

ISO7231C-Q1 High Speed, Triple Digital Isolators

1 Features

- Qualified for automotive applications
- 25Mbps signaling rate options
 - Low channel-to-channel output skew
 - Low pulse-width distortion (PWD)
 - Low jitter content; 1ns typical at 25Mbps
- Typical 25-year life at rated working voltage (see [Isolation Lifetime Projection](#))
- 4kV ESD protection
- Operate with 3.3V or 5V supplies
- 40°C to 125°C operating range
- [Safety-Related Certifications](#)
 - DIN EN IEC 60747-17 (VDE 0884-17)
 - UL 1577 component recognition program
 - IEC 61010-1, IEC 62368-1 certifications

2 Applications

- [Factory Automation](#)
 - Modbus
 - Profibus™
 - DeviceNet™ Data Buses
- [Computer Peripheral Interface](#)
- [Servo Control Interface](#)
- [Data Acquisition](#)

3 Description

The ISO7231C-Q1 are triple-channel digital isolators with multiple channel configurations and output enable functions. These devices have logic input and output buffers separated by TI's silicon dioxide (SiO_2) isolation barrier. Used in conjunction with isolated power supplies, these devices block high voltage, isolate grounds, and prevent noise currents on a data

bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry.

The ISO7231C-Q1 has two channels in one direction and one channel in opposition. These devices have an active-high output enable that when driven to a low level, places the output in a high-impedance state.

The ISO7231C-Q1 have TTL input thresholds and a noise-filter at the input that prevents transient pulses of up to 2ns in duration from being passed to the output of the device.

In each device, a periodic update pulse is sent across the isolation barrier to provide the proper dc level of the output. If this dc-refresh pulse is not received, the input is assumed to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high state. (Contact TI for a logic low failsafe option).

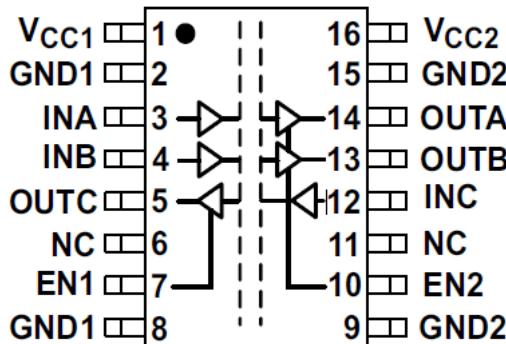

These devices require two supply voltages of 3.3V, 5V, or any combination. All inputs are 5V tolerant when supplied from a 3.3V supply and all outputs are 4mA CMOS. These devices are characterized for operation over the ambient temperature range of –40°C to 125°C.

Table 3-1. Package Information

DEVICE	PACKAGE ⁽¹⁾	BODY SIZE (NOM)	PACKAGE SIZE ⁽²⁾
ISO7231C-Q1	DW (SOIC, 16)	10.30mm × 7.50mm	10.30mm × 10.30mm

(1) For more information, see [Section 10](#).

(2) The package size (length × width) is a nominal value and includes pins, where applicable.

Figure 3-1. ISO7231C-Q1

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	4.16 Switching Characteristics: V_{CC1} at 5-V, V_{CC2} at 3.3-V Operation.....	10
2 Applications	1	4.17 Typical Characteristics.....	11
3 Description	1		
4 Specifications	3		
4.1 Absolute Maximum Ratings.....	3	5 Parameter Measurement Information	13
4.2 ESD Ratings.....	3	6 Detailed Description	15
4.3 Recommended Operating Conditions.....	3	6.1 Overview.....	15
4.4 Thermal Characteristics.....	3	6.2 Function Block Diagram.....	15
4.5 Power Ratings.....	4	6.3 Feature Description.....	16
4.6 Insulation Specifications.....	4	6.4 Device Functional Modes.....	16
4.7 Safety-Related Certifications.....	4		
4.8 Safety Limiting Values.....	6	7 Application and Implementation	17
4.9 Electrical Characteristics: V_{CC1} and V_{CC2} at 3.3-V Operation.....	6	7.1 Application Information.....	17
4.10 Electrical Characteristics: V_{CC1} and V_{CC2} at 5-V Operation.....	7	7.2 Typical Application.....	17
4.11 Electrical Characteristics: V_{CC1} at 3.3-V, V_{CC2} at 5-V Operation.....	7	7.3 Power Supply Recommendations.....	18
4.12 Electrical Characteristics: V_{CC1} at 5-V, V_{CC2} at 3.3-V Operation.....	8	7.4 Layout.....	19
4.13 Switching Characteristics: V_{CC1} and V_{CC2} at 3.3-V Operation.....	9		
4.14 Switching Characteristics: V_{CC1} and V_{CC2} at 5-V Operation.....	9	8 Device and Documentation Support	20
4.15 Switching Characteristics: V_{CC1} at 3.3-V and V_{CC2} at 5-V Operation.....	10	8.1 Documentation Support.....	20

4 Specifications

4.1 Absolute Maximum Ratings

See⁽¹⁾

			VALUE	UNIT
V _{CC}	Supply voltage ⁽²⁾ , V _{CC1} , V _{CC2}		-0.5 to 6	V
V _I	Voltage at IN, OUT, EN		-0.5 to 6	V
I _O	Output current		±15	mA
ESD	Electrostatic discharge	Human Body Model Field-Induced-Charged Device Model	All pins	±4 ±1
T _J	Maximum junction temperature		150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.

4.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge ⁽³⁾	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±4000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

(3) AEC Q100-002 indicates that HBM stressing must be in accordance with the ANSI/ESDA/JEDEC JS-001 specification

4.3 Recommended Operating Conditions

		MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾ , V _{CC1} , V _{CC2}	3.15		5.5	V
I _{OH}	High-level output current	-4			mA
I _{OL}	Low-level output current			4	mA
t _{ui}	Input pulse width	40			ns
1/t _{ui}	Signaling rate	0	30 ⁽¹⁾	25	Mbps
V _{IH}	High-level input voltage (IN) (EN on all devices)	2		V _{CC}	V
V _{IL}	Low-level input voltage (IN) (EN on all devices)	0		0.8	
T _A	Operating free-air temperature	-40		125	°C
H	External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification			1000	A/m

(1) Typical signaling rate under ideal conditions at 25°C.

(2) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V.
For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

4.4 Thermal Characteristics

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
θ _{JA}	Junction-to-air	Low-K Thermal Resistance ⁽¹⁾		168		°C/W
		High-K Thermal Resistance		68.6		
θ _{JB}	Junction-to-Board Thermal Resistance			33.5		°C/W
θ _{JC}	Junction-to-Case Thermal Resistance			33.9		°C/W

(1) Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.

4.5 Power Ratings

$V_{CC1} = V_{CC2} = 5.5$ V, $T_J = 150$ C, $C_L = 15$ pF, Input a 25 Mbps 50% duty cycle square wave

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
P _D	Device power dissipation, ISO723x				220	mW

4.6 Insulation Specifications

PARAMETER		TEST CONDITIONS	VALUE	UNIT
GENERAL				
CLR	External clearance ⁽¹⁾	Shortest terminal-to-terminal distance through air	8	mm
CPG	External creepage ⁽¹⁾	Shortest terminal-to-terminal distance across the package surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	0.008	mm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	≥400	V
	Material group		II	
	Overvoltage category	Rated mains voltage ≤150 V _{RMS}	I-IV	
		Rated mains voltage ≤300 V _{RMS}	I-III	
		Rated mains voltage ≤400 V _{RMS}	I-II	
DIN EN IEC 60747-17 (VDE 0884-17):⁽²⁾				
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	560	V _{PK}
V _{IOTM}	Maximum transient isolation voltage	$V_{TEST} = V_{IOTM}$, $t = 60$ s (qualification); $V_{TEST} = 1.2 \times V_{IOTM}$, $t = 1$ s (100% production)	4000	V _{PK}
q _{pd}	Apparent charge ⁽³⁾	Method a: After I/O safety test subgroup 2/3 $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10$ s	≤5	pC
		Method a: After environmental tests subgroup 1 $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.3 \times V_{IORM}$, $t_m = 10$ s	≤5	
		Method b: At routine test (100% production) $V_{ini} = 1.2 \times V_{IOTM}$, $t_{ini} = 1$ s; $V_{pd(m)} = 1.5 \times V_{IORM}$, $t_m = 1$ s (method b1) or $V_{pd(m)} = V_{ini}$, $t_m = t_{ini}$ (method b2)	≤5	
C _{IO}	Barrier capacitance, input to output ⁽⁴⁾	$V_{IO} = 0.4 \times \sin(2\pi ft)$, $f = 1$ MHz	1	pF
R _{IO}	Isolation resistance, input to output ⁽⁴⁾	$V_{IO} = 500$ V, $T_A = 25$ °C	>10 ¹²	Ω
		$V_{IO} = 500$ V, 100 °C ≤ T_A ≤ 125 °C	>10 ¹¹	
		$V_{IO} = 500$ V at $T_S = 150$ °C	>10 ⁹	
	Pollution degree		2	
	Climatic category		40/125/21	
UL 1577				
V _{ISO}	Withstand isolation voltage	$V_{TEST} = V_{ISO} = 2500$ V _{RMS} , $t = 60$ s (qualification); $V_{TEST} = 1.2 \times V_{ISO} = 3000$ V _{RMS} , $t = 1$ s (100% production)	2500	V _{RMS}

- (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
- (2) This coupler is suitable for *basic electrical insulation* only within the maximum operating ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (4) All pins on each side of the barrier tied together creating a two-terminal device

4.7 Safety-Related Certifications

VDE	CSA	UL
Certified according to DIN EN IEC 60747-17 (VDE 0884-17)	Certified according to IEC 62368-1	Certified according to UL 1577 Component Recognition Program

VDE	CSA	UL
Basic certificate: 40047657	Master contract number: 220991	File number: E181974

4.8 Safety Limiting Values

Safety limiting⁽¹⁾ intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Is	Safety input, output, or supply current	$R_{\theta JA} = 212^{\circ}\text{C}/\text{W}$, $V_I = 5.5 \text{ V}$, $T_J = 170^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$, see Thermal Characteristics			124	mA
		$R_{\theta JA} = 212^{\circ}\text{C}/\text{W}$, $V_I = 3.6 \text{ V}$, $T_J = 170^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$, see Thermal Characteristics			190	
T _S	Safety temperature				150	°C

(1) The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

4.9 Electrical Characteristics: V_{CC1} and V_{CC2} at 3.3 V Operation

over recommended operating conditions (unless otherwise noted)⁽¹⁾

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CURRENT						
I _{CC1}	ISO7231C-Q1	Quiescent	$V_I = V_{CC}$ or 0 V, all channels, no load, EN ₁ at 3 V, EN ₂ at 3 V	4.5	7	mA
		25 Mbps		6.5	11	
I _{CC2}	ISO7231C-Q1	Quiescent	$V_I = V_{CC}$ or 0 V, all channels, no load, EN ₁ at 3 V, EN ₂ at 3 V	8	12	mA
		25 Mbps		10.5	16	
ELECTRICAL CHARACTERISTICS						
I _{OFF}	Sleep mode output current	EN at 0 V, single channel		0		µA
V _{OH}	High-level output voltage	I _{OH} = -4 mA, See Figure 5-1	V _{CC} - 0.4			V
		I _{OH} = -20 µA, See Figure 5-1			0.1	
V _{OL}	Low-level output voltage	I _{OL} = 4 mA, See Figure 5-1	0.4			V
		I _{OL} = 20 µA, See Figure 5-1			0.1	
V _{I(HYS)}	Input voltage hysteresis			150		mV
I _{IH}	High-level input current	IN from 0 V or V _{CC}		10		µA
				-10		
I _{IL}	Low-level input current				2	pF
C _I	Input capacitance to ground	IN at V _{CC} , $V_I = 0.4 \sin(2\pi ft)$, f=2MHz				
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V, See Figure 5-4	25	50		kV/µs

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V.
 For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

4.10 Electrical Characteristics: V_{CC1} and V_{CC2} at 5-V Operation

over recommended operating conditions (unless otherwise noted)⁽¹⁾

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
SUPPLY CURRENT								
I _{CC1}	ISO7231C-Q1	Quiescent	$V_I = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V, EN ₂ at 3 V	6.5	11	mA		
		25 Mbps		11	17			
I _{CC2}	ISO7231C-Q1	Quiescent	$V_I = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V, EN ₂ at 3 V	13	20	mA		
		25 Mbps		17.5	27			
ELECTRICAL CHARACTERISTICS								
I _{OFF}	Sleep mode output current	EN at 0 V, Single channel		0		μA		
V _{OH}	High-level output voltage	$I_{OH} = -4$ mA, See Figure 5-1		$V_{CC} - 0.8$		V		
		$I_{OH} = -20$ μA, See Figure 5-1		$V_{CC} - 0.1$				
V _{OL}	Low-level output voltage	$I_{OL} = 4$ mA, See Figure 5-1		0.4		V		
		$I_{OL} = 20$ μA, See Figure 5-1		0.1				
V _{I(HYS)}	Input voltage hysteresis			150		mV		
I _{IH}	High-level input current	IN from 0 V to V_{CC}		10		μA		
I _{IL}	Low-level input current			-10				
C _I	Input capacitance to ground	IN at V_{CC} , $V_I = 0.4 \sin(2\pi ft)$, f=2MHz		2		pF		
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V, See Figure 5-4		25	50	kV/μs		

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V.

For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

4.11 Electrical Characteristics: V_{CC1} at 3.3-V, V_{CC2} at 5-V Operation

over recommended operating conditions (unless otherwise noted)⁽¹⁾

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
SUPPLY CURRENT								
I _{CC1}	ISO7231C-Q1	Quiescent	$V_I = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V, EN ₂ at 3 V	4.5	7	mA		
		25 Mbps		6.5	11			
I _{CC2}	ISO7231C-Q1	Quiescent	$V_I = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V, EN ₂ at 3 V	13	20	mA		
		25 Mbps		17.5	27			
ELECTRICAL CHARACTERISTICS								
I _{OFF}	Sleep mode output current	EN at 0 V, Single channel		0		μA		
V _{OH}	High-level output voltage	$I_{OH} = -4$ mA, See Figure 5-1		$V_{CC} - 0.4$		V		
		$I_{OH} = -20$ μA, See Figure 5-1		$V_{CC} - 0.8$				
V _{OL}	Low-level output voltage	$I_{OL} = 4$ mA, See Figure 5-1		0.4		V		
		$I_{OL} = 20$ μA, See Figure 5-1		0.1				
V _{I(HYS)}	Input voltage hysteresis			150		mV		
I _{IH}	High-level input current	IN from 0 V to V_{CC}		10		μA		
I _{IL}	Low-level input current			-10				
C _I	Input capacitance to ground	IN at V_{CC} , $V_I = 0.4 \sin(2\pi ft)$, f=2MHz		2		pF		
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V, See Figure 5-4		25	50	kV/μs		

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V.

For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

4.12 Electrical Characteristics: V_{CC1} at 5-V, V_{CC2} at 3.3-V Operation

over recommended operating conditions (unless otherwise noted)⁽¹⁾

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
SUPPLY CURRENT								
I _{CC1}	ISO7231C-Q1	Quiescent	$V_I = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V, EN ₂ at 3 V	6.5	11	mA		
		25 Mbps		11	17			
I _{CC2}	ISO7231C-Q1	Quiescent	$V_I = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V, EN ₂ at 3 V	8	12	mA		
		25 Mbps		10.5	16			
ELECTRICAL CHARACTERISTICS								
I _{OFF}	Sleep mode output current	EN at 0 V, Single channel		0		μA		
V _{OH}	High-level output voltage	I _{OH} = -4 mA, See Figure 5-1	ISO7230C-Q1	$V_{CC} - 0.4$		V		
			ISO7231C-Q1 (5-V side)	$V_{CC} - 0.8$				
			I _{OH} = -20 μA, See Figure 5-1	$V_{CC} - 0.1$				
V _{OL}	Low-level output voltage	I _{OL} = 4 mA, See Figure 5-1			0.4	V		
		I _{OL} = 20 μA, See Figure 5-1			0.1			
V _{I(HYS)}	Input voltage hysteresis			150		mA		
I _{IH}	High-level input current	IN from 0 V to V_{CC}			10	μA		
I _{IL}	Low-level input current				-10			
C _I	Input capacitance to ground	IN at V_{CC} , $V_I = 0.4 \sin(2\pi ft)$, f=2MHz		2		pF		
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V, See Figure 5-4		25	50		kV/μs	

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V.
 For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

4.13 Switching Characteristics: V_{CC1} and V_{CC2} at 3.3-V Operation

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay	See Figure 5-1	25	56		ns
PWD	Pulse-width distortion ⁽¹⁾ $ t_{PHL} - t_{PLH} $			4		ns
$t_{sk(pp)}$	Part-to-part skew ⁽²⁾			10		ns
$t_{sk(o)}$	Channel-to-channel output skew			0	4	ns
t_r	Output signal rise time	See Figure 5-1		2.4		
t_f	Output signal fall time			2.3		ns
t_{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t_{PZH}	Propagation delay, high-impedance-to-high-level output	See Figure 5-2		15	25	
t_{PLZ}	Propagation delay, low-level-to-high-impedance output			15	25	ns
t_{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t_{fs}	Failsafe output delay time from input power loss	See Figure 5-3	18			μs

(1) Also referred to as pulse skew.

(2) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

4.14 Switching Characteristics: V_{CC1} and V_{CC2} at 5-V Operation

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay	See Figure 5-1	18	45		ns
PWD	Pulse-width distortion ⁽¹⁾ $ t_{PHL} - t_{PLH} $			5		
$t_{sk(pp)}$	Part-to-part skew ⁽²⁾			8		ns
$t_{sk(o)}$	Channel-to-channel output skew ⁽³⁾			0	4	ns
t_r	Output signal rise time	See Figure 5-1		2.4		
t_f	Output signal fall time			2.3		ns
t_{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t_{PZH}	Propagation delay, high-impedance-to-high-level output	See Figure 5-2		15	25	
t_{PLZ}	Propagation delay, low-level-to-high-impedance output			15	25	ns
t_{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t_{fs}	Failsafe output delay time from input power loss	See Figure 5-3	12			μs

(1) Also referred to as pulse skew.

(2) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(3) $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

4.15 Switching Characteristics: V_{CC1} at 3.3-V and V_{CC2} at 5-V Operation

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay	See Figure 5-1	20	51	ns	
PWD	Pulse-width distortion ⁽¹⁾ $ t_{PHL} - t_{PLH} $			4		
$t_{sk(pp)}$	Part-to-part skew ⁽²⁾			10	ns	
$t_{sk(o)}$	Channel-to-channel output skew ⁽³⁾			0	4	ns
t_r	Output signal rise time	See Figure 5-1		2.4	ns	
t_f	Output signal fall time			2.3		
t_{PHZ}	Propagation delay, high-level-to-high-impedance output	See Figure 5-2		15	25	ns
t_{PZH}	Propagation delay, high-impedance-to-high-level output			15	25	
t_{PLZ}	Propagation delay, low-level-to-high-impedance output			15	25	
t_{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t_{fs}	Failsafe output delay time from input power loss	See Figure 5-3		12		μs

(1) Also known as pulse skew

(2) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(3) $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

4.16 Switching Characteristics: V_{CC1} at 5-V, V_{CC2} at 3.3-V Operation

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay, low-to-high-level output	See Figure 5-1	20	50	ns	
PWD	Pulse-width distortion ⁽¹⁾ $ t_{PHL} - t_{PLH} $			4		
$t_{sk(pp)}$	Part-to-part skew ⁽²⁾			10	ns	
$t_{sk(o)}$	Channel-to-channel output skew ⁽³⁾			0	4	ns
t_r	Output signal rise time	See Figure 5-1		2.4	ns	
t_f	Output signal fall time			2.3		
t_{PHZ}	Propagation delay, high-level-to-high-impedance output	See Figure 5-2		15	25	ns
t_{PZH}	Propagation delay, high-impedance-to-high-level output			15	25	
t_{PLZ}	Propagation delay, low-level-to-high-impedance output			15	25	
t_{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t_{fs}	Failsafe output delay time from input power loss	See Figure 5-3		18		μs

(1) Also known as pulse skew

(2) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(3) $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

4.17 Typical Characteristics

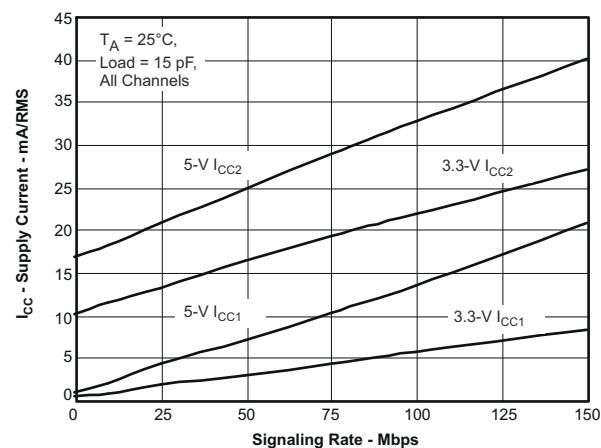


Figure 4-1. ISO7230 C/M RMS Supply Current vs Signaling Rate

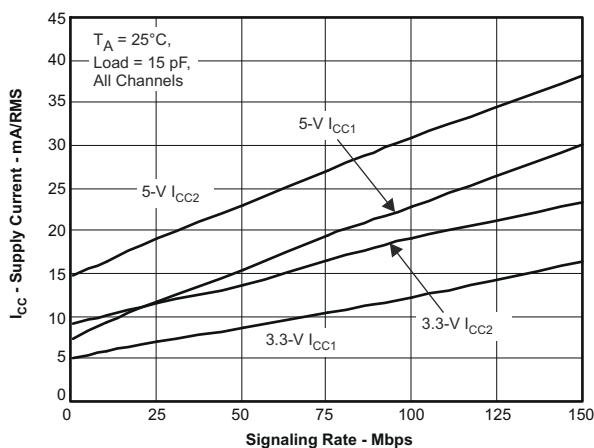


Figure 4-2. ISO7231 C/M RMS Supply Current vs Signaling Rate

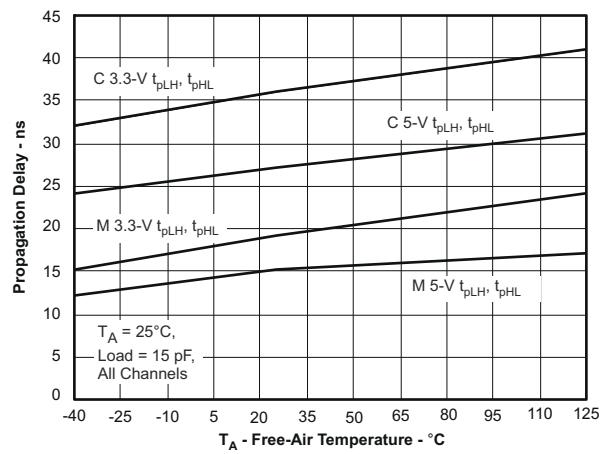


Figure 4-3. Propagation Delay vs Free-Air Temperature

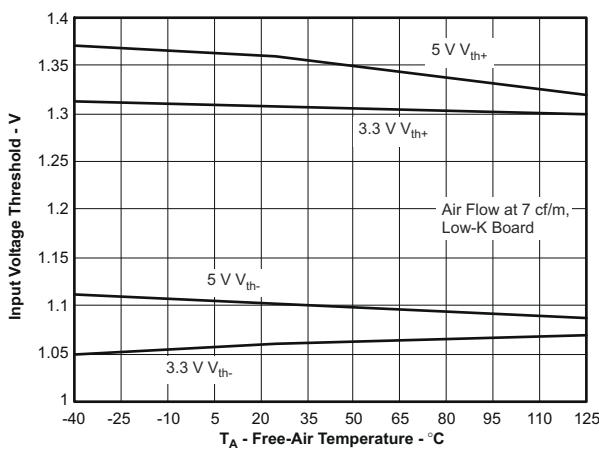


Figure 4-4. Input Threshold Voltage vs Free-Air Temperature

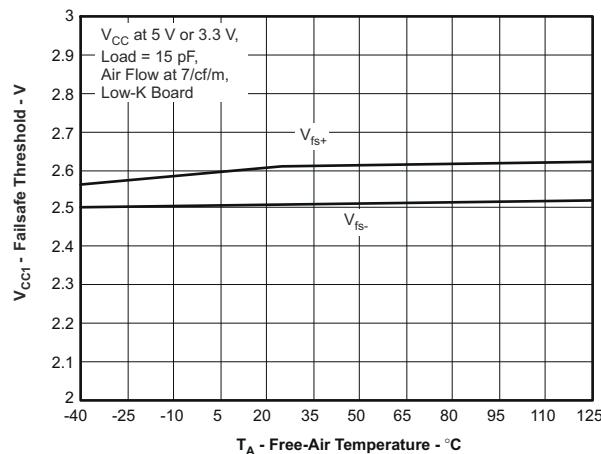


Figure 4-5. Vcc1 Failsafe Threshold vs Free-Air Temperature

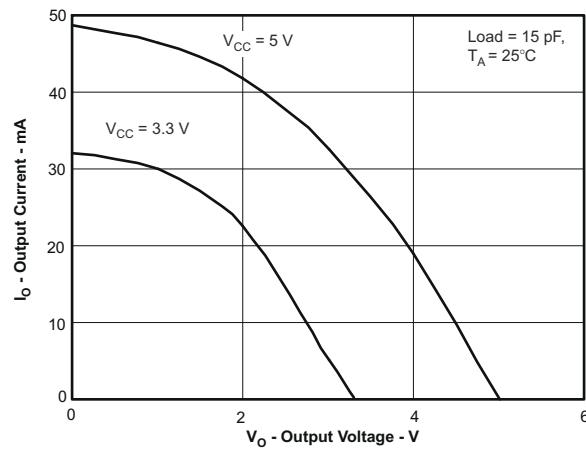
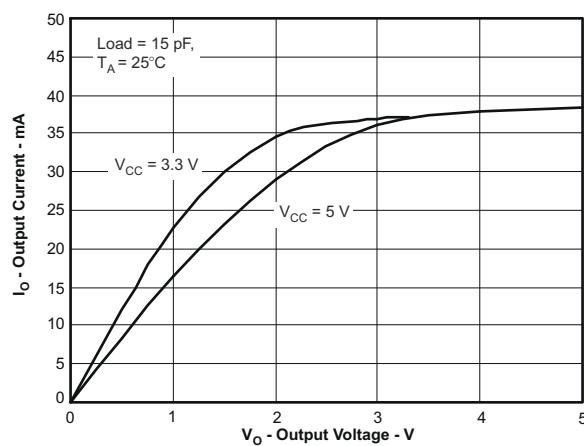
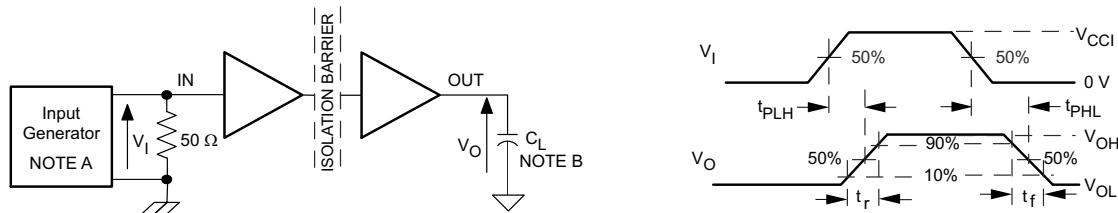
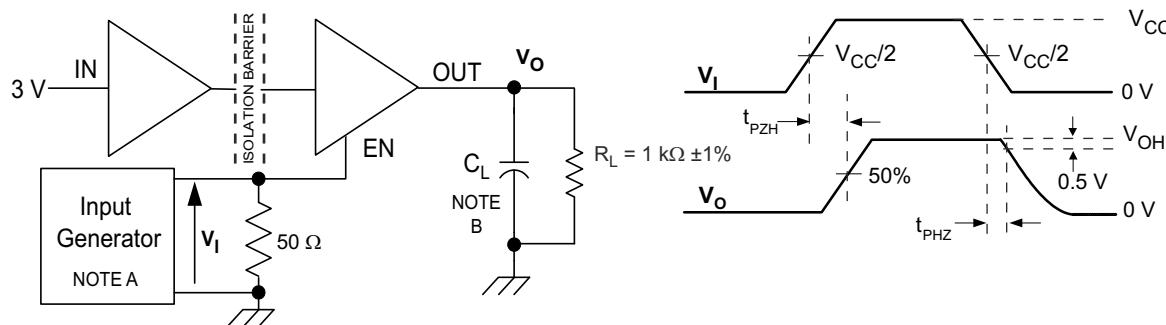
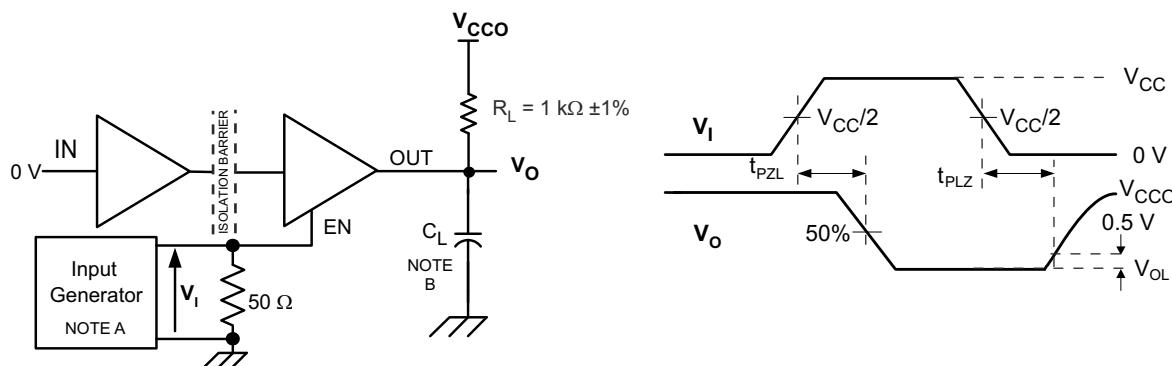


Figure 4-6. High-Level Output Current vs High-Level Output Voltage

4.17 Typical Characteristics (continued)



Figure 4-7. Low-Level Output Current vs Low-Level Output Voltage

5 Parameter Measurement Information

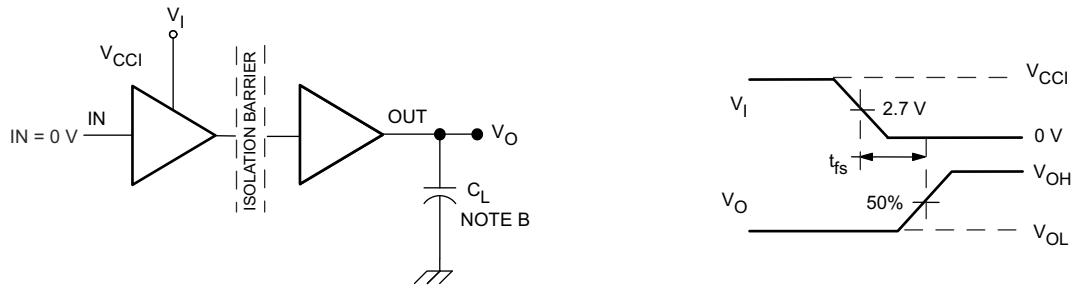

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_0 = 50\Omega$.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 5-1. Switching Characteristic Test Circuit and Voltage Waveforms

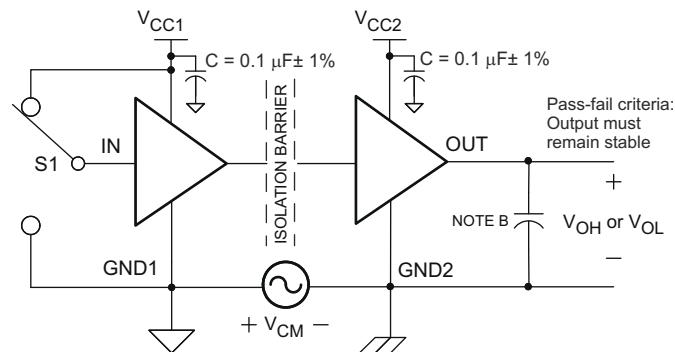

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_0 = 50\Omega$.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 5-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform

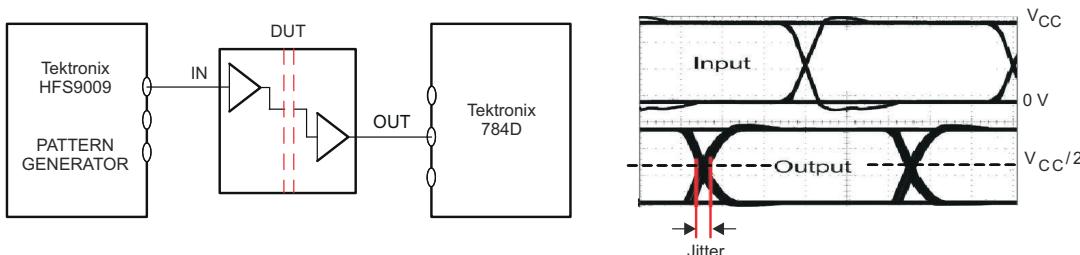

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_O = 50\Omega$.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 5-3. Failsafe Delay Time Test Circuit and Voltage Waveforms

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_O = 50\Omega$.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 5-4. Common-Mode Transient Immunity Test Circuit and Voltage Waveform

PRBS bit pattern run length is $2^{16} - 1$. Transition time is 800 ps. NRZ data input has no more than five consecutive 1s or 0s.

Figure 5-5. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform

6 Detailed Description

6.1 Overview

The ISO7231C-Q1 family of devices transmit digital data across a silicon dioxide based isolation barrier. The digital input signal (IN) of the device is sampled by a transmitter and at every data edge the transmitter sends a corresponding differential signal across the isolation barrier. When the input signal is static, the refresh logic periodically sends the necessary differential signal from the transmitter. On the other side of the isolation barrier, the receiver converts the differential signal into a single-ended signal which is output on the OUT pin through a buffer. If the receiver does not receive a data or refresh signal, the timeout logic detects the loss of signal or power from the input side and drives the output to the default level.

6.2 Function Block Diagram

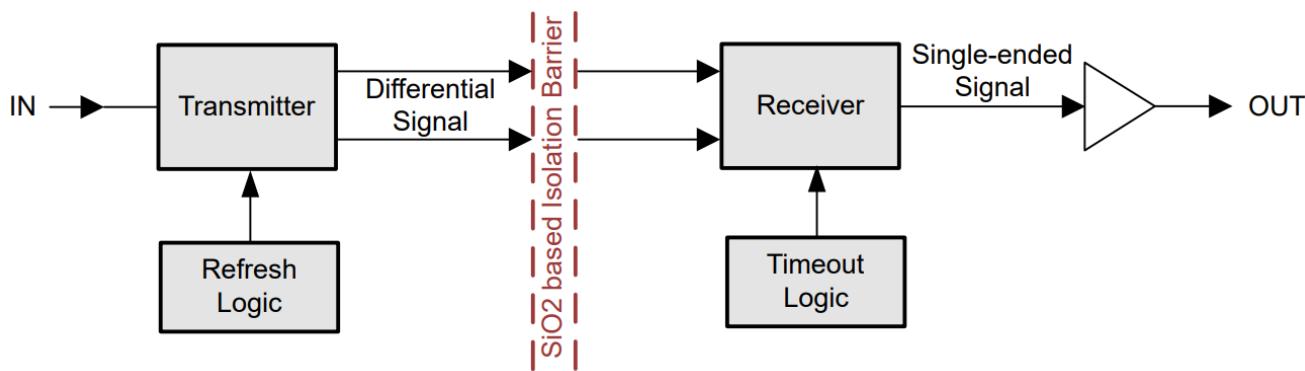


Figure 6-1. ISO7231C-Q1 Functional Block Diagram

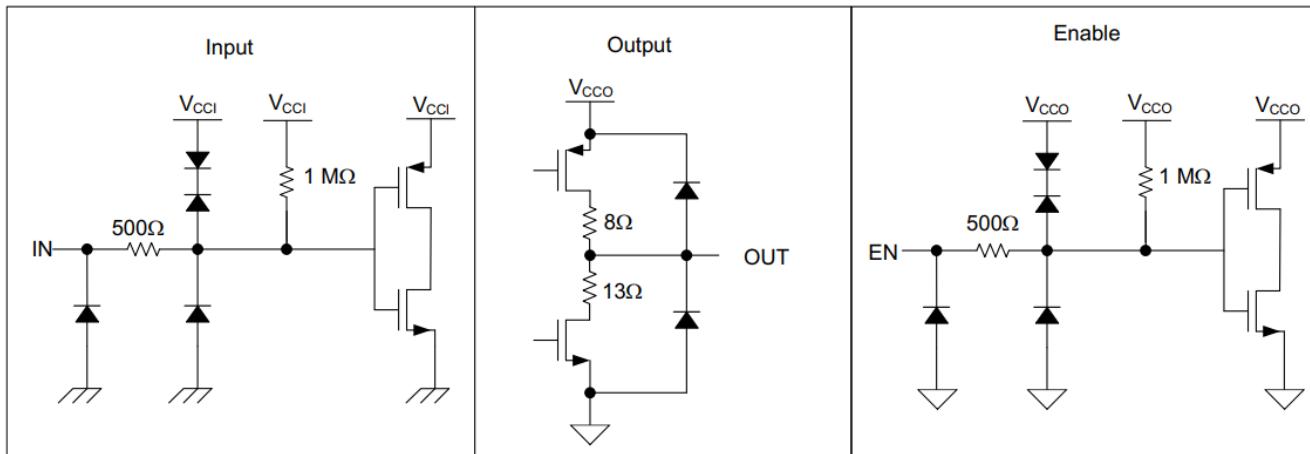
6.3 Feature Description

The ISO7231-Q1 device is available in multiple channel configurations and default output-state options to enable a wide variety of application uses. [Table 6-1](#) lists these device features.

Table 6-1. Device Features

PRODUCT ⁽¹⁾	SIGNALING RATE	INPUT THRESHOLD	CHANNEL CONFIGURATION
ISO7231C	25 Mbps	≈ 1.5 V (TTL)	2/1

(1) For the most current package and ordering information, see the *Mechanical, Packaging, and Ordering Information* section, or see the TI website at www.ti.com.


6.4 Device Functional Modes

List of ISO7231C-Q1 functional modes.

Table 6-2. Device Function Table ISO7231C-Q1

INPUT V _{cc}	OUTPUT V _{cc}	INPUT (IN)	OUTPUT ENABLE (EN)	OUTPUT (OUT)
PU	PU	H	H or Open	H
		L	H or Open	L
		X	L	Z
		Open	H or Open	H
PD	PU	X	H or Open	H
PD	PU	X	L	Z
X	PD	X	X	Undetermined

6.4.1 Device I/O Schematics

Figure 6-2. Device I/O Schematics

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

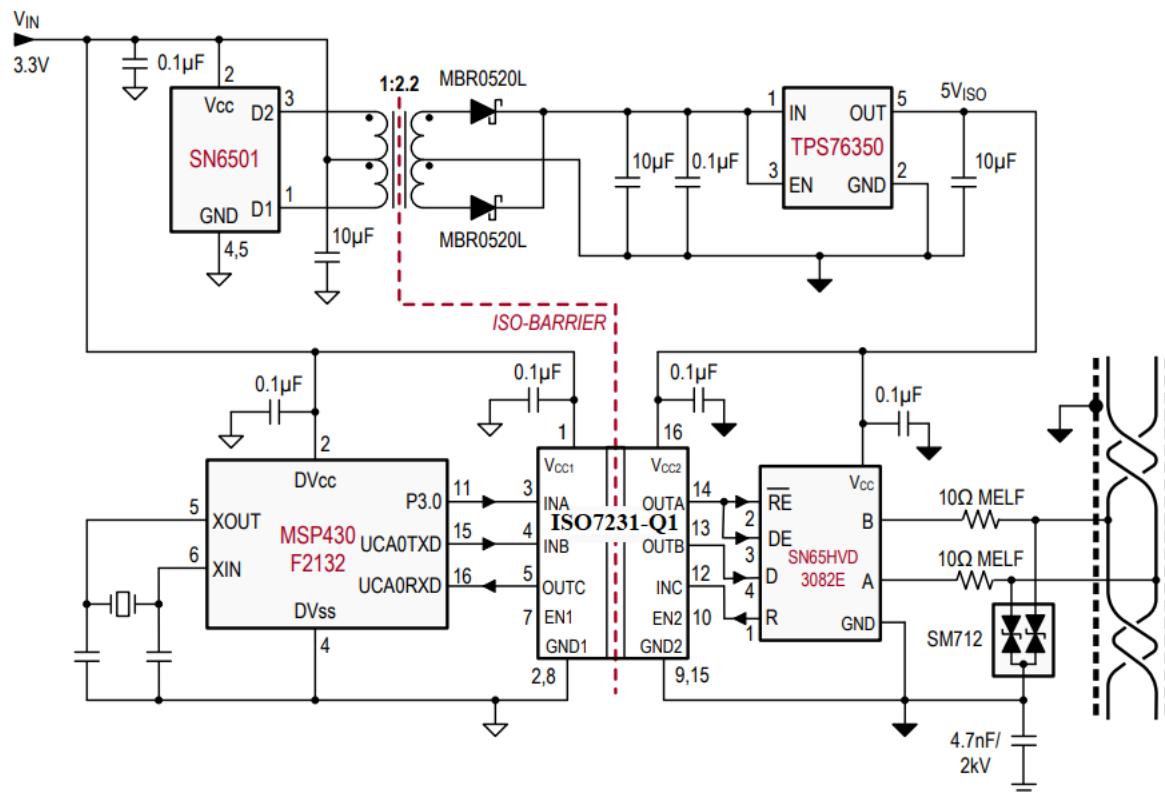


Figure 7-1. Typical ISO7231-Q1 Application Circuit

7.2 Typical Application

7.2.1 Design Requirements

Unlike optocouplers, which need external components to improve performance, provide bias, or limit current, ISO7231C-Q1 only needs two external bypass capacitors to operate.

7.2.2 Detailed Design Procedure

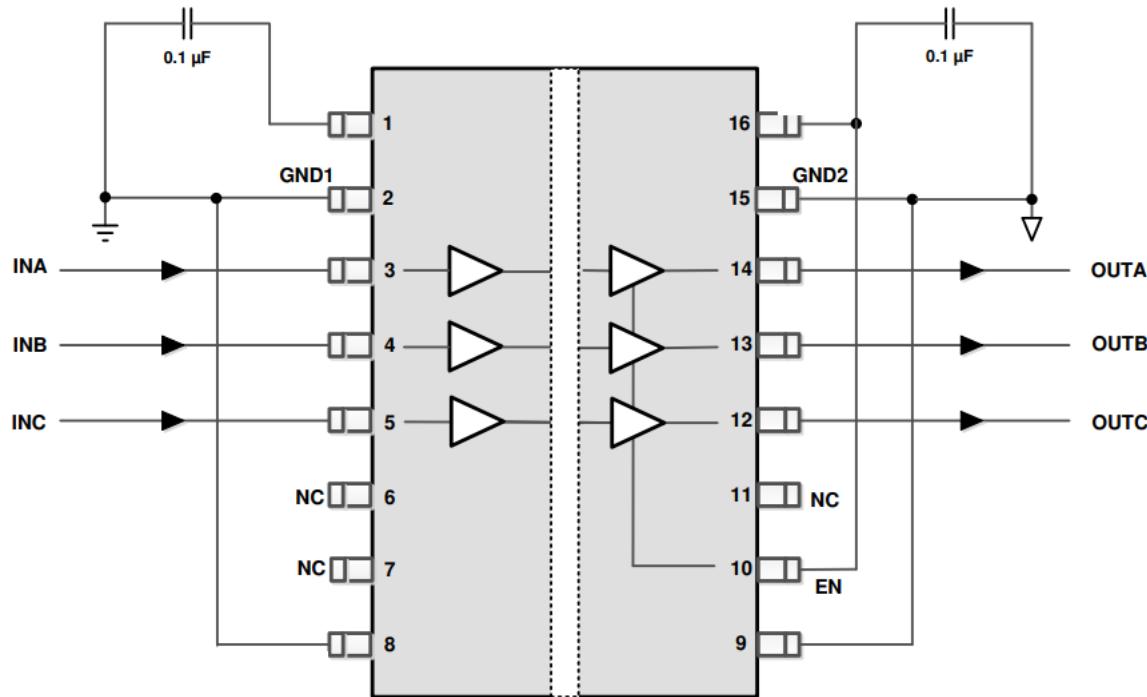


Figure 7-2. Typical ISO7231-Q1 Circuit Hook-up

7.2.3 Insulation Characteristics Curves

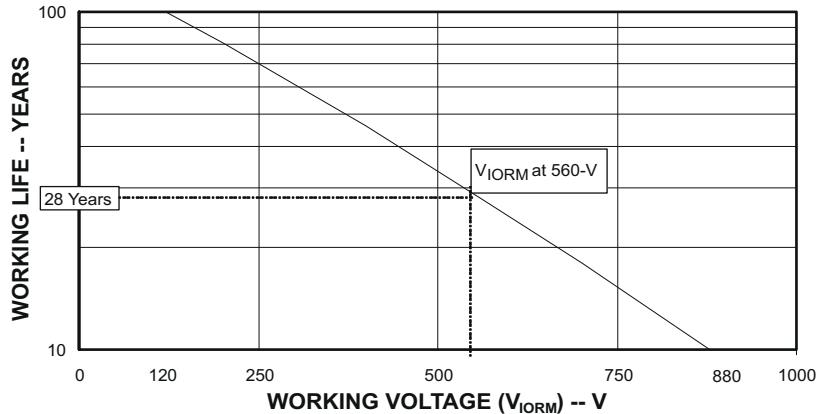


Figure 7-3. Time Dependent Dielectric Breakdown Testing Results

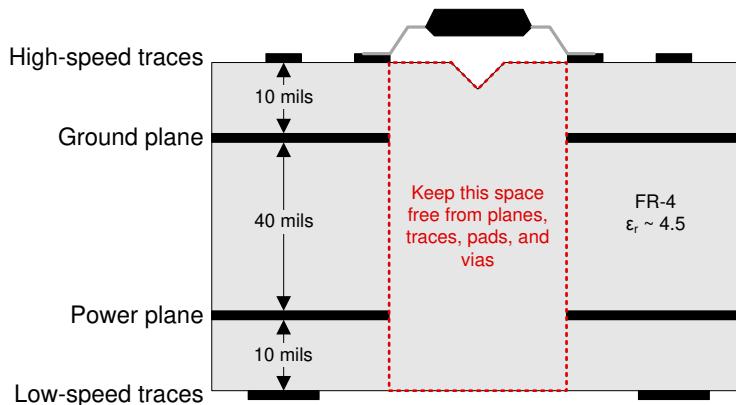
7.3 Power Supply Recommendations

To provide reliable operation at all data rates and supply voltages, a $0.1 \mu\text{F}$ bypass capacitor is recommended at input and output supply pins (V_{CC1} and V_{CC2}). The capacitors must be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments SN6501 data sheet. For such applications, detailed power supply design and transformer selection recommendations are available in the [SN6501 data sheet](#).

7.4 Layout

7.4.1 Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see [Figure 7-4](#)). Layer stacking must be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.


- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of the inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100pF/in^2 .
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links typically have margin to tolerate discontinuities such as vias.

If an additional supply voltage plane or signal layer is needed, add a second power/ground plane system to the stack to keep the planes symmetrical. This makes the stack mechanically stable and prevents warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly. For detailed layout recommendations, see Application Note [SLLA284, Digital Isolator Design Guide](#).

7.4.1.1 PCB Material

For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to the lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.

7.4.2 Layout Example

Figure 7-4. Recommended Layer Stack

8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

8.1 Documentation Support

8.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, [Isolation Glossary](#), application note
- Texas Instruments, [How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems](#), application note
- Texas Instruments, [Digital Isolator Design Guide](#) application note

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](#). Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

8.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (February 2025) to Revision C (October 2025)	Page
• Changed 'Certificate planned' with 'Basic certificate: 40047657' in VDE column, 'Master contract number: 220991' in CSA column, and 'File number: E181974' in UL column in the the <i>Safety-Related Certifications</i> section.....	3
• Changed 'Plan to certify' with 'Certified' in all 3 places in the 2nd row of the <i>Safety-Related Certifications</i> section.....	3
• Fixed typos and errors in <i>Insulation Specifications</i> table.....	3
• Changed the IEC 60664-1 RATINGS TABLE - Specification I-III test conditions From: Rated mains voltage ≤ 150 VRMS To: Rated mains voltage ≤ 300 VRMS. Added a row for the I-II specifications.....	4

Changes from Revision A (November 2024) to Revision B (February 2025)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.....	1

Changes from Revision * (September 2011) to Revision A (November 2024)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.....	1
• Updated reference from capacitive isolation to isolation barrier throughout the document.....	1
• Updated VDE V 0884-11 to DIN VDE 0884-17 throughout the document.....	1
• Updated electrical and switching characteristics to match device performance.....	6
• Changed C ₁ - Typical value from 1 To: 2.....	7
• Changed Figure 4-1 , Figure 4-2 , and Figure 4-3	11
• Added the <i>Detailed Description</i> , <i>Overview</i> , <i>Feature Description</i> , and <i>Device Functional Modes</i> sections.....	15
• Moved the <i>Functional Diagram</i> section to the <i>Detailed Description</i> section and renamed to "Functional Block Diagram" section.....	15
• Added the <i>Typical Application</i> , <i>Design Requirements</i> , <i>Detailed Design Procedure</i> , and <i>Application Curves</i> sections.....	17
• Changed the <i>Life Expectancy vs Working Voltage</i> section to the <i>Insulation Characteristics Curves</i> section and moved under the <i>Application Curves</i> section.....	18
• Added the <i>Documentation Support</i> and <i>Related Documentation</i> sections.....	20

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
ISO7231CQDWRQ1	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7231CQ
ISO7231CQDWRQ1.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7231CQ

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

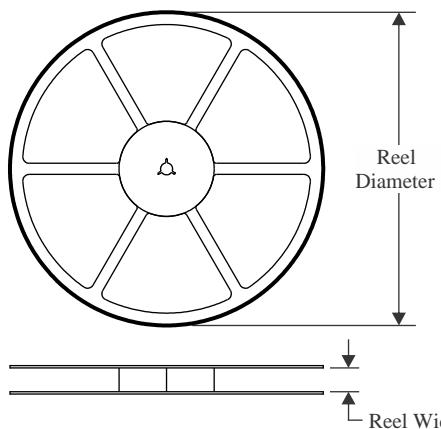
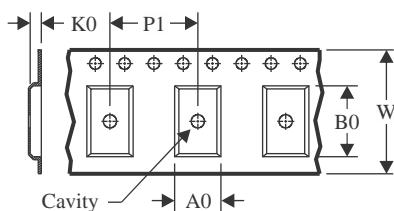
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

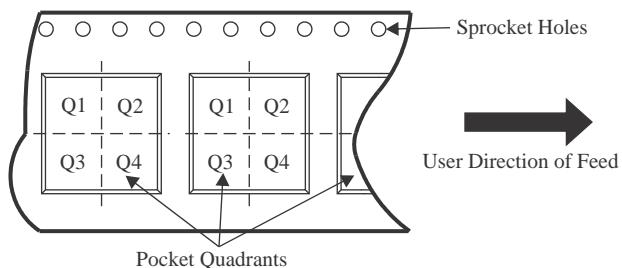
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

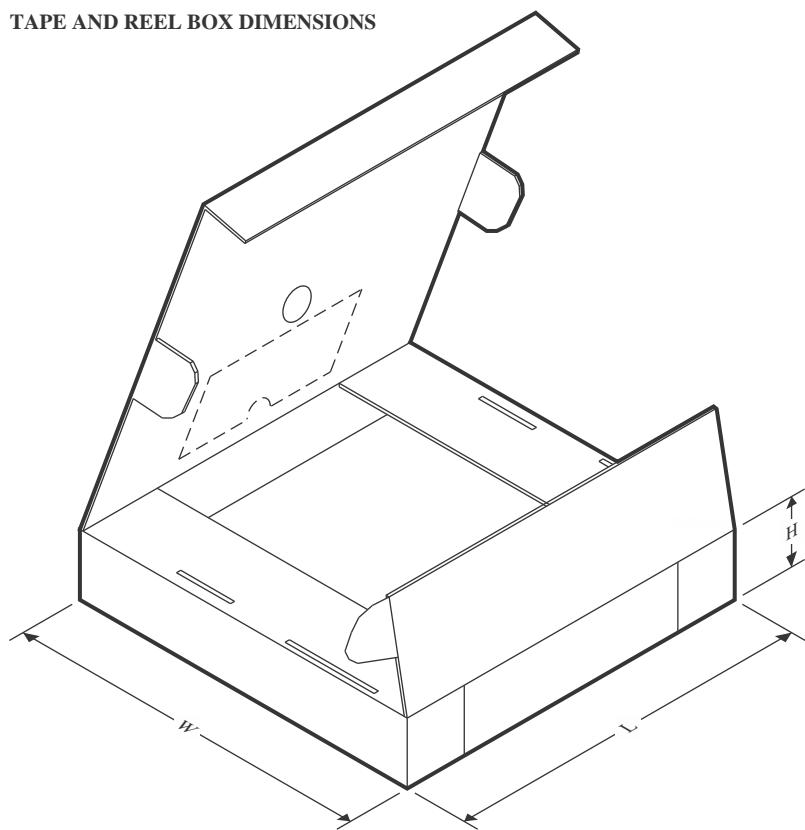


OTHER QUALIFIED VERSIONS OF ISO7231C-Q1 :

- Catalog : [ISO7231C](#)



NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

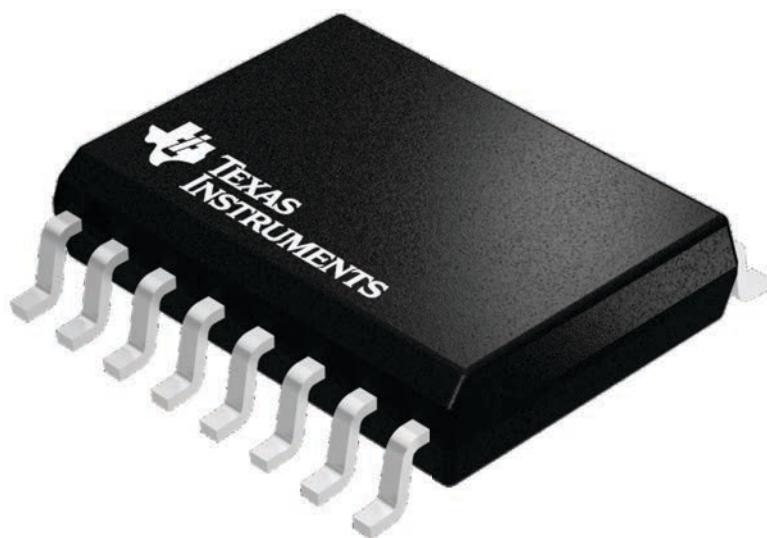
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7231CQDWQRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7231CQDWRQ1	SOIC	DW	16	2000	350.0	350.0	43.0

GENERIC PACKAGE VIEW


DW 16

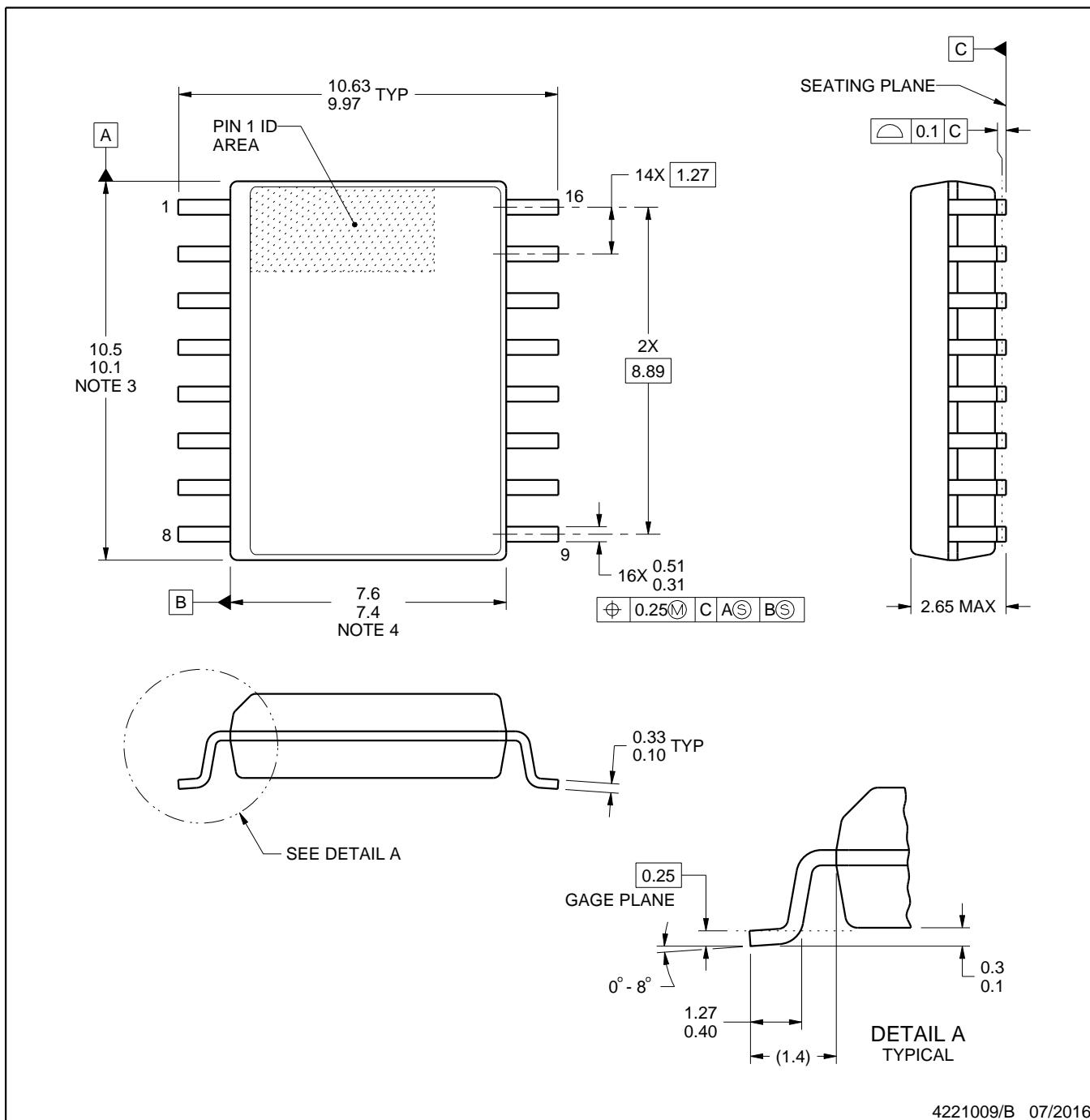
SOIC - 2.65 mm max height

7.5 x 10.3, 1.27 mm pitch

SMALL OUTLINE INTEGRATED CIRCUIT

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4224780/A



PACKAGE OUTLINE

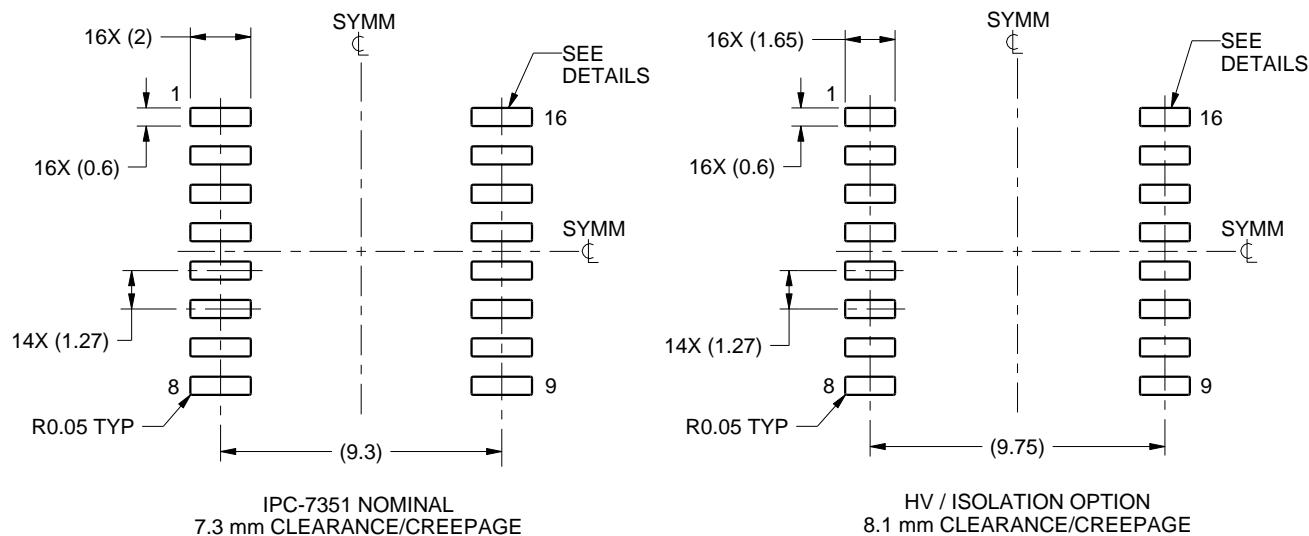
DW0016B

SOIC - 2.65 mm max height

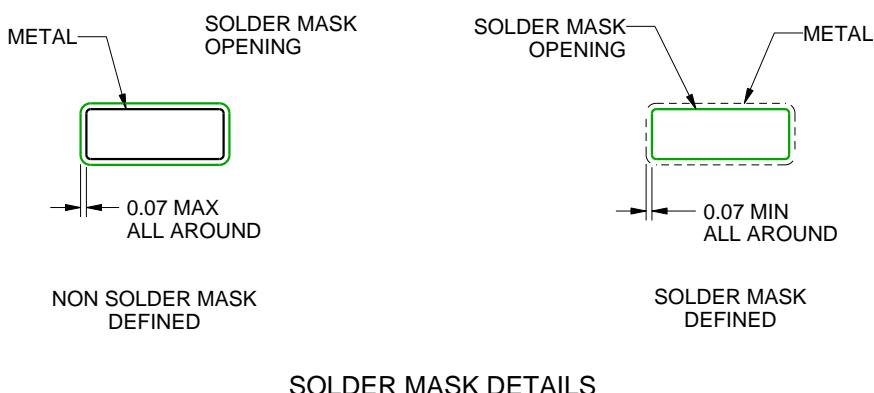
SOIC

4221009/B 07/2016

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
5. Reference JEDEC registration MS-013.

EXAMPLE BOARD LAYOUT


DW0016B

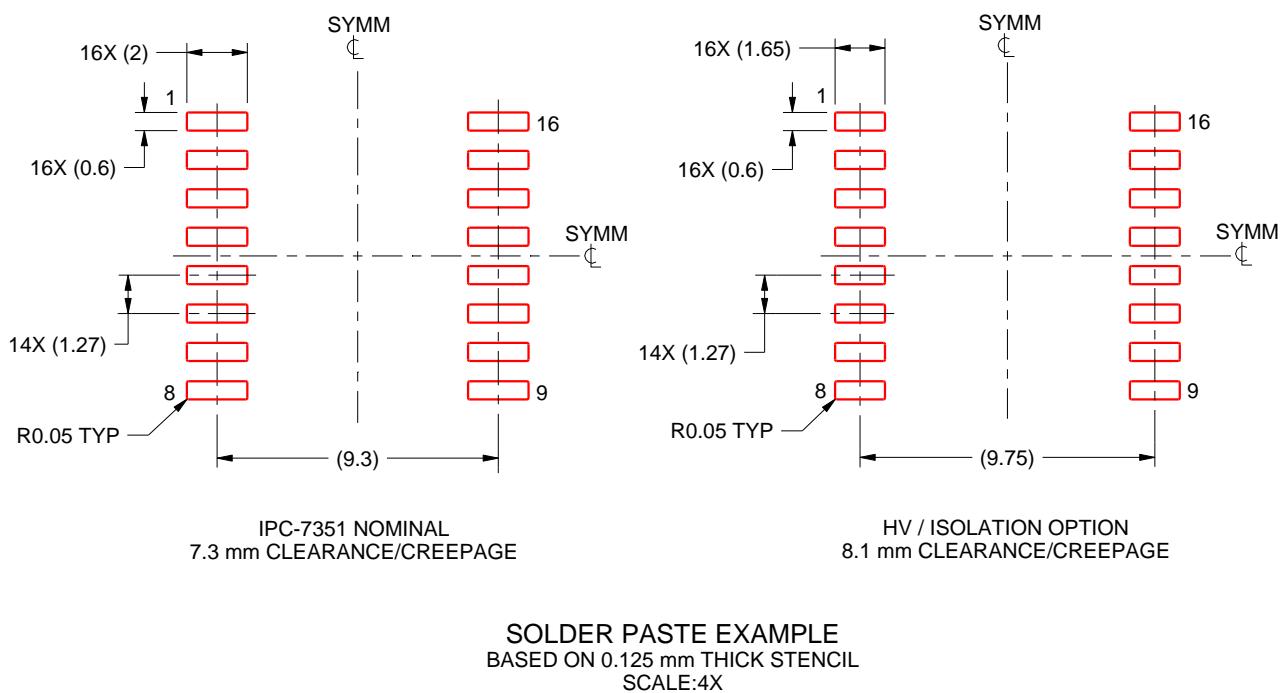
SOIC - 2.65 mm max height

SOIC

LAND PATTERN EXAMPLE
SCALE:4X

4221009/B 07/2016

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DW0016B

SOIC - 2.65 mm max height

SOIC

4221009/B 07/2016

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025