

MCP809/MCP810 3-Pin Microprocessor Reset Circuits

Check for Samples: MCP809, MCP810

FEATURES

- Precise Monitoring of 3V, 3.3V, and 5V Supply Voltages
- Fully specified over temperature
- 140ms min. Power-On Reset Pulse Width, 240ms Typical
 - Active-low RESET Output (MCP809)
 - Active-high RESET Output (MCP810)
- Specified RESET Output Valid for V_{CC}≥1V
- Low Supply Current, 15µA typical
- · Power supply transient immunity

APPLICATIONS

- Microprocessor Systems
- Computers
- Controllers
- · Intelligent Instruments
- Portable/Battery-Powered Equipment
- Automotive

DESCRIPTION

The MCP809/810 microprocessor supervisory circuits can be used to monitor the power supplies in microprocessor and digital systems. They provide a reset to the microprocessor during power-up, power-down and brown-out conditions.

The function of the MCP809/810 is to monitor the $V_{\rm CC}$ supply voltage, and assert a reset signal whenever this voltage declines below the factory-programmed reset threshold. The reset signal remains asserted for 240ms after $V_{\rm CC}$ rises above the threshold. The MCP809 has an active-low RESET output, while the MCP810 has an active-high RESET output.

Seven standard reset voltage options are available, suitable for monitoring 5V, 3.3V, and 3V supply voltages.

With a low supply current of only $15\mu A$, the MCP809/810 are ideal for use in portable equipment. The MCP809/MCP810 are available in the 3-pin SOT23 package.

Typical Application Circuit

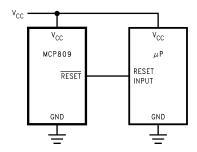


Figure 1. Typical Application Circuit

Connection Diagram

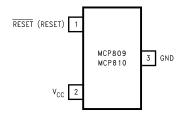


Figure 2. () are for MCP810

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Pin Description

PIN	NAME	FUNCTION
3	GND	Ground reference
4	RESET (MCP809)	Active-low output. $\overline{\text{RESET}}$ remains low while V_{CC} is below the reset threshold, and for 240ms after V_{CC} rises above the reset threshold.
'	RESET (MCP810)	Active-high output. RESET remains high while V_{CC} is below the reset threshold, and for 240ms after V_{CC} rises above the reset threshold.
2	V _{CC}	Supply Voltage (+5V, +3.3V, or +3.0V)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

0.21/ +0.6.01/
-0.3V to 6.0V
$-0.3V$ to $(V_{CC}+0.3V)$
20mA
20mA
100V/µs
2kV
320mW
−40°C to +105°C
125°C
−65°C to +160°C
+300°C

⁽¹⁾ Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which the device operates correctly. Operating ratings do not imply specified performance limits. For specified performance limits and associated test conditions, see the Electrical Characteristics.

Submit Documentation Feedback

The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. Production testing done at $T_A = +25^{\circ}C$, over temperature limits specified by design only.

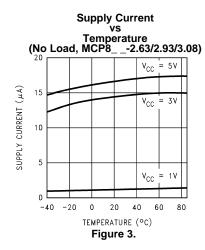
Electrical Characteristics

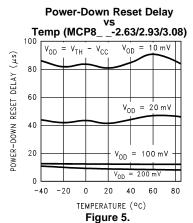
 V_{CC} = full range, T_A = -40°C to +105°C, unless otherwise noted. Typical values are at T_A = +25°C, V_{CC} = 5V for 4.63/4.38/4.00 versions, V_{CC} = 3.3V for 3.08/2.93 versions, and V_{CC} = 3V for 2.63 version. (1)

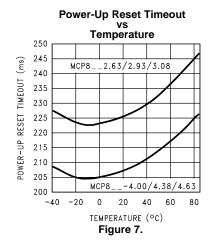
Symbol	Parameter	Conditions		Min	Тур	Max	Units
	V Deere	$T_A = 0$ °C to +70°C		1.0		5.5	V
	V _{CC} Range	$T_A = -40^{\circ}\text{C to } +105^{\circ}$	5°C	1.2		5.5	V
		T _A = -40°C to +85°C	V _{CC} <5.5V, MCP8 4.63/4.38/4.00		18	60	
I _{CC}	Summit Comment		V _{CC} <3.6V, MCP8 3.08/2.93/2.63		15	50	
	Supply Current	T _A = +85°C to +105°C	V _{CC} <5.5V, MCP8 4.63/4.38/4.00			100	μA
			V _{CC} <3.6V, MCP8 3.08/2.93/2.63			100	
			$T_A = +25^{\circ}C$	4.56	4.63	4.70	
	Reset Threshold ⁽²⁾	MCP84.63	$T_A = -40$ °C to +85°C	4.50		4.75	
			$T_A = +85^{\circ}C \text{ to } +105^{\circ}C$	4.40		4.86	
		MCP84.38	$T_A = +25^{\circ}C$	4.31	4.38	4.45	
			$T_A = -40$ °C to +85°C	4.25		4.50	
			$T_A = +85^{\circ}C \text{ to } +105^{\circ}C$	4.16		4.56	
		MCP84.00	$T_A = +25^{\circ}C$	3.93	4.00	4.06	
			$T_A = -40$ °C to +85°C	3.89		4.10	
\/			$T_A = +85^{\circ}C \text{ to } +105^{\circ}C$	3.80		4.20	V
V_{TH}			$T_A = +25^{\circ}C$	3.04	3.08	3.11	V
		MCP83.08	$T_A = -40$ °C to +85°C	3.00		3.15	
			$T_A = +85^{\circ}C \text{ to } +105^{\circ}C$	2.92		3.23	
			$T_A = +25^{\circ}C$	2.89	2.93	2.96	
		MCP82.93	$T_A = -40$ °C to +85°C	2.85		3.00	
			$T_A = +85^{\circ}C \text{ to } +105^{\circ}C$	2.78		3.08	
			$T_A = +25^{\circ}C$	2.59	2.63	2.66	
		MCP82.63	$T_A = -40$ °C to +85°C	2.55		2.70	
			$T_A = +85^{\circ}C \text{ to } +105^{\circ}C$	2.50		2.76	
	Reset Threshold Temperature Coefficient				30		ppm/°C
	V _{CC} to Reset Delay ⁽²⁾	$V_{CC} = V_{TH}$ to $(V_{TH} - V_{CC})$	- 100mV)		20		μs
	Reset Active Timeout Period	$T_A = -40^{\circ}\text{C to } +85^{\circ}$	C	140	240	560	mo
	Reset Active Timeout Period	$T_A = +85^{\circ}C \text{ to } +105^{\circ}$	5°C	100		840	ms

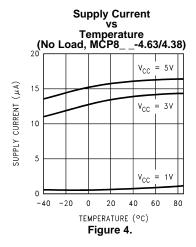
At elevated temperatures, devices must be derated based on package thermal resistance. The device in the SOT23-3 package must be derated at 4mW/°C at ambient temperatures above 70°C. The device has internal thermal protection.

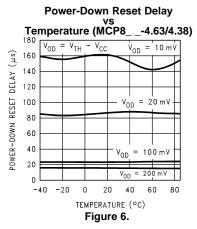
RESET Output for MCP809, RESET output for MCP810.


Electrical Characteristics (continued)


 V_{CC} = full range, T_A = -40°C to +105°C, unless otherwise noted. Typical values are at T_A = +25°C, V_{CC} = 5V for 4.63/4.38/4.00 versions, V_{CC} = 3.3V for 3.08/2.93 versions, and V_{CC} = 3V for 2.63 version. (1)


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
	RESET Output Voltage Low (MCP809)	V _{CC} = V _{TH} min, I _{SINK} = 1.2mA, MCP809-2.63/2.93/3.08			0.3		
V _{OL}		V _{CC} = V _{TH} min, I _{SINK} = 3.2mA, MCP809-4.63/4.38/4.00			0.4	V	
		$V_{CC} > 1.0V$, $I_{SINK} = 50\mu A$			0.3		
V	RESET Output Voltage High (MCP809)	$V_{CC} > V_{TH}$ max, $I_{SOURCE} = 500\mu A$, MCP809-2.63/2.93/3.08		0.8V _{CC}			V
V _{OH}		$V_{CC} > V_{TH}$ max, $I_{SOURCE} = 800 \mu A$, MCP809-4.63/4.38/4.00	V _{CC} -1.5			V	
	RESET Output Voltage Low	V _{CC} = V _{TH} max, I _{SINK} = 1.2mA, MCP810-2.63/2.93/3.08			0.3		
V _{OL}	(MCP810)	V _{CC} = V _{TH} max, I _{SINK} = 3.2mA, MCP810-4.63/4.38/4.00			0.4	V	
V _{OH}	RESET Output Voltage High (MCP810)	1.8V < V _{CC} < V _{TH} min, I _{SOURCE} = 150μA	0.8V _{CC}			V	




TYPICAL PERFORMANCE CHARACTERISTICS

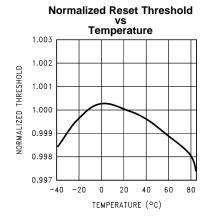


Figure 8.

APPLICATION INFORMATION

Benefits of Precision Reset Thresholds

A microprocessor supply supervisor must provide a reset output within a predictable range of the supply voltage. A common threshold range is between 5% and 10% below the nominal supply voltage. The 4.63V and 3.08V options of the MCP809/810 use highly accurate circuitry to ensure that the reset threshold occurs only within this range (for 5V and 3.3V supplies). The other voltage options have the same tight tolerance to ensure a reset signal for other narrow monitor ranges. See Table 1 for examples of how the standard reset thresholds apply to 3V, 3.3V, and 5V nominal supply voltages.

Table 1. Reset Thresholds Related to Common Supply Voltages

Reset Threshold	3.0V	3.3V	5.0V
4.63 ± 3%			90 - 95%
4.38 ± 3%			85 - 90%
4.00 ± 3%			78 - 82%
3.08 ± 3%		90 - 95%	
2.93 ± 3%		86 - 90%	
2.63 ± 3%	85 - 90%	77 - 81%	

Ensuring a Valid Reset Output Down to $V_{CC} = 0V$

When V_{CC} falls below 1V, the MCP809 \overline{RESET} output no longer sinks current. A high-impedance CMOS logic input connected to \overline{RESET} can therefore drift to undetermined voltages. To prevent this situation, a $100k\Omega$ resistor should be connected from the \overline{RESET} output to ground, as shown in Figure 9.

A 100k Ω pull-up resistor to V_{CC} is also recommended for the MCP810, if RESET is required to remain valid for V_{CC} < 1V.

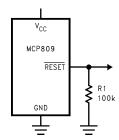


Figure 9. \overline{RESET} Valid to V_{CC} = Ground Circuit

Negative-Going Vcc Transients

The MCP809/810 are relatively immune to short negative-going transients or glitches on V_{CC} . Figure 10 shows the maximum pulse width a negative-going V_{CC} transient can have without causing a reset pulse. In general, as the magnitude of the transient increases, going further below the threshold, the maximum allowable pulse width decreases. Typically, for the 4.63V and 4.38V version of the MCP809/810, a V_{CC} transient that goes 100mV below the reset threshold and lasts 20µs or less will not cause a reset pulse. A 0.1 µF bypass capacitor mounted as close as possible to the V_{CC} pin will provide additional transient rejection.

Submit Documentation Feedback

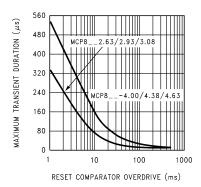


Figure 10. Maximum Transient Duration without Causing a Reset Pulse vs. Reset Comparator Overdrive

Interfacing to µPs with Bidirectional Reset Pins

Microprocessors with bidirectional reset pins, such as the Motorola 68HC11 series, can be connected to the MCP809 RESET output. To ensure a correct output on the MCP809 even when the microprocessor reset pin is in the opposite state, connect a 4.7k Ω resistor between the MCP809 RESET output and the μ P reset pin, as shown in Figure 11. Buffer the MCP809 RESET output to other system components.

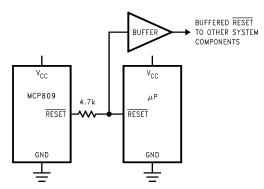


Figure 11. Interfacing to Microprocessors with Bidirectional Reset I/O

REVISION HISTORY

Ch	hanges from Original (May 2013) to Revision A	Page
•	Changed layout of National Data Sheet to TI format	

www.ti.com 1-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
MCP809M3-2.93/NOPB	Active	Production	SOT-23 (DBZ) 3	1000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 105	SRB
MCP809M3-2.93/NOPB.A	Active	Production	SOT-23 (DBZ) 3	1000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 105	SRB
MCP809M3-2.93/NOPB.B	Active	Production	SOT-23 (DBZ) 3	1000 LARGE T&R	-	Call TI	Call TI	-40 to 105	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

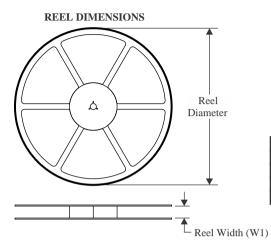
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

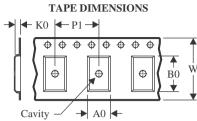
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

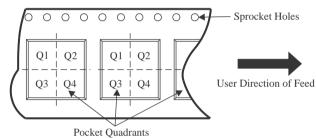
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

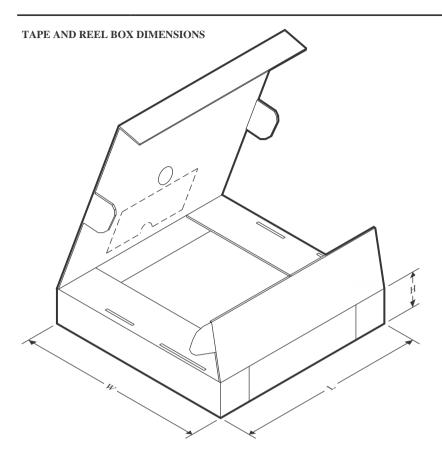
PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

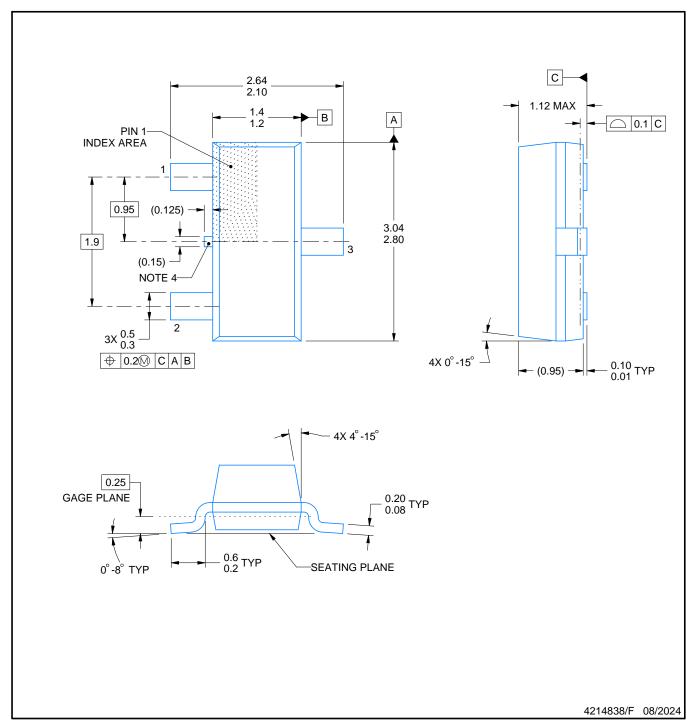


*All dimensions are nominal

	Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
N	MCP809M3-2.93/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

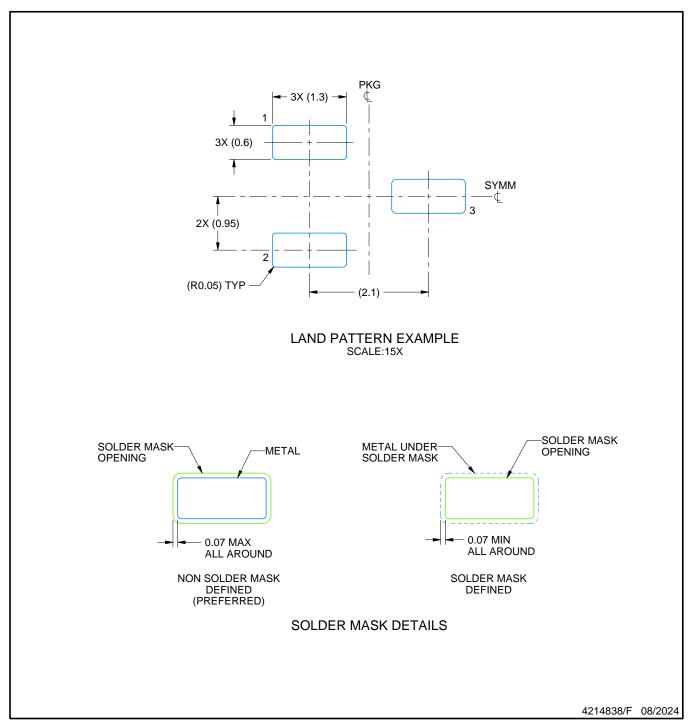
www.ti.com 9-Aug-2022



*All dimensions are nominal

Device	Package Type Package Drav		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MCP809M3-2.93/NOPB	SOT-23	DBZ	3	1000	208.0	191.0	35.0

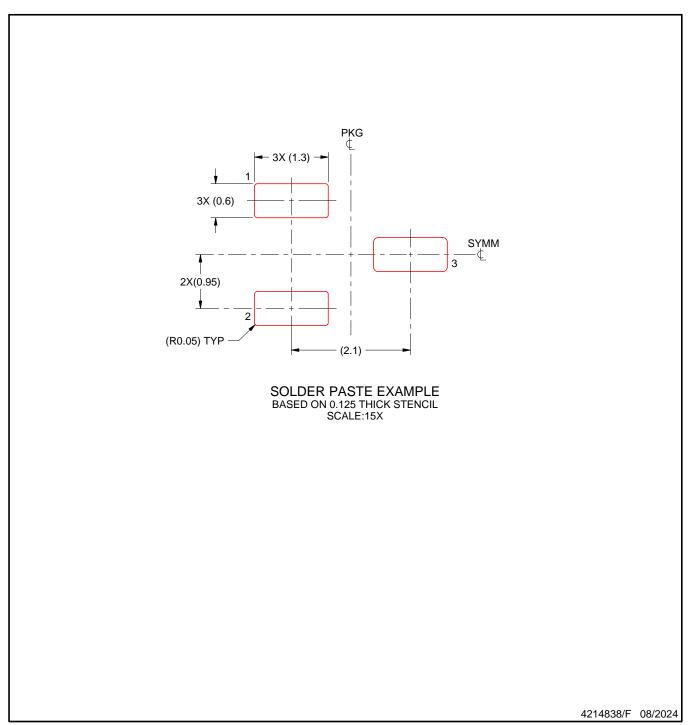
SMALL OUTLINE TRANSISTOR


NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration TO-236, except minimum foot length.

- 4. Support pin may differ or may not be present.
- 5. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025