











**ONET2804T** 

SLLSEK1B-JULY 2014-REVISED MARCH 2018

# **ONET2804T 28 Gbps 4-Channel Limiting TIA**

#### **Features**

- 4-Channel Multi-Rate operation up to 28 Gbps
- 10  $k\Omega$  Differential Transimpedance
- 21 GHz Bandwidth
- 1.8 μA<sub>rms</sub> Input Referred Noise
- 2.9 mA<sub>PP</sub> Input Overload Current
- Programmable Output Voltage
- Adjustable Gain and Bandwidth
- Received Signal Strength Indicator (RSSI) for each Channel
- 40 dB Isolation Between Channels (Die only)
- Single 3.3 V Supply
- 139 mW per Channel
- Pad Control or 2-Wire Control
- On Chip Filter Capacitors
- -40°C to 100°C Operation
- Die Size: 3250  $\mu$ m × 1450  $\mu$ m, 750  $\mu$ m Channel Pitch

### **Applications**

- 100 Gigabit Ethernet Optical Receivers
- ITU OTL4.4
- CFP2, CFP4, and QSFP28 Modules with Internal Retiming

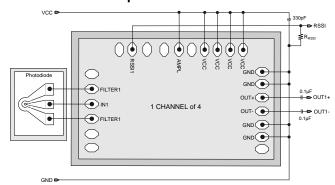
#### Description 3

The ONET2804T is а high gain limiting parallel transimpedance amplifier for optical interconnects with data rates up to 28 Gbps. The device is used in conjunction with a 750 µm pitch photodiode array to convert an optical signal into a differential output voltage. An internal circuit provides the photodiode reverse bias voltage and senses the average photocurrent supplied to each photodiode.

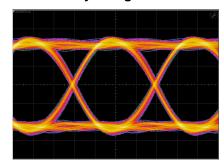
The device can be used with pin control or a two-wire serial interface to allow control of the output amplitude, gain, bandwidth and input threshold.

The ONET2804T provides 21 GHz bandwidth, a gain of 10 k $\Omega$ , an input referred noise of 1.8  $\mu A_{rms}$  and a received signal strength indicator (RSSI) for each channel. 40 dB isolation between channels results in low crosstalk penalty in the receiver.

The part requires a single 3.3 V supply and typically dissipates 139 mW per channel with a differential output amplitude of 500 mV<sub>PP</sub>. It is characterized for operation from -40°C to 100°C temperatures and is available in die form with a 750 µm channel pitch.


To request a full data sheet, please send an email to: onet2804t request@ti.com.

### Device Information<sup>(1)</sup>


| PART NUMBER | PACKAGE                    | BODY SIZE (NOM)   |
|-------------|----------------------------|-------------------|
| ONET2804T   | Base die in Waffle<br>Pack | 3250 μm × 1450 μm |

(1) For all available packages, see the orderable addendum at the end of the datasheet.

#### Simplified Schematic



#### **Eye Diagram**





| 1 | Features 1                           |    | 7.4 Device Functional Modes                          | . 13      |
|---|--------------------------------------|----|------------------------------------------------------|-----------|
| 2 | Applications 1                       |    | 7.5 Register Maps                                    | . 16      |
| 3 | Description 1                        | 8  | Application and Implementation                       | 24        |
| 4 | Revision History2                    |    | 8.1 Application Information                          | . 24      |
| 5 | Pin Configuration and Functions 4    |    | 8.2 Typical Applications                             | . 24      |
| 6 | Specifications                       | 9  | Power Supply Recommendations                         | 27        |
| ٠ | 6.1 Absolute Maximum Ratings         | 10 | Layout                                               | 28        |
|   | 6.2 ESD Ratings                      |    | 10.1 Layout Guidelines                               | . 28      |
|   | 6.3 Recommended Operating Conditions |    | 10.2 Layout Example                                  | . 28      |
|   | 6.4 DC Electrical Characteristics    | 11 | Device and Documentation Support                     | 31        |
|   | 6.5 AC Electrical Characteristics    |    | 11.1 Receiving Notification of Documentation Updates | <b>31</b> |
|   | 6.6 Typical Characteristics 8        |    | 11.2 Community Resources                             | . 31      |
| 7 | Detailed Description 11              |    | 11.3 Trademarks                                      | . 31      |
| - | 7.1 Overview                         |    | 11.4 Electrostatic Discharge Caution                 | . 31      |
|   | 7.2 Functional Block Diagram 11      |    | 11.5 Glossary                                        | . 31      |
|   | 7.3 Feature Description              | 12 | Mechanical, Packaging, and Orderable Information     | 31        |

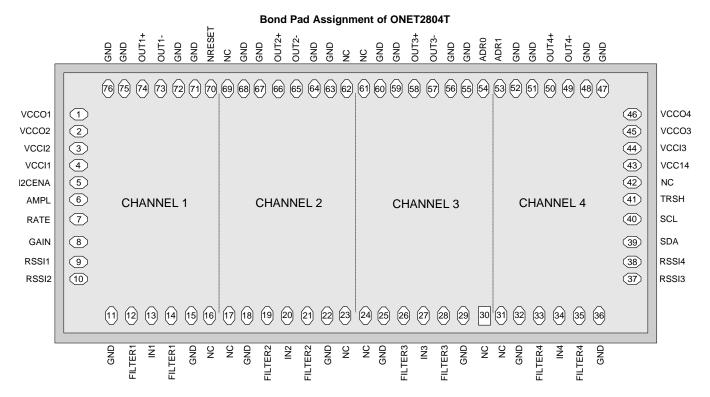
# 4 Revision History

| Cł       | hanges from Revision A (April 2015) to Revision B                                                                                                                  | Page         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| •        | First public release of data sheet                                                                                                                                 | 1            |
| <u>.</u> | Added Receiving Notification of Documentation Updates and Community Resources sections                                                                             | 31           |
| Cl       | hanges from Original (July 2014) to Revision A                                                                                                                     | Page         |
| •        | Changed text in the <i>Description</i> From: "differential output amplitude of 450 mV <sub>PP</sub> " To: "differential output amplitude of 500 mV <sub>PP</sub> " | <i>'</i>     |
| •        | Changed PAD 6, AMPL Description From: "VCC: 450 mVpp differential output swing To: "VCC: 500 mVpp differential output swing" in <i>Bond Pad Functions</i>          | 4            |
| •        | Changed From: Handling Ratings To: ESD Ratings                                                                                                                     | 6            |
| •        | Changed the Average Input current MAX value in the Recommended Operating Conditions From: 3 mA to: 2.7 mA .                                                        | <del>(</del> |
| •        | Changed From: V <sub>OD</sub> = 450 mV <sub>PP</sub> To: V <sub>OD</sub> = 500 mV <sub>PP</sub> in the <i>DC Electrical Characteristics</i> condition statement    | 7            |
| •        | Changed From: V <sub>OD</sub> = 450 mV <sub>PP</sub> To: V <sub>OD</sub> = 500 mV <sub>PP</sub> in the <i>AC Electrical Characteristics</i> condition statement    | 7            |
| •        | Changed V <sub>OD</sub> test conditions in the <i>AC Electrical Characteristics</i> From: 450 mV <sub>PP</sub> To: V <sub>OD</sub> = 500 mV <sub>PP</sub>          | 7            |
| •        | Changed V <sub>OD</sub> values in the <i>AC Electrical Characteristics</i> , TYP From: 450 To: 500, MAX From: 650 To: 700 mV <sub>PP</sub>                         | 7            |
| •        | Changed From: V <sub>OD</sub> = 450 mV <sub>PP</sub> To: V <sub>OD</sub> = 500 mV <sub>PP</sub> in the <i>Typical Characteristics</i> condition statement          | 8            |
| •        | Changed text in <i>Amplitude Adjustment</i> From: "450 mVpp if the pad is tied to VCC" To: "500 mVpp if the pad is tied to VCC"                                    | 12           |
| •        | Changed From: [reset = 9h] To: [reset = 0h] in Register 1 (0x01) – Amplitude and Rate for Channel 1 (offset = 1h) [reset = 0h]                                     | 17           |
| •        | Changed Table 3, Reset value 9h To: 0h. Moved (default) From 10010 To: 0000                                                                                        | 17           |
| •        | Changed From: [reset = 9h] To: [reset = 0h] in Register 7 (0x07) – Amplitude and Rate for Channel 2 (offset = 7h) [reset = 0h]                                     | 18           |
| •        | Changed Table 9, Reset value 9h To: 0h. Moved (default) From 10010 To: 0000                                                                                        | 18           |
| •        | Changed From: [reset = 9h] To: [reset = 0h] in Register 13 (0x0D) – Amplitude and Rate for Channel 3 (offset = Dh) [reset = 0h]                                    |              |
| •        | Changed Table 15, Moved (default) From 10010 To: 0000                                                                                                              | 20           |
| •        | Changed From: [reset = 9h] To: [reset = 0h] in Register 19 (0x13) – Amplitude and Rate for Channel 4 (offset =                                                     |              |

### **ONET2804T**

SLLSEK1B-JULY 2014-REVISED MARCH 2018




#### www.ti.com

|   | 13h ) [reset = 0h]                                                                                                                     | . 22 |
|---|----------------------------------------------------------------------------------------------------------------------------------------|------|
| • | Changed Table 21, Moved (default) From 10010 To: 0000                                                                                  | . 22 |
| • | Changed the Output voltage From: 450 mV <sub>PP</sub> to: 500 mv <sub>PP</sub> in Table 28                                             | . 24 |
| • | Changed text in <i>Detailed Design Procedure</i> From: "450 mV <sub>PP</sub> level by bonding AMPL" To: "500 mV <sub>PP</sub> level by |      |
|   | bonding AMPL"                                                                                                                          | . 25 |

Copyright © 2014–2018, Texas Instruments Incorporated



### 5 Pin Configuration and Functions



#### **Bond Pad Functions**

| PAD                                                                                                           | SYMBOL  | TYPE          | DESCRIPTION                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------|---------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                                                                                                             | AMPL    | Digital input | 3-state input for amplitude control of all 4 channels.  VCC: 500 mVpp differential output swing  Open: 300 mVpp differential output swing (default)  GND: 250 mVpp differential output swing. |
| 53                                                                                                            | ADR1    | Digital input | 2-wire interface address programming pin. Leave this pad open for a default address of 0001100. Grounding this pad changes the 2 <sup>nd</sup> address bit to a 1 (0001110).                  |
| 54                                                                                                            | ADR0    | Digital input | 2-wire interface address programming pin. Leave this pad open for a default address of 0001100. Grounding this pad changes the 1 <sup>st</sup> address bit to a 1 (0001101).                  |
| 12, 14, 19, 21,<br>26, 28, 33, 35                                                                             | FILTERx | Analog output | Bias voltage for photodiode cathode. These pads are biased to VCC - 100 mV.                                                                                                                   |
| 8                                                                                                             | GAIN    | Digital input | 3-state input for gain control of all 4 channels.  VCC: Minimum transimpedance  Open: Default transimpedance  GND: Medium transimpedance                                                      |
| 11, 15, 18, 22,<br>25, 29, 32, 36,<br>47, 48, 51, 52,<br>55, 56, 59, 60,<br>63, 64, 67, 68,<br>71, 72, 75, 76 | GND     | Supply        | Circuit ground. All GND pads are connected on die. Bonding all pads is recommended, except for 11, 15, 18, 22, 25,29,32, and 36.                                                              |
| 5                                                                                                             | I2CENA  | Digital input | 2-wire control option. Leave the pad unconnected for pad control of the IC. Two-wire control can be enabled by applying a high signal to the pad.                                             |
| 13, 20, 27, 34                                                                                                | INx     | Analog input  | Data input to TIAx (connect to photodiode anode).                                                                                                                                             |
| 16, 17, 23, 24,<br>30, 31, 42, 61,<br>62, 69                                                                  | NC      | No Connect    | Do not connect                                                                                                                                                                                |
| 70                                                                                                            | NRESET  | Digital input | Used to reset the 2-wire state machine and registers. Leave open for normal operation and set low to reset the 2-wire interface.                                                              |
| 49, 57, 65, 73                                                                                                | OUTx-   | Analog output | Inverted CML data output for channel x. On-chip 50 $\Omega$ back-terminated to $V_{CC}$ .                                                                                                     |

Submit Documentation Feedback

Copyright © 2014–2018, Texas Instruments Incorporated



# **Bond Pad Functions (continued)**

| PAD            | SYMBOL | TYPE            | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|--------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50, 58, 66, 74 | OUTx+  | Analog output   | Non-inverted CML data output for channel x. On-chip 50 $\Omega$ back-terminated to V <sub>CC</sub> .                                                                                                                                                                                                                                                                                                   |
| 7              | RATE   | Digital input   | 3-state input for bandwidth control of all 4 channels.  VCC: Increase the bandwidth  Open: 21 GHz bandwidth (default)  GND: reduce the bandwidth                                                                                                                                                                                                                                                       |
| 9, 10, 37, 38  | RSSIx  | Analog output   | Indicates the strength of the received signal (RSSI) for channel x if the photo diode is biased from FILTERx. The analog output current is proportional to the input data amplitude. Connect to an external resistor to ground (GND). For proper operation, ensure that the voltage at the RSSI pad does not exceed $V_{CC}$ - 0.65 V. If the RSSI feature is not used these pads should be left open. |
| 40             | SCL    | Digital input   | 2-wire interface serial clock input. Includes a 10 k $\Omega$ pull-up resistor to V $_{CC}$ .                                                                                                                                                                                                                                                                                                          |
| 39             | SDA    | Digital -in/out | 2-wire interface serial data input. Includes a 10 k $\Omega$ pull-up resistor to $V_{CC}$ .                                                                                                                                                                                                                                                                                                            |
| 41             | TRSH   | Digital input   | 3-state input for threshold control. VCC: Crossing point shifted down Open: No threshold adjustment (default) GND: Crossing point shifted up                                                                                                                                                                                                                                                           |
| 1, 2, 45, 46   | VCCOx  | Supply          | 2.97 V – 3.47 V supply voltage for AGCx and CMLx amplifiers.                                                                                                                                                                                                                                                                                                                                           |
| 3, 4, 43, 44   | VCCIx  | Supply          | 2.97 V – 3.47 V supply voltage for input TIAx stage.                                                                                                                                                                                                                                                                                                                                                   |



# 6 Specifications

### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                              |                                                                                               | MIN  | MAX | UNIT |
|----------------------------------------------|-----------------------------------------------------------------------------------------------|------|-----|------|
| Supply voltage <sup>(1)</sup>                | VCCIx, VCCOx                                                                                  | -0.3 | 4   | V    |
| Voltage <sup>(1)</sup>                       | FILTERX, OUTX+, OUTX-, RSSIX, SCL, SDA, I2CENA, AMPL, RATE, GAIN, TRSH, ADR1, ADR0 and NRESET | -0.3 | 4   | V    |
| Average Input current                        | INx                                                                                           | -0.7 | 5   | mA   |
|                                              | FILTERx                                                                                       | -8   | 8   | mA   |
| Continuous current at outputs                | OUTx+, OUTx-                                                                                  | -8   | 8   | mA   |
| Maximum junction temperature, T <sub>J</sub> |                                                                                               |      | 125 | °C   |
| Storage temperature, T <sub>stq</sub>        |                                                                                               |      | 150 | °C   |

<sup>(1)</sup> All voltage values are with respect to network ground terminal.

### 6.2 ESD Ratings

|                    |               |                                             |                           | VALUE | UNIT |
|--------------------|---------------|---------------------------------------------|---------------------------|-------|------|
| \/                 | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC | All pins except input INx | ±1000 | \/   |
| V <sub>(ESD)</sub> | discharge     | JS-001 <sup>(1)</sup>                       | Pin INx                   | ±500  | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

## 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|                                           |                             |                   | MIN                   | TYP | MAX  | UNIT |
|-------------------------------------------|-----------------------------|-------------------|-----------------------|-----|------|------|
| V <sub>CC</sub>                           | Supply voltage              |                   | 2.97                  | 3.3 | 3.47 | V    |
| I <sub>(INx)</sub>                        | Average Input current       |                   |                       |     | 2.7  | mA   |
| T <sub>A</sub>                            | Operating backside die temp | perature          | -40                   |     | 100  | °C   |
| L <sub>(FILTER)</sub> , L <sub>(IN)</sub> | Wire-bond inductance at pin | s FILTERx and INx |                       | 0.3 |      | nΗ   |
| C <sub>(PD)</sub>                         | Photodiode Capacitance      |                   |                       | 0.1 |      | pF   |
| V <sub>IH</sub>                           | Digital input high voltage  | SDA, SCL          | 2                     |     |      | V    |
| $V_{IL}$                                  | Digital input low voltage   | SDA, SCL          |                       |     | 8.0  | V    |
|                                           | 3-state input high voltage  |                   | V <sub>CC</sub> - 0.4 |     |      | V    |
|                                           | 3-state input low voltage   | <u>-</u>          |                       |     | 0.4  | V    |



#### 6.4 DC Electrical Characteristics

Over recommended operating conditions with  $V_{OD}$  = 500 m $V_{PP}$  unless otherwise noted. Typical values are at  $V_{CC}$  = 3.3 V and  $T_A$  = 25°C

|                        | PARAMETER                              | TEST CONDITIONS                                       | MIN  | TYP  | MAX               | UNIT |
|------------------------|----------------------------------------|-------------------------------------------------------|------|------|-------------------|------|
| V <sub>CC</sub>        | Supply voltage                         |                                                       | 2.97 | 3.3  | 3.47              | V    |
|                        | Complex compact                        | Per channel, 30 μA <sub>PP</sub> input, maximum 85°C  |      | 42   | 57 <sup>(1)</sup> | A    |
| Icc                    | Supply current                         | Per channel, 30 μA <sub>PP</sub> input, maximum 100°C |      |      | 60 <sup>(1)</sup> | mA   |
| Ь                      | Daneitan natura dissination            | Per channel, 30 μA <sub>PP</sub> input, maximum 85°C  |      | 139  | 198               | mW   |
| $P_{(RX)}$             | Receiver power dissipation             | Per channel, 30 μA <sub>PP</sub> input, maximum 100°C |      |      | 208               |      |
| V <sub>IN</sub>        | Input bias voltage                     |                                                       | 0.75 | 0.85 | 0.98              | V    |
| R <sub>OUT</sub>       | Output resistance                      | Single-ended to V <sub>CC</sub>                       | 40   | 50   | 60                | Ω    |
| V <sub>(FILTER)</sub>  | Photodiode bias voltage <sup>(2)</sup> |                                                       | 2.8  | 3.2  |                   | V    |
| A <sub>(RSSI_IB)</sub> | RSSI gain                              | Resistive load to GND <sup>(3)</sup>                  | 0.49 | 0.5  | 0.54              | A/A  |
|                        | RSSI output offset current (no light)  |                                                       | 0    |      | 2.5               | μA   |

Including RSSI current

#### 6.5 AC Electrical Characteristics

Over recommended operating conditions with  $V_{OD}$  = 500 m $V_{PP}$  unless otherwise noted. Typical values are at  $V_{CC}$  = 3.3 V and  $T_A$  = 25°C

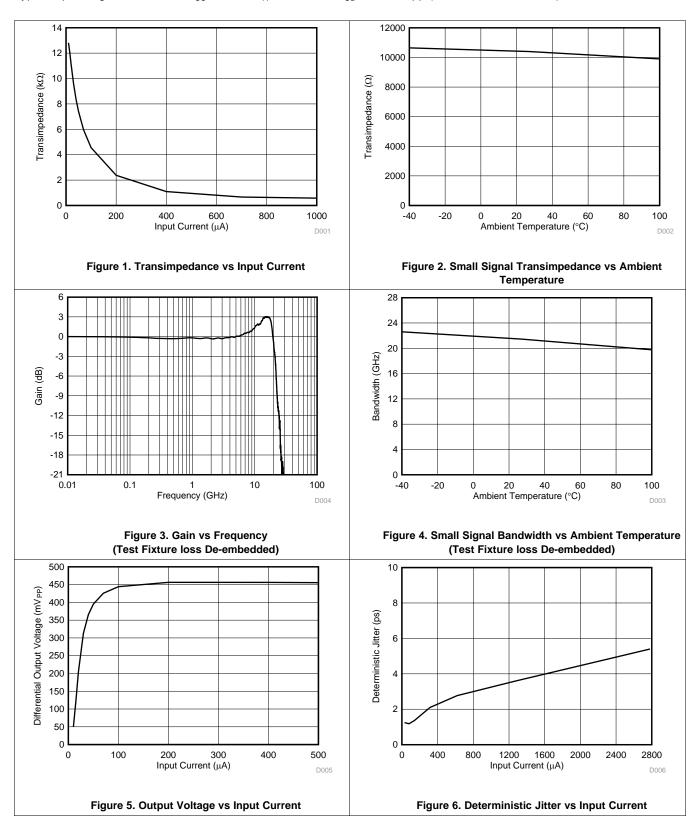
|                      | PARAMETER                    | TEST CONDITIONS                                                                                     | MIN  | TYP | MAX | UNIT             |
|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------|------|-----|-----|------------------|
| Z <sub>21</sub>      | Small signal transimpedance  | 25 μA <sub>PP</sub> input signal                                                                    | 7    | 10  |     | kΩ               |
| f <sub>(3dB-H)</sub> | -3dB bandwidth               | 25 μA <sub>PP</sub> input signal <sup>(1)</sup>                                                     | 18.5 | 21  |     | GHz              |
| f <sub>(3dB-L)</sub> | Low frequency -3dB bandwidth |                                                                                                     |      | 30  | 100 | kHz              |
| i <sub>N(IN)</sub>   | Input referred RMS noise     | CPD = 0.1 pF, 28 GHz BT4 filter <sup>(2)</sup>                                                      |      | 1.8 | 2.5 | μΑ               |
|                      |                              | $35 \mu A_{pp} < i_{IN} < 250 \mu A_{pp}$ (27.95 Gbps, PRBS9 pattern)                               |      | 2   |     |                  |
| DJ                   | Deterministic jitter         | 250 $\mu$ A <sub>pp</sub> < i <sub>IN</sub> < 500 $\mu$ A <sub>pp</sub> (27.95 Gbps, PRBS9 pattern) |      | 2   |     | ps <sub>pp</sub> |
|                      |                              | $500 \mu A_{pp} < i_{IN} < 2900 \mu A_{pp}$ (27.95 Gbps, PRBS9 pattern)                             |      | 4   |     |                  |
| V <sub>OD</sub>      | Differential output voltage  | 500 mV <sub>PP</sub> setting                                                                        | 250  | 500 | 700 | $mV_{PP}$        |
|                      | Crosstalk                    | Between adjacent channels, up to 20 GHz <sup>(3)</sup>                                              |      | -40 |     | dB               |
|                      | RSSI response time           |                                                                                                     |      | 1   |     | μS               |
| PSRR                 | Power supply rejection ratio | F < 10 MHz <sup>(4)</sup>                                                                           |      | -15 |     | dB               |

<sup>(1)</sup> The small signal bandwidth is specified over process corners, temperature, and supply voltage variation. The assumed photodiode capacitance is 0.1pF and the bond-wire inductance is 0.3nH. The small signal bandwidth strongly depends on environmental parasitics. Careful attention to layout parasitics and external components is necessary to achieve optimal performance.

<sup>(2)</sup> Regulated voltage typically 100mV lower than V<sub>CC</sub>.

<sup>(3)</sup> The RSSI output is a current output, which requires a resistive load to ground (GND). The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for proper operation, ensure that the voltage at RSSI does not exceed VCC-0.65V.

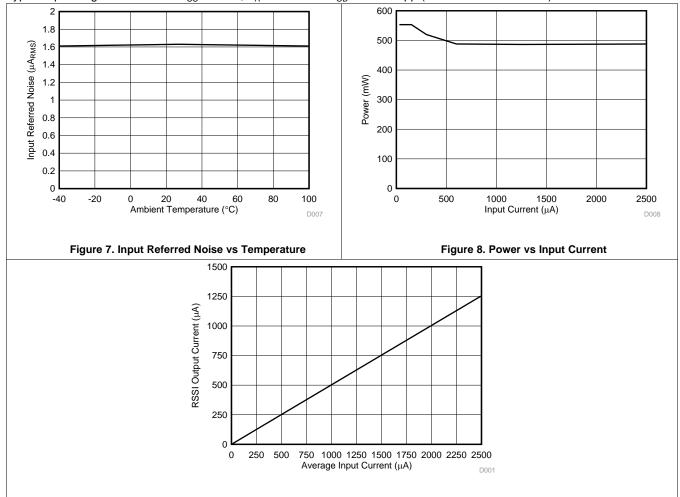
<sup>(2)</sup> Input referred RMS noise is (RMS output noise)/ (gain at 100 MHz).


<sup>3)</sup> Die only, no wire bonds

<sup>(4)</sup> PSRR is the differential output amplitude divided by the voltage ripple on the supply. No input current at IN.



### 6.6 Typical Characteristics


Typical operating condition is at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C and  $V_{OD}$  = 500 mVpp (unless otherwise noted).





# **Typical Characteristics (continued)**

Typical operating condition is at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$  and  $V_{OD} = 500 \text{ mVpp}$  (unless otherwise noted).





### **Typical Characteristics (continued)**

Typical operating condition is at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$  and  $V_{OD} = 500 \text{ mVpp}$  (unless otherwise noted).

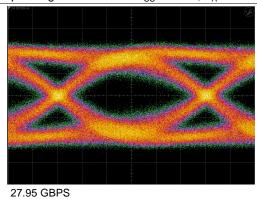



Figure 10. Output Eye-Diagram, 30 μA<sub>P-P</sub> Input Current

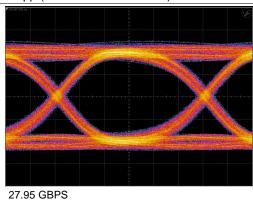
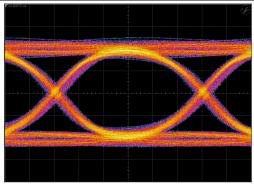
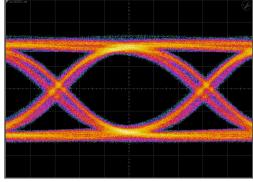





Figure 11. Output Eye-Diagram, 500 μA<sub>P-P</sub> Input Current



27.95 GBPS

Figure 12. Output Eye-Diagram, 1.5 mA<sub>P-P</sub> Input Current



27.95 GBPS

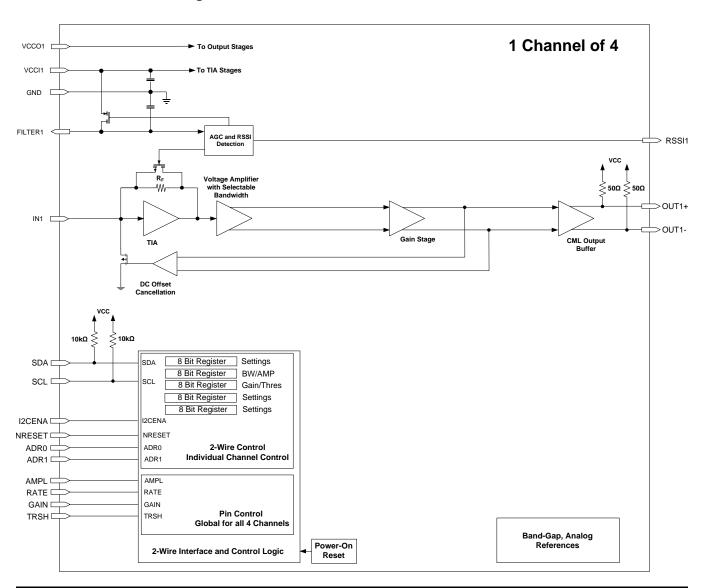
Figure 13. Output Eye-Diagram, 2.5 mA<sub>P-P</sub> Input Current



### 7 Detailed Description

#### 7.1 Overview

A simplified block diagram of one channel of the ONET2804T is shown in Functional Block Diagram.


The ONET2804T consists of the signal path, supply filters, a control block for DC input bias, automatic gain control (AGC) and received signal strength indication (RSSI), an analog reference block and a 2-wire serial interface and control logic block.

The signal path consists of a transimpedance amplifier stage, a voltage amplifier, and a CML output buffer. The on-chip filter circuit provides a filtered  $V_{CC}$  for the PIN photodiode and for the transimpedance amplifier. The RSSI provides the bias for the TIA stage and the control for the AGC.

The DC input bias circuit and automatic gain control use internal low pass filters to cancel the DC current on the input and to adjust the transimpedance amplifier gain. Furthermore, circuitry is provided to monitor the received signal strength.

The output amplitude, gain, bandwidth and input threshold can be globally controlled through pin settings or each channel can be individually controlled through the 2-wire interface.

### 7.2 Functional Block Diagram



Copyright © 2014–2018, Texas Instruments Incorporated



### 7.3 Feature Description

### 7.3.1 Signal Path

The first stage of the signal path is a transimpedance amplifier which converts the photodiode current into a voltage. If the input signal current exceeds a certain value, the transimpedance gain is reduced by means of a nonlinear AGC circuit to limit the signal amplitude.

The second stage is a limiting voltage amplifier that provides additional limiting gain and converts the single ended input voltage into a differential data signal. The output stage provides CML outputs with an on-chip  $50\Omega$  back-termination to  $V_{CC}$ .

The TIA has adjustable gain, amplitude, bandwidth and input threshold and they can be globally controlled through pad settings or each channel can be individually controlled through the 2-wire interface. The default mode of operation is pad control where the state (OPEN, HI or LO) of the AMPL, BW, GAIN and TRSH pads sets the respective parameter. To enable 2-wire control, the I2CENA pad should be set HIGH and the functionality of each channel can be controlled individually through the 2-wire interface.

#### 7.3.2 Gain Adjustment

The gain of all TIAs can be adjusted using the GAIN pad (pad 8) in pad control mode. The gain is set to default if the pad is left open. The gain is reduced approximately 4 dB if the pad is tied to ground, and reduced approximately 8 dB if the pad is tied to VCC. In 2-wire control mode, the gain of each channel can be adjusted from minimum to default. The gain is controlled with the GAIN[0..1] bits in registers 2, 8, 14 and 20 respectively for channels 1, 2, 3 and 4.

#### 7.3.3 Amplitude Adjustment

The output amplifier of all buffers can be adjusted using the AMPL pad (pad 6) in pad control mode. The amplitude is set to 300 mVpp differential if the pad is left open, 250 mVpp if the pad is tied to ground and 500 mVpp if the pad is tied to VCC (recommended mode of operation). In 2-wire control mode, the amplitude of each channel can be adjusted from 0mVpp to 600 mVpp. The amplitude is controlled with the AMPL[0..3] bits in registers 1, 7, 13 and 19 respectively for channels 1, 2, 3 and 4.

#### 7.3.4 Rate Select

The small signal bandwidth can be adjusted using the RATE pad (pad 7) in pad control mode. The bandwidth is typically 21 GHz if the pad is left open. The bandwidth is reduced approximately 0.4 GHz if the pad is tied to ground, and increased by approximately 0.4 GHz if the pad is tied to VCC. In 2-wire control mode, the bandwidth of each channel can be adjusted up or down using the register settings RATE[0..3] in registers 1, 7, 13 and 19 respectively for channels 1, 2, 3 and 4.

#### 7.3.5 Threshold Adjustment

The TIAs have DC offset cancellation to maintain a 50% crossing point; however, the crossing point can be adjusted using the TRSH pad (pad 41) in pad control mode. No threshold adjustment is applied if the pad is left open. The crossing point is shifted up approximately 12% if the pad is tied to ground, and it is shifted down approximately 12% if the pad is tied to VCC. In 2-wire control mode, the crossing point can be adjusted up or down using register settings TH[0..3] in registers 2, 8, 14 and 20 for channels 1, 2, 3 and 4.

### 7.3.6 Filter Circuitry

The FILTER pins provide a regulated and filtered VCC for a PIN photodiode bias. The supply voltages for the transimpedance amplifier have on-chip capacitors but it is recommended to use external filter capacitors as well for best performance. The input stage has a separate VCC supply (VCCI) which is not connected on chip to the supply of the limiting and CML stages (VCCO).

#### 7.3.7 AGC and RSSI

The voltage drop across the regulated photodiode FET is monitored by the bias and RSSI control circuit block in the case where a PIN diode is biased using the FILTER pins.

If the DC input current exceeds a certain level then it is partially cancelled by means of a controlled current source. This keeps the transimpedance amplifier stage within sufficient operating limits for optimum performance.



#### **Feature Description (continued)**

The automatic gain control circuitry adjusts the voltage gain of the AGC amplifier to ensure limiting behavior of the complete amplifier.

Finally this circuit block senses the current through the FILTER FET and generates a mirrored current that is proportional to the input signal strength. The mirrored currents are available at the RSSI outputs and can be sunk to ground (GND) using an external resistor. For proper operation, ensure that the voltage at the RSSI pad does not exceed VCC - 0.65 V.

#### 7.4 Device Functional Modes

The device has two functional modes of operation: pad control mode and 2-wire interface control mode.

#### 7.4.1 Pad Control

The default mode of operation is pad control and it is recommended that the amplitude be increased to the 500 mVpp setting by bonding AMPL (pad 6) to VCC. If further adjustment is desired as described above, then the control pads RATE (pad 7), GAIN (pad 8) and TRSH (pad 41) and can be bonded to either ground or VCC.

#### 7.4.2 2-Wire Interface Control

To enable 2-wire interface control I2CENA (pad 5) must be bonded to VCC. In this mode of operation pad control is not functional and all control is initiated through the 2-wire interface as described in the 2-Wire Interface and Control Logic section.

#### 7.4.3 2-Wire Interface and Control Logic

The ONET2804T uses a 2-wire serial interface for digital control. For example, the two circuit inputs, SDA and SCK, are driven by the serial data and serial clock from a microcontroller. Both inputs include 10 k $\Omega$  pull-up resistors to VCC. For driving these inputs, an open drain output is recommended. The 2-wire interface allows write access to the internal memory map to modify control registers and read access to read out control and status signals. The ONET2804T is a slave device only which means that it cannot initiate a transmission itself; it always relies on the availability of the SCK signal for the duration of the transmission. The master device provides the clock signal as well as the START and STOP commands. It is recommended that the device be used on a bus with only one master. The protocol for a data transmission is as follows:

- 1. START command
- 2. 7 bit slave address (0001100) followed by an eighth bit which is the data direction bit (R/W). A zero indicates a WRITE and a 1 indicates a READ.
- 3. 8 bit register address
- 4. 8 bit register data word
- 5. STOP command

Regarding timing, the ONET2804T is I<sup>2</sup>C compatible. The typical timing is shown in Figure 14 and a complete data transfer is shown in Figure 15. Parameters for Figure 14 are defined in Table 1.

#### 7.4.4 Bus Idle

Both SDA and SCK lines remain HIGH

#### 7.4.5 Start Data Transfer

A change in the state of the SDA line, from HIGH to LOW, while the SCK line is HIGH, defines a START condition (S). Each data transfer is initiated with a START condition.

#### 7.4.6 Stop Data Transfer

A change in the state of the SDA line from LOW to HIGH while the SCK line is HIGH defines a STOP condition (P). Each data transfer is terminated with a STOP condition; however, if the master still wishes to communicate on the bus, it can generate a repeated START condition and address another slave without first generating a STOP condition.

Copyright © 2014–2018, Texas Instruments Incorporated



### **Device Functional Modes (continued)**

#### 7.4.7 Data Transfer

Only one data byte can be transferred between a START and a STOP condition. The receiver acknowledges the transfer of data.

#### 7.4.8 Acknowledge

Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Setup and hold times must be taken into account. When a slave-receiver does not acknowledge the slave address, the data line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer. If the slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any more data bytes, the master must abort the transfer. This is indicated by the slave generating the not acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition.

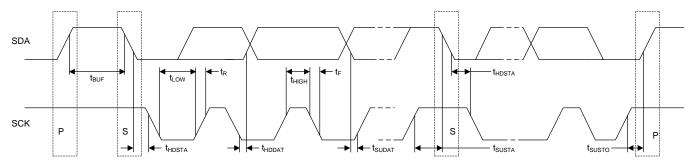



Figure 14. I<sup>2</sup>C Timing Diagram

**Table 1. Timing Diagram Definitions** 

|                    |                                                                                                 | MIN | MAX | UNIT |
|--------------------|-------------------------------------------------------------------------------------------------|-----|-----|------|
| f <sub>SCK</sub>   | SCK clock frequency                                                                             |     | 400 | kHz  |
| t <sub>BUF</sub>   | Bus free time between START and STOP conditions                                                 | 1.3 |     | μs   |
| t <sub>HDSTA</sub> | Hold time after repeated START condition. After this period, the first clock pulse is generated | 0.6 |     | μs   |
| t <sub>LOW</sub>   | Low period of the SCK clock                                                                     | 1.3 |     | μs   |
| t <sub>HIGH</sub>  | High period of the SCK clock                                                                    | 0.6 |     | μs   |
| t <sub>SUSTA</sub> | Setup time for a repeated START condition                                                       | 0.6 |     | μs   |
| t <sub>HDDAT</sub> | Data HOLD time                                                                                  | 0   |     | μs   |
| t <sub>SUDAT</sub> | Data setup time                                                                                 | 100 |     | ns   |
| t <sub>R</sub>     | Rise time of both SDA and SCK signals                                                           |     | 300 | ns   |
| t <sub>F</sub>     | Fall time of both SDA and SCK signals                                                           |     | 300 | ns   |
| t <sub>susто</sub> | Setup time for STOP condition                                                                   | 0.6 |     | μs   |

Р

Stop Condition



| Write | Sequence            |         |   |                  |   |   |           |      |    |   |           |   |   |
|-------|---------------------|---------|---|------------------|---|---|-----------|------|----|---|-----------|---|---|
| 1     | 7                   | 1       | 1 | 8                | 1 |   | 8         | 1    | 1  |   |           |   |   |
| S     | Slave Address       | Wr      | А | Register Address | А | D | Data Byte | А    | Р  |   |           |   |   |
| Read  | Sequence            |         |   |                  |   |   |           |      |    |   |           |   |   |
| 1     | 7                   | 1       | 1 | 8                | 1 | 1 | 7         |      | 1  | 1 | 8         | 1 | 1 |
| S     | Slave Address       | Wr      | А | Register Address | А | s | Slave Add | ress | Rd | А | Data Byte | N | Р |
| Legen | d                   |         |   |                  |   |   |           |      |    |   |           |   |   |
| S     | Start Condition     |         |   |                  |   |   |           |      |    |   |           |   |   |
| Wr    | Write Bit (bit valu | e = 0)  |   |                  |   |   |           |      |    |   |           |   |   |
| Rd    | Read Bit (bit valu  | ie = 1) |   |                  |   |   |           |      |    |   |           |   |   |
| Α     | Acknowledge         |         |   |                  |   |   |           |      |    |   |           |   |   |
| N     | Not Acknowledge     | )       |   |                  |   |   |           |      |    |   |           |   |   |
|       |                     |         |   |                  |   |   |           |      |    |   |           |   |   |

Figure 15. Data Transfer

Copyright © 2014–2018, Texas Instruments Incorporated



### 7.5 Register Maps

The register mapping for register addresses 0 (0x00) through 15 (0x0F) are shown in Table 2 through Table 27. Figure 16 through Figure 41 describes the circuit functionality based on the register settings.

### 7.5.1 Register 0 (0x00) – Control Settings (offset = 0h) [reset = 0h]

### Figure 16. Register 0 (0x00) - Control Settings

| bit 7 | bit 6 | bit 5    | bit 4    | bit 3    | bit 2    | bit 1    | bit 0  |  |
|-------|-------|----------|----------|----------|----------|----------|--------|--|
| RESET | PD    | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED | PWRITE |  |

### Table 2. Register 0 (0x00) - Control Settings Field Descriptions

| Bit | Field    | Туре | Reset | Description                                                                                                  |
|-----|----------|------|-------|--------------------------------------------------------------------------------------------------------------|
| 7   | RESET    | W    | 0h    | Reset registers bit  1 = Resets all registers to default values  0 = Normal operation                        |
| 6   | PD       | R/W  | 0h    | Power down bit 1 = Power down all channels (I <sub>CC</sub> ≈ 4 mA) 0 = Normal operation                     |
| 5   | Reserved |      |       |                                                                                                              |
| 4   | Reserved |      |       |                                                                                                              |
| 3   | Reserved |      |       |                                                                                                              |
| 2   | Reserved |      |       |                                                                                                              |
| 1   | Reserved |      |       |                                                                                                              |
| 0   | PWRITE   | R/W  | 0h    | Parallel write mode bit  1 = Parallel write enabled (write register value to all channels)  0 = Serial write |



### 7.5.2 Register 1 (0x01) – Amplitude and Rate for Channel 1 (offset = 1h) [reset = 0h]

### Figure 17. Register 1 (0x01) - Amplitude and Rate for Channel 1

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RATE3 | RATE2 | RATE1 | RATE0 | AMP3  | AMP2  | AMP1  | AMP0  |

### Table 3. Register 1 (0x01) - Amplitude and Rate for Channel 1 Field Descriptions

| Bit              | Field                            | Туре | Reset | Description                                                                                                                                         |  |  |
|------------------|----------------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7<br>6<br>5<br>4 | RATE3<br>RATE2<br>RATE1<br>RATE0 | R/W  | Oh    | Rate adjustments bits for channel 1 0000 – 21 GHz (default) 0111 – BW decrease of approximately 0.4 GHz 1111 – BW increase of approximately 0.4 GHz |  |  |
| 3<br>2<br>1<br>0 | AMP3<br>AMP2<br>AMP1<br>AMP0     | R/W  | Oh    | Amplitude adjustment bits for channel 1  0000 - 0mVpp (default)                                                                                     |  |  |

### 7.5.3 Register 2 (0x02) Mapping – Threshold and Gain for Channel 1 (offset = 2h) [reset = 0h]

### Figure 18. Register 2 (0x02) - Threshold and Gain for Channel 1

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PD    | DIS   | GAIN1 | GAIN0 | TH3   | TH2   | TH1   | TH0   |

### Table 4. Register 2 (0x02) - Threshold and Gain for Channel 1

| Bit              | Field                    | Туре | Reset | Description                                                                                                                                                                                         |  |  |  |
|------------------|--------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7                | PD                       | R/W  | 0h    | Power down bit for channel 1 1 = Power down channel 1 0 = Normal operation                                                                                                                          |  |  |  |
| 6                | DIS                      | R/W  | 0h    | Disable output buffer for channel 1 1 = Disable channel 1 output buffer 0 = Normal operation                                                                                                        |  |  |  |
| 5<br>4           | GAIN1<br>GAIN0           | R/W  | 0h    | Gain adjustment bits for channel 1  00 – default 10 – medium (–4 dB) 01 – NA 11 – minimum (–8 dB)                                                                                                   |  |  |  |
| 3<br>2<br>1<br>0 | TH3<br>TH2<br>TH1<br>TH0 | R/W  | Oh    | Threshold adjustment bits for channel 1 Minimum positive shift for 0001 Maximum positive shift for 0111 Zero shift for 0000 or 1000 Minimum negative shift for 1001 Maximum negative shift for 1111 |  |  |  |

#### 7.5.4 Register 3 (0x03) - Reserved

### Figure 19. Register 3 (0x03) - Reserved

| bit 7 | bit 6 bit 5 |   | bit 5 bit 4 |   | bit 3 bit 2 |   | bit 0 |
|-------|-------------|---|-------------|---|-------------|---|-------|
| _     | _           | - | -           | - | _           | _ | -     |

### Table 5. Register 3 (0x03) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

Product Folder Links: ONET2804T



#### 7.5.5 Register 4 (0x04) - Reserved

### Figure 20. Register 4 (0x04) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | _     | _     | _     | _     | _     |

#### Table 6. Register 4 (0x04) – Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

#### 7.5.6 Register 5 (0x05) - Reserved

### Figure 21. Register 5 (0x05) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | 1     | -     | _     | _     | _     |

#### Table 7. Register 5 (0x05) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

### 7.5.7 Register 6 (0x06) - Reserved

### Figure 22. Register 6 (0x06) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 bit 3 |   | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------------|---|-------|-------|-------|
| _     | _     | _     | _           | _ | _     | _     | _     |

### Table 8. Register 6 (0x06) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

### 7.5.8 Register 7 (0x07) – Amplitude and Rate for Channel 2 (offset = 7h) [reset = 0h]

### Figure 23. Register 7 (0x07) - Amplitude and Rate for Channel 2

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |  |
|-------|-------|-------|-------|-------|-------|-------|-------|--|
| RATE3 | RATE2 | RATE1 | RATE0 | AMP3  | AMP2  | AMP1  | AMP0  |  |

#### Table 9. Register 7 (0x07) - Amplitude and Rate for Channel 2 Field Descriptions

| Bit              | Field                            | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------------|----------------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7<br>6<br>5<br>4 | RATE3<br>RATE2<br>RATE1<br>RATE0 | R/W  | 0h    | Rate adjustments bits for channel 2<br>0000 – 21 GHz (default)<br>0111 – BW decrease of approximately 0.4 GHz<br>1111 – BW increase of approximately 0.4 GHz                                                                                                                                                                                                                                                   |  |
| 3<br>2<br>1<br>0 | AMP3<br>AMP2<br>AMP1<br>AMP0     | R/W  | Oh    | Amplitude adjustment bits for channel 2         0000 - 0mVpp (default)       1000 - 250mVpp         0001 - 50mVpp       1001 - 300mVpp         0010 - 100mVpp       1010 - 350mVpp         0011 - 150mVpp       1011 - 400mVpp         0100 - 200mVpp       1100 - 450mVpp         0101 - 250mVpp       1101 - 500mVpp         0110 - 300mVpp       1110 - 550mVpp         0111 - 350mVpp       1111 - 600mVpp |  |

Product Folder Links: ONET2804T



### 7.5.9 Register 8 (0x08) Mapping – Threshold and Gain for Channel 1 (offset = 8h) [reset = 0h]

### Figure 24. Register 8 (0x08) – Threshold and Gain for Channel 2

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PD    | DIS   | GAIN1 | GAIN0 | TH3   | TH2   | TH1   | TH0   |

#### Table 10. Register 8 (0x08) – Threshold and Gain for Channel 2

| Bit              | Field                    | Туре | Reset | Description                                                                                                                                                                                         |  |
|------------------|--------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7                | PD                       | R/W  | 0h    | Power down bit for channel 2  1 = Power down channel 2  0 = Normal operation                                                                                                                        |  |
| 6                | DIS                      | R/W  | 0h    | Disable output buffer for channel 2 1 = Disable channel 2 output buffer 0 = Normal operation                                                                                                        |  |
| 5<br>4           | GAIN1<br>GAIN0           | R/W  | 0h    | Gain adjustment bits for channel 2  00 – default 10 – medium (–4 dB)  01 – NA 11 – minimum (–8 dB)                                                                                                  |  |
| 3<br>2<br>1<br>0 | TH3<br>TH2<br>TH1<br>TH0 | R/W  | Oh    | Threshold adjustment bits for channel 2 Minimum positive shift for 0001 Maximum positive shift for 0111 Zero shift for 0000 or 1000 Minimum negative shift for 1001 Maximum negative shift for 1111 |  |

### 7.5.10 Register 9 (0x09) - Reserved

#### Figure 25. Register 9 (0x09) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | _     | _     | _     | _     | _     |

#### Table 11. Register 9 (0x09) – Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | -     |      |       | Reserved    |

### 7.5.11 Register 10 (0x0A) - Reserved

#### Figure 26. Register 10 (0x0A) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | ı     | ı     | _     | _     | _     | _     |

#### Table 12. Register 10 (0x0A) – Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

### 7.5.12 Register 11 (0x0B) - Reserved

### Figure 27. Register 11 (0x0B) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | _     | _     | _     | _     | _     |

### Table 13. Register 11 (0x0B) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

Copyright © 2014–2018, Texas Instruments Incorporated



#### 7.5.13 Register 12 (0x0C) - Reserved

#### Figure 28. Register 12 (0x0C) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | _     | _     | _     | _     | _     |

#### Table 14. Register 12 (0x0C) – Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

## 7.5.14 Register 13 (0x0D) – Amplitude and Rate for Channel 3 (offset = Dh) [reset = 0h]

## Figure 29. Register 13 (0x0D) – Amplitude and Rate for Channel 3

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RATE3 | RATE2 | RATE1 | RATE0 | AMP3  | AMP2  | AMP1  | AMP0  |

### Table 15. Register 13 (0x0D) - Amplitude and Rate for Channel 3 Field Descriptions

| Bit              | Field                            | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                    |  |  |
|------------------|----------------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7<br>6<br>5<br>4 | RATE3<br>RATE2<br>RATE1<br>RATE0 | R/W  | 0h    | Rate adjustments bits for channel 3<br>0000 – 21 GHz (default)<br>0111 – BW decrease of approximately 0.4 GHz<br>1111 – BW increase of approximately 0.4 GHz                                                                                                                                                                                                   |  |  |
|                  |                                  | R/W  | 0h    | Amplitude adjustment bits for channel 3                                                                                                                                                                                                                                                                                                                        |  |  |
| 3<br>2<br>1<br>0 | AMP3<br>AMP2<br>AMP1<br>AMP0     |      |       | 0000 - 0mVpp (default)       1000 - 250mVpp         0001 - 50mVpp       1001 - 300mVpp         0010 - 100mVpp       1010 - 350mVpp         0011 - 150mVpp       1011 - 400mVpp         0100 - 200mVpp       1100 - 450mVpp         0101 - 250mVpp       1101 - 500mVpp         0110 - 300mVpp       1110 - 550mVpp         0111 - 350mVpp       1111 - 600mVpp |  |  |

### 7.5.15 Register 14 (0x0E) Mapping – Threshold and Gain for Channel 3 (offset = Eh) [reset = 0h]

#### Figure 30. Register 14 (0x0E) - Threshold and Gain for Channel 3

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PD    | DIS   | GAIN1 | GAIN0 | TH3   | TH2   | TH1   | TH0   |

## Table 16. Register 14 (0x0E) – Threshold and Gain for Channel 3

| Bit              | Field                    | Туре | Reset | Description                                                                                                                                                                                         |  |
|------------------|--------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7                | PD                       | R/W  | 0h    | Power down bit for channel 3 1 = Power down channel 3 0 = Normal operation                                                                                                                          |  |
| 6                | DIS                      | R/W  | 0h    | Disable output buffer for channel 3  1 = Disable channel 3 output buffer  0 = Normal operation                                                                                                      |  |
| 5<br>4           | GAIN1<br>GAIN0           | R/W  | 0h    | Gain adjustment bits for channel 3  00 – default 10 – medium (–4 dB)  01 – NA 11 – minimum (–8 dB)                                                                                                  |  |
| 3<br>2<br>1<br>0 | TH3<br>TH2<br>TH1<br>TH0 | R/W  | Oh    | Threshold adjustment bits for channel 3 Minimum positive shift for 0001 Maximum positive shift for 0111 Zero shift for 0000 or 1000 Minimum negative shift for 1001 Maximum negative shift for 1111 |  |

Product Folder Links: ONET2804T

20



### 7.5.16 Register 15 (0x0F) - Reserved

### Figure 31. Register 15 (0x0F) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | _     | _     | _     | _     | _     |

#### Table 17. Register 15 (0x0F) – Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | -     |      |       | Reserved    |

#### 7.5.17 Register 16 (0x10) - Reserved

### Figure 32. Register 16 (0x10) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | 1     | _     | _     | _     | _     |

#### Table 18. Register 16 (0x10) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

## 7.5.18 Register 17 (0x11) - Reserved

### Figure 33. Register 17 (0x11) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |  |
|-------|-------|-------|-------|-------|-------|-------|-------|--|
| _     | _     | _     | _     | _     | _     | _     | _     |  |

### Table 19. Register 17 (0x11) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | -     |      |       | Reserved    |

### 7.5.19 Register 18 (0x12) - Reserved

## Figure 34. Register 18 (0x12) - Reserved

| bit 7 | bit 6 bit 5 |   | t 5 bit 4 bit 3 |   | bit 2 | bit 1 | bit 0 |
|-------|-------------|---|-----------------|---|-------|-------|-------|
| _     | _           | _ | 1               | 1 | _     | _     | _     |

# Table 20. Register 18 (0x12) - Reserved Field Descriptions

| Bit | Field | Type | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | -     |      |       | Reserved    |

Copyright © 2014–2018, Texas Instruments Incorporated



### 7.5.20 Register 19 (0x13) – Amplitude and Rate for Channel 4 (offset = 13h) [reset = 0h]

### Figure 35. Register 19 (0x13) - Amplitude and Rate for Channel 4

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0<br>AMP0 |  |
|-------|-------|-------|-------|-------|-------|-------|---------------|--|
| RATE3 | RATE2 | RATE1 | RATE0 | AMP3  | AMP2  | AMP1  |               |  |

### Table 21. Register 19 (0x13) - Amplitude and Rate for Channel 4 Field Descriptions

| Bit              | Field                            | Туре | Reset | Description                                                                                                                                            |  |
|------------------|----------------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7<br>6<br>5<br>4 | RATE3<br>RATE2<br>RATE1<br>RATE0 | R/W  | 0h    | Rate adjustments bits for channel 4  0000 – 21 GHz (default)  0111 – BW decrease of approximately 0.4 GHz  1111 – BW increase of approximately 0.4 GHz |  |
| 3<br>2<br>1<br>0 | AMP3<br>AMP2<br>AMP1<br>AMP0     | R/W  | Oh    | Amplitude adjustment bits for channel 4  0000 - 0mVpp (default)                                                                                        |  |

### 7.5.21 Register 20 (0x14) Mapping – Threshold and Gain for Channel 4 (offset =14h) [reset = 0h]

### Figure 36. Register 20 (0x14) - Threshold and Gain for Channel 4

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PD    | DIS   | GAIN1 | GAIN0 | TH3   | TH2   | TH1   | TH0   |

### Table 22. Register 20 (0x14) - Threshold and Gain for Channel 4

| Bit              | Field                    | Туре | Reset | Description                                                                                                                                                                                         |  |
|------------------|--------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7                | PD                       | R/W  | 0h    | Power down bit for channel 4 1 = Power down channel 4 0 = Normal operation                                                                                                                          |  |
| 6                | DIS                      | R/W  | 0h    | Disable output buffer for channel 4  1 = Disable channel 4 output buffer  0 = Normal operation                                                                                                      |  |
| 5<br>4           | GAIN1<br>GAIN0           | R/W  | 0h    | Gain adjustment bits for channel 4  00 – default 10 – medium (–4 dB)  01 – NA 11 – minimum (–8 dB)                                                                                                  |  |
| 3<br>2<br>1<br>0 | TH3<br>TH2<br>TH1<br>TH0 | R/W  | Oh    | Threshold adjustment bits for channel 4 Minimum positive shift for 0001 Maximum positive shift for 0111 Zero shift for 0000 or 1000 Minimum negative shift for 1001 Maximum negative shift for 1111 |  |

### 7.5.22 Register 21 (0x15) - Reserved

### Figure 37. Register 21 (0x15) – Reserved

| bit 7 | bit 6 | bit 5 | bit 5 bit 4 bit 3 |   | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------------------|---|-------|-------|-------|
| _     | _     | -     | -                 | - | _     | _     | -     |

### Table 23. Register 21 (0x15) – Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

Product Folder Links: ONET2804T



### 7.5.23 Register 22 (0x10) - Reserved

### Figure 38. Register 21 (0x10) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |  |
|-------|-------|-------|-------|-------|-------|-------|-------|--|
| _     | _     | _     | _     | _     | _     | _     | _     |  |

### Table 24. Register 21 (0x10) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | -     |      |       | Reserved    |

#### 7.5.24 Register 23 (0x17) - Reserved

### Figure 39. Register 23 (0x17) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | _     | _     | _     | -     | _     |

#### Table 25. Register 23 (0x17) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

## 7.5.25 Register 24 (0x18) - Reserved

### Figure 40. Register 24 (0x18) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | _     | _     | _     | _     | _     |

### Table 26. Register 24 (0x18) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | -     |      |       | Reserved    |

### 7.5.26 Register 25 (0x19) - Reserved

## Figure 41. Register 25 (0x19) - Reserved

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | 1     | 1     | _     | _     | _     |

# Table 27. Register 25 (0x19) - Reserved Field Descriptions

| Bit | Field | Туре | Reset | Description |
|-----|-------|------|-------|-------------|
| 0-7 | _     |      |       | Reserved    |

Copyright © 2014–2018, Texas Instruments Incorporated



### 8 Application and Implementation

#### 8.1 Application Information

Figure 42 shows the ONET2804T being used in a 4 x 25 Gbps fiber optic receiver with pin control and Figure 45 shows the device being used with 2-wire control. The ONET2804T converts the electrical current generated by the PIN photodiode into a differential output voltage. The FILTER inputs provide a DC bias voltage for the PIN that is low pass filtered. Because the voltage drop across the photodiode FET is sensed and used by the bias circuit, the photodiode must be connected to the FILTER pads for the bias to function correctly.

The RSSI outputs are used to mirror the photodiode output current and can be connected via resistors to GND. The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for proper operation of the ONET2804T, ensure that the voltage at RSSI never exceeds  $V_{CC}$  - 0.65 V. If the RSSI outputs are not used while operating with internal PD bias they should be left open.

The OUT+ and OUT- pins are internally terminated by 50  $\Omega$  pull-up resisters to VCC. The outputs must be AC coupled, for example by using 0.1  $\mu$ F capacitors, to the succeeding device.

### 8.2 Typical Applications

### 8.2.1 Typical Application, Pad Control

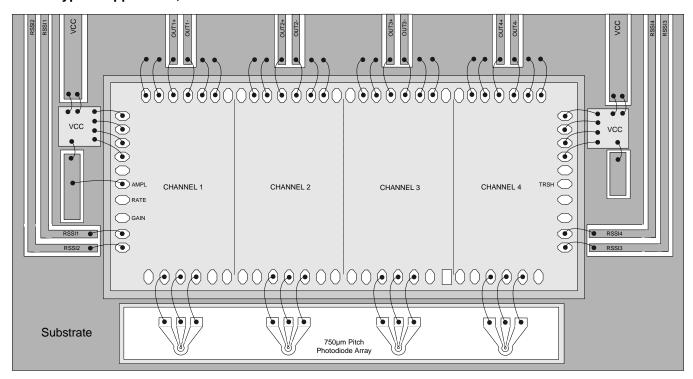


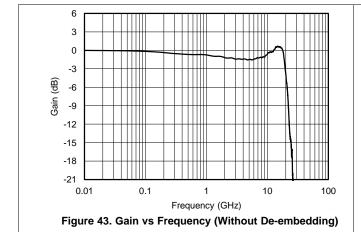

Figure 42. Basic Application Circuit with Pad Control

### 8.2.1.1 Design Requirements

**Table 28. Design Parameters** 

| PARAMETER      | VALUE                |  |  |
|----------------|----------------------|--|--|
| Input voltage  | 3.3 V                |  |  |
| Output voltage | 500 mV <sub>PP</sub> |  |  |

Product Folder Links: ONET2804T




#### 8.2.1.2 Detailed Design Procedure

The ONET2804T is designed to be used in conjunction with a 750  $\mu$ m pitch photodiode array or individual photodiodes and assembled into a receiver optical sub-assembly (ROSA). The TIA will typically be mounted on a ceramic substrate with etched connections for VCC, RSSI and 100  $\Omega$  differential transmission lines for the output voltage. The photodiode converts the optical input signal into a current that is supplied to the TIA through wire bonds. The TIA then converts the input current into a voltage and further amplifies the signal. It is recommended to set the output amplitude to the 500 mV<sub>PP</sub> level by bonding AMPL (pad 6) to VCC.

The ROSA is typically mounted on a printed circuit board (PCB) with 100  $\Omega$  differential transmission lines and RF connectors such as GPPO or 2.4 mm SMA. When measuring the output from the ROSA mounted on the PCB, the frequency dependent loss of the transmission lines will impact the frequency response. The loss can be deembedded from the measurement to determine the actual frequency response at the output of the ROSA. Figure 43 shows a typical frequency response without the loss de-embedded and Figure 44 shows a typical frequency response with the loss de-embedded.

### 8.2.1.3 Application Curves



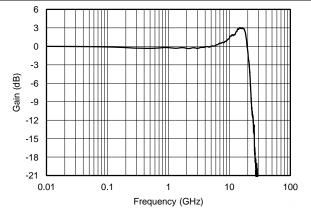



Figure 44. Gain vs Frequency (With De-embedding)

### 8.2.2 Typical Application, 2-Wire Control

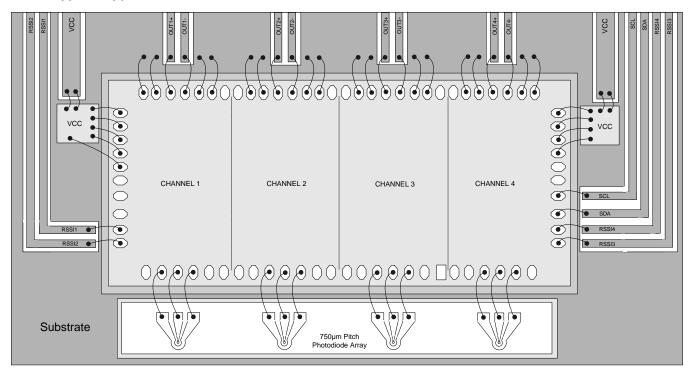



Figure 45. Basic Application Circuit with 2-Wire Control

### 8.2.2.1 Design Requirements

Refer to Typical Application, Pad Control for the Design Requirements.

### 8.2.2.2 Detailed Design Procedure

Refer to Typical Application, Pad Control for the Detailed Design Procedure.

### 8.2.2.3 Application Curves

Refer to *Typical Application, Pad Control* for the Application Curves.



# 9 Power Supply Recommendations

The ONET2804T is designed to operate from an input supply voltage range between 2.97 V and 3.47 V. There are a total of 8 power supply pads that must be connected for proper operation. VCCI1-4 are used to supply power to the input transimpedance amplifier stages and VCCO1-4 are used to supply power to the voltage amplifiers and output buffers. Each amplifier is powered up separately but there are some common internal connections for support circuitry such as the 2-wire interface. Therefore, if only one channel is being evaluated, all 8 supply pads must be connected. It is recommended to use two single layer ceramic (SLC) capacitors in the range of 270 pF to 680 pF for power supply decoupling. VCCI1, VCCI2, VCCO1 and VCCO2 should be bonded to one capacitor and VCCI3, VCCI4, VCCO3 and VCCO4 should be bonded to the other capacitor. Refer to Figure 42 and Figure 45 for reference.



### 10 Layout

#### 10.1 Layout Guidelines

Careful attention to assembly parasitics and external components is necessary to achieve optimal performance.

- Minimize the total capacitance on the IN pad by using a low capacitance photodiode (100fF) and paying attention to stray capacitances. Place the photodiode close to the ONET2804T die and keep the wire bond inductance in the range of 300 to 400pH.
- Use identical termination and symmetrical transmission lines at the AC coupled differential output pins OUT+ and OUT-.
- Use short bond wire connections for the supply terminals VCCIx, VCCOx and GND. Supply voltage filtering is
  provided on chip but filtering may be improved by using an additional external capacitor.
- The die has backside metal and conductive epoxy must be used to attach the die to ground.

### 10.2 Layout Example

The IC dimensions are shown in Figure 46, and the pad locations are provided in Table 29. The device is designed for wire bonding not flip chip.

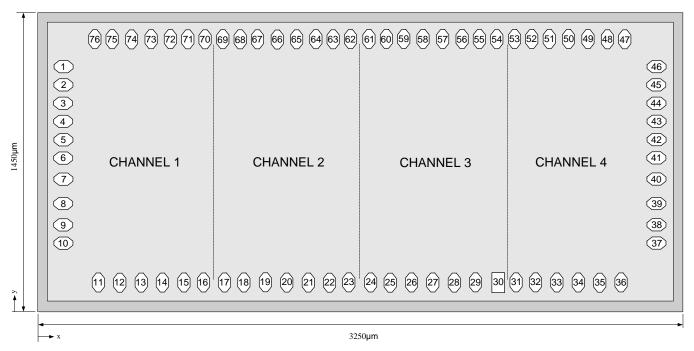



Figure 46. Chip Dimensions and Pad Locations

Die Thickness:  $203 \pm 13 \mu m$ Pad Dimensions:  $105 \mu m \times 65 \mu m$ 

Die Size: 3250  $\mu$ m  $\pm 40 \mu$ m x 1450  $\mu$ m  $\pm 40 \mu$ m



# **Layout Example (continued)**

### Table 29. Bond Pad Co-ordinates

| PAD | COORDINATES (Referenced to Pad 1) |        | SYMBOL  | TYPE           | DESCRIPTION                                     |
|-----|-----------------------------------|--------|---------|----------------|-------------------------------------------------|
|     | x (µm)                            | y (µm) |         |                |                                                 |
| 1   | 0                                 | 0      | VCCO1   | Supply         | 3.3V supply voltage                             |
| 2   | 0                                 | -94    | VCCO2   | Supply         | 3.3V supply voltage                             |
| 3   | 0                                 | -188   | VCCI2   | Supply         | 3.3V supply voltage                             |
| 4   | 0                                 | -282   | VCCI1   | Supply         | 3.3V supply voltage                             |
| 5   | 0                                 | -376   | I2CENA  | Digital input  | I2C Enable                                      |
| 6   | 0                                 | -470   | AMPL    | Digital input  | Amplitude control                               |
| 7   | 0                                 | -580   | RATE    | Digital input  | Rate selection                                  |
| 8   | 0                                 | -704   | GAIN    | Digital input  | Gain control                                    |
| 9   | 0                                 | -814   | RSSI1   | Analog output  | Receive signal strength indicator for channel 1 |
| 10  | 0                                 | -908   | RSSI2   | Analog output  | Receive signal strength indicator for channel 2 |
| 11  | 180                               | -1110  | GND     | Supply         | Circuit ground                                  |
| 12  | 290                               | -1110  | FILTER1 | Analog output  | Bias voltage for photodiode 1                   |
| 13  | 400                               | -1110  | IN1     | Analog input   | TIA input for channel 1                         |
| 14  | 510                               | -1110  | FILTER1 | Analog output  | Bias voltage for photodiode 1                   |
| 15  | 620                               | -1110  | GND     | Supply         | Circuit ground                                  |
| 16  | 720                               | -1110  | NC      | No connect     | Do not connect                                  |
| 17  | 829                               | -1110  | NC      | No connect     | Do not connect                                  |
| 18  | 929                               | -1110  | GND     | Supply         | Circuit ground                                  |
| 19  | 1039                              | -1110  | FILTER2 | Analog output  | Bias voltage for photodiode 2                   |
| 20  | 1149                              | -1110  | IN2     | Analog input   | TIA input for channel 2                         |
| 21  | 1259                              | -1110  | FILTER2 | Analog output  | Bias voltage for photodiode 2                   |
| 22  | 1369                              | -1110  | GND     | Supply         | Circuit ground                                  |
| 23  | 1469                              | -1110  | NC      | No connect     | Do not connect                                  |
| 24  | 1580                              | -1110  | NC      | No connect     | Do not connect                                  |
| 25  | 1680                              | -1110  | GND     | Supply         | Circuit ground                                  |
| 26  | 1790                              | -1110  | FILTER3 | Analog output  | Bias voltage for photodiode 3                   |
| 27  | 1900                              | -1110  | IN3     | Analog input   | TIA input for channel 3                         |
| 28  | 2010                              | -1110  | FILTER3 | Analog output  | Bias voltage for photodiode 3                   |
| 29  | 2120                              | -1110  | GND     | Supply         | Circuit ground                                  |
| 30  | 2239                              | -1110  | NC      | No connect     | Do not connect                                  |
| 31  | 2329                              | -1110  | NC      | No connect     | Do not connect                                  |
| 32  | 2429                              | -1110  | GND     | Supply         | Circuit ground                                  |
| 33  | 2539                              | -1110  | FILTER4 | Analog output  | Bias voltage for photodiode 4                   |
| 34  | 2649                              | -1110  | IN4     | Analog input   | TIA input for channel 4                         |
| 35  | 2759                              | -1110  | FILTER4 | Analog output  | Bias voltage for photodiode 4                   |
| 36  | 2869                              | -1110  | GND     | Supply         | Circuit ground                                  |
| 37  | 3051                              | -908   | RSSI3   | Analog output  | Receive signal strength indicator for channel 3 |
| 38  | 3051                              | -814   | RSSI4   | Analog output  | Receive signal strength indicator for channel 4 |
| 39  | 3051                              | -704   | SDA     | Digital in/out | 2-wire data                                     |
| 40  | 3051                              | -579   | SCL     | Digital input  | 2-wire clock                                    |
| 41  | 3051                              | -470   | TRSH    | Digital input  | Input threshold control (cross-point)           |
| 42  | 3051                              | -376   | NC      | No connect     | Do not connect                                  |
| 43  | 3051                              | -282   | VCCI4   | Supply         | 3.3V supply voltage                             |
| 44  | 3051                              | -188   | VCCI3   | Supply         | 3.3V supply voltage                             |



# **Layout Example (continued)**

# Table 29. Bond Pad Co-ordinates (continued)

| PAD | COORDINATES (Referenced to Pad 1) |        | SYMBOL | TYPE          | DESCRIPTION                            |
|-----|-----------------------------------|--------|--------|---------------|----------------------------------------|
|     | x (µm)                            | y (µm) |        |               |                                        |
| 45  | 3051                              | -94    | VCCO3  | Supply        | 3.3V supply voltage                    |
| 46  | 3051                              | 0      | VCCO4  | Supply        | 3.3V supply voltage                    |
| 47  | 2888                              | 140    | GND    | Supply        | Circuit ground                         |
| 48  | 2799                              | 140    | GND    | Supply        | Circuit ground                         |
| 49  | 2699                              | 140    | OUT4-  | Analog output | Inverted data output for channel 4     |
| 50  | 2599                              | 140    | OUT4+  | Analog output | Non-inverted data output for channel 4 |
| 51  | 2499                              | 140    | GND    | Supply        | Circuit ground                         |
| 52  | 2410                              | 140    | GND    | Supply        | Circuit ground                         |
| 53  | 2322                              | 140    | ADR1   | Digital input | 2-wire address bit 1 control           |
| 54  | 2228                              | 140    | ADR0   | Digital input | 2-wire address bit 0 control           |
| 55  | 2139                              | 140    | GND    | Supply        | Circuit ground                         |
| 56  | 2050                              | 140    | GND    | Supply        | Circuit ground                         |
| 57  | 1950                              | 140    | OUT3-  | Analog output | Inverted data output for channel 3     |
| 58  | 1850                              | 140    | OUT3+  | Analog output | Non-inverted data output for channel 3 |
| 59  | 1750                              | 140    | GND    | Supply        | Circuit ground                         |
| 60  | 1661                              | 140    | GND    | Supply        | Circuit ground                         |
| 61  | 1572                              | 140    | NC     | No connect    | Do not connect                         |
| 62  | 1477                              | 140    | NC     | No connect    | Do not connect                         |
| 63  | 1388                              | 140    | GND    | Supply        | Circuit ground                         |
| 64  | 1299                              | 140    | GND    | Supply        | Circuit ground                         |
| 65  | 1199                              | 140    | OUT2-  | Analog output | Inverted data output for channel 2     |
| 66  | 1099                              | 140    | OUT2+  | Analog output | Non-inverted data output for channel 2 |
| 67  | 999                               | 140    | GND    | Supply        | Circuit ground                         |
| 68  | 910                               | 140    | GND    | Supply        | Circuit ground                         |
| 69  | 821                               | 140    | NC     | No connect    | Do not connect                         |
| 70  | 728                               | 140    | NRESET | Digital input | 2-wire negative reset                  |
| 71  | 639                               | 140    | GND    | Supply        | Circuit ground                         |
| 72  | 550                               | 140    | GND    | Supply        | Circuit ground                         |
| 73  | 450                               | 140    | OUT1-  | Analog output | Inverted data output for channel 1     |
| 74  | 350                               | 140    | OUT1+  | Analog output | Non-inverted data output for channel 1 |
| 75  | 250                               | 140    | GND    | Supply        | Circuit ground                         |
| 76  | 161                               | 140    | GND    | Supply        | Circuit ground                         |



# 11 Device and Documentation Support

#### 11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 11.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

#### 11.4 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

### 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2014–2018, Texas Instruments Incorporated

www.ti.com 10-Nov-2025

#### PACKAGING INFORMATION

| Orderable part number | Status (1) | Material type | Package   Pins  | Package qty   Carrier | RoHS | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) |
|-----------------------|------------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------|
| ONET2804TY            | Active     | Production    | DIESALE (Y)   0 | 675   OTHER           | -    | Call TI                       | Call TI                    | -40 to 100   |                  |
| ONET2804TY.A          | Active     | Production    | DIESALE (Y)   0 | 675   OTHER           | -    | Call TI                       | Call TI                    | -40 to 100   |                  |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025