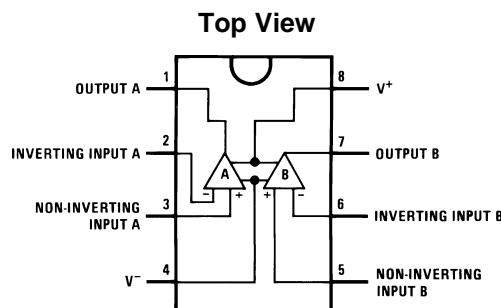


LMH6715QML Dual Wideband Video Op Amp

Check for Samples: [LMH6715QML](#)


FEATURES

- Available with Radiation Ensured 300 krad(Si) $T_A = 25^\circ\text{C}$, $R_L = 100\Omega$, Typical Values Unless Specified.
- Very Low Diff. Gain, Phase: 0.02%, 0.02°
- Wide Bandwidth: 480MHz ($A_V = +1\text{V/V}$); 400MHz ($A_V = +2\text{V/V}$)
- 0.1dB Gain Flatness to 100MHz
- Low Power: 5.8mA/Channel
- -70dB Channel-to-Channel Crosstalk (10MHz)
- Fast Slew Rate: 1300V/ μs
- Unity Gain Stable
- Improved Replacement for CLC412

APPLICATIONS

- HDTV, NTSC & PAL Video Systems
- Video Switching and Distribution
- IQ Amplifiers
- Wideband Active Filters
- Cable Drivers
- DC Coupled Single-to-Differential Conversions

Connection Diagram

**Figure 1. 8 Lead CDIP Package
See Package Number NAB0008A**

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

VIP10 is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V_{CC})			±6.75V
Common Mode Input Voltage (V_{CM})			$V^+ - V^-$
Differential Input Voltage			$V^+ - V^-$
Power Dissipation (P_D) ⁽²⁾			1.0W
Lead Temperature (Soldering, 10 seconds)			+300°C
Junction Temperature (T_J)			+175°C
Storage Temperature Range			-65°C ≤ T_A ≤ +150 °C
Thermal Resistance	θ_{JA}	CDIP (Still Air)	140°C/W
		CDIP (500LF/Min Air Flow)	80°C/W
	θ_{JC}	CDIP	32°C/W
		Package Weight (typical)	
Weight CDIP			1130mg
ESD Tolerance ⁽³⁾			2000V

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (2) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.
- (3) Human body model, 1.5kΩ in series with 100 pF.

Recommended Operating Ratings

Supply Voltage (V_{CC})	±5V _{DC} to ±6V _{DC}
Ambient Operating Temperature Range (T_A)	-55°C ≤ T_A ≤ +125°C

Quality Conformance Inspection

MIL-STD-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

LMH6715 Electrical Characteristics DC Parameter Static and DC Tests

The following conditions apply, unless otherwise specified.

$R_L = 100\Omega$, $V_{CC} = \pm 5V_{DC}$, $A_V = +2$, $R_F = 634\Omega$, $-55^\circ C \leq T_A \leq +125^\circ C$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub-groups
I_{BN}	Input Bias Current, Noninverting		See ⁽¹⁾	-12	12	μA	1
				-12	+12	μA	2
				-20	+20	μA	3
I_{BI}	Input Bias Current, Inverting		See ⁽¹⁾	-21	+21	μA	1
				-25	+25	μA	2
				-35	+35	μA	3
V_{IO}	Input offset voltage		See ⁽¹⁾	-6	6	mV	1
				-12	12	mV	2
				-10	10	mV	3
I_{CC}	Supply Current	$R_L = \infty$	See ⁽¹⁾	14.0	mA	mA	1
				14.0	mA	mA	2
				16.0	mA	mA	3
PSRR	Power Supply Rejection Ration	$+V_S = +4.5V$ to $+5.0V$, $-V_S = -4.5V$ to $-5.0V$		46		dB	1
				44		dB	2, 3

(1) Pre and post irradiation limits are identical to those listed under electrical characteristics. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are ensured only for the conditions as specified in MIL-STD-883, Method 1019.

LMH6715 Electrical Characteristics AC Parameter Frequency Domain Response

The following conditions apply, unless otherwise specified.

$R_L = 100\Omega$, $V_{CC} = \pm 5V_{DC}$, $A_V = +2$, $R_F = 634\Omega$, $-55^\circ C \leq T_A \leq +125^\circ C$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub-groups
SS_{BW}	Small signal bandwidth	$-3dB$ BW, $V_{OUT} < 0.5 V_{PP}$	See ⁽¹⁾	175		MHz	4
GFP	Gain flatness peaking high	0.1MHz to 30 MHz, $V_{OUT} \leq 0.5V_{PP}$	See ⁽¹⁾		0.1	dB	4
GFR	Gain flatness rolloff	0.1MHz to 30 MHz, $V_{OUT} \leq 0.5V_{PP}$	See ⁽¹⁾		0.3	dB	4

(1) Group A testing only.

LMH6715 Electrical Characteristics AC Parameter Distortion and Noise Response

The following conditions apply, unless otherwise specified.

$R_L = 100\Omega$, $V_{CC} = \pm 5V_{DC}$, $A_V = +2$, $R_F = 634\Omega$, $-55^\circ C \leq T_A \leq +125^\circ C$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub-groups
HD_2	Second harmonic distortion	$2V_{PP}$ at 20 MHz	See ⁽¹⁾		-42	dB_c	4
HD_3	Third harmonic distortion	$2V_{PP}$ at 20 MHz	See ⁽¹⁾		-46	dB_c	4

(1) Group A testing only.

LMH6715 Electrical Characteristics DC Parameter Drift Values

The following conditions apply, unless otherwise specified.

Deltas not required on B Level product. Deltas required for S Level product at Group B5 only, or as specified on the Internal Processing Instructions (IPI).

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub-groups
I_{BN}	Input Bias Current, Noninverting		See ⁽¹⁾	-1.2	+1.2	μA	1
I_{BI}	Input Bias Current, Inverting		See ⁽¹⁾	-2.0	+2.0	μA	1
V_{IO}	Input Offset Voltage		See ⁽¹⁾	-1.0	+1.0	mV	1
I_{CC}	Supply Current	$R_L = \infty$	See ⁽¹⁾	-1.0	+1.0	mA	1

(1) If not tested, shall be specified to the limits specified.

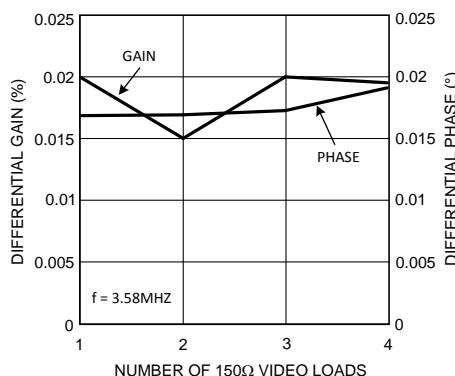


Figure 2. Differential Gain and Phase with Multiple Video Loads

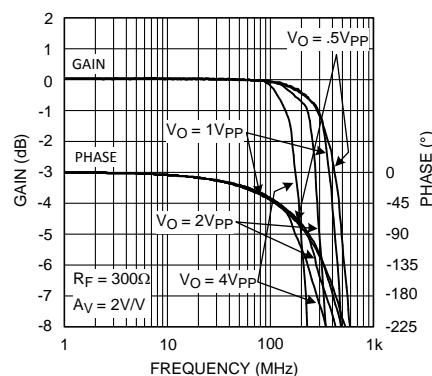


Figure 3. Frequency Response vs. V_{OUT}

Typical Performance Characteristics

($T_A = 25^\circ\text{C}$, $V_{CC} = \pm 5\text{V}$, $A_V = \pm 2\text{V/V}$, $R_F = 500\Omega$, $R_L = 100\Omega$, unless otherwise specified).

Non-Inverting Frequency Response

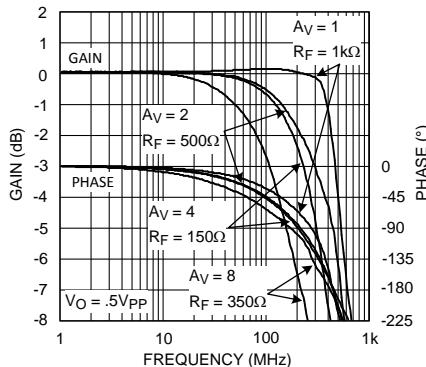


Figure 4.

Inverting Frequency Response

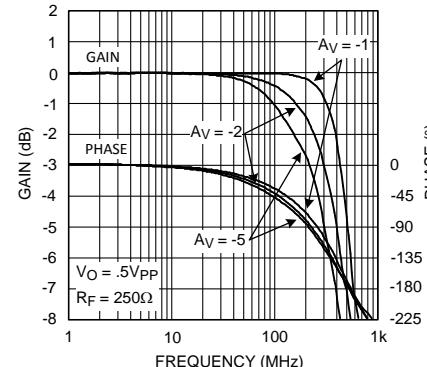


Figure 5.

Non-Inverting Frequency Response vs. V_{OUT}

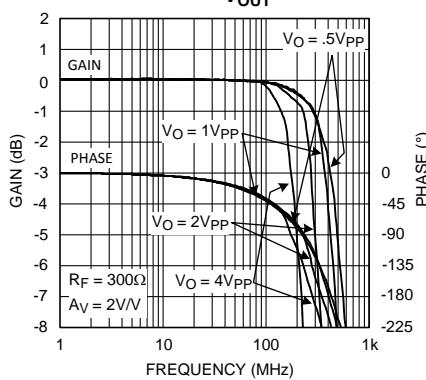


Figure 6.

Small Signal Channel Matching

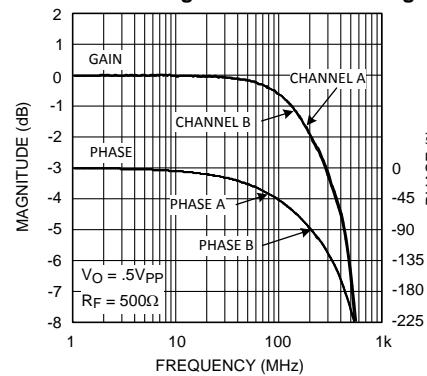


Figure 7.

Frequency Response vs. Load Resistance

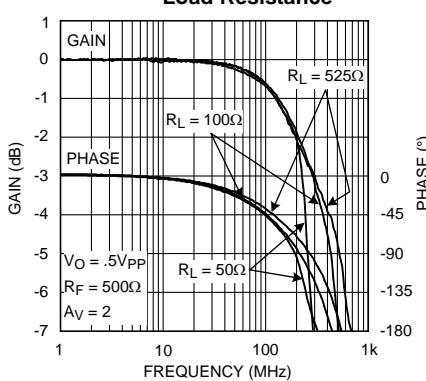


Figure 8.

Non-Inverting Frequency Response vs. R_F

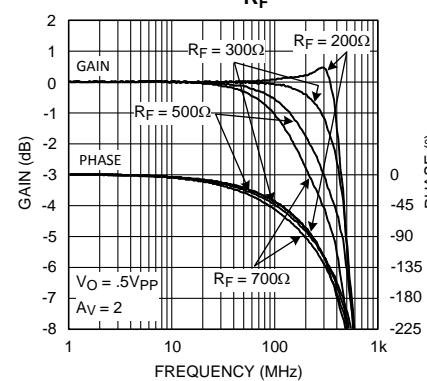


Figure 9.

Typical Performance Characteristics (continued)

($T_A = 25^\circ\text{C}$, $V_{CC} = \pm 5\text{V}$, $A_V = \pm 2\text{V/V}$, $R_F = 500\Omega$, $R_L = 100\Omega$, unless otherwise specified).

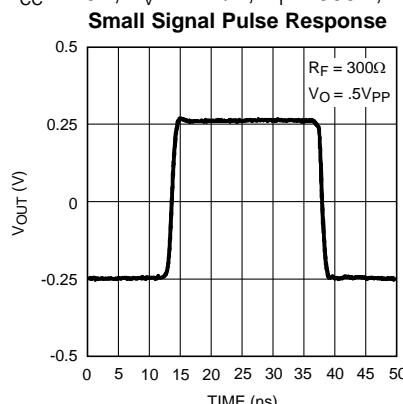


Figure 10.

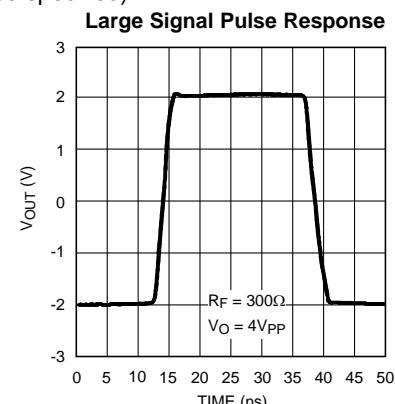


Figure 11.

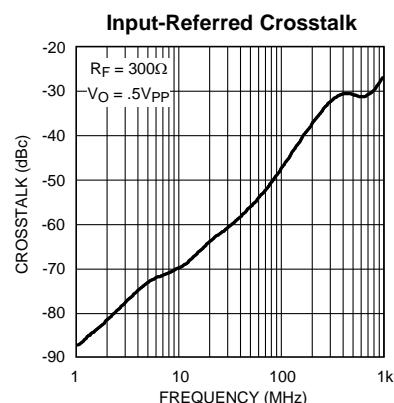


Figure 12.



Figure 13.

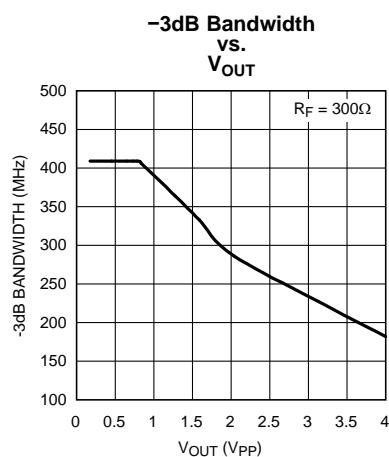


Figure 14.

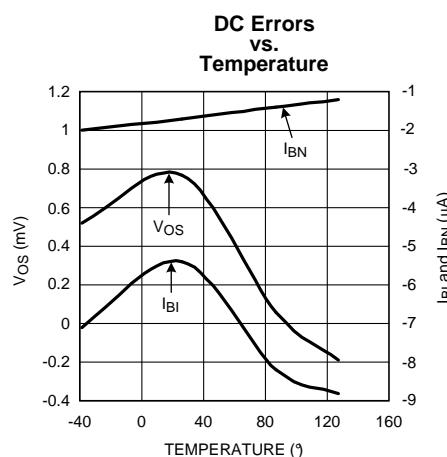


Figure 15.

Typical Performance Characteristics (continued)

($T_A = 25^\circ\text{C}$, $V_{CC} = \pm 5\text{V}$, $A_V = \pm 2\text{V/V}$, $R_F = 500\Omega$, $R_L = 100\Omega$, unless otherwise specified).

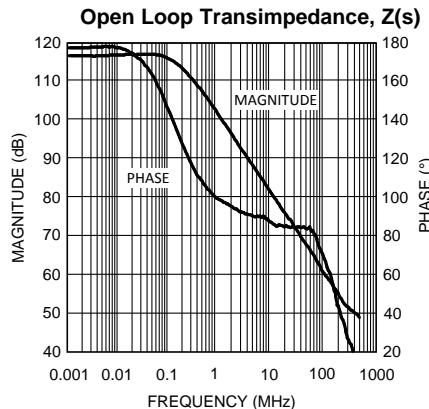


Figure 16.

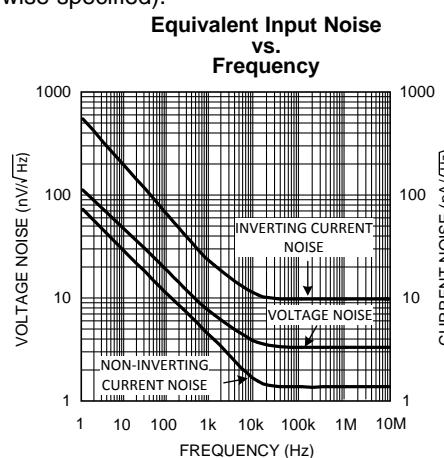


Figure 17.

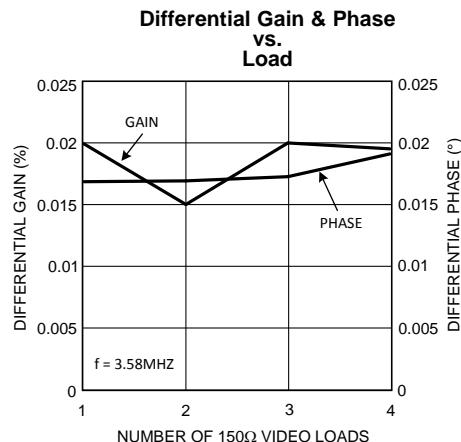


Figure 18.

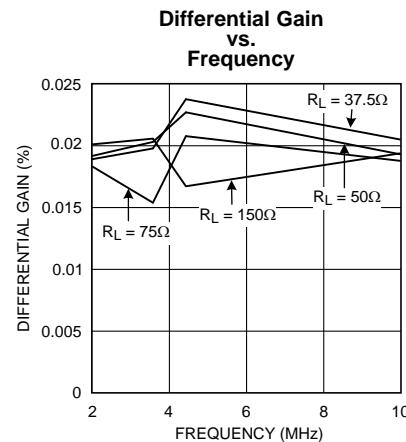


Figure 19.

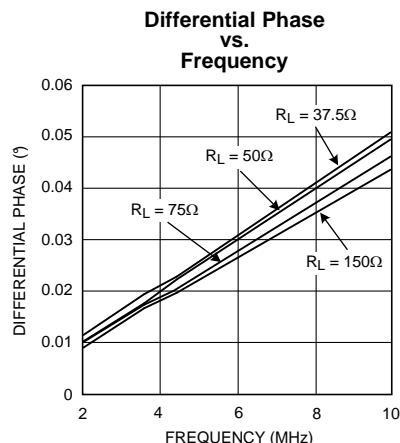


Figure 20.

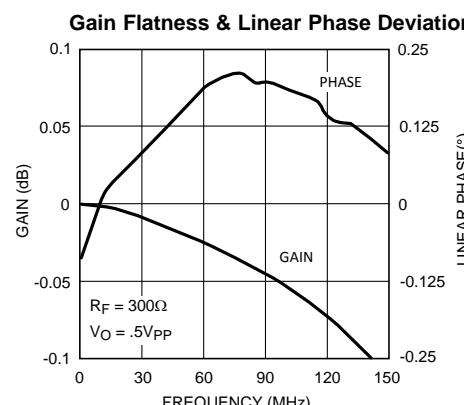


Figure 21.

Typical Performance Characteristics (continued)

($T_A = 25^\circ\text{C}$, $V_{CC} = \pm 5\text{V}$, $A_V = \pm 2\text{V/V}$, $R_F = 500\Omega$, $R_L = 100\Omega$, unless otherwise specified).

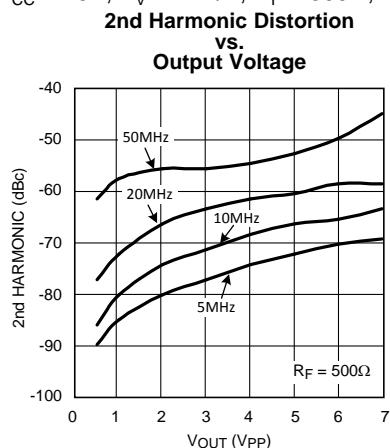


Figure 22.

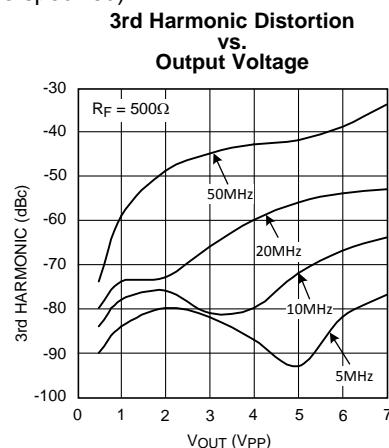


Figure 23.

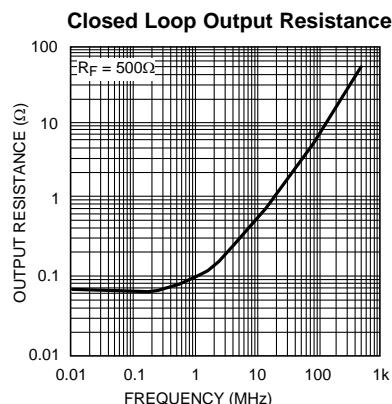


Figure 24.

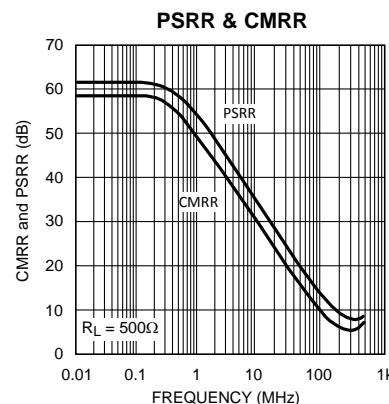


Figure 25.

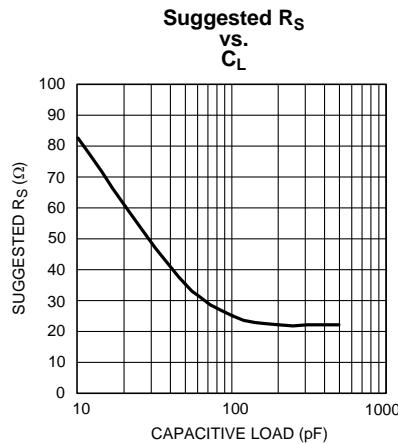


Figure 26.

APPLICATION SECTION

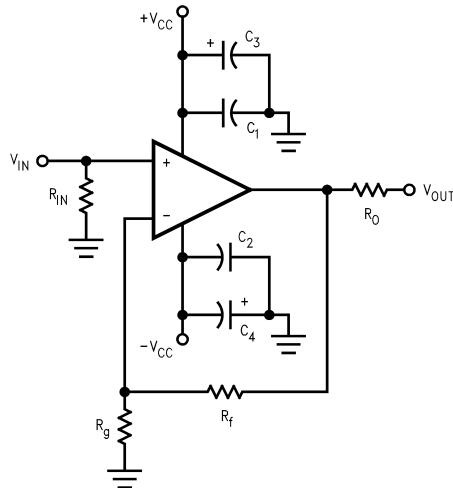
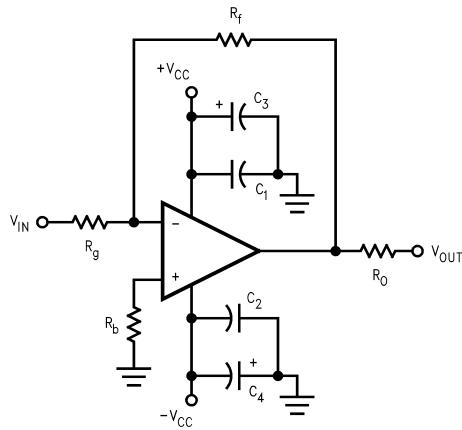
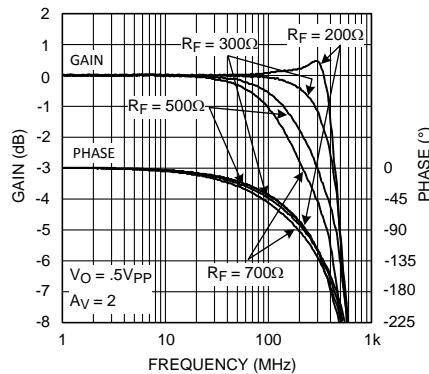


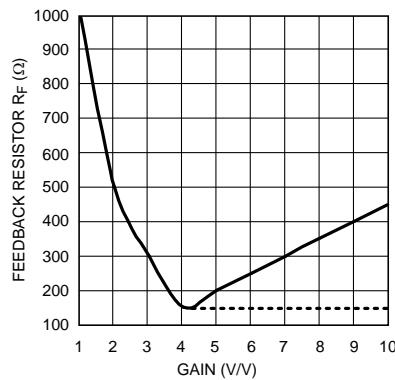
Figure 27. Non-Inverting Configuration with Power Supply Bypassing



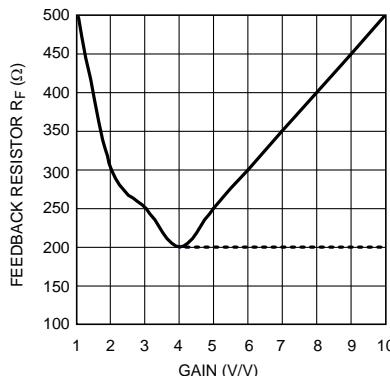

Figure 28. Inverting Configuration with Power Supply Bypassing

Application Introduction

Offered in an 8-pin package for reduced space and cost, the wideband LMH6715 dual current-feedback op amp provides closely matched DC and AC electrical performance characteristics making the part an ideal choice for wideband signal processing. Applications such as broadcast quality video systems, IQ amplifiers, filter blocks, high speed peak detectors, integrators and transimpedance amplifiers will all find superior performance in the LMH6715 dual op amp.


FEEDBACK RESISTOR SELECTION

One of the key benefits of a current feedback operational amplifier is the ability to maintain optimum frequency response independent of gain by using appropriate values for the feedback resistor (R_F). The Electrical Characteristics and Typical Performance plots specify an R_F of 500Ω , a gain of $+2V/V$ and $\pm 5V$ power supplies (unless otherwise specified). Generally, lowering R_F from its recommended value will peak the frequency response and extend the bandwidth while increasing the value of R_F will cause the frequency response to roll off faster. Reducing the value of R_F too far below its recommended value will cause overshoot, ringing and, eventually, oscillation.


Figure 29. Frequency Response vs. R_F

The plot labeled “Frequency Response vs. R_F ” shows the LMH6715’s frequency response as R_F is varied ($R_L = 100\Omega$, $A_V = +2$). This plot shows that an R_F of 200Ω results in peaking and marginal stability. An R_F of 300Ω gives near maximal bandwidth and gain flatness with good stability, but with very light loads ($R_L > 300\Omega$) the device may show some peaking. An R_F of 500Ω gives excellent stability with good bandwidth and is the recommended value for most applications. Since all applications are slightly different it is worth some experimentation to find the optimal R_F for a given circuit. For more information see Application Note OA-13 which describes the relationship between R_F and closed-loop frequency response for current feedback operational amplifiers.

When configuring the LMH6715 for gains other than $\pm 2V/V$, it is usually necessary to adjust the value of the feedback resistor. The two plots labeled “ R_F vs. Non-inverting Gain” and “ R_F vs. Inverting Gain” provide recommended feedback resistor values for a number of gain selections.

Figure 30. R_F vs. Non-Inverting Gain

Both plots show the value of R_F approaching a minimum value (dashed line) at high gains. Reducing the feedback resistor below this value will result in instability and possibly oscillation. The recommended value of R_F is depicted by the solid line, which begins to increase at higher gains. The reason that a higher R_F is required at higher gains is the need to keep R_G from decreasing too far below the output impedance of the input buffer. For the LMH6715 the output resistance of the input buffer is approximately 160Ω and 50Ω is a practical lower limit for R_G . Due to the limitations on R_G the LMH6715 begins to operate in a gain bandwidth limited fashion for gains of $\pm 5V/V$ or greater.

Figure 31. R_F vs. Inverting Gain

When using the LMH6715 as a replacement for the CLC412, identical bandwidth can be obtained by using an appropriate value of R_F. The chart "Frequency Response vs. R_F" shows that an R_F of approximately 700Ω will provide bandwidth very close to that of the CLC412. At other gains a similar increase in R_F can be used to match the new and old parts.

CIRCUIT LAYOUT

With all high frequency devices, board layouts with stray capacitances have a strong influence over AC performance. The LMH6715 is no exception and its input and output pins are particularly sensitive to the coupling of parasitic capacitances (to AC ground) arising from traces or pads placed too closely (<0.1") to power or ground planes. In some cases, due to the frequency response peaking caused by these parasitics, a small adjustment of the feedback resistor value will serve to compensate the frequency response. Also, it is very important to keep the parasitic capacitance across the feedback resistor to an absolute minimum.

The performance plots in the data sheet can be reproduced using the evaluation boards available from Texas Instruments. The LMH730036 board uses all SMT parts for the evaluation of the LMH6715. The board can serve as an example layout for the final production printed circuit board.

Care must also be taken with the LMH6715's layout in order to achieve the best circuit performance, particularly channel-to-channel isolation. The decoupling capacitors (both tantalum and ceramic) must be chosen with good high frequency characteristics to decouple the power supplies and the physical placement of the LMH6715's external components is critical. Grouping each amplifier's external components with their own ground connection and separating them from the external components of the opposing channel with the maximum possible distance is recommended. The input (R_{IN}) and gain setting resistors (R_F) are the most critical. It is also recommended that the ceramic decoupling capacitor (0.1μF chip or radial-leaded with low ESR) should be placed as closely to the power pins as possible.

POWER DISSIPATION

Follow these steps to determine the Maximum power dissipation for the LMH6715:

1. Calculate the quiescent (no-load) power: P_{AMP} = I_{CC} (V_{CC} - V_{EE})
2. Calculate the RMS power at the output stage: P_O = (V_{CC} - V_{LOAD})(I_{LOAD}), where V_{LOAD} and I_{LOAD} are the voltage and current across the external load.
3. Calculate the total RMS power: P_t = P_{AMP} + P_O

The maximum power that the LMH6715, package can dissipate at a given temperature can be derived with the following equation:

$$P_{max} = (150^\circ - Tamb) / \theta_{JA}$$

where

- Tamb = Ambient temperature (°C)
- θ_{JA} = Thermal resistance, from junction to ambient, for a given package (°C/W)

(1)

For the CDIP package θ_{JA} is 140°C/W.

MATCHING PERFORMANCE

With proper board layout, the AC performance match between the two LMH6715's amplifiers can be tightly controlled as shown in Typical Performance plot labeled "Small-Signal Channel Matching".

The measurements were performed with SMT components using a feedback resistor of 300Ω at a gain of $+2V/V$.

The LMH6715's amplifiers, built on the same die, provide the advantage of having tightly matched DC characteristics.

SLEW RATE AND SETTLING TIME

One of the advantages of current-feedback topology is an inherently high slew rate which produces a wider full power bandwidth. The LMH6715 has a typical slew rate of $1300V/\mu s$. The required slew rate for a design can be calculated by the following equation:

$$SR = 2\pi fV_{pk} \quad (2)$$

Careful attention to parasitic capacitances is critical to achieving the best settling time performance. The LMH6715 has a typical short term settling time to 0.05% of 12ns for a 2V step. Also, the amplifier is virtually free of any long term thermal tail effects at low gains.

When measuring settling time, a solid ground plane should be used in order to reduce ground inductance which can cause common-ground-impedance coupling. Power supply and ground trace parasitic capacitances and the load capacitance will also affect settling time.

Placing a series resistor (R_s) at the output pin is recommended for optimal settling time performance when driving a capacitive load. The Typical Performance plot labeled " R_s and Settling Time vs. Capacitive Load" provides a means for selecting a value of R_s for a given capacitive load.

DC AND NOISE PERFORMANCE

A current-feedback amplifier's input stage does not have equal nor correlated bias currents, therefore they cannot be canceled and each contributes to the total DC offset voltage at the output by the following equation:

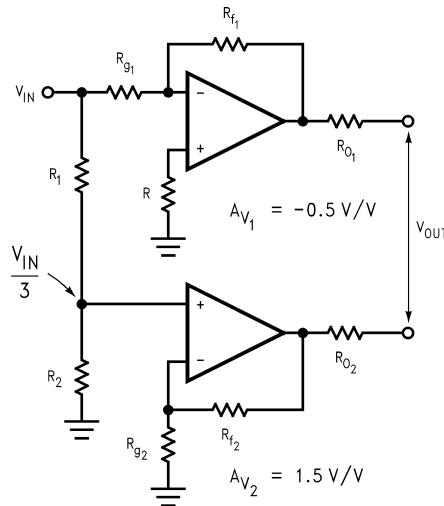
$$V_{OFFSET} = \pm \left[I_{BN} \times R_s \left[1 + \frac{R_f}{R_g} \right] + V_{IO} \left[1 + \frac{R_f}{R_g} \right] + I_{BI} \times R_f \right] \quad (3)$$

The input resistance is the resistance looking from the non-inverting input back toward the source. For inverting DC-offset calculations, the source resistance seen by the input resistor R_g must be included in the output offset calculation as a part of the non-inverting gain equation. Application Note [OA-7](#) gives several circuits for DC offset correction. The noise currents for the inverting and non-inverting inputs are graphed in the Typical Performance plot labeled "Equivalent Input Noise". A more complete discussion of amplifier input-referred noise and external resistor noise contribution can be found in Application Note [OA-12](#).

DIFFERENTIAL GAIN & PHASE

The LMH6715 can drive multiple video loads with very low differential gain and phase errors. The Typical Performance plots labeled "Differential Gain vs. Frequency" and "Differential Phase vs. Frequency" show performance for loads from 1 to 4. The Electrical Characteristics table also specifies performance for one 150Ω load at 4.43MHz. For NTSC video, the performance specifications also apply. Application Note [OA-24](#) "Measuring and Improving Differential Gain & Differential Phase for Video", describes in detail the techniques used to measure differential gain and phase.

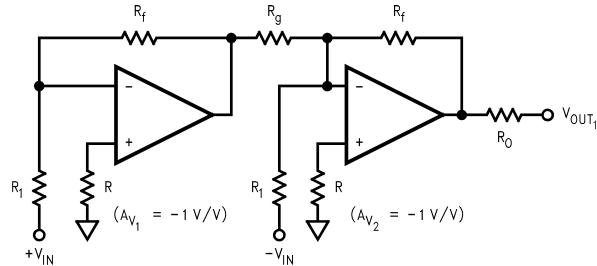
I/O VOLTAGE & OUTPUT CURRENT

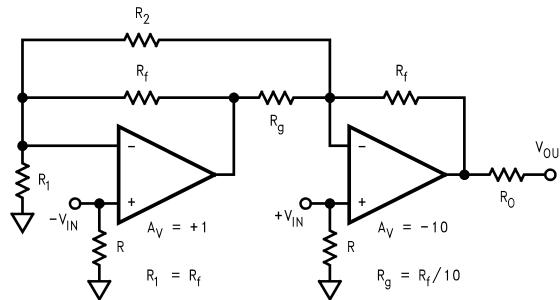

The usable common-mode input voltage range (CMIR) of the LMH6715 specified in the Electrical Characteristics table of the data sheet shows a range of ± 2.2 volts. Exceeding this range will cause the input stage to saturate and clip the output signal.

The output voltage range is determined by the load resistor and the choice of power supplies. With ± 5 volts the class A/B output driver will typically drive $\pm 3.9V$ into a load resistance of 100Ω . Increasing the supply voltages will change the common-mode input and output voltage swings while at the same time increase the internal junction temperature.

Applications Circuits

SINGLE-TO-DIFFERENTIAL LINE DRIVER


The LMH6715's well matched AC channel-response allows a single-ended input to be transformed to highly matched push-pull driver. From a 1V single-ended input the circuit of [Figure 32](#) produces 1V differential signal between the two outputs. For larger signals the input voltage divider ($R_1 = 2R_2$) is necessary to limit the input voltage on channel 2.


Figure 32. Single-to-Differential Line Driver

DIFFERENTIAL LINE RECEIVER

[Figure 33](#) and [Figure 34](#) show two different implementations of an instrumentation amplifier which convert differential signals to single-ended. [Figure 34](#) allows CMRR adjustment through R_2 .

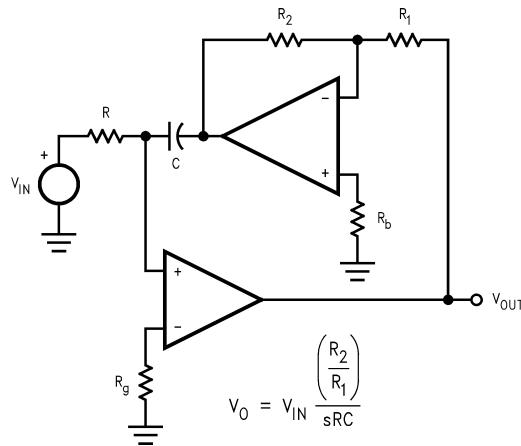

Figure 33. Differential Line Receiver

Figure 34. Differential Line Receiver with CMRR Adjustment

NON-INVERTING CURRENT-FEEDBACK INTEGRATOR

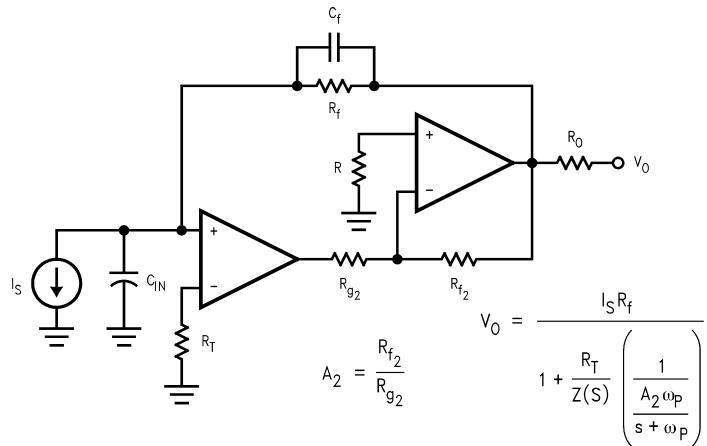

The circuit of [Figure 35](#) achieves its high speed integration by placing one of the LMH6715's amplifiers in the feedback loop of the second amplifier configured as shown.

Figure 35. Current Feedback Integrator

LOW NOISE WIDE-BANDWIDTH TRANSIMPEDANCE AMPLIFIER

[Figure 36](#) implements a low noise transimpedance amplifier using both channels of the LMH6715. This circuit takes advantage of the lower input bias current noise of the non-inverting input and achieves negative feedback through the second LMH6715 channel. The output voltage is set by the value of R_F while frequency compensation is achieved through the adjustment of R_T .

Figure 36. Low-Noise, Wide Bandwidth, Transimpedance Amp.

Revision History

Date Released	Revision	Section	Changes
11/30/2010	A	New Corporate Format Release	1 MDS data sheets converted into a Corp. data sheet format. Following MDS data sheet will be Archived MNLMH6715-X-RH, Rev. 0A0
07/12/2011	B	Connection Diagrams	Replaced 8 Lead CDIP (NAB0008A) diagram depicting single Op Amp with diagram depicting dual Op Amp.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
5962-0254701QPA	Active	Production	CDIP (NAB) 8	40 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LMH6715J-QML 5962-02547 01QPA Q ACO 01QPA Q >T
5962F0254701VPA	Active	Production	CDIP (NAB) 8	40 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LMH6715JFQV 5962F02547 01VPA Q ACO 01VPA Q >T
LMH6715J-QML	Active	Production	CDIP (NAB) 8	40 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LMH6715J-QML 5962-02547 01QPA Q ACO 01QPA Q >T
LMH6715J-QML.A	Active	Production	CDIP (NAB) 8	40 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LMH6715J-QML 5962-02547 01QPA Q ACO 01QPA Q >T
LMH6715JFQMLV	Active	Production	CDIP (NAB) 8	40 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LMH6715JFQV 5962F02547 01VPA Q ACO 01VPA Q >T
LMH6715JFQMLV.A	Active	Production	CDIP (NAB) 8	40 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LMH6715JFQV 5962F02547 01VPA Q ACO 01VPA Q >T

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

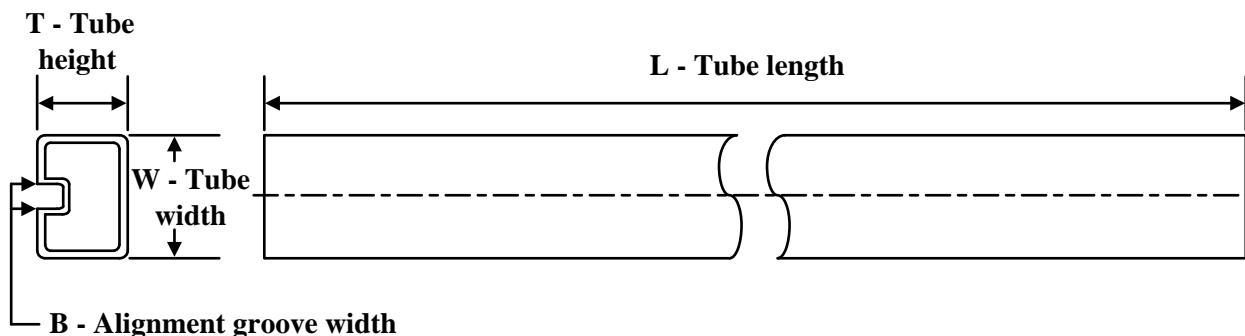
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

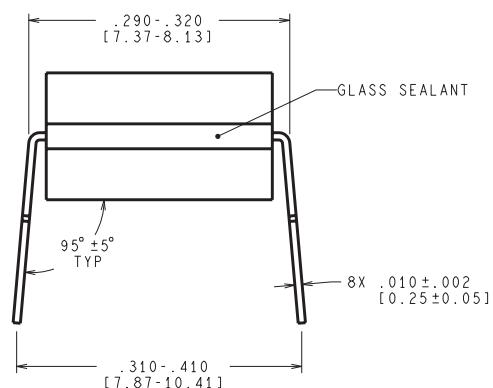
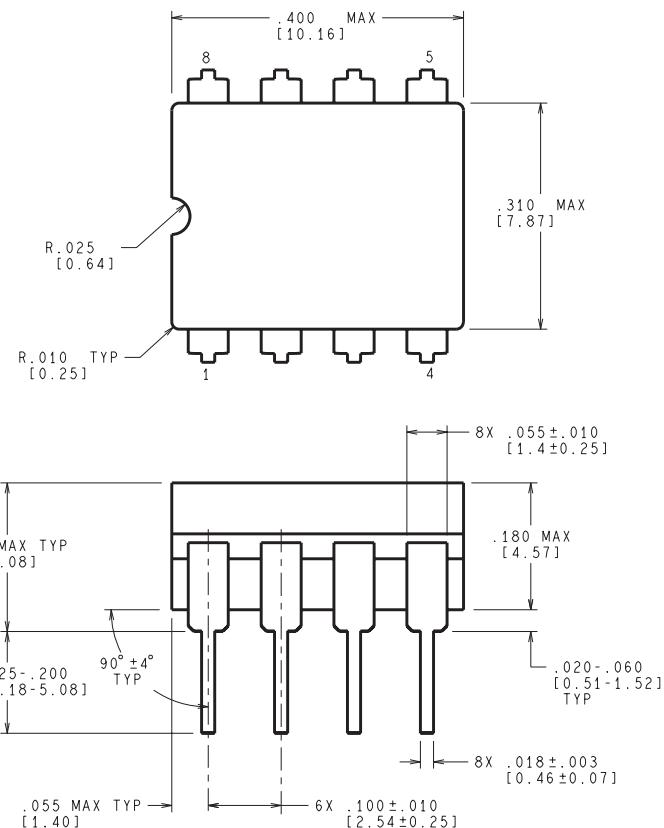

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMH6715QML, LMH6715QML-SP :

- Military : [LMH6715QML](#)
- Space : [LMH6715QML-SP](#)

NOTE: Qualified Version Definitions:

- Military - QML certified for Military and Defense Applications
- Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application



TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
5962-0254701QPA	NAB	CDIP	8	40	506.98	15.24	13440	NA
5962F0254701VPA	NAB	CDIP	8	40	506.98	15.24	13440	NA
LMH6715J-QML	NAB	CDIP	8	40	506.98	15.24	13440	NA
LMH6715J-QML.A	NAB	CDIP	8	40	506.98	15.24	13440	NA
LMH6715JFQMLV	NAB	CDIP	8	40	506.98	15.24	13440	NA
LMH6715JFQMLV.A	NAB	CDIP	8	40	506.98	15.24	13440	NA

MECHANICAL DATA

NAB0008A

J08A (Rev M)

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025