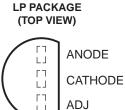


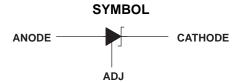
2.5-V INTEGRATED REFERENCE CIRCUIT


FEATURES

- Excellent Temperature Stability
- Initial Tolerance: 0.2% Max
- Dynamic Impedance: 0.6 Ω Max

- Wide Operating Current Range
- Directly Interchangeable With LM136
- Needs No Adjustment for Minimum Temperature Coefficient

NC - No internal connection


DESCRIPTION/ORDERING INFORMATION

The LT1009 reference circuit is a precision-trimmed 2.5-V shunt regulator featuring low dynamic impedance and a wide operating current range. The maximum initial tolerance is ± 5 mV in the LP package and ± 10 mV in the D and PW packages. The reference tolerance is achieved by on-chip trimming, which minimizes the initial voltage tolerance and the temperature coefficient, α_{VZ} .

Although the LT1009 needs no adjustments, a third terminal (ADJ) allows the reference voltage to be adjusted ±5% to eliminate system errors. In many applications, the LT1009 can be used as a terminal-for-terminal replacement for the LM136-2.5, which eliminates the external trim network.

The LT1009 uses include 5-V system references, 8-bit analog-to-digital converter (ADC) and digital-to-analog converter (DAC) references, and power-supply monitors. The device also can be used in applications such as digital voltmeters and current-loop measurement and control systems.

The LT1009C is characterized for operation from 0°C to 70°C. The LT1009I is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION(1)

T _A	PAC	KAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	SOIC - D	Tube of 75	LT1009CD	10000	
	201C - D	Reel of 2500	LT1009CDR	- 1009C	
		Bulk of 1000	LT1009CLP		
0°C to 70°C	TO-226/TO-92 – LP	Ammo of 2000	LT1009CLPM	LT1009C	
		Reel of 2000	LT1009CLPR		
	TSSOP – PW	Tube of 150	LT1009CPW	40000	
		Reel of 2000	LT1009CPWR	- 1009C	
	0010 5	Tube of 75	LT1009ID	40001	
	SOIC – D	Reel of 2500	LT1009IDR	1009l	
		Bulk of 1000	LT1009ILP		
-40°C to 85°C	TO-226/TO-92 – LP	Ammo of 2000	LT1009ILPM	LT1009I	
		Reel of 2000 LT1009ILPR			
	TCCOD DW	Tube of 150	LT1009IPW	40001	
	TSSOP – PW	Reel of 2000	LT1009IPWR	_ 1009l	

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

SCHEMATIC CATHODE Q14 Q11 **24 k**Ω **6.6** $\mathbf{k}\Omega$ **24 k**Ω ≷ Q8 Q7 20 pF Q10 10 $k\Omega$ $\mathbf{500}\,\Omega$ Q9 30 $\mathbf{k}\Omega$ Q4 ADJ Q1 6.6 $\mathbf{k}\Omega$ Q6 Q3 Q12 Q13 **720** Ω ≶ **ANODE**

NOTE: All component values shown are nominal.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
I_R	Reverse current			20	mA
I _F	Forward current			10	mA
	(0.40)	D package		97	
θ_{JA}	Package thermal impedance (2)(3)	LP package		140	°C/W
	P _{JA} Package thermal impedance (2)(3)	PW package		149	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
т	Operating free-air temperature range	LT1009C	0	70	°C
I A	Operating nee-air temperature range	LT1009I	-40	85	

⁽²⁾ Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

ELECTRICAL CHARACTERISTICS

at specified free-air temperature

PARAMETER		TEST CONDITIONS		T _A ⁽¹⁾	L	T1009C		LT1009I			UNIT
				IA'''	MIN	TYP	MAX	MIN	TYP	MAX	UNII
			D/PW package	25°C	2.49	2.5	2.51	2.49	2.5	2.51	
N Defended and the ma	Reference voltage	I ₇ = 1 mA	LP package	25 C	2.495	2.5	2.505	2.495	2.5	2.505	V
V _Z	Reference voltage	12 = 1 111A	D/PW package	Full range	2.485		2.515	2.475		2.525	V
			LP package	Full range	2.491		2.509	2.48		2.52	
V_{F}	Forward voltage	$I_F = 2 \text{ mA}$		25°C	0.4		1	0.4		1	V
A.B.		$I_Z = 1 \text{ mA},$ $V_{ADJ} = \text{GND to } V_Z$		25°C	125			125			mV
Aujustinent ia	Adjustment range	$I_Z = 1 \text{ mA},$ $V_{ADJ} = 0.6$	V to V _Z – 0.6 V	25°C	45			45			IIIV
Change in reference		D/PW package					5			15	
$\Delta V_{Z(temp)}$	voltage with temperature	LP package		Full range			4			15	mV
	Average temperature			0°C to 70°C		15	25		15	25	ppm/
αV_Z	coefficient of reference voltage (2)	$I_Z = 1 \text{ mA},$	V _{ADJ} = open	-40°C to 85°C					20	35	°C
۸۱/	Change in reference	$I_7 = 400 \mu A$	to 10 m/	25°C		2.6	10		2.6	6	mV
ΔV _Z voltage with current		$12 = 400 \mu A$	TIO TO THA	Full range	12		12			10	IIIV
$\Delta V_Z/\Delta t$	Long-term change in reference voltage	I _Z = 1 mA		25°C		20			20		ppm/ khr
7	Potoronoo impodonoo	1 4 4		25°C		0.3	1		0.3	1	Ω
- Z	Z _Z Reference impedance		IZ = I MA				1.4			1.4	12

- (1) Full range is 0°C to 70°C for the LT1009C and -40°C to 85°C for the LT1009I.
- (2) The deviation parameter V_{Z(dev)} is defined as the difference between the maximum and minimum values obtained over the recommended operating temperature range, measured at I_Z = 1 mA. The average full-range temperature coefficient of the reference voltage (αV_Z) is defined as:

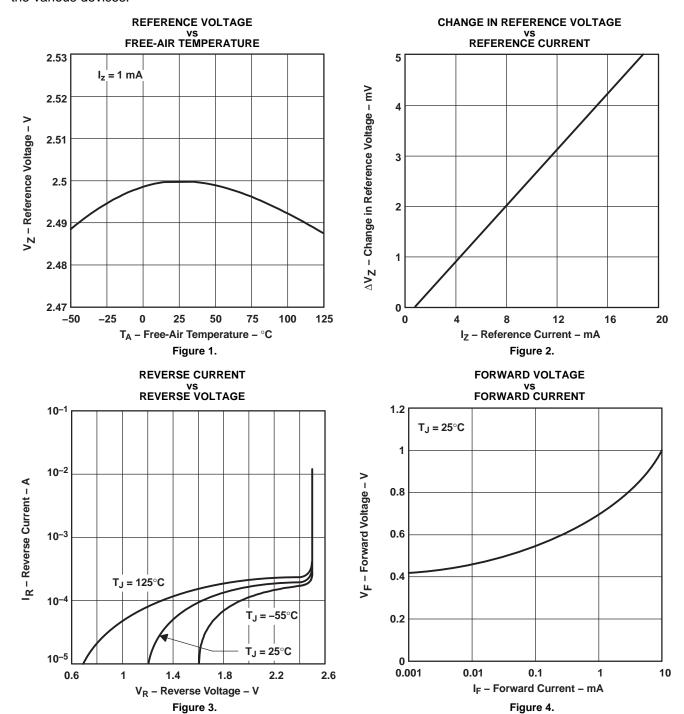
$$|\alpha V_z| \left(\frac{ppm}{{}^{\circ}C}\right) = \frac{\left(\frac{V_{z(dev)}}{V_z \text{ at } 25{}^{\circ}C}\right) \times 10^6}{\Delta T_A}$$
Maximum V_z

$$Maximum V_z$$

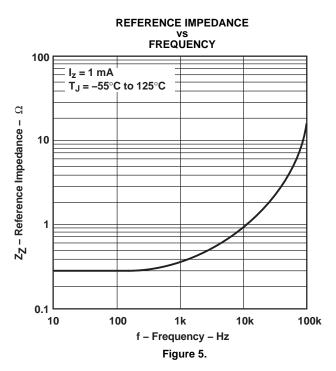
$$V_{z(dev)} \text{ at } I_z = 1 \text{ mA}$$

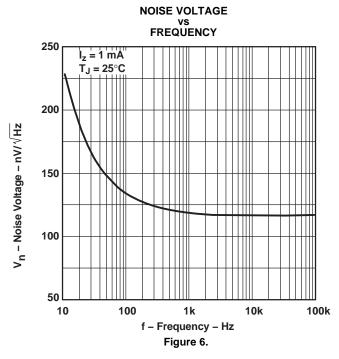
 αV_Z can be positive or negative, depending upon whether the minimum V_Z or maximum V_Z , respectively, occurs at the lower temperature.

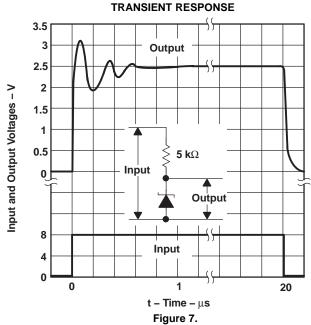
For example, at I_Z = 1 mA, maximum V_Z = 2501 mV at 30°C, minimum V_Z = 2497 mV at 0°C, V_Z = 2500 mV at 25°C, ΔT_A = 70°C for LT1009C:


$$|\alpha V_z| = \frac{\left(\frac{4 \text{ mV}}{2500 \text{ mV}}\right) \times 10^6}{70^{\circ}\text{C}} \approx 23 \frac{\text{ppm}}{^{\circ}\text{C}}$$

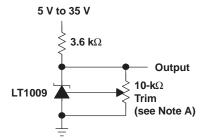
Because minimum V₇ occurs at the lower temperature, the coefficient in this example is positive.


TYPICAL CHARACTERISTICS


Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



TYPICAL CHARACTERISTICS (continued)



APPLICATION INFORMATION

A. This does not affect temperature coefficient. It provides ±5% trim range.

Figure 8. 2.5-V Reference

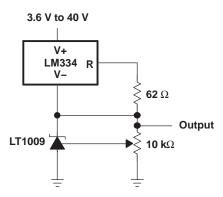


Figure 9. Adjustable Reference With Wide Supply Range

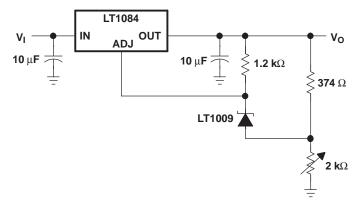


Figure 10. Power Regulator With Low Temperature Coefficient

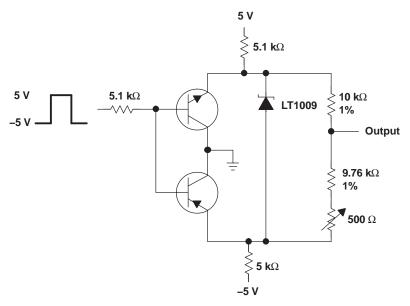


Figure 11. Switchable ±1.25-V Bipolar Reference

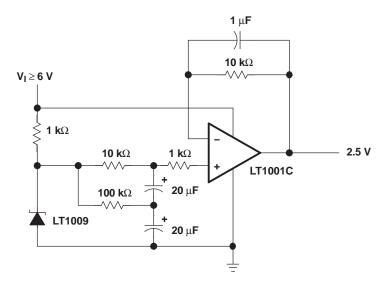


Figure 12. Low-Noise 2.5-V Buffered Reference

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LT1009CD	Active	Production	SOIC (D) 8	75 TUBE	Yes	(4) NIPDAU	(5) Level-1-260C-UNLIM	0 to 70	1009C
LT1009CD.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	1009C
LT1009CDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	1009C
LT1009CDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	1009C
LT1009CLP	Active	Production	TO-92 (LP) 3	1000 BULK	Yes	SN	N/A for Pkg Type	0 to 70	LT1009C
LT1009CLP.A	Active	Production	TO-92 (LP) 3	1000 BULK	Yes	SN	N/A for Pkg Type	0 to 70	LT1009C
LT1009CLPM	Active	Production	TO-92 (LP) 3	2000 AMMO	Yes	SN	N/A for Pkg Type	0 to 70	LT1009C
LT1009CLPM.A	Active	Production	TO-92 (LP) 3	2000 AMMO	Yes	SN	N/A for Pkg Type	0 to 70	LT1009C
LT1009CLPR	Active	Production	TO-92 (LP) 3	2000 LARGE T&R	Yes	SN	N/A for Pkg Type	0 to 70	LT1009C
LT1009CLPR.A	Active	Production	TO-92 (LP) 3	2000 LARGE T&R	Yes	SN	N/A for Pkg Type	0 to 70	LT1009C
LT1009CPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	1009C
LT1009CPWR.A	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	1009C
LT1009ID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	10090
LT1009ID.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	10091
LT1009IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	10091
LT1009IDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	10091
LT1009ILP	Active	Production	TO-92 (LP) 3	1000 BULK	Yes	SN	N/A for Pkg Type	-40 to 85	LT1009I
LT1009ILP.A	Active	Production	TO-92 (LP) 3	1000 BULK	Yes	SN	N/A for Pkg Type	-40 to 85	LT1009I
LT1009ILPR	Active	Production	TO-92 (LP) 3	2000 LARGE T&R	Yes	SN	N/A for Pkg Type	-40 to 85	LT1009I
LT1009ILPR.A	Active	Production	TO-92 (LP) 3	2000 LARGE T&R	Yes	SN	N/A for Pkg Type	-40 to 85	LT1009I
LT1009IPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	10091
LT1009IPWR.A	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	10091

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

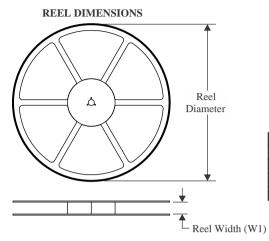
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

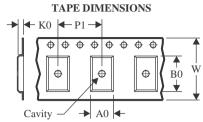
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LT1009:

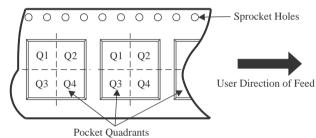
Military: LT1009M


NOTE: Qualified Version Definitions:

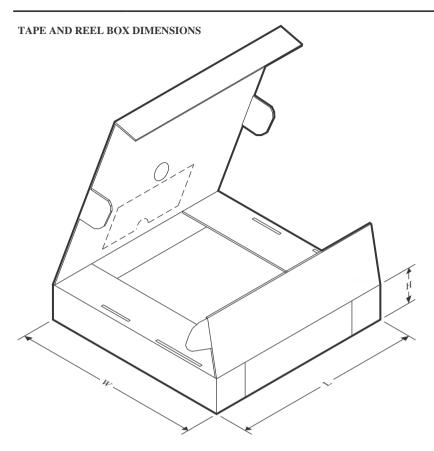

Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

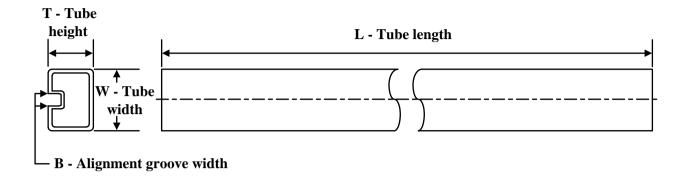
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LT1009CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LT1009CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LT1009IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LT1009IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

www.ti.com 24-Jul-2025

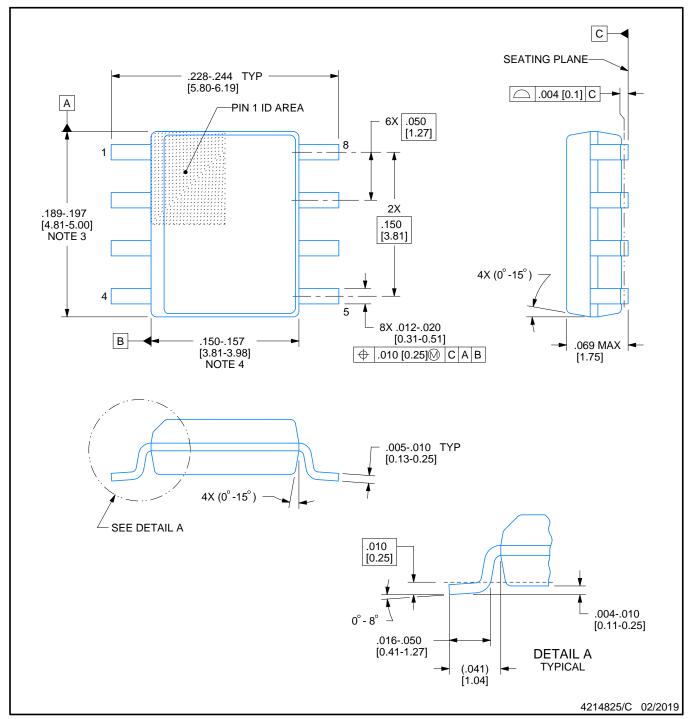

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LT1009CDR	SOIC	D	8	2500	353.0	353.0	32.0
LT1009CPWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LT1009IDR	SOIC	D	8	2500	353.0	353.0	32.0
LT1009IPWR	TSSOP	PW	8	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

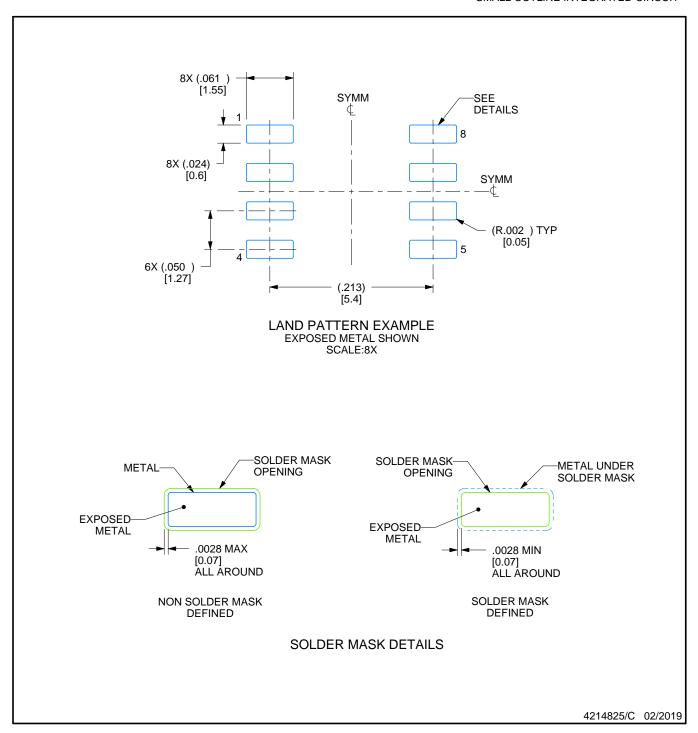
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
LT1009CD	D	SOIC	8	75	507	8	3940	4.32
LT1009CD.A	D	SOIC	8	75	507	8	3940	4.32
LT1009ID	D	SOIC	8	75	507	8	3940	4.32
LT1009ID.A	D	SOIC	8	75	507	8	3940	4.32

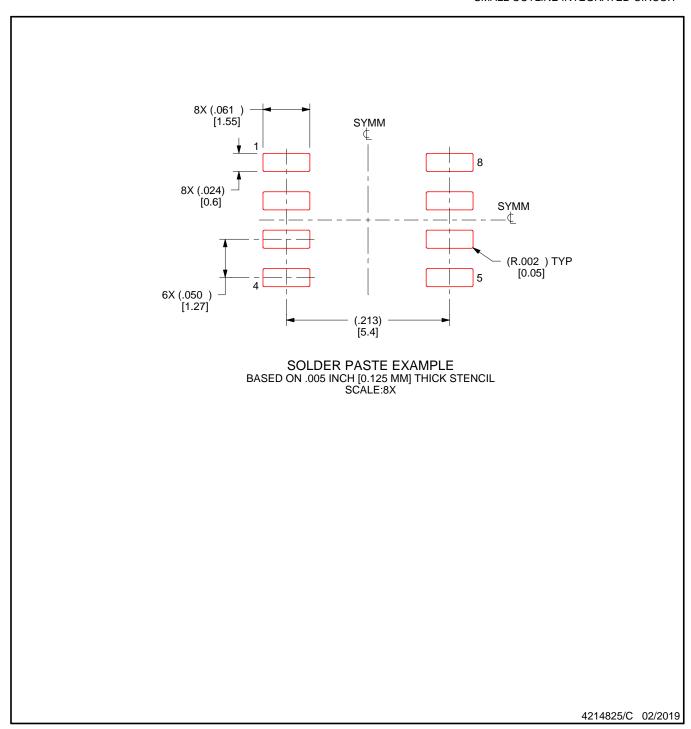
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

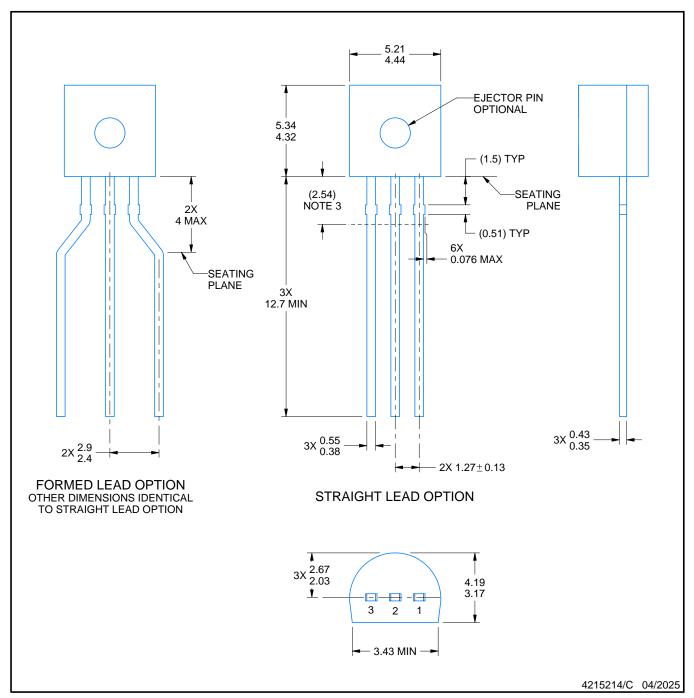
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

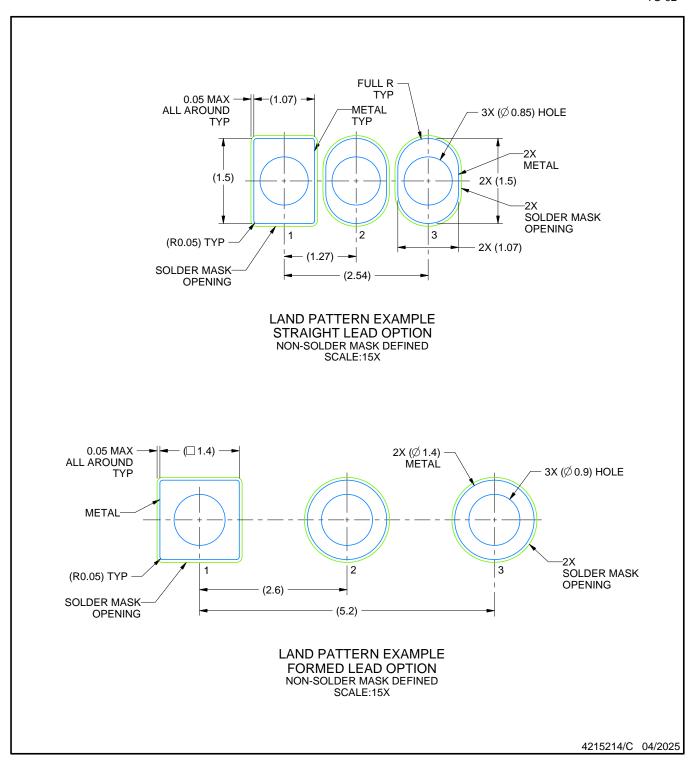

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

TO-92 - 5.34 mm max height

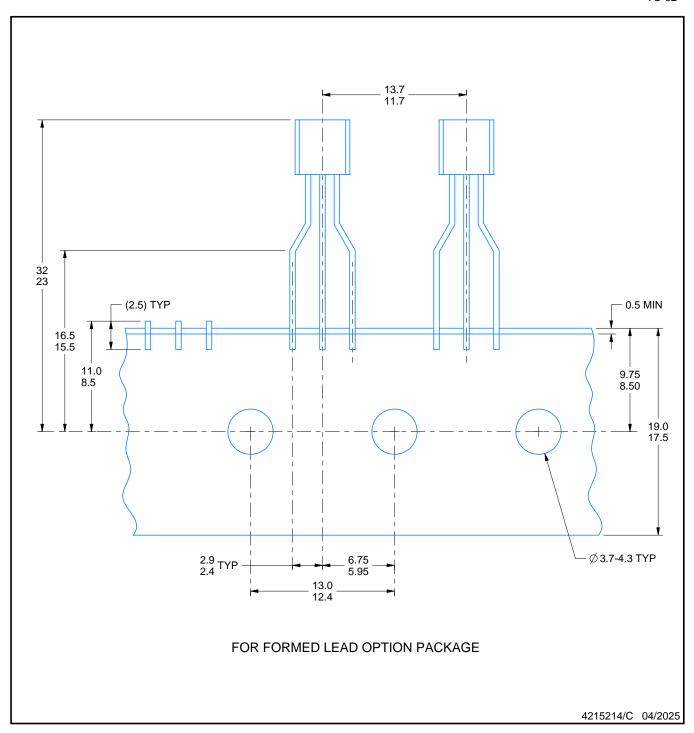
TO-92

NOTES:

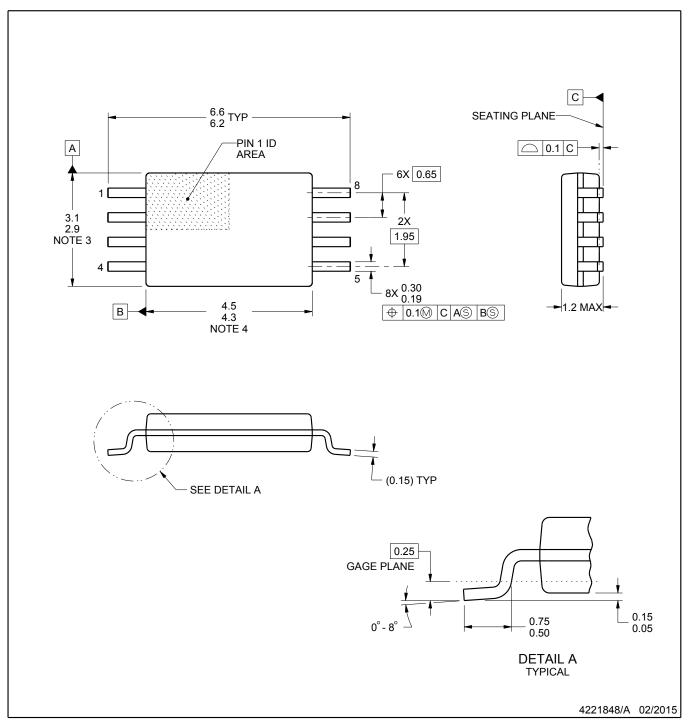

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. Lead dimensions are not controlled within this area. 4. Reference JEDEC TO-226, variation AA.
- 5. Shipping method:

 - a. Straight lead option available in bulk pack only.
 b. Formed lead option available in tape and reel or ammo pack.
 - c. Specific products can be offered in limited combinations of shipping medium and lead options.
 - d. Consult product folder for more information on available options.

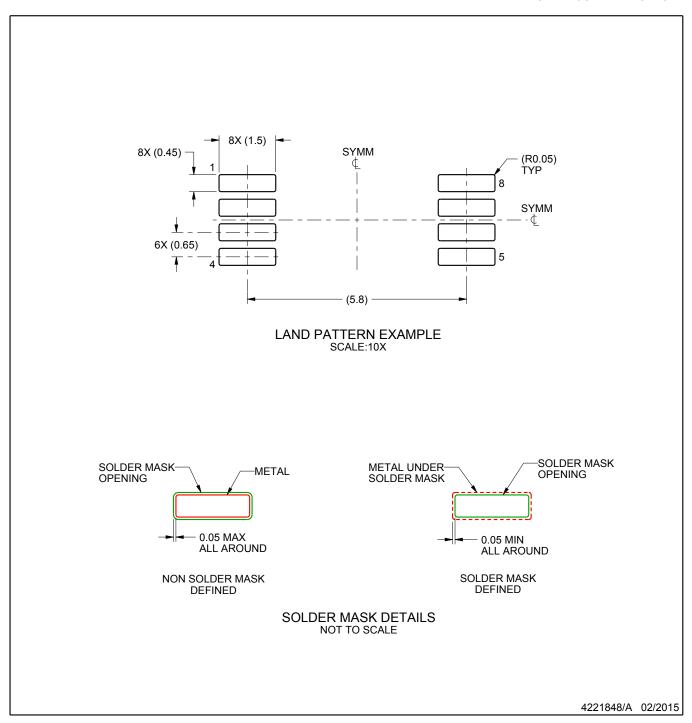


TO-92


TO-92

SMALL OUTLINE PACKAGE

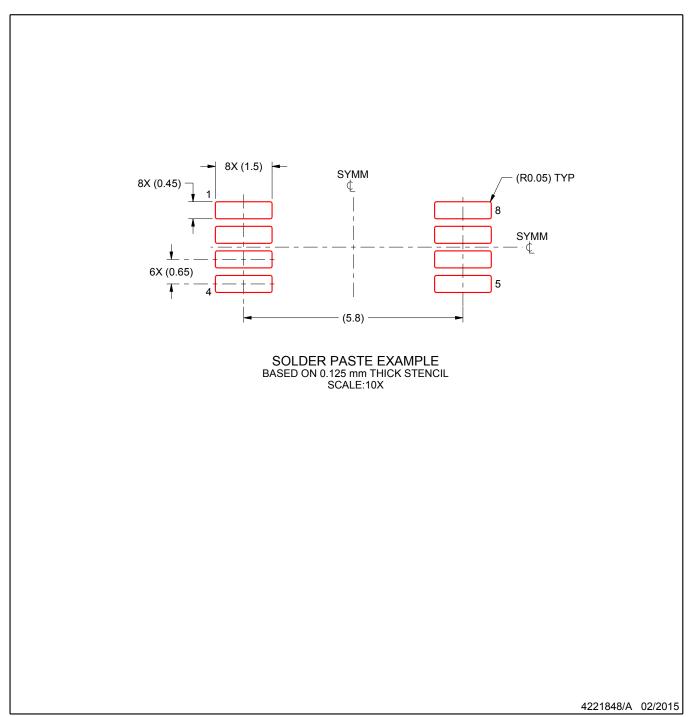
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025