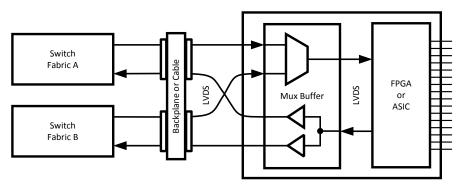


SNLS197D - MAY 2006 - REVISED MARCH 2013

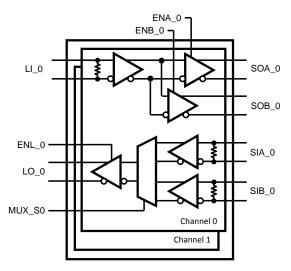
DS08MB200 Dual 800 Mbps 2:1/1:2 LVDS Mux/Buffer

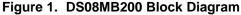
Check for Samples: DS08MB200

FEATURES


- Up to 800 Mbps Data Rate per Channel
- LVDS/BLVDS/CML/LVPECL Compatible Inputs, LVDS Compatible Outputs
- Low Output Skew and Jitter
- On-Chip 100Ω Input Termination
- 15 kV ESD Protection on LVDS Inputs/Outputs
- Hot Plug Protection
- Single 3.3V Supply
- Industrial -40 to +85°C Temperature Range
- 48-pin WQFN Package

Typical Application


DESCRIPTION


The DS08MB200 is a dual-port 1 to 2 repeater/buffer and 2 to 1 multiplexer. High-speed data paths and flow-through pinout minimize internal device jitter and simplify board layout. The differential inputs and outputs interface to LVDS or Bus LVDS signals such as those on TI's 10-, 16-, and 18- bit Bus LVDS SerDes, or to CML or LVPECL signals.

The 3.3V supply, CMOS process, and robust I/O ensure high performance at low power over the entire industrial -40 to +85°C temperature range.

Block Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. LI_0+

LI_0-

LI_1+

LI 1-

SNLS197D-MAY 2006-REVISED MARCH 2013

www.ti.com

STRUMENTS

EXAS

PIN DESCRIPTIONS Pin WQFN Pin I/O, Type Description Name Number SWITCH SIDE DIFFERENTIAL INPUTS SIA_0+ Switch A-side Channel 0 inverting and non-inverting differential inputs. LVDS, Bus LVDS, CML, or 30 I, LVDS SIA_0-29 LVPECL compatible Switch A-side Channel 1 inverting and non-inverting differential inputs. LVDS, Bus LVDS, CML, or SIA_1+ 19 I, LVDS SIA_1-20 LVPECL compatible. SIB 0+ 28 I, LVDS Switch B-side Channel 0 inverting and non-inverting differential inputs. LVDS, Bus LVDS, CML, or SIB_0-27 LVPECL compatible. SIB_1+ 21 I, LVDS Switch B-side Channel 1 inverting and non-inverting differential inputs. LVDS, Bus LVDS, CML, or SIB_1-LVPECL compatible. 22 LINE SIDE DIFFERENTIAL INPUTS I, LVDS Line-side Channel 0 inverting and non-inverting differential inputs. LVDS, Bus LVDS, CML, or 40 39 LVPECL compatible. 9 I, LVDS Line-side Channel 1 inverting and non-inverting differential inputs. LVDS, Bus LVDS, CML, or 10 LVPECL compatible. SWITCH SIDE DIFFERENTIAL OUTPUTS Switch A-side Channel 0 inverting and non-inverting differential outputs. LVDS compatible⁽¹⁾⁽²⁾. SOA_0+ 34 O, LVDS SOA_0-33 Switch A-side Channel 1 inverting and non-inverting differential outputs. LVDS compatible⁽¹⁾⁽²⁾. SOA_1+ 15 O, LVDS SOA_1-16 Switch B-side Channel 0 inverting and non-inverting differential outputs. LVDS compatible⁽¹⁾⁽²⁾. SOB_0+ 32 O, LVDS SOB_0-31 Switch B-side Channel 1 inverting and non-inverting differential outputs. LVDS compatible⁽¹⁾⁽²⁾. SOB 1+ 17 O, LVDS SOB_1-18 LINE SIDE DIFFERENTIAL OUTPUTS Line-side Channel 0 inverting and non-inverting differential outputs. LVDS compatible⁽¹⁾⁽²⁾. LO_0+ 42 O, LVDS LO_0-41 Line-side Channel 1 inverting and non-inverting differential outputs. LVDS compatible⁽¹⁾⁽²⁾. LO_1+ 7 O, LVDS LO_1-8 DIGITAL CONTROL INTERFACE MUX SO 38 I, LVTTL Mux Select Control Inputs (per channel) to select which Switch-side input, A or B, is passed through MUX_S1 to the Line-side. 11 Output Enable Control for Switch A-side and B-side outputs. Each output driver on the A-side and B-ENA 0 36 I, LVTTL ENA 1 13 side has a separate enable pin. ENB_0 35 ENB_1 14 ENL_0 45 I. LVTTL Output Enable Control for The Line-side outputs. Each output driver on the Line-side has a separate

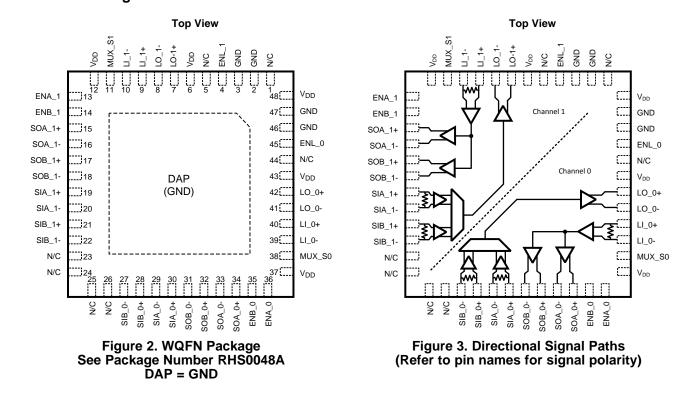
ENL_1

4

POWER			
V _{DD}	6, 12, 37, 43, 48	I, Power	$V_{DD} = 3.3V \pm 0.3V.$
GND	2, 3, 46, 47 ⁽³⁾	I, Power	Ground reference for LVDS and CMOS circuitry. For the WQFN package, the DAP is used as the primary GND connection to the device. The DAP is the exposed metal contact at the bottom of the WQFN-48 package. It should be connected to the ground plane with at least 4 vias for optimal AC and thermal performance.
N/C	1, 5, 23, 24, 25, 26, 44		No Connect

For interfacing LVDS outputs to CML or LVPECL compatible inputs, refer to the APPLICATIONS section of this datasheet. (1)

enable pin.


The LVDS outputs do not support a multidrop (BLVDS) environment. The LVDS output characteristics of the DS08MB200 device have (2)been optimized for point-to-point backplane and cable applications.

Note that the DAP on the backside of the WQFN package is the primary GND connection for the device when using the WQFN (3)package.

SNLS197D - MAY 2006 - REVISED MARCH 2013

Connection Diagrams

TRI-STATE and Powerdown Modes

The DS08MB200 has output enable control on each of the six onboard LVDS output drivers. This control allows each output individually to be placed in a low power TRI-STATE mode while the device remains active, and is useful to reduce power consumption on unused channels. In TRI-STATE mode, some outputs may remain active while some are in TRI-STATE.

When all six of the output enables (all drivers on both channels) are deasserted (LOW), then the device enters a Powerdown mode that consumes only 0.5mA (typical) of supply current. In this mode, the entire device is essentially powered off, including all receiver inputs, output drivers and internal bandgap reference generators. When returning to active mode from Powerdown mode, there is a delay until valid data is presented at the outputs because of the ramp to power up the internal bandgap reference generators.

Any single output enable that remains active will hold the device in active mode even if the other five outputs are in TRI-STATE.

When in Powerdown mode, any output enable that becomes active will wake up the device back into active mode, even if the other five outputs are in TRI-STATE.

Input Failsafe Biasing

External pull up and pull down resistors may be used to provide enough of an offset to enable an input failsafe under open-circuit conditions. This configuration ties the positive LVDS input pin to VDD thru a pull up resistor and the negative LVDS input pin is tied to GND by a pull down resistor. The pull up and pull down resistors should be in the $5k\Omega$ to $15k\Omega$ range to minimize loading and waveform distortion to the driver. Please refer to application note SNLA051B AN-1194, "Failsafe Biasing of LVDS Interfaces" for more information.

Output Characteristics

The output characteristics of the DS08MB200 have been optimized for point-to-point backplane and cable applications, and are not intended for multipoint or multidrop signaling.

MULTIPLEXER TRUTH TABLE⁽¹⁾⁽²⁾

Data	Inputs	Contro	Output			
SIA_0	SIB_0	MUX_S0	ENL_0	LO_0		
Х	valid	0	1	SIB_0		
valid	Х	1	1	SIA_0		
Х	Х	Х	0 ⁽³⁾	Z		

(1) Same functionality for channel 1

(2) X = Don't Care

Z = High Impedance (TRI-STATE)

(3) When all enable inputs from both channels are Low, the device enters a powerdown mode. Refer to the TRI-STATE and Powerdown Modes section.

REPEATER/BUFFER TRUTH TABLE⁽¹⁾⁽²⁾

Data Input	Contro	l Inputs	nputs Ou			
LI_0	ENA_0	ENB_0	SOA_0	SOB_0		
Х	0	0	Z ⁽³⁾	Z ⁽³⁾		
valid	0	1	Z	LI_0		
valid	1	0	LI_0	Z		
valid	1	1	LI_0	LI_0		

(1) Same functionality for channel 1

(2) X = Don't Care

- Z = High Impedance (TRI-STATE)
- (3) When all enable inputs from both channels are Low, the device enters a powerdown mode. Refer to the TRI-STATE and Powerdown Modes section.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage (V _{DD})		-0.3V to +4.0V				
CMOS Input Voltage		-0.3V to (V _{DD} +0.3V)				
LVDS Receiver Input Voltage ⁽²⁾		-0.3V to (V _{DD} +0.3V)				
LVDS Driver Output Voltage		-0.3V to (V _{DD} +0.3V)				
LVDS Output Short Circuit Current		+40 mA				
Junction Temperature		+150°C				
Storage Temperature		−65°C to +150°C				
Lead Temperature (Solder, 4sec)		260°C				
Max Pkg Power Capacity @ 25°C		5.2W				
Thermal Resistance (θ _{JA})		24°C/W				
Package Derating above +25°C		41.7mW/°C				
ESD Last Passing Voltage	HBM, 1.5kΩ, 100pF	8kV				
	LVDS pins to GND only	15kV				
	EIAJ, 0Ω, 200pF	250V				
	CDM	1000V				

 Absolute maximum ratings are those values beyond which damage to the device may occur. Texas Instruments does not recommend operation of products outside of recommended operation conditions.

(2) $V_{ID} \max < 2.4V$

RECOMMENDED OPERATING CONDITIONS

Supply Voltage (V _{CC})	3.0V to 3.6V	
Input Voltage (VI) ⁽¹⁾	0V to V _{CC}	
Output Voltage (V _O)		0V to V _{CC}
Operating Temperature (T _A)	Industrial	−40°C to +85°C

(1) V_{ID} max < 2.4V

⁴ Submit Documentation Feedback

ELECTRICAL CHARACTERISTICS

Over recommended operating supply and temperature ranges unless other specified.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Units
LVTTL D	C SPECIFICATIONS (MUX_Sn, ENA_	n, ENB_n, ENL_n)				·
VIH	High Level Input Voltage		2.0		V _{DD}	V
VIL	Low Level Input Voltage		GND		0.8	V
I _{IH}	High Level Input Current	$V_{IN} = V_{DD} = V_{DDMAX}$	-10		+10	μA
IIL	Low Level Input Current	$V_{IN} = V_{SS}, V_{DD} = V_{DDMAX}$	-10		+10	μA
C _{IN1}	Input Capacitance	Any Digital Input Pin to V _{SS}		3.5		pF
C _{OUT1}	Output Capacitance	Any Digital Output Pin to V _{SS}		5.5		pF
V _{CL}	Input Clamp Voltage	I _{CL} = −18 mA	-1.5	-0.8		V
LVDS IN	PUT DC SPECIFICATIONS (SIA±, SIB	±, Ll±)		1		
V _{TH}	Differential Input High Threshold ⁽²⁾	$V_{CM} = 0.8V$ or 1.2V or 3.55V, $V_{DD} = 3.6V$		0	100	mV
V _{TL}	Differential Input Low Threshold ⁽²⁾	$V_{CM} = 0.8V \text{ or } 1.2V \text{ or } 3.55V,$ $V_{DD} = 3.6V$	-100	0		mV
V _{ID}	Differential Input Voltage	$V_{CM} = 0.8V$ to 3.55V, $V_{DD} = 3.6V$	100		2400	mV
V _{CMR}	Common Mode Voltage Range	V _{ID} = 150 mV, V _{DD} = 3.6V	0.05		3.55	V
C _{IN2}	Input Capacitance	IN+ or IN- to V _{SS}		3.5		pF
I _{IN}	Input Current	$V_{IN} = 3.6V, V_{DD} = V_{DDMAX}$	-15		+15	μA
		$V_{IN} = 0V, V_{DD} = V_{DDMAX}$	-15		+15	μA
LVDS OI	UTPUT DC SPECIFICATIONS (SOA_n:	±, SOB_n±, LO_n±)				-
V _{OD}	Differential Output Voltage ⁽²⁾	R_L is the internal 100 Ω between OUT+	250	360	500	mV
ΔV_{OD}	Change in V _{OD} between Complementary States	and OUT-	-35		35	mV
V _{OS}	Offset Voltage ⁽³⁾		1.05	1.22	1.475	V
ΔV _{OS}	Change in V _{OS} between Complementary States	-	-35		35	mV
l _{os}	Output Short Circuit Current	OUT+ or OUT- Short to GND		-21	-40	mA
C _{OUT2}	Output Capacitance	OUT+ or OUT- to GND when TRI- STATE		5.5		pF
SUPPLY	CURRENT (Static)					
I _{CC}	Supply Current	All inputs and outputs enabled and active, terminated with differential load of 100Ω between OUT+ and OUT		225	275	mA
I _{CCZ}	Supply Current - Powerdown Mode	ENA_0 = ENB_0 = ENL_0= ENA_1 = ENB_1 = ENL_1 = L		0.6	4.0	mA
SWITCH	ING CHARACTERISTICS—LVDS OUT	PUTS				
t _{LHT}	Differential Low to High Transition Time	Use an alternating 1 and 0 pattern at 200 Mb/s, measure between 20% and 80% of		170	250	ps
t _{HLT}	Differential High to Low Transition Time	V _{OD} . ⁽⁴⁾		170	250	ps
t _{PLHD}	Differential Low to High Propagation Delay	Use an alternating 1 and 0 pattern at 200 Mb/s, measure at 50% $\rm V_{OD}$ between		1.0	2.5	ns
t _{PHLD}	Differential High to Low Propagation Delay	input to output.		1.0	2.5	ns
t _{SKD1}	Pulse Skew	t _{PLHD} -t _{PHLD} ⁽⁴⁾		25	75	ps
t _{skcc}	Output Channel to Channel Skew	Difference in propagation delay (t_{PLHD} or t_{PHLD}) among all output channels. ⁽⁴⁾		50	115	ps

Typical parameters are measured at $V_{DD} = 3.3V$, $T_A = 25^{\circ}C$. They are for reference purposes, and are not production-tested. Differential output voltage V_{OD} is defined as ABS(OUT+-OUT-). Differential input voltage V_{ID} is defined as ABS(IN+-IN-). Output offset voltage V_{OS} is defined as the average of the LVDS single-ended output voltages at logic high and logic low states. (1)

(2)

(3)

Not production tested. Ensured by statistical analysis on a sample basis at the time of characterization. (4)

Copyright © 2006–2013, Texas Instruments Incorporated

ISTRUMENTS

EXAS

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating supply and temperature ranges unless other specified.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Units
t _{JIT}	Jitter ⁽⁵⁾	RJ - Alternating 1 and 0 at 400 MHz ⁽⁶⁾		1.3	1.5	psrms
		DJ - K28.5 Pattern, 800 Mbps ⁽⁷⁾		15	34	psp-p
		TJ - PRBS 27-1 Pattern, 800 Mbps ⁽⁸⁾		16	34	psp-p
t _{ON}	LVDS Output Enable Time	Time from ENA_n, ENB_n, or ENL_n to OUT± change from TRI-STATE to active.		0.5	1.5	μs
t _{ON2}	LVDS Output Enable time from powerdown mode	Time from ENA_n, ENB_n, or ENL_n to OUT± change from Powerdown to active		10	20	μs
t _{OFF}	LVDS Output Disable Time	Time from ENA_n, ENB_n, or ENL_n to OUT± change from active to TRI-STATE or powerdown.			12	ns

(5) Jitter is not production tested, but ensured through characterization on a sample basis.

(6) Random Jitter, or RJ, is measured RMS with a histogram including 1500 histogram window hits. The input voltage = V_{ID} = 500mV, 50% duty cycle at 400 MHz, t_r = t_f = 50ps (20% to 80%).

(7) Deterministic Jitter, or D_J , is measured to a histogram mean with a sample size of 350 hits. Stimulus and fixture jitter has been subtracted. The input voltage = V_{ID} = 500mV, K28.5 pattern at 800 Mbps, $t_r = t_f = 50ps$ (20% to 80%). The K28.5 pattern is repeating bit streams of (0011111010 1100000101).

(8) Total Jitter, or T_J , is measured peak to peak with a histogram including 3500 window hits. Stimulus and fixture jitter has been subtracted. The input voltage = V_{ID} = 500mV, 2⁷⁻¹ PRBS pattern at 800 Mbps, t_r = t_f = 50ps (20% to 80%).

SNLS197D - MAY 2006 - REVISED MARCH 2013

Total Jitter vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

30

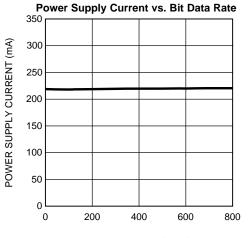
25

20

15

10

5


0

-40

-20

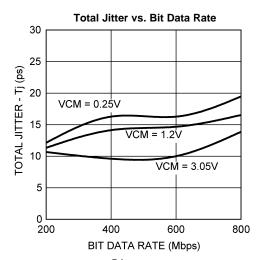
0

FOTAL JITTER - TJ (ps)

BIT DATA RATE (Mbps)

Dynamic power supply current was measured with all channels active Total Jitter measured at 0V differential while running a PRBS 27-1 and toggling at the bit data rate. Data pattern has no effect on the power consumption. V_{DD} = 3.3V, T_A = +25°C, V_{ID} = 0.5V, V_{CM} = 1.2V.

pattern with one channel active, all other channels are disabled. V_{DD} = 3.3V, V_{ID} = 0.5V, V_{CM} = 1.2V, 800 Mbps data rate. Stimulus and fixture jitter has been subtracted.


20

60

40 TEMPERATURE (°C) 80

100

Figure 5.

Total Jitter measured at 0V differential while running a PRBS 2⁷⁻¹ pattern with one channel active, all other channels are disabled. V_{DD} = 3.3V, T_A = +25°C, V_{ID} = 0.5V. Stimulus and fixture jitter has been subtracted. Figure 6.

www.ti.com

APPLICATIONS

Interfacing LVPECL to LVDS

An LVPECL driver consists of a differential pair with coupled emitters connected to GND via a current source. This drives a pair of emitter-followers that require a 50 ohm to V_{CC} -2.0 load. A modern LVPECL driver will typically include the termination scheme within the device for the emitter follower. If the driver does not include the load, then an external scheme must be used. The 1.3 V supply is usually not readily available on a PCB, therefore, a load scheme without a unique power supply requirement may be used.

Figure 7. DC Coupled LVPECL to LVDS Interface

Figure 7 is a separated π termination scheme for a 3.3 V LVPECL driver. R1 and R2 provides proper DC load for the driver emitter followers, and may be included as part of the driver device. The DS08MB200 includes a 100 ohm input termination for the transmission line. The common mode voltage will be at the normal LVPECL levels – around 2 V. This scheme works well with LVDS receivers that have rail-to-rail common mode voltage, V_{CM}, range. Most Texas Instruments LVDS receivers have wide V_{CM} range. The exceptions are noted in devices' respective datasheets. Those LVDS devices that do have a wide V_{CM} range do not vary in performance significantly when receiving a signal with a common mode other than standard LVDS V_{CM} of 1.2 V.

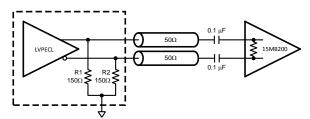


Figure 8. AC Coupled LVPECL to LVDS Interface

An AC coupled interface is preferred when transmitter and receiver ground references differ more than 1 V. This is a likely scenario when transmitter and receiver devices are on separate PCBs. Figure 8 illustrates an AC coupled interface between a LVPECL driver and LVDS receiver. R1 and R2, if not present in the driver device, provide DC load for the emitter followers and may range between 140-220 ohms for most LVPECL devices for this particular configuration. The DS08MB200 includes an internal 100 ohm resistor to terminate the transmission line for minimal reflections. The signal after ac coupling capacitors will swing around a level set by internal biasing resistors (i.e. fail-safe) which is either V_{DD}/2 or 0 V depending on the actual failsafe implementation. If internal biasing is not implemented, the signal common mode voltage will slowly wander to GND level.

Interfacing LVDS to LVPECL

An LVDS driver consists of a current source (nominal 3.5mA) which drives a CMOS differential pair. It needs a differential resistive load in the range of 70 to 130 ohms to generate LVDS levels. In a system, the load should be selected to match transmission line characteristic differential impedance so that the line is properly terminated. The termination resistor should be placed as close to the receiver inputs as possible. When interfacing an LVDS driver with a non-LVDS receiver, one only needs to bias the LVDS signal so that it is within the common mode range of the receiver. This may be done by using separate biasing voltage which demands another power supply. Some receivers have required biasing voltage available on-chip (V_{T} , V_{TT} or V_{BB}).

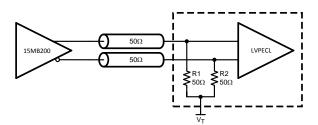


Figure 9. DC Coupled LVDS to LVPECL Interface

Figure 9 illustrates interface between an LVDS driver and a LVPECL with a V_T pin available. R1 and R2, if not present in the receiver, provide proper resistive load for the driver and termination for the transmission line, and V_T sets desired bias for the receiver.

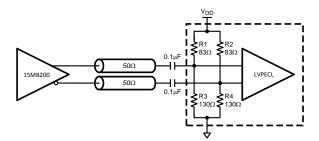


Figure 10. AC Coupled LVDS to LVPECL Interface

Figure 10 illustrates AC coupled interface between an LVDS driver and LVPECL receiver without a V_T pin available. The resistors R1, R2, R3, and R4, if not present in the receiver, provide a load for the driver, terminate the transmission line, and bias the signal for the receiver.

The bias networks shown above for LVPECL drivers and receivers may or may not be present within the driver device. The LVPECL driver and receiver specification must be reviewed closely to ensure compatibility between the driver and receiver terminations and common mode operating ranges.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DS08MB200TSQ/NOPB	ACTIVE	WQFN	RHS	48	250	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 85	08MB200	Samples
DS08MB200TSQX/NOPB	ACTIVE	WQFN	RHS	48	2500	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 85	08MB200	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

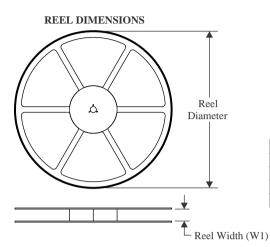
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

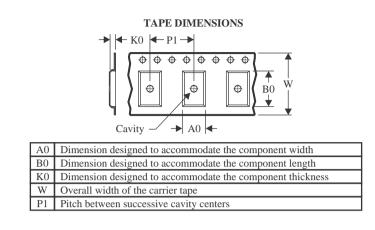
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

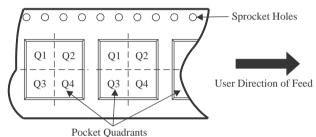
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


10-Dec-2020

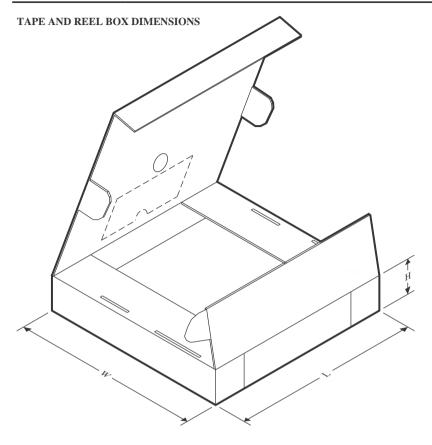


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



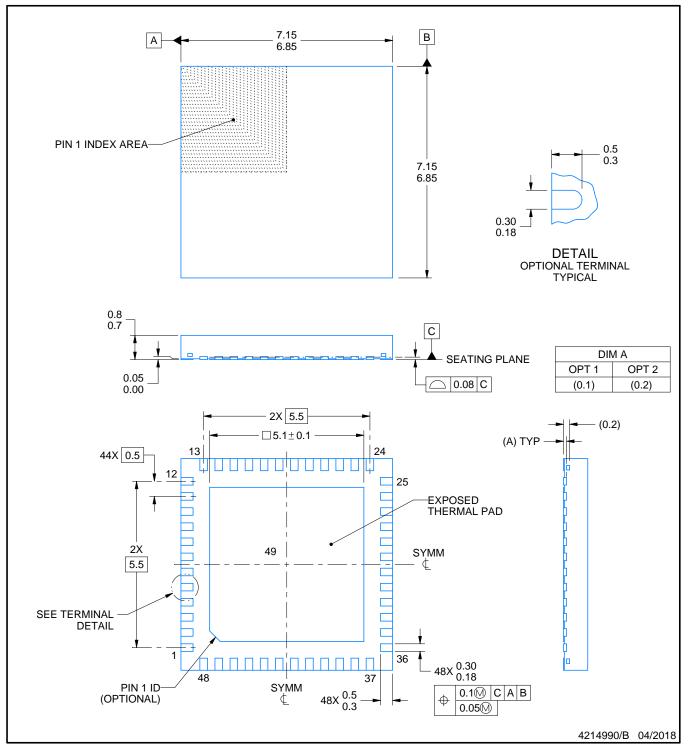
*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS08MB200TSQ/NOPB	WQFN	RHS	48	250	178.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1
DS08MB200TSQX/NOPB	WQFN	RHS	48	2500	330.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

9-Aug-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS08MB200TSQ/NOPB	WQFN	RHS	48	250	208.0	191.0	35.0
DS08MB200TSQX/NOPB	WQFN	RHS	48	2500	356.0	356.0	35.0


RHS0048A

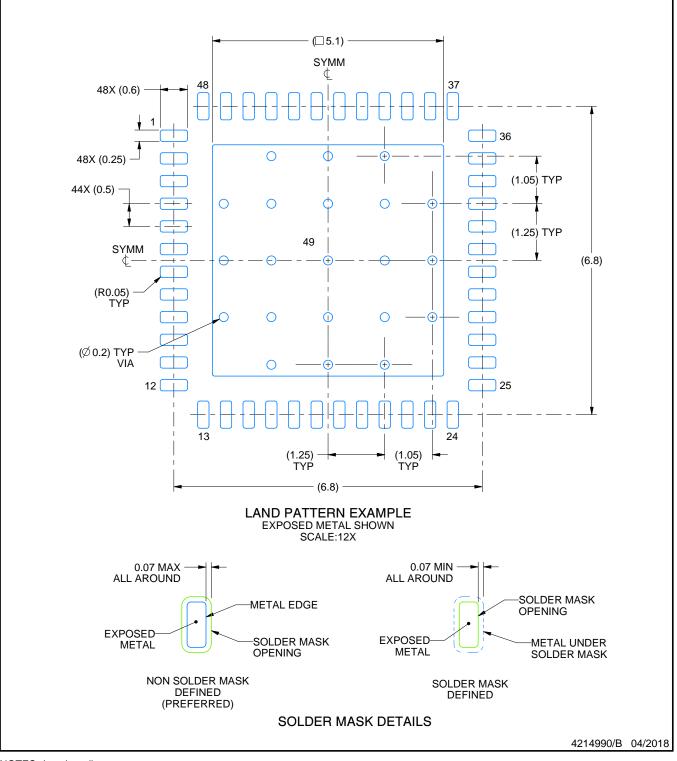
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RHS0048A

EXAMPLE BOARD LAYOUT

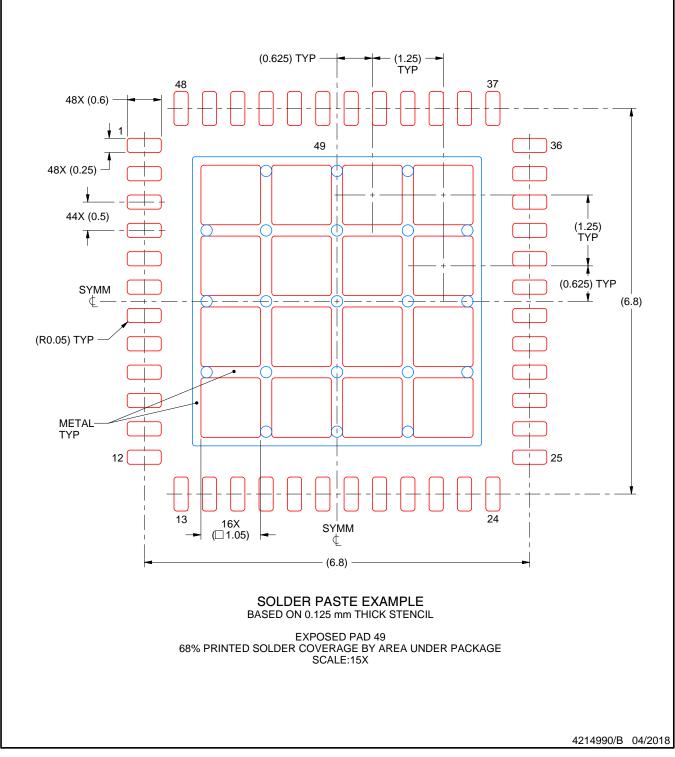
WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RHS0048A

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated