	99.7	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	49.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	35.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	1.7	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	35.7	°C/W

(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: DAC82001

6.5 Electrical Characteristics

all minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to +85°C and all typical values at $T_A = 25^{\circ}\text{C}$, 2.7 V \leq V_{DD} \leq 5.5 V, 2.0 V \leq V_{REF} \leq 5.5 V , AGND = 0 V, and digital inputs at VDD or AGND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC PE	ERFORMANCE				•	
	Resolution		16			Bits
INL	Integral nonlinearity		-2	±0.6	2	LSB
DNL	Differential nonlinearity		-1	±0.5	1	LSB
TUE	Total unadjusted error		-0.06	0.04	0.06	%FSR
	Zero code error		-2.6	0.5	2.6	LSB
	Zero code error temperature coefficient			±0.02		ppm/°C
	Gain error		-20	4	20	LSB
	Gain error temperature coefficient			±0.1		ppm/°C
OUTPUT	CHARACTERISTICS					
Vo	Output voltage		0		V_{REF}	V
Z _O	Output impedance			6.25	111	kΩ
	Power supply rejection ratio (dc)	DAC at midscale; V _{DD} = 5 V ±10%, V _{REF} = 2.5 V		5		μV/V
DYNAMIC	PERFORMANCE		<u> </u>			
t _s	Output voltage settling time	To 1/2 LSB of FS, C ₁ = 10 pF		1		μs
	Output noise	DAC at midcode, 0.1 Hz to 10 Hz		0.1		μV _{PP}
	Output noise density	DAC at midcode, measured at 10 kHz		10		nV/√Hz
SFDR	Spurious free dynamic range	1-kHz sinusoid at DAC output (unbuffered, full scale), DAC updated at 200 kSPS with 40-kHz low-pass filter, include up to 7th harmonics		-96		dB
THD	Total harmonic distortion	1-kHz sinusoid at DAC output (unbuffered, full scale), DAC updated at 200 kSPS with 40-kHz low-pass filter, include up to 7th harmonics		– 91		dB
PSRR AC	Power supply rejection ratio (ac)	DAC at midscale, V _{REF} = 2.5 V, V _{DD} = 5 V ±200 mV at 10 kHz		-72		dB
	Code change glitch impulse	±1 LSB around major carry		0.5		nV-s
	Digital feedthrough			0.5		nV-s
	Power on glitch magnitude	C _{LOAD} = 10 pF		0.8		V
VOLTAGE	REFERENCE INPUT				l	
	Reference input voltage		2.0		V_{DD}	V
Z _{REF}	Reference input impedance		5			kΩ
C _{REF}	Reference input capacitance			75		pF
DIGITAL II						•
	Hysteresis voltage			0.4		V
	Input current		– 5		5	μA
	Pin capacitance	Per pin		10		pF
POWER	supuonunos	. s. p		10		۲۰
TOWER	I	V _{DD} = 3 V		250	350	
I_{DD}	Power-supply current	$V_{DD} = 5 \text{ V}$ $V_{DD} = 5 \text{ V}$		250	350	μΑ
		$V_{DD} = 5 \text{ V}$ $V_{DD} = 3 \text{ V}$				
				750	1050	

6.6 Timing Requirements

all input signals are specified with t_R = t_F = 1 ns/V and timed from a voltage level of $(V_{IL} + V_{IH})$ / 2. 2.7 V \leq V_{DD} \leq 5.5 V, V_{IL} = 1.62 V, V_{IL} = 0.15 V, 2.0 V \leq V_{REF} \leq 5.5 V, and T_A = -40° C to $+85^{\circ}$ C (unless otherwise noted)

		MIN	NOM	MAX	UNIT
f _{SCLK}	SCLK frequency			50	MHz
t _{SCLKHIGH}	SCLK high time	9			ns
t _{SCLKLOW}	SCLK low time	9			ns
t _{SDIS}	SDIN setup	5			ns
t _{SDIH}	SDIN hold	10			ns
t _{SYNCS}	SYNC falling edge to SCLK falling edge setup	13			ns
t _{SYNCH}	SCLK falling edge to SYNC rising edge	10			ns
t _{SYNCHIGH}	SYNC high time	160			ns
t _{SYNCIGNORE}	SCLK falling edge to SYNC ignore	15			ns
t _{DACWAIT}	Sequential DAC update wait time	1			μs

6.7 Timing Diagram

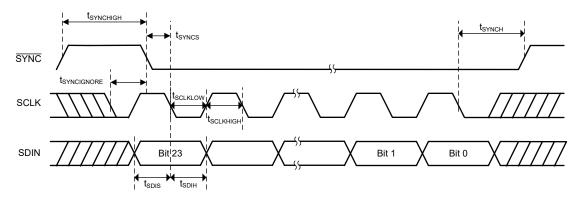
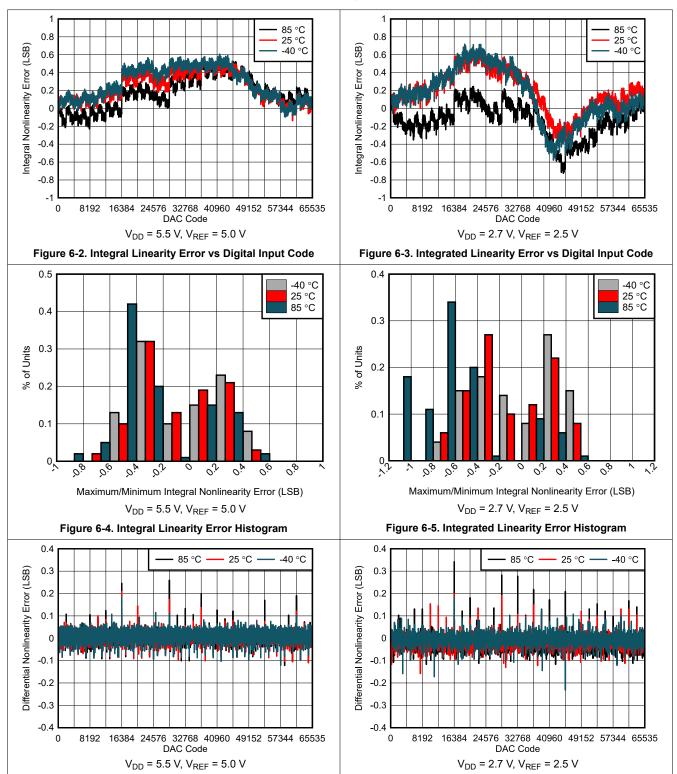


Figure 6-1. Timing Diagram

6.8 Typical Characteristics

at T_A = 25°C, channel output shown, and DAC outputs unloaded (unless otherwise noted)



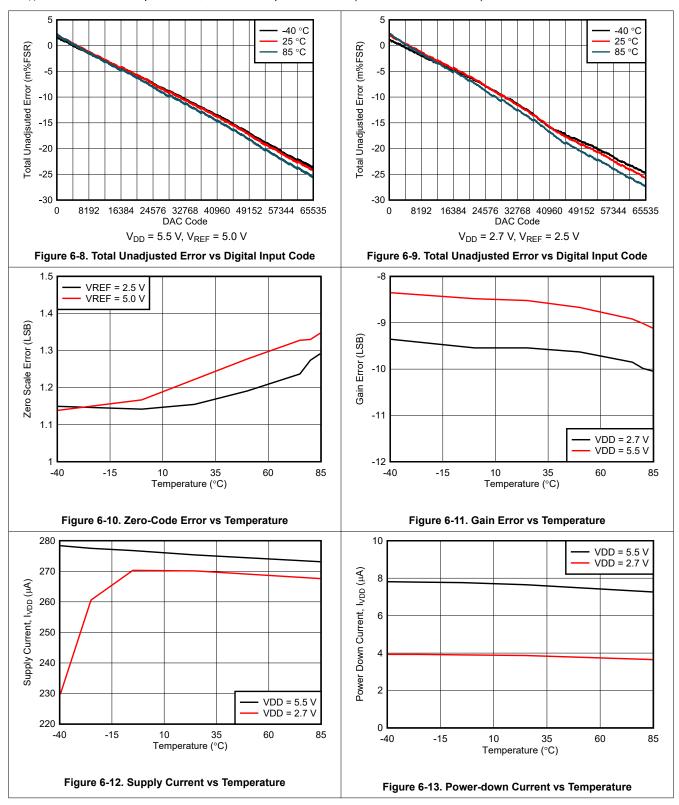
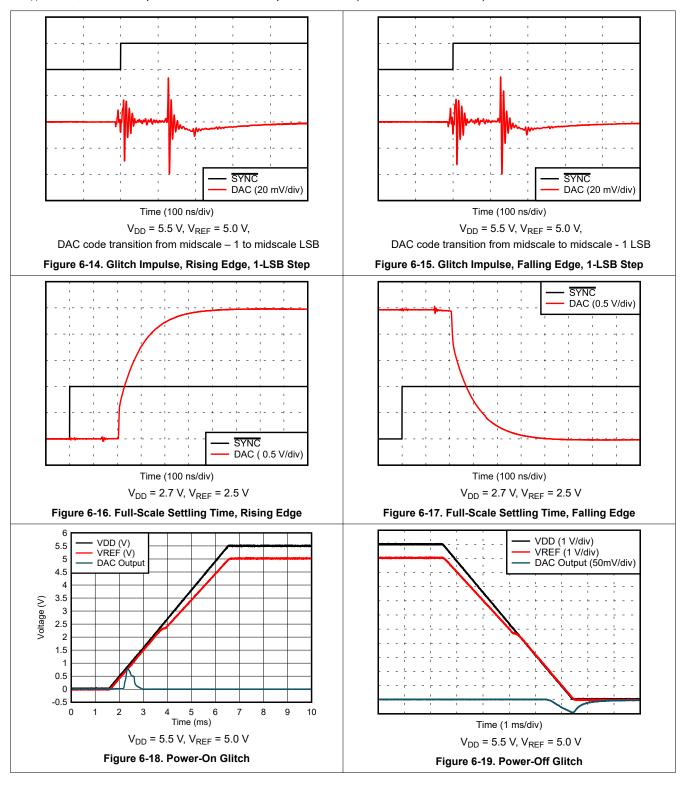
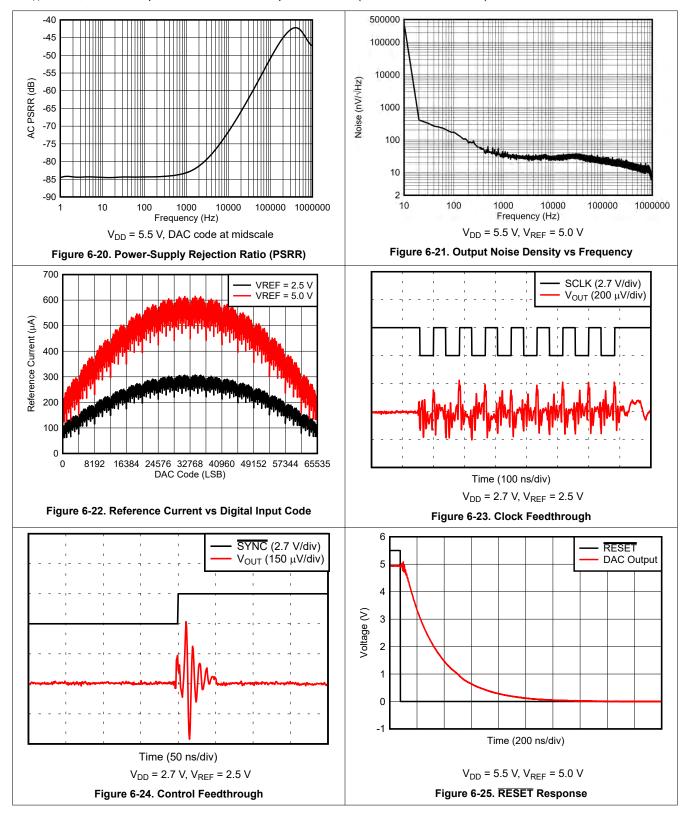

Figure 6-6. Differential Linearity Error vs Digital Input Code

Figure 6-7. Differential Linearity Error vs Digital Input Code


6.8 Typical Characteristics (continued)

at T_A = 25°C, channel output shown, and DAC outputs unloaded (unless otherwise noted)

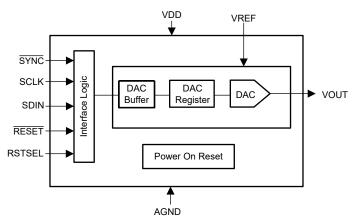
6.8 Typical Characteristics (continued)


at T_A = 25°C, channel output shown, and DAC outputs unloaded (unless otherwise noted)

6.8 Typical Characteristics (continued)

at T_A = 25°C, channel output shown, and DAC outputs unloaded (unless otherwise noted)

7 Detailed Description


7.1 Overview

The DAC82001 device is a single-channel, unbuffered voltage output, 16-bit digital-to-analog converter (DAC) operating from a single 3.3-V to 5-V power supply. This converter provides 1-LSB DNL and 2-LSB INL linearity. With a 10-pF load, the output of the DAC82001 settles to $\frac{1}{2}$ LSB of full scale at 1 μ s. The glitch impulse of 1-LSB code change around major carry is 0.5 nV-s.

The device incorporates a power-on-reset circuit to make sure that the DAC output powers up at zero scale or midscale, depending on status of the RSTSEL pin, and remains at that scale until a valid code is written to the device. All internal registers are asynchronously reset after the RESET pin is pulled low. Similar to the power-on-reset, the RESET signal sets the DAC output to zero scale or midscale based on the status of the RSTSEL pin.

The digital interface of the DAC82001 uses a 3-wire serial peripheral interface (SPI) that operates at clock rates of up to 50 MHz.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Digital-to-Analog Converter (DAC) Architecture

The output channel in the DAC82001 device consists of a segmented R-2R architecture. Figure 7-1 shows a block diagram of the DAC architecture. The four MSBs of the 16-bit data word are decoded to drive 15 switches, E1 to E15. Each of these switches connects one of 15 matched resistors to either AGND or VREF. The remaining 12 bits of the data word drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder network.

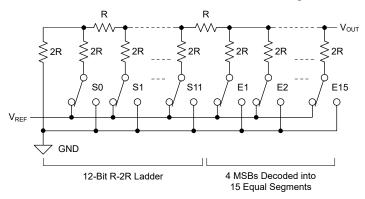


Figure 7-1. DAC82001 DAC Block Diagram

7.3.1.1 DAC Transfer Function

The input data writes to the individual DAC data registers in straight binary format. After a power-on or a reset event, all DAC registers are set to zero code (RSTSEL = AGND) or midscale code (RSTSEL = V_{DD}). The DAC transfer function is shown by Equation 1.

$$V_{OUT} = \frac{DAC_DATA}{2^N} \times V_{REF} \tag{1}$$

where:

- N = 16 (resolution in bits)
- DAC_DATA = decimal equivalent of the binary code that is loaded to the DAC register (address 8h), DAC_DATA ranges from 0 to 2^N - 1
- V_{REF} = DAC external reference voltage. V_{REF} ranges from 2.0 V to V_{DD}

7.3.1.2 DAC Register Structure

Data written to the DAC data registers are initially stored in the DAC buffer registers. The update mode of the DAC output is determined by the status of the DAC_SYNC_EN bit (address 2h).

In asynchronous mode (default, DAC_SYNC_EN = 0), a write to the DAC buffer register results in an immediate update of the DAC active register. The DAC output (VOUT pin) updates on the rising edge of $\overline{\text{SYNC}}$.

In synchronous mode (DAC_SYNC_EN = 1), writing to the DAC buffer register does not automatically update the DAC active register. Instead, the update occurs only after a software LDAC trigger event. A software LDAC trigger generates through the LDAC bit in the TRIGGER register (address 5h).

7.3.2 Power-On Reset (POR)

The DAC82001 device includes a power-on reset function that controls the output voltage at power up. After the V_{DD} supply has been established, a POR event is issued. The POR causes all registers to initialize to default values, and communication with the device is valid only after a 250- μ s, power-on-reset delay. The default value for all DACs is zero code if RSTSEL = AGND, and midscale code if RSTSEL = V_{DD} . The DAC channel remains at the power-up voltage until a valid command is written to the channel.

When the device powers up, a POR circuit sets the device to the default mode. Figure 7-2 shows that the POR circuit requires specific V_{DD} levels to make sure that the internal capacitors discharge and reset the device at power up. To make sure that a POR occurs, V_{DD} must be less than 0.7 V for at least 1 ms. When V_{DD} drops to less than 2.2 V but remains greater than 0.7 V (shown as the undefined region in Figure 7-2), the device may or may not reset under all specified temperature and power-supply conditions; in this case, initiate a POR. When V_{DD} remains greater than 2.2 V, a POR does not occur.

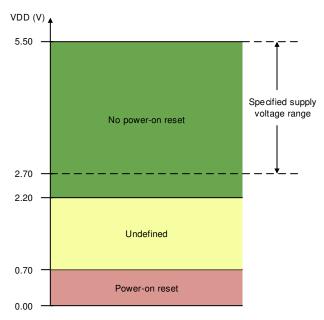


Figure 7-2. Threshold Levels for the V_{DD} POR Circuit

7.3.3 Hardware Reset

The DAC output is asynchronously set to zero code if RSTSEL = AGND, and midscale code if RSTSEL = V_{DD} , immediately after the \overline{RESET} pin is brought low. The \overline{RESET} signal resets all internal registers, meaning all registers initialize to default values. Bring the \overline{RESET} pin back to high before a write sequence starts. Similar to the POR delay, communication with the device is valid only after a 250- μ s delay. The default value for the DAC channel remains at the reset voltage until a valid command is written to the channel. The RSTSEL pin can be reconfigured without a power cycle. The DAC output always reflects the current RSTSEL status when the \overline{RESET} pin is pulled low.

7.3.4 Software Reset

A device software reset event is initiated by writing the reserved code 0x1010 to the SOFT-RESET bits in the TRIGGER register (address 5h). A software reset initiates a POR event.

7.4 Device Functional Modes

The DAC82001 has one mode of operation: normal.

In normal mode, the DAC82001 is fully operational. The device translates digital input or reset input to corresponding analog output.

Copyright © 2022 Texas Instruments Incorporated

7.5 Programming

7.5.1 Serial Peripheral Interface (SPI)

The DAC82001 is controlled through a 3-wire serial peripheral interface (SPI) using SYNC, SCLK, and SDIN. The serial interface operates at up to 50 MHz. The input shift register is 24-bits wide.

Table 7-1 shows the SPI frame format.

Table 7-1. SPI Frame Format

BIT	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DESC	W	Reg		Addre	ess - C	Comm	and E	3yte						16-E	Bit MS	B-Ali	gned	DAC I	Data					

Serial clock SCLK is a continuous or a gated clock. The first falling edge of SYNC starts the operation cycle. When SYNC is high, the SCLK and SDIN signals are blocked. The device internal registers are updated from the shift register on the rising edge of SYNC.

7.5.1.1 SYNC Interrupt

For SPI operation, the SYNC line stays low for at least 24 falling edges of SCLK, and the addressed DAC register updates on the SYNC rising edge. However, if the SYNC line is brought high before the 24th SCLK falling edge, this event acts as an interrupt to the write sequence. The shift register resets and the write sequence is discarded. As Figure 7-3 shows, the data buffer contents and the DAC register contents do not update, and the operating mode does not change.

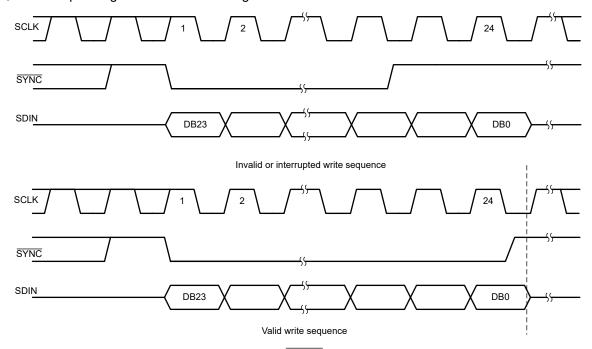


Figure 7-3. SYNC Interrupt

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7.6 Register Maps

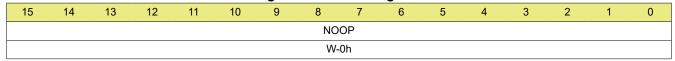

7.6.1 Registers

Table 7-2. DAC82001 Registers

Offset	Register Description	Section					
0h	No Operation	NOOP Register					
2h	Synchronization	SYNC Register					
5h	Trigger	TRIGGER Register					
8h	DAC	DAC Register					

7.6.1.1 NOOP Register (offset = 0h) [reset = 0000h]

Figure 7-4. NOOP Register

Table 7-3. NOOP Register Field Descriptions

г					•
	Bit	Bit Field		Reset	Description
	15-0	NOOP	W	0h	No operation command

7.6.1.2 SYNC Register (offset = 2h) [reset = 0000h]

Figure 7-5. SYNC Register

15	15 14 13 12 11 10						8	7	6	5	4	3	2	1	0
	RESERVED												DAC-SYNC- EN		
W-0h												W-0h			

Table 7-4. SYNC Register Field Descriptions

				•
Bit	Field	Туре	Reset	Description
15-1	RESERVED	W	0h	These bits are reserved.
0	DAC-SYNC-EN	W		When set to 1, the DAC output is set to update in response to an LDAC trigger (synchronous mode). When cleared to 0, the DAC output is set to update immediately (asynchronous mode), default.

7.6.1.3 TRIGGER Register (offset = 5h) [reset = 0000h]

Figure 7-6. TRIGGER Register

	15 14 13 12		11	10	9	8	7	6	5	4	3	2	1	0		
RESERVED												LDAC	;	SOFT-RE	SET [3:0]]
						W-0h						W-0h		W-	-0h	

Table 7-5. TRIGGER Register Field Descriptions

				•
Bit	Field	Туре	Reset	Description
15-5	RESERVED	W	0h	These bits are reserved.
4	LDAC	W	0h	Set this bit to 1 to synchronously load the DAC that is set to synchronous mode in the SYNC register. This bit self-resets.
3-0	SOFT-RESET [3:0]	W	0h	When set to reserved code 1010, this bit resets the device to the default state. This bit self-resets.

7.6.1.4 DAC Register (offset = 8h) [reset = 0000h when RSTSEL is logic low, or reset = 8000h when RSTSEL is logic high]

Figure 7-7. DAC Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1														0
	DAC-DATA [15:0]													
	W-0000h when RSTSEL is logic low or 8000h when RSTSEL is logic high													

Table 7-6. DAC Data Register Field Descriptions (8h)

Bit	Field	Туре	Reset	Description
15-0	DAC-DATA [15:0]	W	0000h when RSTSEL is logic low or 8000h when RSTSEL is logic high	Data are MSB aligned in straight binary format.

Product Folder Links: DAC82001

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

Generating accurate, stable, programmable dc voltages is a key requirement in most precision end equipment. The DAC82001 serves a wide range of end equipment, such as battery testers, communications equipment, factory automation and control, test and measurement. The DAC82001 tiny package, high resolution, fast settling, and simple interface makes this device an excellent choice for applications such as offset and gain control, arbitrary waveform generation (AWG), closed-loop control, and bipolar analog outputs. A wide variety of operational amplifiers can be used as output buffers for the DAC82002, allowing the user to choose components that best fit their design.

8.2 Typical Applications

8.2.1 Arbitrary Waveform Generator

Arbitrary waveform generation (AWG) circuits are common in test and measurement equipment. These circuits are used to generate ac waveforms for test applications. The key performance parameters in test and measurement circuits are total harmonic distortion and noise (THD+N), signal-to-noise ratio (SNR), and the update rate. Figure 8-1 shows a basic example of an AWG circuit using the DAC82001.

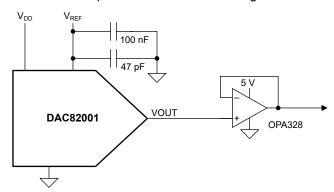
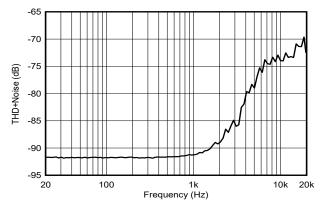


Figure 8-1. Arbitrary Waveform Generator

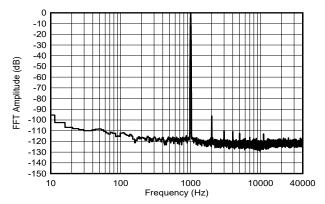
8.2.1.1 Design Requirements


DAC output range: 0 V to 2.5 V
THD+N at 1 kHz: < -91 dB
Update rate: 200 kHz

8.2.1.2 Detailed Design Procedure

Figure 8-1 shows a simplified circuit diagram of an arbitrary waveform generator. The DAC82001 specifies a THD+N of –91 dB at 1 kHz. The OPA328 provides a great balance between fast settling, bandwidth, and voltage and current noise. The buffer must have a negative voltage supply rail or an output offset to make sure the DAC output is not clipped. Attach two decoupling capacitors as close as possible to the VREF pin. Use 100 nF for the first capacitor to provide very good noise performance for the system. Use 47 pF for the second capacitor to allow for a good dynamic response performance that improves any code-to-code glitch. The REF5025 is a low-noise, very low-drift, precise voltage reference that generates a 2.5-V reference for this application.

8.2.1.3 Application Curves


Figure 8-2 shows the THD+N plot vs frequency of the buffer output using a 20-Hz to 20-kHz sine wave sweep with a DAC code range of $0x81FF \pm 0x7E00$ to prevent voltage clipping. A 40-kHz low-pass filter is also used in the measurement tool.

20-Hz to 20-kHz sine wave sweep with a code range of $0x81FF \pm 0x7E00$ 40-kHz low-pass filter

Figure 8-2. THD+N vs Frequency

Figure 8-3 shows the FFT of the buffer output using a 1-kHz sine wave with a code range of 0x81FF ± 0x7E00 to prevent voltage clipping. 32768 bins, 8 averages, and a 40-kHz low-pass filter are also used in the measurement tool.

1-kHz sine wave with a code range of 0x81FF ± 0x7E00 32768 bins, 8 averages, 40-kHz low-pass filter

Figure 8-3. FFT Amplitude vs Frequency

8.2.2 Bipolar Analog Output Configuration

Programmable logic circuits (PLCs) have analog output modules that typically output ±10 V. This bipolar analog output circuit converts the unipolar DAC output to a bipolar ±10-V output. The key performance parameters of these circuits are noise and slew rate. The circuit can also be used to force voltage in semiconductor test applications. Figure 8-4 shows the example configuration using the DAC82001.

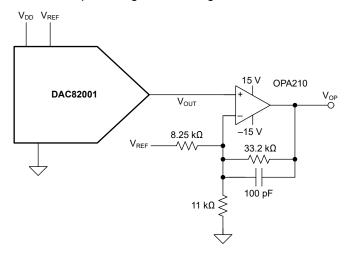


Figure 8-4. Bipolar Analog Output Circuit

8.2.2.1 Design Requirements

DAC output range: 0 V to 2.5 V

PLC analog output range: -10 V to +10 V

Noise: < 3 μV/√Hz
 Slew rate: > 1 V/μs

8.2.2.2 Detailed Design Procedure

The OPA210 output buffer provides a balance between fast settling, bandwidth, voltage and current noise, and wide voltage rails. The buffer uses ±15-V voltage rails to make sure there is no voltage clipping. The REF5025 is a low-noise, very low-drift, precise voltage reference and is used to generate a stable 2.5-V reference for this application. To further reduce noise, use a 100-pF capacitor between the non-inverting input pin and the output of the OPA210.

8.2.2.3 Application Curves

Figure 8-5 shows the noise on the buffer output vs frequency using a 100-Hz to 1-MHz frequency sweep with a grounded reference to isolate the noise in the circuit.

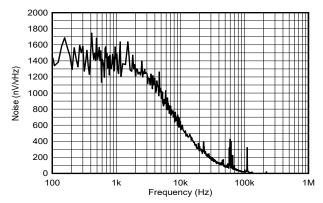


Figure 8-5. Noise vs Frequency

Figure 8-6 shows the output of the circuit rising from -10 V to +10 V, with the DAC starting at code 0x0000 and ending at code 0xFFFF. The measured slew rate is 2.5 V/µs. The REF5025 is used as a 2.5 V reference.

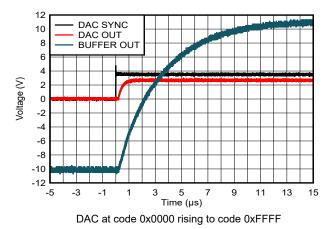


Figure 8-6. Bipolar Output Rising Slew Rate

Figure 8-7 shows the output of the circuit falling from +10 V to -10 V, with the DAC starting at code 0xFFFF and ending at code 0x0000. This measured slew rate is 2.5 V/ μ s. The REF5025 is used as a 2.5-V reference.

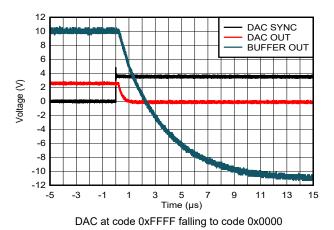


Figure 8-7. Bipolar Output Falling Slew Rate

8.3 Power Supply Recommendations

The DAC82001 operates within the specified V_{DD} supply range of 2.7 V to 5.5 V. The DAC82001 does not require specific supply sequencing, but V_{REF} must be less than V_{DD} , as noted in the *Absolute Maximum Ratings*. The V_{DD} supply must be well-regulated and low-noise. Switching power supplies and DC/DC converters often have high-frequency glitches or spikes riding on the output voltage. Digital components also create similar high-frequency spikes. This noise can easily couple into the DAC output voltage through various paths between the power connections and analog output. To further minimize noise from the power supply, include a 1- μ F to 10- μ F capacitor and 0.1- μ F bypass capacitor.

8.4 Layout

8.4.1 Layout Guidelines

A precision analog component requires careful layout. The following list provides some insight into good layout practices.

- Bypass the VDD to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass capacitance is 0.1-µF to 0.22-µF ceramic capacitor, with a X7R or NP0 dielectric.
- Bypass VREF to ground with low ESR ceramic bypass capacitors.
- Place power supplies and REF bypass capacitors close to the pins to minimize inductance and optimize performance.
- The output pin, VOUT, has relatively high impedance and is susceptible to high parasitic capacitance. Use short and direct traces when routing VOUT.

8.4.2 Layout Example

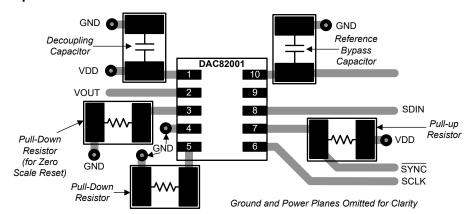


Figure 8-8. Layout Example

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation see the following: Texas Instruments, DAC82002EVM user's guide

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
DAC82001DRXR	Active	Production	WSON (DRX) 10	3000 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	D821
DAC82001DRXR.A	Active	Production	WSON (DRX) 10	3000 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	D821

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

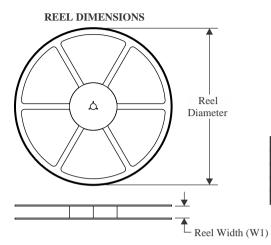
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

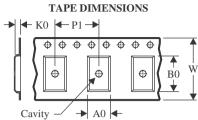
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

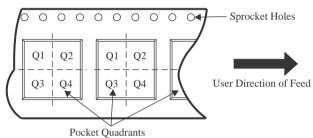
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

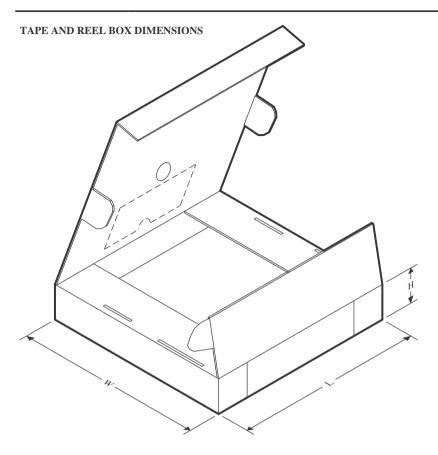
PACKAGE MATERIALS INFORMATION

www.ti.com 17-Apr-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

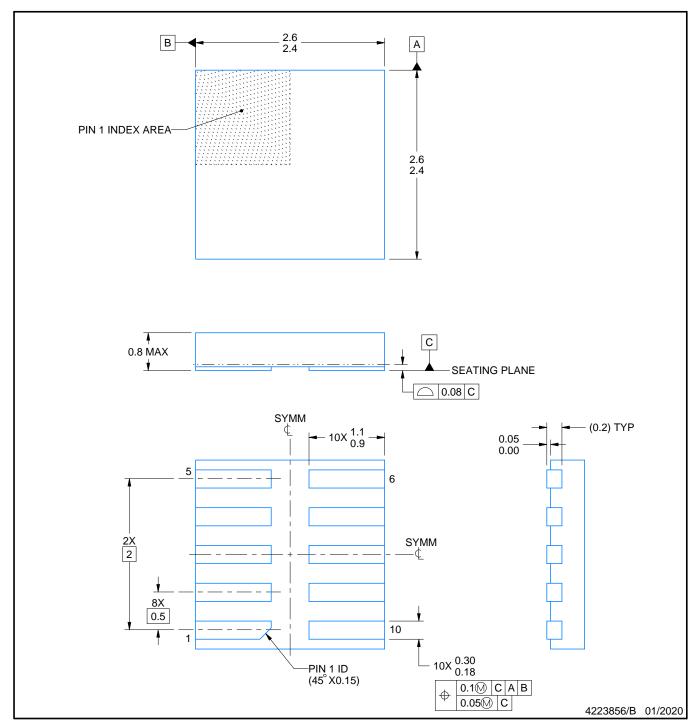


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC82001DRXR	WSON	DRX	10	3000	178.0	8.4	2.75	2.75	0.95	4.0	8.0	Q2

PACKAGE MATERIALS INFORMATION

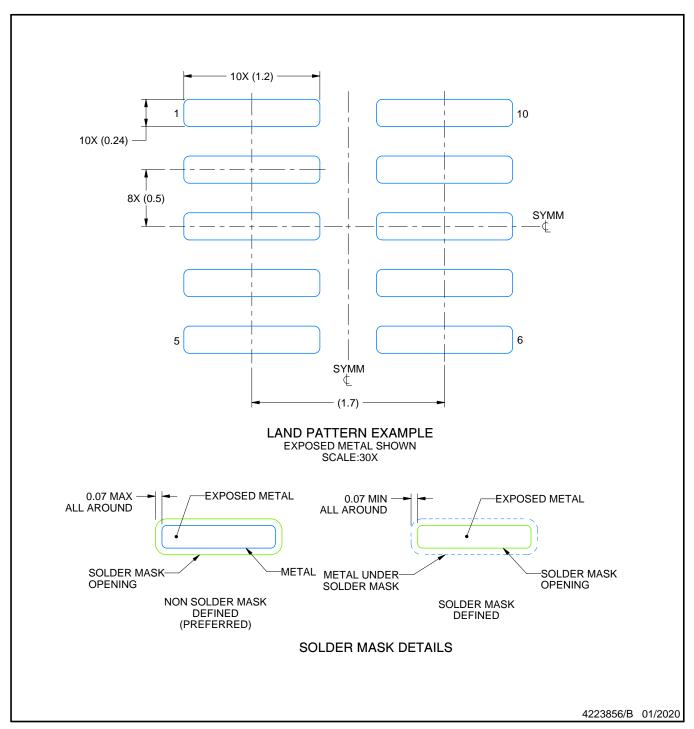
www.ti.com 17-Apr-2023



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DAC82001DRXR	WSON	DRX	10	3000	205.0	200.0	33.0

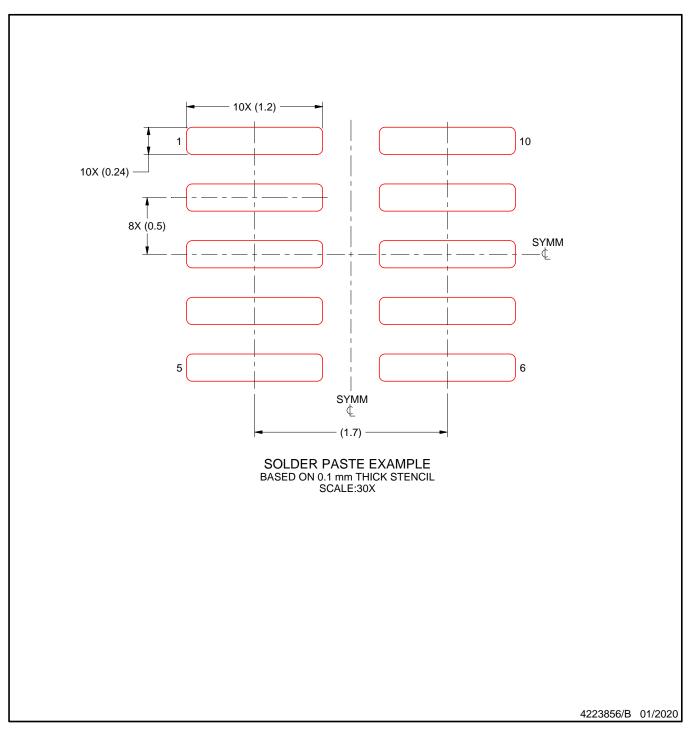
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025